Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis

Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 5; no. 3; pp. 667 - 679
Main Authors Lou, Dong, Luo, Yu, Pang, Qian, Tan, Wei-Qiang, Ma, Lie
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.09.2020
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds. [Display omitted] •Gene-activated strategy overcomes short half-life period of growth factors.•Releasing DNA complexes in sustained manner and effective transfection capacities.•Without cutaneous contraction, reformative full-thickness diabetes chronic wound.•VEGF versatile potentials: immunoregulation, pro-angiogenesis in different phases.•One intervenor covered two main pathogenic factors: inflammation and angiogenesis.
AbstractList Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds. [Display omitted] •Gene-activated strategy overcomes short half-life period of growth factors.•Releasing DNA complexes in sustained manner and effective transfection capacities.•Without cutaneous contraction, reformative full-thickness diabetes chronic wound.•VEGF versatile potentials: immunoregulation, pro-angiogenesis in different phases.•One intervenor covered two main pathogenic factors: inflammation and angiogenesis.
Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds.
Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds.Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds.
Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds. Image 1 • Gene-activated strategy overcomes short half-life period of growth factors. • Releasing DNA complexes in sustained manner and effective transfection capacities. • Without cutaneous contraction, reformative full-thickness diabetes chronic wound. • VEGF versatile potentials: immunoregulation, pro-angiogenesis in different phases. • One intervenor covered two main pathogenic factors: inflammation and angiogenesis.
Author Pang, Qian
Ma, Lie
Luo, Yu
Lou, Dong
Tan, Wei-Qiang
Author_xml – sequence: 1
  givenname: Dong
  surname: Lou
  fullname: Lou, Dong
  organization: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 2
  givenname: Yu
  surname: Luo
  fullname: Luo, Yu
  organization: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 3
  givenname: Qian
  surname: Pang
  fullname: Pang, Qian
  organization: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
– sequence: 4
  givenname: Wei-Qiang
  surname: Tan
  fullname: Tan, Wei-Qiang
  email: tanweixxxx@zju.edu.cn
  organization: Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
– sequence: 5
  givenname: Lie
  surname: Ma
  fullname: Ma, Lie
  email: liema@zju.edu.cn
  organization: MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32420517$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQx1eoiD7oVwAfuSTYXu_rAFJV0VKpEheQuFlje3bjaNdObW9QvwEfGydpq5ZLLx5rHr__eDynxZHzDoviI6NLRln9eb1U1oNOE6Qlp5wuqVhS1r4pTrio-IJ13e-jZ_fj4jzGNaWUNfmgzbviuOSC04o1J8Xfa3S4yDC7hYSGGAwTjATv5uwY0aVIkiegNY4YcgZZIYzWDcT3xFhQmKwmehW8y_aPn52JRN2TgMM8QtolWtePMOVerXcEnCGb4Ce_D4EbrB9yA9HG98XbHsaI5w_2rPh19e3n5ffF7Y_rm8uL24WuBEsLFFWnO6M1cCFQV8BY2_eqBqqh19g3zDRUKWZ4h8zUiLXSbcVaZdq6KnlTnhU3B67xsJabYCcI99KDlXuHD4OEkB81oqyYEV3NdGa1oqEtlJRVCjpdMmUQMbO-HlibWU1odB5XgPEF9GXE2ZUc_FY2nDUtrTPg0wMg-LsZY5KTjXnUIzj0c5RcUFG2nItd3x-eaz2JPH5lTvhySNDBxxiwl9qm_dSztB0lo3K3PXItn7ZH7rZHUiHz9uT65r_6R4nXKy8OlZj_bWsxyKgtOo3GBtQpD9a-yvgHofvpsQ
CitedBy_id crossref_primary_10_1002_adhm_202201096
crossref_primary_10_1002_advs_202102466
crossref_primary_10_1007_s42114_024_00847_0
crossref_primary_10_1016_j_bioactmat_2021_12_012
crossref_primary_10_1016_j_carbpol_2023_121238
crossref_primary_10_1038_s41598_023_33372_z
crossref_primary_10_1016_j_bioactmat_2021_08_017
crossref_primary_10_1166_sam_2022_4317
crossref_primary_10_2174_0113894501260002231101080505
crossref_primary_10_1016_j_bioactmat_2020_08_012
crossref_primary_10_1002_smll_202301012
crossref_primary_10_1007_s42242_021_00129_4
crossref_primary_10_1096_fj_202201079RR
crossref_primary_10_1039_D4TB00966E
crossref_primary_10_1111_cpr_13613
crossref_primary_10_1038_s41392_021_00727_9
crossref_primary_10_2147_IJN_S276001
crossref_primary_10_1002_btm2_10642
crossref_primary_10_1007_s10570_024_05762_7
crossref_primary_10_1002_btm2_10562
crossref_primary_10_1039_D1BM01071A
crossref_primary_10_1016_j_bioactmat_2023_04_004
crossref_primary_10_1177_20417314231185848
crossref_primary_10_1021_acsabm_3c01227
crossref_primary_10_1021_acsabm_1c00880
crossref_primary_10_1021_acs_molpharmaceut_4c00322
crossref_primary_10_1016_j_bioactmat_2020_11_028
crossref_primary_10_1016_j_copbio_2021_08_019
crossref_primary_10_1016_j_mtadv_2021_100190
crossref_primary_10_2147_IJN_S505918
crossref_primary_10_1016_j_bioactmat_2021_03_001
crossref_primary_10_1016_j_ijbiomac_2021_07_001
Cites_doi 10.1146/annurev-nutr-071811-150726
10.1084/jem.176.5.1375
10.1016/j.biomaterials.2010.08.087
10.1007/s12325-014-0140-x
10.1111/j.1067-1927.2004.12404.x
10.1038/376066a0
10.1038/nri3399
10.1038/nri1785
10.1016/S0002-9440(10)63754-6
10.1016/j.mcna.2013.03.007
10.1073/pnas.90.19.8915
10.1186/2045-824X-6-16
10.1016/j.actbio.2013.03.033
10.1016/S0140-6736(05)67700-8
10.1007/s12272-012-0203-y
10.1242/dmm.016782
10.3390/ijms17122085
10.1016/0163-7258(91)90077-Y
10.1016/j.biomaterials.2010.06.013
10.1371/journal.pone.0191040
10.1007/s00441-009-0908-5
10.1002/mabi.200700015
10.1038/nri2294
10.1016/j.diabres.2017.03.024
10.1073/pnas.95.16.9349
10.3727/096368912X657495
10.2741/1184
10.1084/jem.172.6.1535
10.1096/fj.06-7227rev
10.1182/blood.V87.8.3336.bloodjournal8783336
10.1517/14712598.2011.546338
10.1111/j.1524-475X.2011.00754.x
10.1074/jbc.271.30.17629
10.1089/wound.2011.0308
10.1172/JCI107007
10.1189/jlb.0802406
10.1007/s10456-008-9099-z
10.1007/s10856-007-3088-4
10.1016/S0142-9612(03)00374-0
10.1038/nature11042
10.1023/B:HIJO.0000032355.66152.b8
10.1046/j.1524-475X.1994.20406.x
ContentType Journal Article
Copyright 2020
2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020
Copyright_xml – notice: 2020
– notice: 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
– notice: 2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2020.04.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 679
ExternalDocumentID oai_doaj_org_article_51d4961cd2984708a3015ba9c31bdeee
PMC7217806
32420517
10_1016_j_bioactmat_2020_04_018
S2452199X20300785
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
7X8
5PM
ID FETCH-LOGICAL-c541t-e459c9dcca244ec5a118ffb6a0cafcef71d70bb1d29e1d6ee6bc8518bd8653273
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:24:51 EDT 2025
Thu Aug 21 18:27:25 EDT 2025
Thu Jul 10 23:39:32 EDT 2025
Wed Feb 19 02:30:30 EST 2025
Thu Apr 24 23:10:09 EDT 2025
Tue Jul 01 02:11:23 EDT 2025
Wed May 17 00:07:40 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Angiogenesis
Inflammation
Diabetic chronic wounds
Gene-activated dermal equivalent
Vascular endothelial growth factor
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e459c9dcca244ec5a118ffb6a0cafcef71d70bb1d29e1d6ee6bc8518bd8653273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/51d4961cd2984708a3015ba9c31bdeee
PMID 32420517
PQID 2404382247
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_51d4961cd2984708a3015ba9c31bdeee
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7217806
proquest_miscellaneous_2404382247
pubmed_primary_32420517
crossref_citationtrail_10_1016_j_bioactmat_2020_04_018
crossref_primary_10_1016_j_bioactmat_2020_04_018
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_04_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2020
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Serhan, Chiang, Van Dyke (bib38) 2008; 8
Mao, Ma, Jiang, Yan, Gao, Shen (bib32) 2007; 7
Hiratsuka, Minowa, Kuno, Noda, Shibuya (bib43) 1998; 95
Zhang, Spite (bib39) 2012; 32
Widgerow (bib17) 2012; 20
Gong, Koh (bib19) 2010; 339
Kim, Shin, Kim, Lee, Noh, Jang, Bae (bib7) 2012; 35
Nissen, Polverini, Koch, Volin, Gamelli, DiPietro (bib8) 1998; 152
Shen, Zeng, Wu, Hou, Chen, Yang, Li, Zhang, Zhu (bib33) 2013; 22
Serhan, Chiang, Van Dyke (bib46) 2008; 8
Sunderkotter, Goebeler, Schulze-Osthoff, Bhardwaj, Sorg (bib24) 1991; 51
Nunan, Harding, Martin (bib45) 2014; 7
Douglas, Zimmermann, Tan, Sullivan-Pyke, Sauer, Kitajewski, Shawber (bib25) 2014; 6
Boulton (bib3) 2013; 97
Kucia, Jankowski, Reca, Wysoczynski, Bandura, Allendorf, Zhang, Ratajczak, Ratajczak (bib36) 2004; 35
Demidova-Rice, Durham, Herman (bib26) 2012; 1
Wheeler, Jena, Pradhan, Nayak, Das, Hsu, Wheeler, Chen, Nayak (bib44) 2018; 13
Dovi, He, DiPietro (bib14) 2003; 73
Simpson, Ross (bib15) 1972; 51
Ma, Shi, Chen, Zhao, Gao, Han (bib31) 2007; 18
Mulder, Patt, Sanders, Rosenstock, Altman, Hanley, Duncan (bib4) 1994; 2
Nathan (bib16) 2006; 6
Clauss, Weich, Breier, Knies, Rockl, Waltenberger, Risau (bib23) 1996; 271
Kolaczkowska, Kubes (bib18) 2013; 13
Zhao, Liang, Clarke, Jackson, Xue (bib6) 2016; 17
Barleon, Sozzani, Zhou, Weich, Mantovani, Marme (bib22) 1996; 87
Serhan, Brain, Buckley, Gilroy, Haslett, O'Neill, Perretti, Rossi, Wallace (bib47) 2007; 21
Guo, Xu, Ma, Huang, Gao (bib28) 2010; 31
Chiang, Fredman, Backhed, Oh, Vickery, Schmidt, Serhan (bib40) 2012; 484
Brown, Yeo, Berse, Yeo, Senger, Dvorak, van de Water (bib10) 1992; 176
Falanga (bib5) 2005; 366
Diegelmann, Evans (bib13) 2004; 9
Peters, De Vries, Williams (bib11) 1993; 90
Moura, Dias, Carvalho, de Sousa (bib27) 2013; 9
Galiano, Michaels, Dobryansky, Levine, Gurtner (bib35) 2004; 12
Fong, Rossant, Gertsenstein, Breitman (bib42) 1995; 376
Nagy, Benjamin, Zeng, Dvorak, Dvorak (bib21) 2008; 11
Guo, Xu, Ma, Huang, Gao (bib29) 2011; 32
Ma, Gao, Mao, Zhou, Shen, Hu, Han (bib30) 2003; 24
Guo, Xu, Ma, Huang, Gao (bib34) 2011; 32
Baltzis, Eleftheriadou, Veves (bib2) 2014; 31
Brown, Yeo, Berse, Yeo, Senger, Dvorak, van de Water (bib9) 1992; 176
Lau, Wang (bib37) 2011; 11
Clauss, Gerlach, Gerlach, Brett, Wang, Familletti, Pan, Olander, Connolly, Stern (bib41) 1990; 172
Ogurtsova, Da, Huang, Linnenkamp, Guariguata, Cho, Cavan, Shaw, Makaroff (bib1) 2017; 128
Kolaczkowska, Kubes (bib20) 2013; 13
Galiano, Tepper, Pelo, Bhatt, Callaghan, Bastidas, Bunting, Steinmetz, Gurtner (bib12) 2004; 164
Kucia (10.1016/j.bioactmat.2020.04.018_bib36) 2004; 35
Ma (10.1016/j.bioactmat.2020.04.018_bib30) 2003; 24
Clauss (10.1016/j.bioactmat.2020.04.018_bib41) 1990; 172
Moura (10.1016/j.bioactmat.2020.04.018_bib27) 2013; 9
Wheeler (10.1016/j.bioactmat.2020.04.018_bib44) 2018; 13
Ma (10.1016/j.bioactmat.2020.04.018_bib31) 2007; 18
Baltzis (10.1016/j.bioactmat.2020.04.018_bib2) 2014; 31
Falanga (10.1016/j.bioactmat.2020.04.018_bib5) 2005; 366
Guo (10.1016/j.bioactmat.2020.04.018_bib28) 2010; 31
Peters (10.1016/j.bioactmat.2020.04.018_bib11) 1993; 90
Mulder (10.1016/j.bioactmat.2020.04.018_bib4) 1994; 2
Kolaczkowska (10.1016/j.bioactmat.2020.04.018_bib20) 2013; 13
Simpson (10.1016/j.bioactmat.2020.04.018_bib15) 1972; 51
Nathan (10.1016/j.bioactmat.2020.04.018_bib16) 2006; 6
Serhan (10.1016/j.bioactmat.2020.04.018_bib38) 2008; 8
Brown (10.1016/j.bioactmat.2020.04.018_bib9) 1992; 176
Guo (10.1016/j.bioactmat.2020.04.018_bib29) 2011; 32
Gong (10.1016/j.bioactmat.2020.04.018_bib19) 2010; 339
Douglas (10.1016/j.bioactmat.2020.04.018_bib25) 2014; 6
Zhang (10.1016/j.bioactmat.2020.04.018_bib39) 2012; 32
Chiang (10.1016/j.bioactmat.2020.04.018_bib40) 2012; 484
Widgerow (10.1016/j.bioactmat.2020.04.018_bib17) 2012; 20
Fong (10.1016/j.bioactmat.2020.04.018_bib42) 1995; 376
Ogurtsova (10.1016/j.bioactmat.2020.04.018_bib1) 2017; 128
Mao (10.1016/j.bioactmat.2020.04.018_bib32) 2007; 7
Shen (10.1016/j.bioactmat.2020.04.018_bib33) 2013; 22
Clauss (10.1016/j.bioactmat.2020.04.018_bib23) 1996; 271
Kim (10.1016/j.bioactmat.2020.04.018_bib7) 2012; 35
Serhan (10.1016/j.bioactmat.2020.04.018_bib46) 2008; 8
Nissen (10.1016/j.bioactmat.2020.04.018_bib8) 1998; 152
Kolaczkowska (10.1016/j.bioactmat.2020.04.018_bib18) 2013; 13
Nagy (10.1016/j.bioactmat.2020.04.018_bib21) 2008; 11
Serhan (10.1016/j.bioactmat.2020.04.018_bib47) 2007; 21
Diegelmann (10.1016/j.bioactmat.2020.04.018_bib13) 2004; 9
Boulton (10.1016/j.bioactmat.2020.04.018_bib3) 2013; 97
Barleon (10.1016/j.bioactmat.2020.04.018_bib22) 1996; 87
Zhao (10.1016/j.bioactmat.2020.04.018_bib6) 2016; 17
Dovi (10.1016/j.bioactmat.2020.04.018_bib14) 2003; 73
Sunderkotter (10.1016/j.bioactmat.2020.04.018_bib24) 1991; 51
Galiano (10.1016/j.bioactmat.2020.04.018_bib35) 2004; 12
Lau (10.1016/j.bioactmat.2020.04.018_bib37) 2011; 11
Hiratsuka (10.1016/j.bioactmat.2020.04.018_bib43) 1998; 95
Demidova-Rice (10.1016/j.bioactmat.2020.04.018_bib26) 2012; 1
Nunan (10.1016/j.bioactmat.2020.04.018_bib45) 2014; 7
Brown (10.1016/j.bioactmat.2020.04.018_bib10) 1992; 176
Galiano (10.1016/j.bioactmat.2020.04.018_bib12) 2004; 164
Guo (10.1016/j.bioactmat.2020.04.018_bib34) 2011; 32
References_xml – volume: 7
  start-page: 855
  year: 2007
  end-page: 863
  ident: bib32
  article-title: N,N,N-Trimethylchitosan chloride as a gene vector: synthesis and application
  publication-title: Macromol. Biosci.
– volume: 376
  start-page: 66
  year: 1995
  end-page: 70
  ident: bib42
  article-title: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium
  publication-title: Nature
– volume: 31
  start-page: 7308
  year: 2010
  end-page: 7320
  ident: bib28
  article-title: Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model
  publication-title: Biomaterials
– volume: 484
  start-page: 524
  year: 2012
  end-page: 528
  ident: bib40
  article-title: Infection regulates pro-resolving mediators that lower antibiotic requirements
  publication-title: Nature
– volume: 152
  start-page: 1445
  year: 1998
  end-page: 1452
  ident: bib8
  article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing
  publication-title: Am. J. Pathol.
– volume: 1
  start-page: 17
  year: 2012
  end-page: 22
  ident: bib26
  article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing
  publication-title: Adv. Wound Care
– volume: 13
  year: 2018
  ident: bib44
  article-title: VEGF may contribute to macrophage recruitment and M2 polarization in the decidua
  publication-title: PloS One
– volume: 95
  start-page: 9349
  year: 1998
  end-page: 9354
  ident: bib43
  article-title: Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 35
  start-page: 233
  year: 2004
  end-page: 245
  ident: bib36
  article-title: CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion
  publication-title: J. Mol. Histol.
– volume: 51
  start-page: 2009
  year: 1972
  end-page: 2023
  ident: bib15
  article-title: The neutrophilic leukocyte in wound repair a study with antineutrophil serum
  publication-title: J. Clin. Invest.
– volume: 366
  start-page: 1736
  year: 2005
  end-page: 1743
  ident: bib5
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
– volume: 13
  start-page: 159
  year: 2013
  end-page: 175
  ident: bib20
  article-title: Neutrophil recruitment and function in health and inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 9
  start-page: 283
  year: 2004
  end-page: 289
  ident: bib13
  article-title: Wound healing: an overview of acute, fibrotic and delayed healing
  publication-title: Front. Biosci.
– volume: 32
  start-page: 203
  year: 2012
  end-page: 227
  ident: bib39
  article-title: Resolvins: anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids
  publication-title: Annu. Rev. Nutr.
– volume: 17
  year: 2016
  ident: bib6
  article-title: Inflammation in chronic wounds
  publication-title: Int. J. Mol. Sci.
– volume: 32
  start-page: 1019
  year: 2011
  end-page: 1031
  ident: bib29
  article-title: The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents
  publication-title: Biomaterials
– volume: 11
  start-page: 109
  year: 2008
  end-page: 119
  ident: bib21
  article-title: Vascular permeability, vascular hyperpermeability and angiogenesis
  publication-title: Angiogenesis
– volume: 7
  start-page: 1205
  year: 2014
  end-page: 1213
  ident: bib45
  article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity
  publication-title: Dis. Model Mech.
– volume: 271
  start-page: 17629
  year: 1996
  end-page: 17634
  ident: bib23
  article-title: The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis
  publication-title: J. Biol. Chem.
– volume: 13
  start-page: 159
  year: 2013
  end-page: 175
  ident: bib18
  article-title: Neutrophil recruitment and function in health and inflammation
  publication-title: Nat. Rev. Immunol.
– volume: 24
  start-page: 4833
  year: 2003
  end-page: 4841
  ident: bib30
  article-title: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering
  publication-title: Biomaterials
– volume: 31
  start-page: 817
  year: 2014
  end-page: 836
  ident: bib2
  article-title: Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights
  publication-title: Adv. Ther.
– volume: 97
  start-page: 775
  year: 2013
  end-page: 790
  ident: bib3
  article-title: The pathway to foot ulceration in diabetes
  publication-title: Med Clin North Am
– volume: 51
  start-page: 195
  year: 1991
  end-page: 216
  ident: bib24
  article-title: Macrophage-derived angiogenesis factors
  publication-title: Pharmacol. Ther.
– volume: 2
  start-page: 259
  year: 1994
  end-page: 269
  ident: bib4
  article-title: Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-l-histidyl-l-lysine copper
  publication-title: Wound Repair Regen.
– volume: 176
  start-page: 1375
  year: 1992
  end-page: 1379
  ident: bib10
  article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing
  publication-title: J. Exp. Med.
– volume: 73
  start-page: 448
  year: 2003
  end-page: 455
  ident: bib14
  article-title: Accelerated wound closure in neutrophil-depleted mice
  publication-title: J. Leukoc. Biol.
– volume: 128
  start-page: 40
  year: 2017
  end-page: 50
  ident: bib1
  article-title: IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040
  publication-title: Diabetes Res. Clin. Pract.
– volume: 20
  start-page: 2
  year: 2012
  end-page: 7
  ident: bib17
  article-title: Cellular resolution of inflammation--catabasis
  publication-title: Wound Repair Regen.
– volume: 21
  start-page: 325
  year: 2007
  end-page: 332
  ident: bib47
  article-title: Resolution of inflammation: state of the art, definitions and terms
  publication-title: Faseb. J.
– volume: 339
  start-page: 437
  year: 2010
  end-page: 448
  ident: bib19
  article-title: Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model
  publication-title: Cell Tissue Res.
– volume: 9
  start-page: 7093
  year: 2013
  end-page: 7114
  ident: bib27
  article-title: Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review
  publication-title: Acta Biomater.
– volume: 176
  start-page: 1375
  year: 1992
  end-page: 1379
  ident: bib9
  article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing
  publication-title: J. Exp. Med.
– volume: 18
  start-page: 2185
  year: 2007
  end-page: 2191
  ident: bib31
  article-title: In vitro and in vivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent
  publication-title: J. Mater. Sci. Mater. Med.
– volume: 8
  start-page: 349
  year: 2008
  end-page: 361
  ident: bib46
  article-title: Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators
  publication-title: Nat. Rev. Immunol.
– volume: 90
  start-page: 8915
  year: 1993
  end-page: 8919
  ident: bib11
  article-title: Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  start-page: 189
  year: 2011
  end-page: 197
  ident: bib37
  article-title: Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine
  publication-title: Expet Opin. Biol. Ther.
– volume: 164
  start-page: 1935
  year: 2004
  end-page: 1947
  ident: bib12
  article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells
  publication-title: Am. J. Pathol.
– volume: 172
  start-page: 1535
  year: 1990
  end-page: 1545
  ident: bib41
  article-title: Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration
  publication-title: J. Exp. Med.
– volume: 12
  start-page: 485
  year: 2004
  end-page: 492
  ident: bib35
  article-title: Quantitative and reproducible murine model of excisional wound healing
  publication-title: Wound Repair Regen.
– volume: 22
  start-page: 1011
  year: 2013
  end-page: 1021
  ident: bib33
  article-title: Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells
  publication-title: Cell Transplant.
– volume: 35
  start-page: 223
  year: 2012
  end-page: 234
  ident: bib7
  article-title: Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms
  publication-title: Arch Pharm. Res. (Seoul)
– volume: 6
  start-page: 173
  year: 2006
  end-page: 182
  ident: bib16
  article-title: Neutrophils and immunity: challenges and opportunities
  publication-title: Nat. Rev. Immunol.
– volume: 8
  start-page: 349
  year: 2008
  end-page: 361
  ident: bib38
  article-title: Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators
  publication-title: Nat. Rev. Immunol.
– volume: 6
  start-page: 16
  year: 2014
  ident: bib25
  article-title: VEGFR-1 blockade disrupts peri-implantation decidual angiogenesis and macrophage recruitment
  publication-title: Vasc. Cell
– volume: 32
  start-page: 1019
  year: 2011
  end-page: 1031
  ident: bib34
  article-title: The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents
  publication-title: Biomaterials
– volume: 87
  start-page: 3336
  year: 1996
  end-page: 3343
  ident: bib22
  article-title: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1
  publication-title: Blood
– volume: 32
  start-page: 203
  year: 2012
  ident: 10.1016/j.bioactmat.2020.04.018_bib39
  article-title: Resolvins: anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071811-150726
– volume: 176
  start-page: 1375
  year: 1992
  ident: 10.1016/j.bioactmat.2020.04.018_bib10
  article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.176.5.1375
– volume: 32
  start-page: 1019
  year: 2011
  ident: 10.1016/j.bioactmat.2020.04.018_bib29
  article-title: The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.087
– volume: 31
  start-page: 817
  year: 2014
  ident: 10.1016/j.bioactmat.2020.04.018_bib2
  article-title: Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights
  publication-title: Adv. Ther.
  doi: 10.1007/s12325-014-0140-x
– volume: 12
  start-page: 485
  year: 2004
  ident: 10.1016/j.bioactmat.2020.04.018_bib35
  article-title: Quantitative and reproducible murine model of excisional wound healing
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1067-1927.2004.12404.x
– volume: 376
  start-page: 66
  year: 1995
  ident: 10.1016/j.bioactmat.2020.04.018_bib42
  article-title: Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium
  publication-title: Nature
  doi: 10.1038/376066a0
– volume: 13
  start-page: 159
  year: 2013
  ident: 10.1016/j.bioactmat.2020.04.018_bib18
  article-title: Neutrophil recruitment and function in health and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3399
– volume: 6
  start-page: 173
  year: 2006
  ident: 10.1016/j.bioactmat.2020.04.018_bib16
  article-title: Neutrophils and immunity: challenges and opportunities
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri1785
– volume: 176
  start-page: 1375
  year: 1992
  ident: 10.1016/j.bioactmat.2020.04.018_bib9
  article-title: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.176.5.1375
– volume: 164
  start-page: 1935
  year: 2004
  ident: 10.1016/j.bioactmat.2020.04.018_bib12
  article-title: Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63754-6
– volume: 97
  start-page: 775
  year: 2013
  ident: 10.1016/j.bioactmat.2020.04.018_bib3
  article-title: The pathway to foot ulceration in diabetes
  publication-title: Med Clin North Am
  doi: 10.1016/j.mcna.2013.03.007
– volume: 90
  start-page: 8915
  year: 1993
  ident: 10.1016/j.bioactmat.2020.04.018_bib11
  article-title: Vascular endothelial growth factor receptor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.90.19.8915
– volume: 6
  start-page: 16
  year: 2014
  ident: 10.1016/j.bioactmat.2020.04.018_bib25
  article-title: VEGFR-1 blockade disrupts peri-implantation decidual angiogenesis and macrophage recruitment
  publication-title: Vasc. Cell
  doi: 10.1186/2045-824X-6-16
– volume: 9
  start-page: 7093
  year: 2013
  ident: 10.1016/j.bioactmat.2020.04.018_bib27
  article-title: Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2013.03.033
– volume: 366
  start-page: 1736
  year: 2005
  ident: 10.1016/j.bioactmat.2020.04.018_bib5
  article-title: Wound healing and its impairment in the diabetic foot
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67700-8
– volume: 35
  start-page: 223
  year: 2012
  ident: 10.1016/j.bioactmat.2020.04.018_bib7
  article-title: Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms
  publication-title: Arch Pharm. Res. (Seoul)
  doi: 10.1007/s12272-012-0203-y
– volume: 7
  start-page: 1205
  year: 2014
  ident: 10.1016/j.bioactmat.2020.04.018_bib45
  article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity
  publication-title: Dis. Model Mech.
  doi: 10.1242/dmm.016782
– volume: 17
  year: 2016
  ident: 10.1016/j.bioactmat.2020.04.018_bib6
  article-title: Inflammation in chronic wounds
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17122085
– volume: 51
  start-page: 195
  year: 1991
  ident: 10.1016/j.bioactmat.2020.04.018_bib24
  article-title: Macrophage-derived angiogenesis factors
  publication-title: Pharmacol. Ther.
  doi: 10.1016/0163-7258(91)90077-Y
– volume: 31
  start-page: 7308
  year: 2010
  ident: 10.1016/j.bioactmat.2020.04.018_bib28
  article-title: Enhanced angiogenesis of gene-activated dermal equivalent for treatment of full thickness incisional wounds in a porcine model
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.013
– volume: 13
  year: 2018
  ident: 10.1016/j.bioactmat.2020.04.018_bib44
  article-title: VEGF may contribute to macrophage recruitment and M2 polarization in the decidua
  publication-title: PloS One
  doi: 10.1371/journal.pone.0191040
– volume: 339
  start-page: 437
  year: 2010
  ident: 10.1016/j.bioactmat.2020.04.018_bib19
  article-title: Neutrophils promote inflammatory angiogenesis via release of preformed VEGF in an in vivo corneal model
  publication-title: Cell Tissue Res.
  doi: 10.1007/s00441-009-0908-5
– volume: 7
  start-page: 855
  year: 2007
  ident: 10.1016/j.bioactmat.2020.04.018_bib32
  article-title: N,N,N-Trimethylchitosan chloride as a gene vector: synthesis and application
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.200700015
– volume: 13
  start-page: 159
  year: 2013
  ident: 10.1016/j.bioactmat.2020.04.018_bib20
  article-title: Neutrophil recruitment and function in health and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3399
– volume: 8
  start-page: 349
  year: 2008
  ident: 10.1016/j.bioactmat.2020.04.018_bib38
  article-title: Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2294
– volume: 128
  start-page: 40
  year: 2017
  ident: 10.1016/j.bioactmat.2020.04.018_bib1
  article-title: IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2017.03.024
– volume: 95
  start-page: 9349
  year: 1998
  ident: 10.1016/j.bioactmat.2020.04.018_bib43
  article-title: Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.16.9349
– volume: 22
  start-page: 1011
  year: 2013
  ident: 10.1016/j.bioactmat.2020.04.018_bib33
  article-title: Neurotrophin-3 accelerates wound healing in diabetic mice by promoting a paracrine response in mesenchymal stem cells
  publication-title: Cell Transplant.
  doi: 10.3727/096368912X657495
– volume: 8
  start-page: 349
  year: 2008
  ident: 10.1016/j.bioactmat.2020.04.018_bib46
  article-title: Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2294
– volume: 9
  start-page: 283
  year: 2004
  ident: 10.1016/j.bioactmat.2020.04.018_bib13
  article-title: Wound healing: an overview of acute, fibrotic and delayed healing
  publication-title: Front. Biosci.
  doi: 10.2741/1184
– volume: 172
  start-page: 1535
  year: 1990
  ident: 10.1016/j.bioactmat.2020.04.018_bib41
  article-title: Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.172.6.1535
– volume: 21
  start-page: 325
  year: 2007
  ident: 10.1016/j.bioactmat.2020.04.018_bib47
  article-title: Resolution of inflammation: state of the art, definitions and terms
  publication-title: Faseb. J.
  doi: 10.1096/fj.06-7227rev
– volume: 87
  start-page: 3336
  year: 1996
  ident: 10.1016/j.bioactmat.2020.04.018_bib22
  article-title: Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1
  publication-title: Blood
  doi: 10.1182/blood.V87.8.3336.bloodjournal8783336
– volume: 11
  start-page: 189
  year: 2011
  ident: 10.1016/j.bioactmat.2020.04.018_bib37
  article-title: Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine
  publication-title: Expet Opin. Biol. Ther.
  doi: 10.1517/14712598.2011.546338
– volume: 20
  start-page: 2
  year: 2012
  ident: 10.1016/j.bioactmat.2020.04.018_bib17
  article-title: Cellular resolution of inflammation--catabasis
  publication-title: Wound Repair Regen.
  doi: 10.1111/j.1524-475X.2011.00754.x
– volume: 271
  start-page: 17629
  year: 1996
  ident: 10.1016/j.bioactmat.2020.04.018_bib23
  article-title: The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.30.17629
– volume: 1
  start-page: 17
  year: 2012
  ident: 10.1016/j.bioactmat.2020.04.018_bib26
  article-title: Wound healing angiogenesis: innovations and challenges in acute and chronic wound healing
  publication-title: Adv. Wound Care
  doi: 10.1089/wound.2011.0308
– volume: 152
  start-page: 1445
  year: 1998
  ident: 10.1016/j.bioactmat.2020.04.018_bib8
  article-title: Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing
  publication-title: Am. J. Pathol.
– volume: 51
  start-page: 2009
  year: 1972
  ident: 10.1016/j.bioactmat.2020.04.018_bib15
  article-title: The neutrophilic leukocyte in wound repair a study with antineutrophil serum
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI107007
– volume: 73
  start-page: 448
  year: 2003
  ident: 10.1016/j.bioactmat.2020.04.018_bib14
  article-title: Accelerated wound closure in neutrophil-depleted mice
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0802406
– volume: 11
  start-page: 109
  year: 2008
  ident: 10.1016/j.bioactmat.2020.04.018_bib21
  article-title: Vascular permeability, vascular hyperpermeability and angiogenesis
  publication-title: Angiogenesis
  doi: 10.1007/s10456-008-9099-z
– volume: 18
  start-page: 2185
  year: 2007
  ident: 10.1016/j.bioactmat.2020.04.018_bib31
  article-title: In vitro and in vivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-007-3088-4
– volume: 24
  start-page: 4833
  year: 2003
  ident: 10.1016/j.bioactmat.2020.04.018_bib30
  article-title: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(03)00374-0
– volume: 32
  start-page: 1019
  year: 2011
  ident: 10.1016/j.bioactmat.2020.04.018_bib34
  article-title: The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.087
– volume: 484
  start-page: 524
  year: 2012
  ident: 10.1016/j.bioactmat.2020.04.018_bib40
  article-title: Infection regulates pro-resolving mediators that lower antibiotic requirements
  publication-title: Nature
  doi: 10.1038/nature11042
– volume: 35
  start-page: 233
  year: 2004
  ident: 10.1016/j.bioactmat.2020.04.018_bib36
  article-title: CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion
  publication-title: J. Mol. Histol.
  doi: 10.1023/B:HIJO.0000032355.66152.b8
– volume: 2
  start-page: 259
  year: 1994
  ident: 10.1016/j.bioactmat.2020.04.018_bib4
  article-title: Enhanced healing of ulcers in patients with diabetes by topical treatment with glycyl-l-histidyl-l-lysine copper
  publication-title: Wound Repair Regen.
  doi: 10.1046/j.1524-475X.1994.20406.x
SSID ssj0001700007
Score 2.387078
Snippet Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 667
SubjectTerms Angiogenesis
Diabetic chronic wounds
Gene-activated dermal equivalent
Inflammation
Vascular endothelial growth factor
Title Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis
URI https://dx.doi.org/10.1016/j.bioactmat.2020.04.018
https://www.ncbi.nlm.nih.gov/pubmed/32420517
https://www.proquest.com/docview/2404382247
https://pubmed.ncbi.nlm.nih.gov/PMC7217806
https://doaj.org/article/51d4961cd2984708a3015ba9c31bdeee
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQnrggEF_hS0biGmGnthNzA8RqhQQnVurNssfOktUqWbbpIv4BP5uZOK0aOPTCNXGqOPPi96YZv2HsTapFFb2qS5tgVSowUIYAsbQCgqlA61bQRuEvX83Zufq81uuDVl9UE5btgfODe6tlVNZIiJXFhVQ0HhGpg7ewkiGmlGj1Rc47SKYusykMsR91llO6omqK9aK4K3SDhxE1IWaIlZjMTqntxwE1TQ7-C4b6V4H-XUh5wEyn99m9WVLy93kqD9id1D9kv8lPuqRdC7eoJiOPtAJf8fRjiweIaTZ8HLgHQNohtwhOihFpjA8tz__HdsAhO-fyn9R7acPDL36TW9fTQIQmoinvfOS-j_w6V_bhKd9fdMMFraLd5hE7P_307eNZOXddKEErOZZJaQs2YmSR-RNojylI2wbjBfgWUlvLWIsQJAYkyWhSMgFQtjUhNkavUA09Zif90KenjBsrFQi7wsFKtRUm8RBSrIMBKyE0vmBm98AdzJbk1Bnjyu1qzy7dPlKOIuWEchipgon9hdfZleP4JR8oovvhZKs9HUCwuRls7hjYCvZuhwc3K5SsPPCnuuN38HqHIIfvMH2Y8X0athtXqel7bKXqgj3JiNrfJwle8lErWL3A2mIiyzN9933yCcfkvm6EefY_Zv6c3aWp5Oq6F-xkvNmmlyjHxvBqevP-AHu_OUU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene-activated+dermal+equivalents+to+accelerate+healing+of+diabetic+chronic+wounds+by+regulating+inflammation+and+promoting+angiogenesis&rft.jtitle=Bioactive+materials&rft.au=Lou%2C+Dong&rft.au=Luo%2C+Yu&rft.au=Pang%2C+Qian&rft.au=Tan%2C+Wei-Qiang&rft.date=2020-09-01&rft.eissn=2452-199X&rft.volume=5&rft.issue=3&rft.spage=667&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.04.018&rft_id=info%3Apmid%2F32420517&rft.externalDocID=32420517
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon