Control of cyclic oligoadenylate synthesis in a type III CRISPR system
The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates...
Saved in:
Published in | eLife Vol. 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
eLife Sciences Publications Ltd
02.07.2018
eLife Sciences Publications, Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.
The gene editing tool often known simply as CRISPR has become well known in recent years. Its potential applications are wide ranging, including uses in research, healthcare and agriculture. Yet, the CRISPR system originated in microbes where it helps to protect them from viral infections. Viruses infect by inserting their own genes into a host cell, and – almost like a pair of scissors – the CRISPR system can cut up the virus’s DNA to stop infections.
CRISPR experts know the popular form of CRISPR as type II, but there are others. Type III CRISPR is less useful as a genetic tool but does also protect microbes from viruses. In addition to targeting DNA, type III CRISPR targets the related RNA molecules from viruses. When it encounters RNA from a virus, the type III CRISPR produces a small molecule called cyclic oligoadenylate (or cOA for short). The cOA molecule activates enzymes known as non-specific ribonucleases, which can destroy all the RNA in the cell. This defence is a less subtle than that provided type II CRISPR and can also damage the cell by destroying other RNA molecules that the microbes use to survive. As such, proper regulation is essential to prevent the type III system from unnecessarily killing the infected cell.
Rouillon et al. studied the control of the type III CRISPR system from the heat-loving microbe Sulfolobus solfataricus, which is found in volcanic springs. This species has been a model for studies of the CRISPR system for many years, in part because its proteins are very stable which makes them easier to work with in the laboratory. The results show that the type III CRISPR makes cOA by combining four molecules of adenosine triphosphate (ATP) into a ring. CRISPR responds immediately to viral RNA in the cell. It also detaches from the RNA as soon as it starts to be destroyed. Rapid activation and silencing of the production cOA ensures that the CRISPR system is tightly controlled.
These findings reveal that cOA production is tightly linked to the abundance of viral RNA, ensuring a proportional and timely response to infection. Using cOA amplifies the cell's response because it allows a single RNA molecule to activate a larger change.
Type III CRISPR systems are widespread in nature, and a better understanding of them could improve the yield of products, like yoghurt, that depend on healthy bacteria; currently viruses cause a lot of economic damage in this industry. Further research in this area could also lead to new antibiotics that over-activate type III CRISPR to destroy bacterial cells. |
---|---|
AbstractList | The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.
The gene editing tool often known simply as CRISPR has become well known in recent years. Its potential applications are wide ranging, including uses in research, healthcare and agriculture. Yet, the CRISPR system originated in microbes where it helps to protect them from viral infections. Viruses infect by inserting their own genes into a host cell, and – almost like a pair of scissors – the CRISPR system can cut up the virus’s DNA to stop infections.
CRISPR experts know the popular form of CRISPR as type II, but there are others. Type III CRISPR is less useful as a genetic tool but does also protect microbes from viruses. In addition to targeting DNA, type III CRISPR targets the related RNA molecules from viruses. When it encounters RNA from a virus, the type III CRISPR produces a small molecule called cyclic oligoadenylate (or cOA for short). The cOA molecule activates enzymes known as non-specific ribonucleases, which can destroy all the RNA in the cell. This defence is a less subtle than that provided type II CRISPR and can also damage the cell by destroying other RNA molecules that the microbes use to survive. As such, proper regulation is essential to prevent the type III system from unnecessarily killing the infected cell.
Rouillon et al. studied the control of the type III CRISPR system from the heat-loving microbe
Sulfolobus solfataricus
, which is found in volcanic springs. This species has been a model for studies of the CRISPR system for many years, in part because its proteins are very stable which makes them easier to work with in the laboratory. The results show that the type III CRISPR makes cOA by combining four molecules of adenosine triphosphate (ATP) into a ring. CRISPR responds immediately to viral RNA in the cell. It also detaches from the RNA as soon as it starts to be destroyed. Rapid activation and silencing of the production cOA ensures that the CRISPR system is tightly controlled.
These findings reveal that cOA production is tightly linked to the abundance of viral RNA, ensuring a proportional and timely response to infection. Using cOA amplifies the cell's response because it allows a single RNA molecule to activate a larger change.
Type III CRISPR systems are widespread in nature, and a better understanding of them could improve the yield of products, like yoghurt, that depend on healthy bacteria; currently viruses cause a lot of economic damage in this industry. Further research in this area could also lead to new antibiotics that over-activate type III CRISPR to destroy bacterial cells. The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence. The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence. The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence. The gene editing tool often known simply as CRISPR has become well known in recent years. Its potential applications are wide ranging, including uses in research, healthcare and agriculture. Yet, the CRISPR system originated in microbes where it helps to protect them from viral infections. Viruses infect by inserting their own genes into a host cell, and – almost like a pair of scissors – the CRISPR system can cut up the virus’s DNA to stop infections. CRISPR experts know the popular form of CRISPR as type II, but there are others. Type III CRISPR is less useful as a genetic tool but does also protect microbes from viruses. In addition to targeting DNA, type III CRISPR targets the related RNA molecules from viruses. When it encounters RNA from a virus, the type III CRISPR produces a small molecule called cyclic oligoadenylate (or cOA for short). The cOA molecule activates enzymes known as non-specific ribonucleases, which can destroy all the RNA in the cell. This defence is a less subtle than that provided type II CRISPR and can also damage the cell by destroying other RNA molecules that the microbes use to survive. As such, proper regulation is essential to prevent the type III system from unnecessarily killing the infected cell. Rouillon et al. studied the control of the type III CRISPR system from the heat-loving microbe Sulfolobus solfataricus, which is found in volcanic springs. This species has been a model for studies of the CRISPR system for many years, in part because its proteins are very stable which makes them easier to work with in the laboratory. The results show that the type III CRISPR makes cOA by combining four molecules of adenosine triphosphate (ATP) into a ring. CRISPR responds immediately to viral RNA in the cell. It also detaches from the RNA as soon as it starts to be destroyed. Rapid activation and silencing of the production cOA ensures that the CRISPR system is tightly controlled. These findings reveal that cOA production is tightly linked to the abundance of viral RNA, ensuring a proportional and timely response to infection. Using cOA amplifies the cell's response because it allows a single RNA molecule to activate a larger change. Type III CRISPR systems are widespread in nature, and a better understanding of them could improve the yield of products, like yoghurt, that depend on healthy bacteria; currently viruses cause a lot of economic damage in this industry. Further research in this area could also lead to new antibiotics that over-activate type III CRISPR to destroy bacterial cells. |
Author | White, Malcolm F Rouillon, Christophe Grüschow, Sabine Athukoralage, Januka S Graham, Shirley |
Author_xml | – sequence: 1 givenname: Christophe surname: Rouillon fullname: Rouillon, Christophe organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom – sequence: 2 givenname: Januka S surname: Athukoralage fullname: Athukoralage, Januka S organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom – sequence: 3 givenname: Shirley orcidid: 0000-0002-2608-3815 surname: Graham fullname: Graham, Shirley organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom – sequence: 4 givenname: Sabine surname: Grüschow fullname: Grüschow, Sabine organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom – sequence: 5 givenname: Malcolm F orcidid: 0000-0003-1543-9342 surname: White fullname: White, Malcolm F organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29963983$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk1rGzEQhkVJadIkp97LQi-F4lRfu5IuhWCadsGQkKbQm9BqR46MvHJXcmH_fWU7KUmoLho0z7y8mpm36GiIAyD0juALUdf8Myy8gwvWCMZfoROKazzDkv86ehIfo_OUVrgcwaUk6g06pko1TEl2gq7mcchjDFV0lZ1s8LaKwS-j6WGYgslQpWnI95B8qvxQmSpPG6jatq3mt-2Pm9uSThnWZ-i1MyHB-cN9in5efb2bf58trr-188vFzNac5BkwSqSivWrAUhCUM8kaVbuOABGcM0EaXANVzIkGC6ZKKIB2UnVMGUcUO0XtQbePZqU3o1-bcdLReL1_iONSmzF7G0AzbjsjrVGUMt47pbCgpDed7bGyTrmi9eWgtdl2a-gtlEaY8Ez0eWbw93oZ_-jikTHMi8DHB4Ex_t5Cynrtk4UQzABxmzTFTflRTeQO_fACXcXtOJRWFUriplFEykK9f-ron5XHcRWAHAA7xpRGcNr6bLLfzdD4oAnWu63Q-63Q-60oNZ9e1DzK_o_-C2pettk |
CitedBy_id | crossref_primary_10_1128_AEM_02988_20 crossref_primary_10_1002_pro_4374 crossref_primary_10_1093_nar_gkae603 crossref_primary_10_1016_j_molcel_2024_09_002 crossref_primary_10_1093_nar_gkae569 crossref_primary_10_3390_biom11121852 crossref_primary_10_1146_annurev_virology_100120_010228 crossref_primary_10_1016_j_molcel_2019_06_014 crossref_primary_10_1016_j_molcel_2019_06_013 crossref_primary_10_1038_s41467_019_14222_x crossref_primary_10_1111_mmi_15074 crossref_primary_10_1038_s41467_022_35445_5 crossref_primary_10_1021_acsnano_3c11769 crossref_primary_10_3389_fmicb_2022_1046388 crossref_primary_10_1042_BST20230962 crossref_primary_10_2147_IJN_S479068 crossref_primary_10_1038_s41586_023_06620_5 crossref_primary_10_1093_nar_gkac1151 crossref_primary_10_1016_j_jbc_2024_107295 crossref_primary_10_1016_j_jbc_2022_101591 crossref_primary_10_1016_j_chom_2024_11_005 crossref_primary_10_1186_s12935_019_0726_0 crossref_primary_10_1016_j_jmb_2024_168448 crossref_primary_10_1093_nar_gkab1190 crossref_primary_10_1016_j_molcel_2022_10_028 crossref_primary_10_1080_15476286_2020_1813411 crossref_primary_10_1016_j_jmb_2019_04_041 crossref_primary_10_1016_j_cell_2018_10_052 crossref_primary_10_1093_nar_gkab073 crossref_primary_10_1093_nar_gkab590 crossref_primary_10_1038_s42003_022_03187_1 crossref_primary_10_1080_15476286_2022_2150812 crossref_primary_10_1093_nar_gkae462 crossref_primary_10_1080_15476286_2019_1618693 crossref_primary_10_1093_nar_gkac923 crossref_primary_10_1093_nar_gkad739 crossref_primary_10_7554_eLife_55852 crossref_primary_10_1093_femsre_fuaa063 crossref_primary_10_1038_s41580_021_00371_9 crossref_primary_10_1093_nar_gkz676 crossref_primary_10_1089_crispr_2022_0085 crossref_primary_10_1093_nar_gkad101 crossref_primary_10_3390_microorganisms12091772 crossref_primary_10_1093_nar_gkaa634 crossref_primary_10_1038_s41467_022_35275_5 crossref_primary_10_3389_fmicb_2019_03078 crossref_primary_10_1016_j_tig_2019_03_009 crossref_primary_10_1074_jbc_RA120_014099 crossref_primary_10_1016_j_chom_2023_10_003 crossref_primary_10_1007_s11427_020_1745_0 crossref_primary_10_1093_nar_gkae167 crossref_primary_10_7554_eLife_57627 crossref_primary_10_1261_rna_070417_119 crossref_primary_10_1093_nar_gkaa685 crossref_primary_10_1098_rstb_2018_0087 crossref_primary_10_1038_s41421_020_0160_4 crossref_primary_10_1038_s41564_018_0353_x crossref_primary_10_1038_s41586_018_0557_5 crossref_primary_10_1042_ETLS20180023 crossref_primary_10_1002_wrna_1804 crossref_primary_10_1038_s41467_019_12745_x crossref_primary_10_1038_s41579_022_00793_y crossref_primary_10_1016_j_biotechadv_2024_108323 crossref_primary_10_1016_j_jmb_2018_08_030 crossref_primary_10_1038_s41467_019_12244_z crossref_primary_10_1074_jbc_RA119_008728 crossref_primary_10_1093_nar_gkaa176 crossref_primary_10_1093_nar_gkaa298 crossref_primary_10_1016_j_cell_2019_09_003 crossref_primary_10_1016_j_pharmthera_2024_108653 crossref_primary_10_12998_wjcc_v10_i18_5934 crossref_primary_10_1038_s41586_022_05571_7 crossref_primary_10_1134_S0006297921100114 crossref_primary_10_1038_s41564_024_01670_5 crossref_primary_10_3390_biom10111523 crossref_primary_10_1038_s41564_019_0612_5 crossref_primary_10_1016_j_celrep_2020_108133 crossref_primary_10_3389_fmicb_2021_779012 crossref_primary_10_1016_j_isci_2022_105425 crossref_primary_10_1038_s41467_021_25337_5 crossref_primary_10_1261_rna_079206_122 crossref_primary_10_1016_j_molcel_2018_11_008 crossref_primary_10_3389_fgeed_2023_1272678 crossref_primary_10_1146_annurev_genet_022120_112523 crossref_primary_10_31857_S0320972521100134 crossref_primary_10_1016_j_crstbi_2023_100098 crossref_primary_10_3390_ijms23158515 crossref_primary_10_1002_mbo3_829 crossref_primary_10_1074_jbc_REV120_007034 crossref_primary_10_3389_fmicb_2020_602789 crossref_primary_10_1038_s41564_022_01256_z crossref_primary_10_1038_s41564_022_01316_4 crossref_primary_10_1038_s41586_019_1909_5 crossref_primary_10_1016_j_molcel_2018_09_018 crossref_primary_10_1038_s44318_023_00017_w crossref_primary_10_1093_femsre_fuaa016 crossref_primary_10_1126_science_abk2718 crossref_primary_10_1126_science_add7347 crossref_primary_10_1261_rna_078739_121 crossref_primary_10_1016_j_molcel_2020_07_008 crossref_primary_10_1093_femsml_uqad027 crossref_primary_10_1093_nar_gkab1130 crossref_primary_10_1016_j_ijbiomac_2020_01_079 crossref_primary_10_1016_j_xcrm_2021_100319 crossref_primary_10_1093_nar_gkae080 crossref_primary_10_1038_s41467_020_15334_5 |
Cites_doi | 10.3390/life5010783 10.1128/JVI.01020-13 10.1101/gad.272153.115 10.1016/j.cell.2015.12.053 10.1038/nrmicro3569 10.1261/rna.030882.111 10.1073/pnas.1405079111 10.1111/mmi.12152 10.1016/j.molcel.2013.08.020 10.1016/j.pep.2008.09.008 10.1101/gad.273722.115 10.1038/nature13637 10.1111/j.1365-2958.2011.07586.x 10.1093/nar/gkt767 10.1016/j.str.2015.01.021 10.1016/j.molcel.2011.12.013 10.7554/eLife.08716 10.1083/jcb.201004104 10.1093/nar/gkw020 10.1016/j.chom.2017.07.016 10.1126/science.aaa4535 10.1016/j.molcel.2014.10.005 10.1016/j.molcel.2014.09.027 10.1126/science.aao0100 10.1038/nature23467 10.1038/nmeth.2089 10.1101/gad.250712.114 10.1016/j.jmb.2010.11.019 10.1093/nar/gkx726 10.1016/j.tim.2016.09.012 10.1016/j.molcel.2016.03.024 10.1261/rna.054098.115 10.1128/mBio.02565-14 10.1093/nar/gkw1274 10.1016/S1097-2765(03)00402-7 10.1261/rna.039842.113 10.1038/s41467-017-02557-2 10.1128/AEM.00364-12 10.1016/j.cell.2009.07.040 10.1021/acschembio.7b00713 10.1016/j.cell.2015.04.027 10.1038/nmeth.2019 |
ContentType | Journal Article |
Copyright | 2018, Rouillon et al. 2018, Rouillon et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018, Rouillon et al 2018 Rouillon et al |
Copyright_xml | – notice: 2018, Rouillon et al. – notice: 2018, Rouillon et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018, Rouillon et al 2018 Rouillon et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.7554/eLife.36734 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2050-084X |
ExternalDocumentID | oai_doaj_org_article_34cba8ca92234df990721dabcd09cf9f PMC6053304 29963983 10_7554_eLife_36734 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M021017/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: Project grant BB/M000400/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M000400/1 – fundername: ; grantid: Challenge grant CH160014 – fundername: ; grantid: Project grant BB/M000400/1 |
GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IEA IHR INH INR ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RHI RNS RPM UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-e321892d96ec2e724383695fb1e1744371605e293f760739e297e2b89b39af193 |
IEDL.DBID | M48 |
ISSN | 2050-084X |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Thu Aug 21 13:32:52 EDT 2025 Fri Jul 11 00:27:53 EDT 2025 Fri Jul 25 11:58:36 EDT 2025 Mon Jul 21 06:03:20 EDT 2025 Tue Jul 01 01:42:10 EDT 2025 Thu Apr 24 22:57:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CRISPR chemical biology biochemistry Cas10 Sulfolobus solfataricus cyclic oligoadenylate archaea |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 2018, Rouillon et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-e321892d96ec2e724383695fb1e1744371605e293f760739e297e2b89b39af193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2608-3815 0000-0003-1543-9342 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.36734 |
PMID | 29963983 |
PQID | 2080669188 |
PQPubID | 2045579 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34cba8ca92234df990721dabcd09cf9f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053304 proquest_miscellaneous_2063715184 proquest_journals_2080669188 pubmed_primary_29963983 crossref_citationtrail_10_7554_eLife_36734 crossref_primary_10_7554_eLife_36734 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-02 |
PublicationDateYYYYMMDD | 2018-07-02 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | eLife |
PublicationTitleAlternate | Elife |
PublicationYear | 2018 |
Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
References | Hale (bib9) 2009; 139 Lintner (bib19) 2011; 405 Zhang (bib40) 2016; 44 Schindelin (bib32) 2012; 9 Niewoehner (bib25) 2016; 22 Staals (bib35) 2014; 56 Koonin (bib17) 2018; 13 Niewoehner (bib24) 2017; 548 Samai (bib31) 2015; 161 Hochstrasser (bib12) 2014; 111 Tamulaitis (bib37) 2014; 56 Goldberg (bib6) 2014; 514 Jiang (bib13) 2016; 164 Rollie (bib29) 2015; 4 Han (bib11) 2017; 45 Hale (bib8) 2014; 28 Manica (bib23) 2011; 80 Schneider (bib33) 2012; 9 Kazlauskiene (bib15) 2017; 357 Elmore (bib3) 2016; 30 Linkert (bib18) 2010; 189 Manica (bib22) 2013; 41 Deng (bib2) 2013; 87 Pyenson (bib27) 2017; 22 Liu (bib20) 2009; 63 Tamulaitis (bib38) 2017; 25 Rouillon (bib30) 2013; 52 Sheppard (bib34) 2016; 22 Kazlauskiene (bib16) 2016; 62 Bautista (bib1) 2015; 6 Sternberg (bib36) 2012; 18 Zhang (bib41) 2012; 45 Goldberg (bib7) 2018; 9 Quax (bib28) 2013; 87 Zhang (bib42) 2003; 12 Garrett (bib5) 2015; 5 Park (bib26) 2012; 78 Taylor (bib39) 2015; 348 Estrella (bib4) 2016; 30 Makarova (bib21) 2015; 13 Jung (bib14) 2015; 23 Han (bib10) 2017; 45 |
References_xml | – volume: 5 start-page: 783 year: 2015 ident: bib5 article-title: CRISPR-Cas adaptive immune systems of the sulfolobales: unravelling their complexity and diversity publication-title: Life doi: 10.3390/life5010783 – volume: 87 start-page: 8419 year: 2013 ident: bib28 article-title: Massive activation of archaeal defense genes during viral infection publication-title: Journal of Virology doi: 10.1128/JVI.01020-13 – volume: 30 start-page: 447 year: 2016 ident: bib3 article-title: Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system publication-title: Genes & Development doi: 10.1101/gad.272153.115 – volume: 164 start-page: 710 year: 2016 ident: bib13 article-title: Degradation of phage transcripts by CRISPR-Associated RNases enables type III CRISPR-Cas immunity publication-title: Cell doi: 10.1016/j.cell.2015.12.053 – volume: 13 start-page: 722 year: 2015 ident: bib21 article-title: An updated evolutionary classification of CRISPR-Cas systems publication-title: Nature Reviews Microbiology doi: 10.1038/nrmicro3569 – volume: 18 start-page: 661 year: 2012 ident: bib36 article-title: Mechanism of substrate selection by a highly specific CRISPR endoribonuclease publication-title: RNA doi: 10.1261/rna.030882.111 – volume: 111 start-page: 6618 year: 2014 ident: bib12 article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference publication-title: PNAS doi: 10.1073/pnas.1405079111 – volume: 87 start-page: 1088 year: 2013 ident: bib2 article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus publication-title: Molecular Microbiology doi: 10.1111/mmi.12152 – volume: 52 start-page: 124 year: 2013 ident: bib30 article-title: Structure of the CRISPR interference complex CSM reveals key similarities with cascade publication-title: Molecular Cell doi: 10.1016/j.molcel.2013.08.020 – volume: 63 start-page: 102 year: 2009 ident: bib20 article-title: A simple and efficient expression and purification system using two newly constructed vectors publication-title: Protein Expression and Purification doi: 10.1016/j.pep.2008.09.008 – volume: 30 start-page: 460 year: 2016 ident: bib4 article-title: RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex publication-title: Genes & Development doi: 10.1101/gad.273722.115 – volume: 514 start-page: 633 year: 2014 ident: bib6 article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting publication-title: Nature doi: 10.1038/nature13637 – volume: 80 start-page: 481 year: 2011 ident: bib23 article-title: In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon publication-title: Molecular Microbiology doi: 10.1111/j.1365-2958.2011.07586.x – volume: 41 start-page: 10509 year: 2013 ident: bib22 article-title: Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus publication-title: Nucleic Acids Research doi: 10.1093/nar/gkt767 – volume: 23 start-page: 782 year: 2015 ident: bib14 article-title: Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity publication-title: Structure doi: 10.1016/j.str.2015.01.021 – volume: 45 start-page: 303 year: 2012 ident: bib41 article-title: Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity publication-title: Molecular Cell doi: 10.1016/j.molcel.2011.12.013 – volume: 4 start-page: e08716 year: 2015 ident: bib29 article-title: Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition publication-title: eLife doi: 10.7554/eLife.08716 – volume: 189 start-page: 777 year: 2010 ident: bib18 article-title: Metadata matters: access to image data in the real world publication-title: The Journal of Cell Biology doi: 10.1083/jcb.201004104 – volume: 44 start-page: 1789 year: 2016 ident: bib40 article-title: Multiple nucleic acid cleavage modes in divergent type III CRISPR systems publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw020 – volume: 22 start-page: 343 year: 2017 ident: bib27 article-title: Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2017.07.016 – volume: 348 start-page: 581 year: 2015 ident: bib39 article-title: Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning publication-title: Science doi: 10.1126/science.aaa4535 – volume: 56 start-page: 518 year: 2014 ident: bib35 article-title: RNA targeting by the type III-A CRISPR-Cas csm complex of Thermus thermophilus publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.10.005 – volume: 56 start-page: 506 year: 2014 ident: bib37 article-title: Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus publication-title: Molecular Cell doi: 10.1016/j.molcel.2014.09.027 – volume: 357 start-page: 605 year: 2017 ident: bib15 article-title: A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems publication-title: Science doi: 10.1126/science.aao0100 – volume: 548 start-page: 543 year: 2017 ident: bib24 article-title: Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers publication-title: Nature doi: 10.1038/nature23467 – volume: 9 start-page: 671 year: 2012 ident: bib33 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nature Methods doi: 10.1038/nmeth.2089 – volume: 28 start-page: 2432 year: 2014 ident: bib8 article-title: Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex publication-title: Genes & Development doi: 10.1101/gad.250712.114 – volume: 405 start-page: 939 year: 2011 ident: bib19 article-title: The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system publication-title: Journal of Molecular Biology doi: 10.1016/j.jmb.2010.11.019 – volume: 45 start-page: 10740 year: 2017 ident: bib11 article-title: Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail publication-title: Nucleic Acids Research doi: 10.1093/nar/gkx726 – volume: 25 start-page: 49 year: 2017 ident: bib38 article-title: Type III CRISPR-Cas immunity: major differences brushed aside publication-title: Trends in Microbiology doi: 10.1016/j.tim.2016.09.012 – volume: 62 start-page: 295 year: 2016 ident: bib16 article-title: Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition publication-title: Molecular Cell doi: 10.1016/j.molcel.2016.03.024 – volume: 22 start-page: 318 year: 2016 ident: bib25 article-title: Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6 publication-title: RNA doi: 10.1261/rna.054098.115 – volume: 6 start-page: e02565-14 year: 2015 ident: bib1 article-title: Virus-induced dormancy in the archaeon Sulfolobus islandicus publication-title: mBio doi: 10.1128/mBio.02565-14 – volume: 45 start-page: 1983 year: 2017 ident: bib10 article-title: A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw1274 – volume: 12 start-page: 913 year: 2003 ident: bib42 article-title: MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli publication-title: Molecular Cell doi: 10.1016/S1097-2765(03)00402-7 – volume: 22 start-page: 216 year: 2016 ident: bib34 article-title: The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease publication-title: RNA doi: 10.1261/rna.039842.113 – volume: 9 start-page: 61 year: 2018 ident: bib7 article-title: Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts publication-title: Nature Communications doi: 10.1038/s41467-017-02557-2 – volume: 78 start-page: 3794 year: 2012 ident: bib26 article-title: Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases publication-title: Applied and Environmental Microbiology doi: 10.1128/AEM.00364-12 – volume: 139 start-page: 945 year: 2009 ident: bib9 article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex publication-title: Cell doi: 10.1016/j.cell.2009.07.040 – volume: 13 start-page: 309 year: 2018 ident: bib17 article-title: Discovery of oligonucleotide signaling mediated by CRISPR-Associated polymerases solves two puzzles but leaves an enigma publication-title: ACS Chemical Biology doi: 10.1021/acschembio.7b00713 – volume: 161 start-page: 1164 year: 2015 ident: bib31 article-title: Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity publication-title: Cell doi: 10.1016/j.cell.2015.04.027 – volume: 9 start-page: 676 year: 2012 ident: bib32 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nature Methods doi: 10.1038/nmeth.2019 |
SSID | ssj0000748819 |
Score | 2.5256653 |
Snippet | The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adaptive immunity Adenine Nucleotides - biosynthesis Antiviral drugs archaea Biochemistry and Chemical Biology Cas10 Chromatography Clustered Regularly Interspaced Short Palindromic Repeats CRISPR CRISPR-Cas Systems cyclic oligoadenylate Deoxyribonucleic acid DNA DNA biosynthesis DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Endoribonucleases - genetics Endoribonucleases - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Gene expression Genomes Kinetics Mass spectrometry Nuclease Oligoribonucleotides - biosynthesis Phosphorothioate Phosphorothioate Oligonucleotides - pharmacology Prokaryotes Proteins Ribonucleic acid RNA RNA Cleavage RNA modification RNA viruses RNA Viruses - genetics RNA Viruses - metabolism RNA, Viral - genetics RNA, Viral - metabolism RNA-Binding Proteins - genetics RNA-Binding Proteins - metabolism Scientific imaging Sulfolobus solfataricus Sulfolobus solfataricus - drug effects Sulfolobus solfataricus - genetics Sulfolobus solfataricus - immunology Sulfolobus solfataricus - metabolism Time Factors Transcription factors Viral infections |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED5GYdCX0m1d5y4dGvSp4CaWJdl6bMNCM7ZRuhbyZiRZWg3BLk3ykH_fk-WaeBT2sjfbugf5Tr7vO-t0B3CWGWeoztNYZJTFuCjyGO9ULErEDq55yak_O_zzl7i-Z98XfLHT6svnhIXywEFx45QZrXKjJOIYKx06T4xZSqVNOZHGSee9L2LeTjDV-uAMF2Yiw4G8DCFzbH9Uzl6kIkvZAILaSv2v0cu_syR3YGd2CAcdXySXYZ7v4I2t38Pb0EFy-wFm05BqThpHzNYsK0OaZfWnUehOtkvkkWS1rZHjraoVqWqiiP_lSubzOZnezn_f3JJQyfkI7mff7qbXcdcaITacJevYpgjNkpZSWEMtqhkDTSG504nFEIOlGAVNuEUod5nwe3F4mVm0idSpVA5J20fYq5vafgKSUOcSR6VlhjLNE619iEFpiVSFK6UiOH_RVmG6uuG-fcWywPjBq7ZoVVu0qo3grBd-DOUyXhe78mrvRXyN6_YBWr7oLF_8y_IRjF6MVnQf3qqgyICFkEmeR_C1H8ZPxu-DqNo2Gy8jUEEcY9sIjoON-5kgOiNny9MIsoH1B1MdjtTVQ1uWW_hjzRN28j_e7TPsIzPL27xgOoK99dPGniL7Wesv7UJ_BuaTA20 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7alEIvpe86TYsCOQXcrGU9T6VZumRLU0LawN6MJEupYbHTeHPYf5-R7XWzIfTmxxzEzEjfN9JoBuBAuuCoVXkqJGUpOoVK8c2kokTs4JaXnMa7w6c_xckF-77gi2HDrR3SKjdrYrdQl42Le-QYpCtER50p9eXqbxq7RsXT1aGFxmN4EkuXRa-WCznusSA8KkS8_lqeROA88j-q4D_nQuZsC4i6ev0Pkcz7uZJ3wGf2Ap4PrJF87c38Eh75-hU87ftIrl_DbNonnJMmELd2y8qRZlldNgYXlfUS2SRp1zUyvbZqSVUTQ-LGK5nP52R6Pv91dk76es5v4GL27ff0JB0aJKSOs2yV-hwBWtNSC--oR2VjuCk0DzbzGGiwHGOhCfcI6EGKeCKHj9KjZbTNtQlI3d7CTt3U_j2QjIaQBao9c5RZnlkbAw1KSyQs3BiTwOFGW4UbqofHJhbLAqOIqNqiU23RqTaBg1H4qi-a8bDYcVT7KBIrXXcfmuvLYpg4Rc6cNcoZjTyGlQHBE2PW0lhXTrQLOiSwtzFaMUy_tvjnLAnsj79x4sTTEFP75ibKCFQQxwg3gXe9jceRIEYjc1N5AnLL-ltD3f5TV3-64twiXm6esN3_D-sDPEPmpbq8X7oHO6vrG_8R2c3Kfupc-BaW-Pm2 priority: 102 providerName: ProQuest |
Title | Control of cyclic oligoadenylate synthesis in a type III CRISPR system |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29963983 https://www.proquest.com/docview/2080669188 https://www.proquest.com/docview/2063715184 https://pubmed.ncbi.nlm.nih.gov/PMC6053304 https://doaj.org/article/34cba8ca92234df990721dabcd09cf9f |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB72QaGX0nfdboMKeyo4jWU9rFPphg2b0l2WtIHcjCRLW0Ow2yQL9b_vyHZCs-TYm22NwZ4Z6ftGjxmAc2m9pSZLYyEpi9EpshjvdCwKxA5ueMFpODt8fSOu5uzrgi-OYFuMs1fg-mBoF-pJzVfL4Z_fzWfs8MhfhxLR8JP7Vno3TIVM2TGcIiTJUMrguuf57ZAs0U8T1Z3Pe_jOHiK1ifsPsc2Hmyb_QaHJU3jS00fypbP3Mzhy1XN41BWUbF7AZNztPCe1J7axy9KSelne1RpHl2aJtJKsmwop37pck7IimoQZWDKdTsl4Nv1-OyNdYueXMJ9c_hhfxX2lhNhylmxilyJSK1oo4Sx1qHWMO4Xi3iQOIw6WYlA04g6R3UsRlubwUjo0kTKp0h453Cs4qerKvQGSUO8TT5VjljLDE2NCxEFpgcyFa60j-LjVVm77NOKhmsUyx3AiqDZvVZu3qo3gfCf8q8uecVjsIqh9JxJSXrcP6tVd3vegPGXW6MxqhYSGFR5RFIPXQhtbjJT1ykdwtjVavnWjnCIhFkIlWRbBh10z9qCwLKIrV98HGYEK4hjqRvC6s_HuSxCskcJlaQRyz_p7n7rfUpU_2yzdIpxyHrG3_-Pf3sFjJGpZu02YnsHJZnXv3iMZ2pgBHMuFHMDpxeXN7WzQTikMWuf_C2y9DUU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiDcpBYxULkiBjWMn8QEhWFht6LZCpZX2FmzHLpFWSdtshfKn-I2M84JFFbfektgHZzz2931-zADsxdpqqpLQj2LKfHSKxMc36Uc5YgdXPOfU3R0-OIzmJ-zLki-34NdwF8YdqxzmxHaizivt1shRpCeIjiJIkvdn577LGuV2V4cUGp1b7JvmJ0q2-l36Cfv3FaWzz8fTud9nFfA1Z8HaNyGimqC5iIymBluIGi0S3KrAIDtnIQqICTeIgjaO3DYWPsYGf0eoUEgbuOBLOOXfQOCdOLEXL-NxTQfhOEGE7a4BxgjUb82isOZNGMUh2wC-Nj_AVaT237OZf4Hd7C7c6Vkq-dC51T3YMuV9uNnlrWwewGzaHXAnlSW60atCk2pVnFYSJ7FmheyV1E2JzLIualKURBK30EvSNCXTo_Tb1yPSxY9-CCfXYrpHsF1WpXkCJKDWBpYKwzRligdKOWFDaY4EiUspPXg9WCvTfbRylzRjlaFqcabNWtNmrWk92Bsrn3VBOq6u9tGZfaziImu3H6qL06wfqFnItJKJlgJ5E8stgjVq5FwqnU-EtsJ6sDt0WtYP9zr745wevByLcaC63RdZmurS1YnQQBwVtQePuz4eW4KcAJliEnoQb_T-RlM3S8riRxsMPHKXqSds5__NegG35scHi2yRHu4_hdvI-pL2zDHdhe31xaV5hsxqrZ637kzg-3WPn9-vJDOu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VW4G4IL4JFDBSuSAFNo6dxAeE6LarhpbVaqFSb6nt2CXSKinNVih_jV_HOB8LiypuvW02Pjjjsd979ngGYDfWVlOVhH4UU-ajUyQ-Pkk_yhE7uOI5p-7u8JdZdHjCPp_y0y34NdyFcWGVw5rYLtR5pd0eOYr0BNFRBCjYbB8WMd-ffrz44bsKUu6kdSin0bnIkWl-onyrP6T7ONZvKJ0efJsc-n2FAV9zFqx8EyLCCZqLyGhqsLeo1yLBrQoMMnUWopgYc4OIaOPIHWnhz9jgpwkVCmkDl4gJl__t2KmiEWzvHczmi_UOD4JzgnjbXQqMEbbfm-PCmndhFIdsAwbbagHXUdx_IzX_gr7pPbjbc1byqXOy-7Blygdwq6ti2TyE6aQLdyeVJbrRy0KTalmcVxKXtGaJXJbUTYk8sy5qUpREErftS9I0JZNF-nW-IF026UdwciPGewyjsirNUyABtTawVBimKVM8UMrJHEpzpEtcSunB28Fame5zl7sSGssMNYwzbdaaNmtN68HuuvFFl7Lj-mZ7zuzrJi7PdvtHdXme9dM2C5lWMtFSIItiuUXoRsWcS6XzsdBWWA92hkHL-slfZ39c1YPX69c4bd1ZjCxNdeXaRGggjvragyfdGK97ggwBeWMSehBvjP5GVzfflMX3NjV45K5Wj9mz_3frFdzGuZMdp7Oj53AHKWDSBiDTHRitLq_MC6RZK_Wy92cCZzc9hX4DTus5SQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+cyclic+oligoadenylate+synthesis+in+a+type+III+CRISPR+system&rft.jtitle=eLife&rft.au=Christophe+Rouillon&rft.au=Januka+S+Athukoralage&rft.au=Shirley+Graham&rft.au=Sabine+Gr%C3%BCschow&rft.date=2018-07-02&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=7&rft_id=info:doi/10.7554%2FeLife.36734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34cba8ca92234df990721dabcd09cf9f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |