Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy

Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light....

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 10; pp. 131 - 144
Main Authors Chang, Meiqi, Feng, Wei, Ding, Li, Zhang, Hongguang, Dong, Caihong, Chen, Yu, Shi, Jianlin
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.04.2022
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl2O4:Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro. The ingenious construction of blue-emitting PLM with “optical battery” characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy. A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform is rationally engineered for ameliorating the tumor hypoxic microenvironment and achieving the successive singlet oxygen (1O2) generation without the need of exogenous light excitation, which provides a specific paradigm of microbial-based nanotherapy with the assistance of rational design, engineering and integration of persistent luminescence phosphors as the desirable light irradiation source. [Display omitted] •Construction of CaAl2O4:Eu,Nd PLM to generate 1O2 without the aid of exogenous light excitation.•Cyanobacteria with light-triggered oxygenation effect were employed for the normalization of tumor microenvironment.•A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform was rationally engineered.
AbstractList Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl2O4:Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro. The ingenious construction of blue-emitting PLM with “optical battery” characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy. A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform is rationally engineered for ameliorating the tumor hypoxic microenvironment and achieving the successive singlet oxygen (1O2) generation without the need of exogenous light excitation, which provides a specific paradigm of microbial-based nanotherapy with the assistance of rational design, engineering and integration of persistent luminescence phosphors as the desirable light irradiation source. [Display omitted] •Construction of CaAl2O4:Eu,Nd PLM to generate 1O2 without the aid of exogenous light excitation.•Cyanobacteria with light-triggered oxygenation effect were employed for the normalization of tumor microenvironment.•A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform was rationally engineered.
Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl2O4:Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro. The ingenious construction of blue-emitting PLM with “optical battery” characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy.
Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl O :Eu,Nd blue persistent luminescence material (PLM) as the light source after pre-excited . The ingenious construction of blue-emitting PLM with "optical battery" characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both cellular assessment and tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy.
Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl 2 O 4 :Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro . The ingenious construction of blue-emitting PLM with “optical battery” characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy. A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform is rationally engineered for ameliorating the tumor hypoxic microenvironment and achieving the successive singlet oxygen ( 1 O 2 ) generation without the need of exogenous light excitation, which provides a specific paradigm of microbial-based nanotherapy with the assistance of rational design, engineering and integration of persistent luminescence phosphors as the desirable light irradiation source. Image 1 • Construction of CaAl 2 O 4 :Eu,Nd PLM to generate  1 O 2  without the aid of exogenous light excitation. • Cyanobacteria with light-triggered oxygenation effect were employed for the normalization of tumor microenvironment. • A distinct exogenous “irradiation-free” cyanobacteria-based PDT platform was rationally engineered.
Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl2O4:Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro. The ingenious construction of blue-emitting PLM with "optical battery" characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy.Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial photosynthesis-mediated reversal of tumor hypoxia could enable an oxygen-boosted PDT, but is limited by scant penetration depth and efficiency of external light. Herein, aiming at the dual purposes of reducing biological toxicity induced by long-term light irradiation and alleviating hypoxia, we here introduce a novel-designed CaAl2O4:Eu,Nd blue persistent luminescence material (PLM) as the in vivo light source after pre-excited in vitro. The ingenious construction of blue-emitting PLM with "optical battery" characteristics activates cyanobacterial cells and verteporfin simultaneously, which performs the successive oxygen supply and singlet oxygen generation without the long-term external excitation, resulting in the modulated tumor hypoxic microenvironment and enhanced photodynamic tumor proliferation inhibition efficiency. Both in vitro cellular assessment and in vivo tumor evaluation results affirm the advantages of self-produced oxygen PDT system and evidence the notable antineoplastic outcome. This work develops an irradiation-free photosynthetic bacteria-based PDT platform for the optimization of both oxygen production capacity and light utilization efficiency in cancer treatment, which is expected to promote the clinical progress of microbial-based photonic therapy.
Author Zhang, Hongguang
Shi, Jianlin
Chang, Meiqi
Feng, Wei
Ding, Li
Chen, Yu
Dong, Caihong
Author_xml – sequence: 1
  givenname: Meiqi
  surname: Chang
  fullname: Chang, Meiqi
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
– sequence: 2
  givenname: Wei
  surname: Feng
  fullname: Feng, Wei
  organization: Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
– sequence: 3
  givenname: Li
  surname: Ding
  fullname: Ding, Li
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
– sequence: 4
  givenname: Hongguang
  surname: Zhang
  fullname: Zhang, Hongguang
  organization: College of Pharmacy, Qiqihar Medical University, Qiqihar, 161006, PR China
– sequence: 5
  givenname: Caihong
  surname: Dong
  fullname: Dong, Caihong
  email: dong.caihong@zs-hospital.sh.cn
  organization: Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
– sequence: 6
  givenname: Yu
  orcidid: 0000-0002-8206-3325
  surname: Chen
  fullname: Chen, Yu
  email: chenyuedu@shu.edu.cn
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
– sequence: 7
  givenname: Jianlin
  surname: Shi
  fullname: Shi, Jianlin
  organization: State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34901535$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAQjVARLaW_ADlyyWI7cRwfQKoqWipVggNI3CzHmex6ldiL7azIF_DbzDZl1XKBQxwn896b0bz3Mjtx3kGWvaFkRQmt321XrfXapFGnFSOMrkizIiV5lp2xirOCSvn95NH9NLuIcUsIoQIPIl5kp2UlCeUlP8t-fYEQbUzgUj5Mo3UQDTgD-W7jIz4h1zG3rtjbvc8Hu96kPPopIKDHWppGH_SQm1k73-JIECx-Ii_5OLu0gWRN7n_Oa3A6We9y7bql3M1Oj1hETNC7-VX2vNdDhIuH93n27frj16tPxd3nm9ury7vC8IqmAkrQbWkIEx2tel31JROlxIPWHdSt5KzrZSVaI5muRFNRSmsuQUDfaMGMKM-z20W383qrdsGOOszKa6vuf_iwVjrg0AMoYHVD26YnLeFVz5u25cA7IJRwbMs4an1YtHZTO0KHe0u4jCeiTyvObtTa71VTl2iFRIG3DwLB_5ggJjVaXP8waAd-iorVFP0SRB56vX7c69jkj5MIEAvABB9jgP4IoUQdYqO26hgbdYiNIo3C2CDz_V9MY9O9Wzi0Hf6Df7nwAX3bWwgqGnvIUGcDmISLtf_U-A1JsOi7
CitedBy_id crossref_primary_10_1021_acsabm_4c01327
crossref_primary_10_2139_ssrn_4128763
crossref_primary_10_1002_adom_202203038
crossref_primary_10_15541_jim20220194
crossref_primary_10_1016_j_actbio_2022_10_002
crossref_primary_10_1002_adom_202202382
crossref_primary_10_1002_btm2_10672
crossref_primary_10_2139_ssrn_4151580
crossref_primary_10_3389_fbioe_2022_1026248
crossref_primary_10_1002_adhm_202201607
crossref_primary_10_1002_adhm_202300089
crossref_primary_10_1016_j_bioactmat_2022_11_013
crossref_primary_10_3390_gels9040286
crossref_primary_10_1002_EXP_20230124
crossref_primary_10_1002_adfm_202305866
crossref_primary_10_1002_adhm_202401538
crossref_primary_10_1007_s10853_023_08168_1
crossref_primary_10_1021_acsnano_4c15237
crossref_primary_10_1007_s00253_024_13285_1
crossref_primary_10_1002_adfm_202405929
crossref_primary_10_2147_IJN_S500314
crossref_primary_10_1016_j_nantod_2022_101731
crossref_primary_10_1002_SMMD_20220041
crossref_primary_10_1016_j_ccr_2022_214913
crossref_primary_10_1002_adma_202313953
crossref_primary_10_1002_adhm_202200962
crossref_primary_10_1002_biot_202400325
crossref_primary_10_1016_j_actbio_2022_11_036
Cites_doi 10.1002/ange.201912824
10.1002/smll.201801008
10.1021/acs.chemmater.5b00288
10.1021/jacs.7b05559
10.1016/j.apcatb.2017.02.042
10.1002/adfm.201801783
10.1021/acsnano.8b02977
10.1021/acs.nanolett.9b02253
10.1016/j.jconrel.2019.06.016
10.1002/adma.202006892
10.1007/s10811-020-02232-y
10.1016/j.bbabio.2015.10.007
10.1002/adma.201905271
10.1002/adma.202000055
10.1016/j.optmat.2017.03.052
10.1002/adfm.201910176
10.1021/acs.nanolett.1c00209
10.1007/s12274-017-1555-x
10.1038/nature19081
10.1126/sciadv.aba3546
10.1016/j.cej.2020.124067
10.1038/nrc.2016.84
10.1126/sciadv.1603078
10.1002/adfm.202006216
10.1002/anie.201805138
10.1126/sciadv.aba5996
10.1021/acsnano.8b01893
10.1038/nrclinonc.2012.171
10.1002/adfm.201604258
10.1038/s41467-021-22308-8
10.1016/j.nantod.2020.100960
10.1039/C6CC07616E
10.1038/ncb3330
10.1038/s41598-020-59454-w
10.1158/0008-5472.CAN-11-1457
10.1002/adma.201706090
10.1021/jp057185m
ContentType Journal Article
Copyright 2021 The Authors
2021 The Authors.
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: 2021 The Authors.
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2021.08.030
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 144
ExternalDocumentID oai_doaj_org_article_e2681b8f0b054f58bb5e5de0105f3225
PMC8637009
34901535
10_1016_j_bioactmat_2021_08_030
S2452199X21004060
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
7X8
5PM
ID FETCH-LOGICAL-c541t-e3eab3c027d14fa4f3273932716de6b952df947bc92a4784111659e7ef8a72c73
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:32:26 EDT 2025
Thu Aug 21 14:08:11 EDT 2025
Fri Jul 11 08:33:53 EDT 2025
Wed Feb 19 02:28:05 EST 2025
Thu Apr 24 23:10:09 EDT 2025
Tue Jul 01 02:11:27 EDT 2025
Wed May 17 00:03:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Photodynamic therapy
Oxygenation
Irradiation-free
Cyanobacteria
Persistent luminescence
Language English
License This is an open access article under the CC BY license.
2021 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e3eab3c027d14fa4f3273932716de6b952df947bc92a4784111659e7ef8a72c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8206-3325
OpenAccessLink https://doaj.org/article/e2681b8f0b054f58bb5e5de0105f3225
PMID 34901535
PQID 2610077095
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_e2681b8f0b054f58bb5e5de0105f3225
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8637009
proquest_miscellaneous_2610077095
pubmed_primary_34901535
crossref_primary_10_1016_j_bioactmat_2021_08_030
crossref_citationtrail_10_1016_j_bioactmat_2021_08_030
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2021_08_030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2022
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Horsman, Mortensen, Petersen, Busk, Overgaard (bib7) 2012; 9
Phongamwong, Donphai, Prasitchoke, Rameshan, Barrabés, Klysubun, Rupprechter, Chareonpanich (bib28) 2017; 207
Li, Kwon, Guo, Liu, Yoon (bib6) 2018; 57
LaGory, Giaccia (bib5) 2016; 18
Huo, Wang, Zhang, Wei, Chen, Shi (bib25) 2020; 132
Liu, Zhen, Jin, Zhang, Sun, Zhang, Xu, Song, Wang, Liu (bib12) 2018; 12
Liu, Xing, Akakuru, Luo, Sun, Zou, Yu, Fang, Wu (bib15) 2019; 19
Wei, Pan, Yuan, Shao, Wang, Guo, Zhou (bib21) 2021; 21
Qiao, Yang, Xie, Du, Zhong, Qi, Li, Li, Lu, Rao (bib24) 2020; 6
Jia, Ge, Liu, Zheng, Chen, Wen, Zhang, Wang (bib10) 2018; 30
Wang, Zeng, Zhang, Zeng, Zhang (bib14) 2018; 28
Kim, Cho, Jeon, Kim, Song, Lee, Choi, Hyeon (bib17) 2017; 139
Zheng, Li, Xu, Zhang, Fan, Li, Zhang (bib3) 2018; 12
Thienpont, Steinbacher, Zhao, D'Anna, Kuchnio, Ploumakis, Ghesquière, Van Dyck, Boeckx, Schoonjans (bib4) 2016; 537
Abdurahman, Yang, Yan (bib31) 2016; 52
Nakazawa, Keith, Simon (bib1) 2016; 16
Cohen, Goldstone, Paulsen, Shudo, Steele, Edwards, Patel, MacArthur, Hopkins, Burnett (bib22) 2017; 3
Cui, Ma, Sheng, Zheng, Zhou, Xu, Zou, Song (bib33) 2017; 67
Vavilapalli, Banik, Peri, Muthuraaman, Miryala, Murakami, Alicja, Asokan, Rao, Singh (bib34) 2020; 10
Liu, He, Luo, Zhou, Liang, Pan, Ma, Cai (bib26) 2020; 30
Ovais, Mukherjee, Pramanik, Das, Mukherjee, Raza, Chen (bib29) 2020; 32
Aitasallo, Holsa, Jungner, Lastusaari, Niittykoski (bib36) 2006; 110
Zhou, Xing, Fan, Cui, Jiang (bib27) 2019; 307
Qu, Zhang, Wang, Zhou, Zeng (bib35) 2015; 27
Cheng, Zhao, Li, Qi, Wang, Zhang, Qin, Qin, Chen, Li, Liang, Li, Xu, Han, Anderson, Shi, Ren, Zhao, Nie (bib19) 2021; 12
Yang, Zhao, Meng, Zhu, Yan, Liu, Xu, Zhang, Xu, Li, Liu (bib32) 2020; 387
Lea-Smith, Bombelli, Vasudevan, Howe (bib38) 2016; 1857
Chang, Wang, Wang, Shu, Ding, Li, Pang, Cui, Hou, Lin (bib16) 2019; 31
Zhou, Wu, Meng, Li, Zhang, Gong, Zhang, Jiang, Deng, Li (bib11) 2018; 14
Hirschhaeuser, Sattler, Mueller-Klieser (bib2) 2011; 71
Ritchie, Sma-Air (bib37) 2020; 32
Ding, Liu, Liu, Li, Wang, Li, Wang, Song, Zhang (bib30) 2017; 10
Wang, Zhang, Ju, Liu, Cao, Chen, Ren, Qu (bib8) 2018; 9
Zhang, Qin, Bai, Zhang (bib23) 2020; 35
Ma, Jia, Bai, Ruan, Wang, Li, Zhang, Jiang (bib9) 2017; 27
Feng, Liu, Xie, Wang, Qian, Zhou, Liu, Jana, Yang, Zhao (bib13) 2021; 31
Yi, Zhou, Chao, Xiong, Zhong, Chai, Yang, Liu (bib20) 2020; 6
Fu, Wan, Qi, He, Li, Yang, Xu, Lin, Huang (bib18) 2021; 33
LaGory (10.1016/j.bioactmat.2021.08.030_bib5) 2016; 18
Jia (10.1016/j.bioactmat.2021.08.030_bib10) 2018; 30
Phongamwong (10.1016/j.bioactmat.2021.08.030_bib28) 2017; 207
Qu (10.1016/j.bioactmat.2021.08.030_bib35) 2015; 27
Cheng (10.1016/j.bioactmat.2021.08.030_bib19) 2021; 12
Lea-Smith (10.1016/j.bioactmat.2021.08.030_bib38) 2016; 1857
Yi (10.1016/j.bioactmat.2021.08.030_bib20) 2020; 6
Cohen (10.1016/j.bioactmat.2021.08.030_bib22) 2017; 3
Ma (10.1016/j.bioactmat.2021.08.030_bib9) 2017; 27
Chang (10.1016/j.bioactmat.2021.08.030_bib16) 2019; 31
Liu (10.1016/j.bioactmat.2021.08.030_bib15) 2019; 19
Feng (10.1016/j.bioactmat.2021.08.030_bib13) 2021; 31
Qiao (10.1016/j.bioactmat.2021.08.030_bib24) 2020; 6
Aitasallo (10.1016/j.bioactmat.2021.08.030_bib36) 2006; 110
Horsman (10.1016/j.bioactmat.2021.08.030_bib7) 2012; 9
Yang (10.1016/j.bioactmat.2021.08.030_bib32) 2020; 387
Wang (10.1016/j.bioactmat.2021.08.030_bib8) 2018; 9
Vavilapalli (10.1016/j.bioactmat.2021.08.030_bib34) 2020; 10
Wang (10.1016/j.bioactmat.2021.08.030_bib14) 2018; 28
Fu (10.1016/j.bioactmat.2021.08.030_bib18) 2021; 33
Liu (10.1016/j.bioactmat.2021.08.030_bib26) 2020; 30
Abdurahman (10.1016/j.bioactmat.2021.08.030_bib31) 2016; 52
Kim (10.1016/j.bioactmat.2021.08.030_bib17) 2017; 139
Wei (10.1016/j.bioactmat.2021.08.030_bib21) 2021; 21
Zhou (10.1016/j.bioactmat.2021.08.030_bib27) 2019; 307
Thienpont (10.1016/j.bioactmat.2021.08.030_bib4) 2016; 537
Cui (10.1016/j.bioactmat.2021.08.030_bib33) 2017; 67
Hirschhaeuser (10.1016/j.bioactmat.2021.08.030_bib2) 2011; 71
Huo (10.1016/j.bioactmat.2021.08.030_bib25) 2020; 132
Zheng (10.1016/j.bioactmat.2021.08.030_bib3) 2018; 12
Ding (10.1016/j.bioactmat.2021.08.030_bib30) 2017; 10
Ovais (10.1016/j.bioactmat.2021.08.030_bib29) 2020; 32
Ritchie (10.1016/j.bioactmat.2021.08.030_bib37) 2020; 32
Liu (10.1016/j.bioactmat.2021.08.030_bib12) 2018; 12
Nakazawa (10.1016/j.bioactmat.2021.08.030_bib1) 2016; 16
Zhang (10.1016/j.bioactmat.2021.08.030_bib23) 2020; 35
Li (10.1016/j.bioactmat.2021.08.030_bib6) 2018; 57
Zhou (10.1016/j.bioactmat.2021.08.030_bib11) 2018; 14
References_xml – volume: 30
  start-page: 1910176
  year: 2020
  ident: bib26
  article-title: In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2020
  ident: bib20
  article-title: Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer
  publication-title: Sci. Adv.
– volume: 12
  start-page: 2041
  year: 2021
  ident: bib19
  article-title: Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology
  publication-title: Nat. Commun.
– volume: 57
  start-page: 11522
  year: 2018
  end-page: 11531
  ident: bib6
  article-title: Innovative strategies for hypoxic-tumor photodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 32
  start-page: 2000055
  year: 2020
  ident: bib29
  article-title: Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3434
  year: 2017
  end-page: 3446
  ident: bib30
  article-title: Multifunctional core/satellite polydopamine@ Nd
  publication-title: Nano Res.
– volume: 35
  start-page: 100960
  year: 2020
  ident: bib23
  article-title: Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy
  publication-title: Nano Today
– volume: 9
  start-page: 674
  year: 2012
  ident: bib7
  article-title: Imaging hypoxia to improve radiotherapy outcome
  publication-title: Nat. Rev. Clin. Oncol.
– volume: 30
  start-page: 1706090
  year: 2018
  ident: bib10
  article-title: A magnetofluorescent carbon dot assembly as an acidic H
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 13
  ident: bib34
  article-title: Nitrogen incorporated photoactive brownmillerite Ca
  publication-title: Sci. Rep.
– volume: 19
  start-page: 5674
  year: 2019
  end-page: 5682
  ident: bib15
  article-title: Nanozymes-engineered metal-organic frameworks for catalytic cascades-enhanced synergistic cancer therapy
  publication-title: Nano Lett.
– volume: 27
  start-page: 1604258
  year: 2017
  ident: bib9
  article-title: MnO
  publication-title: Adv. Funct. Mater.
– volume: 52
  start-page: 13303
  year: 2016
  end-page: 13306
  ident: bib31
  article-title: Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy
  publication-title: Chem. Comm.
– volume: 139
  start-page: 10992
  year: 2017
  end-page: 10995
  ident: bib17
  article-title: Continuous O
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 2195
  year: 2015
  end-page: 2202
  ident: bib35
  article-title: Mechanistic study of the persistent luminescence of CaAl
  publication-title: Chem. Mater.
– volume: 33
  start-page: 2006892
  year: 2021
  ident: bib18
  article-title: Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1801783
  year: 2018
  ident: bib14
  article-title: A versatile Pt-based core-shell nanoplatform as a nanofactory for enhanced tumor therapy
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2020
  ident: bib24
  article-title: Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer
  publication-title: Sci. Adv.
– volume: 3
  year: 2017
  ident: bib22
  article-title: An innovative biologic system for photon-powered myocardium in the ischemic heart
  publication-title: Sci. Adv.
– volume: 32
  start-page: 2947
  year: 2020
  end-page: 2958
  ident: bib37
  article-title: Using integrating sphere spectrophotometry in unicellular algal research
  publication-title: J. Appl. Phycol.
– volume: 110
  start-page: 4589
  year: 2006
  end-page: 4598
  ident: bib36
  article-title: Thermoluminescence study of persistent luminescence materials: Eu
  publication-title: J. Phys. Chem. B
– volume: 16
  start-page: 663
  year: 2016
  ident: bib1
  article-title: Oxygen availability and metabolic adaptations
  publication-title: Nat. Rev. Canc.
– volume: 18
  start-page: 356
  year: 2016
  end-page: 365
  ident: bib5
  article-title: The ever-expanding role of HIF in tumour and stromal biology
  publication-title: Nat. Cell Biol.
– volume: 12
  start-page: 4886
  year: 2018
  end-page: 4893
  ident: bib12
  article-title: All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication
  publication-title: ACS Nano
– volume: 71
  start-page: 6921
  year: 2011
  end-page: 6925
  ident: bib2
  article-title: Lactate: a metabolic key player in cancer
  publication-title: Cancer Res.
– volume: 307
  start-page: 44
  year: 2019
  end-page: 54
  ident: bib27
  article-title: Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy
  publication-title: J. Contr. Release
– volume: 14
  start-page: 1801008
  year: 2018
  ident: bib11
  article-title: Dye-Anchored MnO nanoparticles targeting tumor and inducing enhanced phototherapy effect via mitochondria-mediated pathway
  publication-title: Small
– volume: 387
  start-page: 124067
  year: 2020
  ident: bib32
  article-title: Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 6218
  year: 2018
  end-page: 6227
  ident: bib3
  article-title: Normalizing tumor microenvironment based on photosynthetic abiotic/biotic nanoparticles
  publication-title: ACS Nano
– volume: 537
  start-page: 63
  year: 2016
  end-page: 68
  ident: bib4
  article-title: Tumour hypoxia causes DNA hypermethylation by reducing TET activity
  publication-title: Nature
– volume: 1857
  start-page: 247
  year: 2016
  end-page: 255
  ident: bib38
  article-title: Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria
  publication-title: BBA-Bioenerg.
– volume: 31
  start-page: 1905271
  year: 2019
  ident: bib16
  article-title: A multifunctional cascade bioreactor based on hollow-structured Cu
  publication-title: Adv. Mater.
– volume: 21
  start-page: 4231
  year: 2021
  end-page: 4240
  ident: bib21
  article-title: Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy
  publication-title: Nano Lett.
– volume: 31
  start-page: 2006216
  year: 2021
  ident: bib13
  article-title: An ultrasmall SnFe
  publication-title: Adv. Funct. Mater.
– volume: 67
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib33
  article-title: Preparation of CaAl
  publication-title: Opt. Mater.
– volume: 132
  start-page: 1922
  year: 2020
  end-page: 1929
  ident: bib25
  article-title: Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib8
  article-title: Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors
  publication-title: Nat. Commun.
– volume: 207
  start-page: 326
  year: 2017
  end-page: 334
  ident: bib28
  article-title: Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B
  publication-title: Appl. Catal. B Environ.
– volume: 132
  start-page: 1922
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib25
  article-title: Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201912824
– volume: 14
  start-page: 1801008
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib11
  article-title: Dye-Anchored MnO nanoparticles targeting tumor and inducing enhanced phototherapy effect via mitochondria-mediated pathway
  publication-title: Small
  doi: 10.1002/smll.201801008
– volume: 27
  start-page: 2195
  year: 2015
  ident: 10.1016/j.bioactmat.2021.08.030_bib35
  article-title: Mechanistic study of the persistent luminescence of CaAl2O4:Eu,Nd
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b00288
– volume: 139
  start-page: 10992
  year: 2017
  ident: 10.1016/j.bioactmat.2021.08.030_bib17
  article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05559
– volume: 207
  start-page: 326
  year: 2017
  ident: 10.1016/j.bioactmat.2021.08.030_bib28
  article-title: Novel visible-light-sensitized Chl-Mg/P25 catalysts for photocatalytic degradation of rhodamine B
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.02.042
– volume: 28
  start-page: 1801783
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib14
  article-title: A versatile Pt-based core-shell nanoplatform as a nanofactory for enhanced tumor therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201801783
– volume: 12
  start-page: 6218
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib3
  article-title: Normalizing tumor microenvironment based on photosynthetic abiotic/biotic nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b02977
– volume: 19
  start-page: 5674
  year: 2019
  ident: 10.1016/j.bioactmat.2021.08.030_bib15
  article-title: Nanozymes-engineered metal-organic frameworks for catalytic cascades-enhanced synergistic cancer therapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02253
– volume: 9
  start-page: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib8
  article-title: Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors
  publication-title: Nat. Commun.
– volume: 307
  start-page: 44
  year: 2019
  ident: 10.1016/j.bioactmat.2021.08.030_bib27
  article-title: Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.06.016
– volume: 33
  start-page: 2006892
  year: 2021
  ident: 10.1016/j.bioactmat.2021.08.030_bib18
  article-title: Nanocatalytic theranostics with glutathione depletion and enhanced reactive oxygen species generation for efficient cancer therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006892
– volume: 32
  start-page: 2947
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib37
  article-title: Using integrating sphere spectrophotometry in unicellular algal research
  publication-title: J. Appl. Phycol.
  doi: 10.1007/s10811-020-02232-y
– volume: 1857
  start-page: 247
  year: 2016
  ident: 10.1016/j.bioactmat.2021.08.030_bib38
  article-title: Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria
  publication-title: BBA-Bioenerg.
  doi: 10.1016/j.bbabio.2015.10.007
– volume: 31
  start-page: 1905271
  year: 2019
  ident: 10.1016/j.bioactmat.2021.08.030_bib16
  article-title: A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905271
– volume: 32
  start-page: 2000055
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib29
  article-title: Designing stimuli-responsive upconversion nanoparticles that exploit the tumor microenvironment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000055
– volume: 67
  start-page: 84
  year: 2017
  ident: 10.1016/j.bioactmat.2021.08.030_bib33
  article-title: Preparation of CaAl2O4: Eu2+, Nd3+ and SrAl2O4: Eu2+, Dy3+ long afterglow luminescent materials using oil shale ash
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2017.03.052
– volume: 30
  start-page: 1910176
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib26
  article-title: In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910176
– volume: 21
  start-page: 4231
  year: 2021
  ident: 10.1016/j.bioactmat.2021.08.030_bib21
  article-title: Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c00209
– volume: 10
  start-page: 3434
  year: 2017
  ident: 10.1016/j.bioactmat.2021.08.030_bib30
  article-title: Multifunctional core/satellite polydopamine@ Nd3+-sensitized upconversion nanocomposite: a single 808 nm near-infrared light-triggered theranostic platform for in vivo imaging-guided photothermal therapy
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1555-x
– volume: 537
  start-page: 63
  year: 2016
  ident: 10.1016/j.bioactmat.2021.08.030_bib4
  article-title: Tumour hypoxia causes DNA hypermethylation by reducing TET activity
  publication-title: Nature
  doi: 10.1038/nature19081
– volume: 6
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib20
  article-title: Bacteria-triggered tumor-specific thrombosis to enable potent photothermal immunotherapy of cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba3546
– volume: 387
  start-page: 124067
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib32
  article-title: Irradiation-free photodynamic therapy in vivo induced by enhanced deep red afterglow within NIR-I bio-window
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124067
– volume: 16
  start-page: 663
  year: 2016
  ident: 10.1016/j.bioactmat.2021.08.030_bib1
  article-title: Oxygen availability and metabolic adaptations
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2016.84
– volume: 3
  year: 2017
  ident: 10.1016/j.bioactmat.2021.08.030_bib22
  article-title: An innovative biologic system for photon-powered myocardium in the ischemic heart
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603078
– volume: 31
  start-page: 2006216
  year: 2021
  ident: 10.1016/j.bioactmat.2021.08.030_bib13
  article-title: An ultrasmall SnFe2O4 nanozyme with endogenous oxygen generation and glutathione depletion for synergistic cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202006216
– volume: 57
  start-page: 11522
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib6
  article-title: Innovative strategies for hypoxic-tumor photodynamic therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201805138
– volume: 6
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib24
  article-title: Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba5996
– volume: 12
  start-page: 4886
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib12
  article-title: All-in-one theranostic nanoagent with enhanced reactive oxygen species generation and modulating tumor microenvironment ability for effective tumor eradication
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01893
– volume: 9
  start-page: 674
  year: 2012
  ident: 10.1016/j.bioactmat.2021.08.030_bib7
  article-title: Imaging hypoxia to improve radiotherapy outcome
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2012.171
– volume: 27
  start-page: 1604258
  year: 2017
  ident: 10.1016/j.bioactmat.2021.08.030_bib9
  article-title: MnO2 gatekeeper: an intelligent and O2-evolving shell for preventing premature release of high cargo payload core, overcoming tumor hypoxia, and acidic H2O2-sensitive MRI
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604258
– volume: 12
  start-page: 2041
  year: 2021
  ident: 10.1016/j.bioactmat.2021.08.030_bib19
  article-title: Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22308-8
– volume: 35
  start-page: 100960
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib23
  article-title: Nanomaterials to relieve tumor hypoxia for enhanced photodynamic therapy
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2020.100960
– volume: 52
  start-page: 13303
  year: 2016
  ident: 10.1016/j.bioactmat.2021.08.030_bib31
  article-title: Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy
  publication-title: Chem. Comm.
  doi: 10.1039/C6CC07616E
– volume: 18
  start-page: 356
  year: 2016
  ident: 10.1016/j.bioactmat.2021.08.030_bib5
  article-title: The ever-expanding role of HIF in tumour and stromal biology
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3330
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2021.08.030_bib34
  article-title: Nitrogen incorporated photoactive brownmillerite Ca2Fe 2O5 for energy and environmental applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59454-w
– volume: 71
  start-page: 6921
  year: 2011
  ident: 10.1016/j.bioactmat.2021.08.030_bib2
  article-title: Lactate: a metabolic key player in cancer
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-1457
– volume: 30
  start-page: 1706090
  year: 2018
  ident: 10.1016/j.bioactmat.2021.08.030_bib10
  article-title: A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706090
– volume: 110
  start-page: 4589
  year: 2006
  ident: 10.1016/j.bioactmat.2021.08.030_bib36
  article-title: Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4: Eu2+,R3+
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057185m
SSID ssj0001700007
Score 2.3995035
Snippet Tumor oxygenation level has been regarded as an attractive target to elevate the efficiency of photodynamic therapy (PDT). Cyanobacterial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 131
SubjectTerms Cyanobacteria
Irradiation-free
Oxygenation
Persistent luminescence
Photodynamic therapy
Title Persistent luminescence phosphor as in-vivo light source for tumoral cyanobacterial photosynthetic oxygenation and photodynamic therapy
URI https://dx.doi.org/10.1016/j.bioactmat.2021.08.030
https://www.ncbi.nlm.nih.gov/pubmed/34901535
https://www.proquest.com/docview/2610077095
https://pubmed.ncbi.nlm.nih.gov/PMC8637009
https://doaj.org/article/e2681b8f0b054f58bb5e5de0105f3225
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELYQXLisFsHudnnISFyjzcN5cQMEQiA4oEXbm-Wnmop1qjZF9Bfwt5mJ06rZPfTCoYfUcRp7Zjzf1ONvCDnTNpI52E0gAR8H4CGiQBhrg1LkMrIAsAuNO7oPj9ntM7sbpsO1Ul-YE-bpgf3E_TJxBsiqsKEEcGHTQsrUpNpgYUeLyoirL_i8tWBq7Elh0PthZTmWxphNMewld8mqFqoBTAgRYuxJPDEPes01tQz-PQ_1PwL9N5FyzTPdfCVfOkhJL_xQ9siWcfvkHVPbUYSuobD-YHK7QiOmk1E9g8-UihmtXPBavdb0BSN06v_Hp4BiaTP_iyf3qVoIBwbfEjrDJfRr6tnCAWiE36L12wLUrxUtFU77Zu1L3FN_sGtxQJ5vrn9f3QZd0YVApSxqApMYIRMF0aqOmBUMJhlJ82KIq7TJZJnG2pYsl6qMBcNNS-TvKU1ubCHyWOXJN7Ltamd-EMq0ArgHAjBZyYRUIgm1gPUEHmoLFZoByZbzzVXHSI6FMV74MvVszFeC4igojiUzk3BAwlXHiSfl2NzlEgW6uh1ZtdsvQNd4p2t8k64NyPlSHXgHUDzwgEdVm9_gdKlAHEwY92WEM_V8xiGIRVYlALsD8t0r1Oo9E4aALYGWvKdqvYH0W1w1amnCiywBKyh_fsbID8lujOc-2pSlI7LdTOfmGNBYI0_IzsX905_7k9YAPwDwNjkl
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+luminescence+phosphor+as+in-vivo+light+source+for+tumoral+cyanobacterial+photosynthetic+oxygenation+and+photodynamic+therapy&rft.jtitle=Bioactive+materials&rft.au=Chang%2C+Meiqi&rft.au=Feng%2C+Wei&rft.au=Ding%2C+Li&rft.au=Zhang%2C+Hongguang&rft.date=2022-04-01&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=10&rft.spage=131&rft_id=info:doi/10.1016%2Fj.bioactmat.2021.08.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon