Control of cyclic oligoadenylate synthesis in a type III CRISPR system

The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 7
Main Authors Rouillon, Christophe, Athukoralage, Januka S, Graham, Shirley, Grüschow, Sabine, White, Malcolm F
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 02.07.2018
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence. The gene editing tool often known simply as CRISPR has become well known in recent years. Its potential applications are wide ranging, including uses in research, healthcare and agriculture. Yet, the CRISPR system originated in microbes where it helps to protect them from viral infections. Viruses infect by inserting their own genes into a host cell, and – almost like a pair of scissors – the CRISPR system can cut up the virus’s DNA to stop infections. CRISPR experts know the popular form of CRISPR as type II, but there are others. Type III CRISPR is less useful as a genetic tool but does also protect microbes from viruses. In addition to targeting DNA, type III CRISPR targets the related RNA molecules from viruses. When it encounters RNA from a virus, the type III CRISPR produces a small molecule called cyclic oligoadenylate (or cOA for short). The cOA molecule activates enzymes known as non-specific ribonucleases, which can destroy all the RNA in the cell. This defence is a less subtle than that provided type II CRISPR and can also damage the cell by destroying other RNA molecules that the microbes use to survive. As such, proper regulation is essential to prevent the type III system from unnecessarily killing the infected cell. Rouillon et al. studied the control of the type III CRISPR system from the heat-loving microbe Sulfolobus solfataricus, which is found in volcanic springs. This species has been a model for studies of the CRISPR system for many years, in part because its proteins are very stable which makes them easier to work with in the laboratory. The results show that the type III CRISPR makes cOA by combining four molecules of adenosine triphosphate (ATP) into a ring. CRISPR responds immediately to viral RNA in the cell. It also detaches from the RNA as soon as it starts to be destroyed. Rapid activation and silencing of the production cOA ensures that the CRISPR system is tightly controlled. These findings reveal that cOA production is tightly linked to the abundance of viral RNA, ensuring a proportional and timely response to infection. Using cOA amplifies the cell's response because it allows a single RNA molecule to activate a larger change. Type III CRISPR systems are widespread in nature, and a better understanding of them could improve the yield of products, like yoghurt, that depend on healthy bacteria; currently viruses cause a lot of economic damage in this industry. Further research in this area could also lead to new antibiotics that over-activate type III CRISPR to destroy bacterial cells.
AbstractList The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence. The gene editing tool often known simply as CRISPR has become well known in recent years. Its potential applications are wide ranging, including uses in research, healthcare and agriculture. Yet, the CRISPR system originated in microbes where it helps to protect them from viral infections. Viruses infect by inserting their own genes into a host cell, and – almost like a pair of scissors – the CRISPR system can cut up the virus’s DNA to stop infections. CRISPR experts know the popular form of CRISPR as type II, but there are others. Type III CRISPR is less useful as a genetic tool but does also protect microbes from viruses. In addition to targeting DNA, type III CRISPR targets the related RNA molecules from viruses. When it encounters RNA from a virus, the type III CRISPR produces a small molecule called cyclic oligoadenylate (or cOA for short). The cOA molecule activates enzymes known as non-specific ribonucleases, which can destroy all the RNA in the cell. This defence is a less subtle than that provided type II CRISPR and can also damage the cell by destroying other RNA molecules that the microbes use to survive. As such, proper regulation is essential to prevent the type III system from unnecessarily killing the infected cell. Rouillon et al. studied the control of the type III CRISPR system from the heat-loving microbe Sulfolobus solfataricus , which is found in volcanic springs. This species has been a model for studies of the CRISPR system for many years, in part because its proteins are very stable which makes them easier to work with in the laboratory. The results show that the type III CRISPR makes cOA by combining four molecules of adenosine triphosphate (ATP) into a ring. CRISPR responds immediately to viral RNA in the cell. It also detaches from the RNA as soon as it starts to be destroyed. Rapid activation and silencing of the production cOA ensures that the CRISPR system is tightly controlled. These findings reveal that cOA production is tightly linked to the abundance of viral RNA, ensuring a proportional and timely response to infection. Using cOA amplifies the cell's response because it allows a single RNA molecule to activate a larger change. Type III CRISPR systems are widespread in nature, and a better understanding of them could improve the yield of products, like yoghurt, that depend on healthy bacteria; currently viruses cause a lot of economic damage in this industry. Further research in this area could also lead to new antibiotics that over-activate type III CRISPR to destroy bacterial cells.
The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.
The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3' end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The 'RNA shredding' activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence.
The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are detected, type III systems adopt an activated state that licenses DNA interference and synthesis of cyclic oligoadenylate (cOA). cOA activates nucleases and transcription factors that orchestrate the antiviral response. We demonstrate that cOA synthesis is subject to tight temporal control, commencing on target RNA binding, and is deactivated rapidly as target RNA is cleaved and dissociates. Mismatches in the target RNA are well tolerated and still activate the cyclase domain, except when located close to the 3’ end of the target. Phosphorothioate modification reduces target RNA cleavage and stimulates cOA production. The ‘RNA shredding’ activity originally ascribed to type III systems may thus be a reflection of an exquisite mechanism for control of the Cas10 subunit, rather than a direct antiviral defence. The gene editing tool often known simply as CRISPR has become well known in recent years. Its potential applications are wide ranging, including uses in research, healthcare and agriculture. Yet, the CRISPR system originated in microbes where it helps to protect them from viral infections. Viruses infect by inserting their own genes into a host cell, and – almost like a pair of scissors – the CRISPR system can cut up the virus’s DNA to stop infections. CRISPR experts know the popular form of CRISPR as type II, but there are others. Type III CRISPR is less useful as a genetic tool but does also protect microbes from viruses. In addition to targeting DNA, type III CRISPR targets the related RNA molecules from viruses. When it encounters RNA from a virus, the type III CRISPR produces a small molecule called cyclic oligoadenylate (or cOA for short). The cOA molecule activates enzymes known as non-specific ribonucleases, which can destroy all the RNA in the cell. This defence is a less subtle than that provided type II CRISPR and can also damage the cell by destroying other RNA molecules that the microbes use to survive. As such, proper regulation is essential to prevent the type III system from unnecessarily killing the infected cell. Rouillon et al. studied the control of the type III CRISPR system from the heat-loving microbe Sulfolobus solfataricus, which is found in volcanic springs. This species has been a model for studies of the CRISPR system for many years, in part because its proteins are very stable which makes them easier to work with in the laboratory. The results show that the type III CRISPR makes cOA by combining four molecules of adenosine triphosphate (ATP) into a ring. CRISPR responds immediately to viral RNA in the cell. It also detaches from the RNA as soon as it starts to be destroyed. Rapid activation and silencing of the production cOA ensures that the CRISPR system is tightly controlled. These findings reveal that cOA production is tightly linked to the abundance of viral RNA, ensuring a proportional and timely response to infection. Using cOA amplifies the cell's response because it allows a single RNA molecule to activate a larger change. Type III CRISPR systems are widespread in nature, and a better understanding of them could improve the yield of products, like yoghurt, that depend on healthy bacteria; currently viruses cause a lot of economic damage in this industry. Further research in this area could also lead to new antibiotics that over-activate type III CRISPR to destroy bacterial cells.
Author White, Malcolm F
Rouillon, Christophe
Grüschow, Sabine
Athukoralage, Januka S
Graham, Shirley
Author_xml – sequence: 1
  givenname: Christophe
  surname: Rouillon
  fullname: Rouillon, Christophe
  organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
– sequence: 2
  givenname: Januka S
  surname: Athukoralage
  fullname: Athukoralage, Januka S
  organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
– sequence: 3
  givenname: Shirley
  orcidid: 0000-0002-2608-3815
  surname: Graham
  fullname: Graham, Shirley
  organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
– sequence: 4
  givenname: Sabine
  surname: Grüschow
  fullname: Grüschow, Sabine
  organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
– sequence: 5
  givenname: Malcolm F
  orcidid: 0000-0003-1543-9342
  surname: White
  fullname: White, Malcolm F
  organization: Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29963983$$D View this record in MEDLINE/PubMed
BookMark eNptkk1rGzEQhkVJadIkp97LQi-F4lRfu5IuhWCadsGQkKbQm9BqR46MvHJXcmH_fWU7KUmoLho0z7y8mpm36GiIAyD0juALUdf8Myy8gwvWCMZfoROKazzDkv86ehIfo_OUVrgcwaUk6g06pko1TEl2gq7mcchjDFV0lZ1s8LaKwS-j6WGYgslQpWnI95B8qvxQmSpPG6jatq3mt-2Pm9uSThnWZ-i1MyHB-cN9in5efb2bf58trr-188vFzNac5BkwSqSivWrAUhCUM8kaVbuOABGcM0EaXANVzIkGC6ZKKIB2UnVMGUcUO0XtQbePZqU3o1-bcdLReL1_iONSmzF7G0AzbjsjrVGUMt47pbCgpDed7bGyTrmi9eWgtdl2a-gtlEaY8Ez0eWbw93oZ_-jikTHMi8DHB4Ex_t5Cynrtk4UQzABxmzTFTflRTeQO_fACXcXtOJRWFUriplFEykK9f-ron5XHcRWAHAA7xpRGcNr6bLLfzdD4oAnWu63Q-63Q-60oNZ9e1DzK_o_-C2pettk
CitedBy_id crossref_primary_10_1128_AEM_02988_20
crossref_primary_10_1002_pro_4374
crossref_primary_10_1093_nar_gkae603
crossref_primary_10_1016_j_molcel_2024_09_002
crossref_primary_10_1093_nar_gkae569
crossref_primary_10_3390_biom11121852
crossref_primary_10_1146_annurev_virology_100120_010228
crossref_primary_10_1016_j_molcel_2019_06_014
crossref_primary_10_1016_j_molcel_2019_06_013
crossref_primary_10_1038_s41467_019_14222_x
crossref_primary_10_1111_mmi_15074
crossref_primary_10_1038_s41467_022_35445_5
crossref_primary_10_1021_acsnano_3c11769
crossref_primary_10_3389_fmicb_2022_1046388
crossref_primary_10_1042_BST20230962
crossref_primary_10_2147_IJN_S479068
crossref_primary_10_1038_s41586_023_06620_5
crossref_primary_10_1093_nar_gkac1151
crossref_primary_10_1016_j_jbc_2024_107295
crossref_primary_10_1016_j_jbc_2022_101591
crossref_primary_10_1016_j_chom_2024_11_005
crossref_primary_10_1186_s12935_019_0726_0
crossref_primary_10_1016_j_jmb_2024_168448
crossref_primary_10_1093_nar_gkab1190
crossref_primary_10_1016_j_molcel_2022_10_028
crossref_primary_10_1080_15476286_2020_1813411
crossref_primary_10_1016_j_jmb_2019_04_041
crossref_primary_10_1016_j_cell_2018_10_052
crossref_primary_10_1093_nar_gkab073
crossref_primary_10_1093_nar_gkab590
crossref_primary_10_1038_s42003_022_03187_1
crossref_primary_10_1080_15476286_2022_2150812
crossref_primary_10_1093_nar_gkae462
crossref_primary_10_1080_15476286_2019_1618693
crossref_primary_10_1093_nar_gkac923
crossref_primary_10_1093_nar_gkad739
crossref_primary_10_7554_eLife_55852
crossref_primary_10_1093_femsre_fuaa063
crossref_primary_10_1038_s41580_021_00371_9
crossref_primary_10_1093_nar_gkz676
crossref_primary_10_1089_crispr_2022_0085
crossref_primary_10_1093_nar_gkad101
crossref_primary_10_3390_microorganisms12091772
crossref_primary_10_1093_nar_gkaa634
crossref_primary_10_1038_s41467_022_35275_5
crossref_primary_10_3389_fmicb_2019_03078
crossref_primary_10_1016_j_tig_2019_03_009
crossref_primary_10_1074_jbc_RA120_014099
crossref_primary_10_1016_j_chom_2023_10_003
crossref_primary_10_1007_s11427_020_1745_0
crossref_primary_10_1093_nar_gkae167
crossref_primary_10_7554_eLife_57627
crossref_primary_10_1261_rna_070417_119
crossref_primary_10_1093_nar_gkaa685
crossref_primary_10_1098_rstb_2018_0087
crossref_primary_10_1038_s41421_020_0160_4
crossref_primary_10_1038_s41564_018_0353_x
crossref_primary_10_1038_s41586_018_0557_5
crossref_primary_10_1042_ETLS20180023
crossref_primary_10_1002_wrna_1804
crossref_primary_10_1038_s41467_019_12745_x
crossref_primary_10_1038_s41579_022_00793_y
crossref_primary_10_1016_j_biotechadv_2024_108323
crossref_primary_10_1016_j_jmb_2018_08_030
crossref_primary_10_1038_s41467_019_12244_z
crossref_primary_10_1074_jbc_RA119_008728
crossref_primary_10_1093_nar_gkaa176
crossref_primary_10_1093_nar_gkaa298
crossref_primary_10_1016_j_cell_2019_09_003
crossref_primary_10_1016_j_pharmthera_2024_108653
crossref_primary_10_12998_wjcc_v10_i18_5934
crossref_primary_10_1038_s41586_022_05571_7
crossref_primary_10_1134_S0006297921100114
crossref_primary_10_1038_s41564_024_01670_5
crossref_primary_10_3390_biom10111523
crossref_primary_10_1038_s41564_019_0612_5
crossref_primary_10_1016_j_celrep_2020_108133
crossref_primary_10_3389_fmicb_2021_779012
crossref_primary_10_1016_j_isci_2022_105425
crossref_primary_10_1038_s41467_021_25337_5
crossref_primary_10_1261_rna_079206_122
crossref_primary_10_1016_j_molcel_2018_11_008
crossref_primary_10_3389_fgeed_2023_1272678
crossref_primary_10_1146_annurev_genet_022120_112523
crossref_primary_10_31857_S0320972521100134
crossref_primary_10_1016_j_crstbi_2023_100098
crossref_primary_10_3390_ijms23158515
crossref_primary_10_1002_mbo3_829
crossref_primary_10_1074_jbc_REV120_007034
crossref_primary_10_3389_fmicb_2020_602789
crossref_primary_10_1038_s41564_022_01256_z
crossref_primary_10_1038_s41564_022_01316_4
crossref_primary_10_1038_s41586_019_1909_5
crossref_primary_10_1016_j_molcel_2018_09_018
crossref_primary_10_1038_s44318_023_00017_w
crossref_primary_10_1093_femsre_fuaa016
crossref_primary_10_1126_science_abk2718
crossref_primary_10_1126_science_add7347
crossref_primary_10_1261_rna_078739_121
crossref_primary_10_1016_j_molcel_2020_07_008
crossref_primary_10_1093_femsml_uqad027
crossref_primary_10_1093_nar_gkab1130
crossref_primary_10_1016_j_ijbiomac_2020_01_079
crossref_primary_10_1016_j_xcrm_2021_100319
crossref_primary_10_1093_nar_gkae080
crossref_primary_10_1038_s41467_020_15334_5
Cites_doi 10.3390/life5010783
10.1128/JVI.01020-13
10.1101/gad.272153.115
10.1016/j.cell.2015.12.053
10.1038/nrmicro3569
10.1261/rna.030882.111
10.1073/pnas.1405079111
10.1111/mmi.12152
10.1016/j.molcel.2013.08.020
10.1016/j.pep.2008.09.008
10.1101/gad.273722.115
10.1038/nature13637
10.1111/j.1365-2958.2011.07586.x
10.1093/nar/gkt767
10.1016/j.str.2015.01.021
10.1016/j.molcel.2011.12.013
10.7554/eLife.08716
10.1083/jcb.201004104
10.1093/nar/gkw020
10.1016/j.chom.2017.07.016
10.1126/science.aaa4535
10.1016/j.molcel.2014.10.005
10.1016/j.molcel.2014.09.027
10.1126/science.aao0100
10.1038/nature23467
10.1038/nmeth.2089
10.1101/gad.250712.114
10.1016/j.jmb.2010.11.019
10.1093/nar/gkx726
10.1016/j.tim.2016.09.012
10.1016/j.molcel.2016.03.024
10.1261/rna.054098.115
10.1128/mBio.02565-14
10.1093/nar/gkw1274
10.1016/S1097-2765(03)00402-7
10.1261/rna.039842.113
10.1038/s41467-017-02557-2
10.1128/AEM.00364-12
10.1016/j.cell.2009.07.040
10.1021/acschembio.7b00713
10.1016/j.cell.2015.04.027
10.1038/nmeth.2019
ContentType Journal Article
Copyright 2018, Rouillon et al.
2018, Rouillon et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018, Rouillon et al 2018 Rouillon et al
Copyright_xml – notice: 2018, Rouillon et al.
– notice: 2018, Rouillon et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018, Rouillon et al 2018 Rouillon et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.36734
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_34cba8ca92234df990721dabcd09cf9f
PMC6053304
29963983
10_7554_eLife_36734
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M021017/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: Project grant BB/M000400/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M000400/1
– fundername: ;
  grantid: Challenge grant CH160014
– fundername: ;
  grantid: Project grant BB/M000400/1
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-e321892d96ec2e724383695fb1e1744371605e293f760739e297e2b89b39af193
IEDL.DBID M48
ISSN 2050-084X
IngestDate Wed Aug 27 01:31:36 EDT 2025
Thu Aug 21 13:32:52 EDT 2025
Fri Jul 11 00:27:53 EDT 2025
Fri Jul 25 11:58:36 EDT 2025
Mon Jul 21 06:03:20 EDT 2025
Tue Jul 01 01:42:10 EDT 2025
Thu Apr 24 22:57:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords CRISPR
chemical biology
biochemistry
Cas10
Sulfolobus solfataricus
cyclic oligoadenylate
archaea
Language English
License http://creativecommons.org/licenses/by/4.0
2018, Rouillon et al.
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e321892d96ec2e724383695fb1e1744371605e293f760739e297e2b89b39af193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2608-3815
0000-0003-1543-9342
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.7554/eLife.36734
PMID 29963983
PQID 2080669188
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_34cba8ca92234df990721dabcd09cf9f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6053304
proquest_miscellaneous_2063715184
proquest_journals_2080669188
pubmed_primary_29963983
crossref_citationtrail_10_7554_eLife_36734
crossref_primary_10_7554_eLife_36734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-02
PublicationDateYYYYMMDD 2018-07-02
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2018
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Hale (bib9) 2009; 139
Lintner (bib19) 2011; 405
Zhang (bib40) 2016; 44
Schindelin (bib32) 2012; 9
Niewoehner (bib25) 2016; 22
Staals (bib35) 2014; 56
Koonin (bib17) 2018; 13
Niewoehner (bib24) 2017; 548
Samai (bib31) 2015; 161
Hochstrasser (bib12) 2014; 111
Tamulaitis (bib37) 2014; 56
Goldberg (bib6) 2014; 514
Jiang (bib13) 2016; 164
Rollie (bib29) 2015; 4
Han (bib11) 2017; 45
Hale (bib8) 2014; 28
Manica (bib23) 2011; 80
Schneider (bib33) 2012; 9
Kazlauskiene (bib15) 2017; 357
Elmore (bib3) 2016; 30
Linkert (bib18) 2010; 189
Manica (bib22) 2013; 41
Deng (bib2) 2013; 87
Pyenson (bib27) 2017; 22
Liu (bib20) 2009; 63
Tamulaitis (bib38) 2017; 25
Rouillon (bib30) 2013; 52
Sheppard (bib34) 2016; 22
Kazlauskiene (bib16) 2016; 62
Bautista (bib1) 2015; 6
Sternberg (bib36) 2012; 18
Zhang (bib41) 2012; 45
Goldberg (bib7) 2018; 9
Quax (bib28) 2013; 87
Zhang (bib42) 2003; 12
Garrett (bib5) 2015; 5
Park (bib26) 2012; 78
Taylor (bib39) 2015; 348
Estrella (bib4) 2016; 30
Makarova (bib21) 2015; 13
Jung (bib14) 2015; 23
Han (bib10) 2017; 45
References_xml – volume: 5
  start-page: 783
  year: 2015
  ident: bib5
  article-title: CRISPR-Cas adaptive immune systems of the sulfolobales: unravelling their complexity and diversity
  publication-title: Life
  doi: 10.3390/life5010783
– volume: 87
  start-page: 8419
  year: 2013
  ident: bib28
  article-title: Massive activation of archaeal defense genes during viral infection
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01020-13
– volume: 30
  start-page: 447
  year: 2016
  ident: bib3
  article-title: Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR-Cas system
  publication-title: Genes & Development
  doi: 10.1101/gad.272153.115
– volume: 164
  start-page: 710
  year: 2016
  ident: bib13
  article-title: Degradation of phage transcripts by CRISPR-Associated RNases enables type III CRISPR-Cas immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.053
– volume: 13
  start-page: 722
  year: 2015
  ident: bib21
  article-title: An updated evolutionary classification of CRISPR-Cas systems
  publication-title: Nature Reviews Microbiology
  doi: 10.1038/nrmicro3569
– volume: 18
  start-page: 661
  year: 2012
  ident: bib36
  article-title: Mechanism of substrate selection by a highly specific CRISPR endoribonuclease
  publication-title: RNA
  doi: 10.1261/rna.030882.111
– volume: 111
  start-page: 6618
  year: 2014
  ident: bib12
  article-title: CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference
  publication-title: PNAS
  doi: 10.1073/pnas.1405079111
– volume: 87
  start-page: 1088
  year: 2013
  ident: bib2
  article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
  publication-title: Molecular Microbiology
  doi: 10.1111/mmi.12152
– volume: 52
  start-page: 124
  year: 2013
  ident: bib30
  article-title: Structure of the CRISPR interference complex CSM reveals key similarities with cascade
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2013.08.020
– volume: 63
  start-page: 102
  year: 2009
  ident: bib20
  article-title: A simple and efficient expression and purification system using two newly constructed vectors
  publication-title: Protein Expression and Purification
  doi: 10.1016/j.pep.2008.09.008
– volume: 30
  start-page: 460
  year: 2016
  ident: bib4
  article-title: RNA-activated DNA cleavage by the Type III-B CRISPR-Cas effector complex
  publication-title: Genes & Development
  doi: 10.1101/gad.273722.115
– volume: 514
  start-page: 633
  year: 2014
  ident: bib6
  article-title: Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting
  publication-title: Nature
  doi: 10.1038/nature13637
– volume: 80
  start-page: 481
  year: 2011
  ident: bib23
  article-title: In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon
  publication-title: Molecular Microbiology
  doi: 10.1111/j.1365-2958.2011.07586.x
– volume: 41
  start-page: 10509
  year: 2013
  ident: bib22
  article-title: Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkt767
– volume: 23
  start-page: 782
  year: 2015
  ident: bib14
  article-title: Crystal structure of the Csm1 subunit of the Csm complex and its single-stranded DNA-specific nuclease activity
  publication-title: Structure
  doi: 10.1016/j.str.2015.01.021
– volume: 45
  start-page: 303
  year: 2012
  ident: bib41
  article-title: Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2011.12.013
– volume: 4
  start-page: e08716
  year: 2015
  ident: bib29
  article-title: Intrinsic sequence specificity of the Cas1 integrase directs new spacer acquisition
  publication-title: eLife
  doi: 10.7554/eLife.08716
– volume: 189
  start-page: 777
  year: 2010
  ident: bib18
  article-title: Metadata matters: access to image data in the real world
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201004104
– volume: 44
  start-page: 1789
  year: 2016
  ident: bib40
  article-title: Multiple nucleic acid cleavage modes in divergent type III CRISPR systems
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw020
– volume: 22
  start-page: 343
  year: 2017
  ident: bib27
  article-title: Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2017.07.016
– volume: 348
  start-page: 581
  year: 2015
  ident: bib39
  article-title: Structural biology. Structures of the CRISPR-Cmr complex reveal mode of RNA target positioning
  publication-title: Science
  doi: 10.1126/science.aaa4535
– volume: 56
  start-page: 518
  year: 2014
  ident: bib35
  article-title: RNA targeting by the type III-A CRISPR-Cas csm complex of Thermus thermophilus
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2014.10.005
– volume: 56
  start-page: 506
  year: 2014
  ident: bib37
  article-title: Programmable RNA shredding by the type III-A CRISPR-Cas system of Streptococcus thermophilus
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2014.09.027
– volume: 357
  start-page: 605
  year: 2017
  ident: bib15
  article-title: A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems
  publication-title: Science
  doi: 10.1126/science.aao0100
– volume: 548
  start-page: 543
  year: 2017
  ident: bib24
  article-title: Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers
  publication-title: Nature
  doi: 10.1038/nature23467
– volume: 9
  start-page: 671
  year: 2012
  ident: bib33
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2089
– volume: 28
  start-page: 2432
  year: 2014
  ident: bib8
  article-title: Target RNA capture and cleavage by the Cmr type III-B CRISPR-Cas effector complex
  publication-title: Genes & Development
  doi: 10.1101/gad.250712.114
– volume: 405
  start-page: 939
  year: 2011
  ident: bib19
  article-title: The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system
  publication-title: Journal of Molecular Biology
  doi: 10.1016/j.jmb.2010.11.019
– volume: 45
  start-page: 10740
  year: 2017
  ident: bib11
  article-title: Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkx726
– volume: 25
  start-page: 49
  year: 2017
  ident: bib38
  article-title: Type III CRISPR-Cas immunity: major differences brushed aside
  publication-title: Trends in Microbiology
  doi: 10.1016/j.tim.2016.09.012
– volume: 62
  start-page: 295
  year: 2016
  ident: bib16
  article-title: Spatiotemporal control of type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition
  publication-title: Molecular Cell
  doi: 10.1016/j.molcel.2016.03.024
– volume: 22
  start-page: 318
  year: 2016
  ident: bib25
  article-title: Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6
  publication-title: RNA
  doi: 10.1261/rna.054098.115
– volume: 6
  start-page: e02565-14
  year: 2015
  ident: bib1
  article-title: Virus-induced dormancy in the archaeon Sulfolobus islandicus
  publication-title: mBio
  doi: 10.1128/mBio.02565-14
– volume: 45
  start-page: 1983
  year: 2017
  ident: bib10
  article-title: A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw1274
– volume: 12
  start-page: 913
  year: 2003
  ident: bib42
  article-title: MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli
  publication-title: Molecular Cell
  doi: 10.1016/S1097-2765(03)00402-7
– volume: 22
  start-page: 216
  year: 2016
  ident: bib34
  article-title: The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease
  publication-title: RNA
  doi: 10.1261/rna.039842.113
– volume: 9
  start-page: 61
  year: 2018
  ident: bib7
  article-title: Incomplete prophage tolerance by type III-A CRISPR-Cas systems reduces the fitness of lysogenic hosts
  publication-title: Nature Communications
  doi: 10.1038/s41467-017-02557-2
– volume: 78
  start-page: 3794
  year: 2012
  ident: bib26
  article-title: Intramolecular regulation of the sequence-specific mRNA interferase activity of MazF fused to a MazE fragment with a linker cleavable by specific proteases
  publication-title: Applied and Environmental Microbiology
  doi: 10.1128/AEM.00364-12
– volume: 139
  start-page: 945
  year: 2009
  ident: bib9
  article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.040
– volume: 13
  start-page: 309
  year: 2018
  ident: bib17
  article-title: Discovery of oligonucleotide signaling mediated by CRISPR-Associated polymerases solves two puzzles but leaves an enigma
  publication-title: ACS Chemical Biology
  doi: 10.1021/acschembio.7b00713
– volume: 161
  start-page: 1164
  year: 2015
  ident: bib31
  article-title: Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.027
– volume: 9
  start-page: 676
  year: 2012
  ident: bib32
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2019
SSID ssj0000748819
Score 2.5256653
Snippet The CRISPR system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. When viral RNA transcripts are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adaptive immunity
Adenine Nucleotides - biosynthesis
Antiviral drugs
archaea
Biochemistry and Chemical Biology
Cas10
Chromatography
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
CRISPR-Cas Systems
cyclic oligoadenylate
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Endoribonucleases - genetics
Endoribonucleases - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Gene expression
Genomes
Kinetics
Mass spectrometry
Nuclease
Oligoribonucleotides - biosynthesis
Phosphorothioate
Phosphorothioate Oligonucleotides - pharmacology
Prokaryotes
Proteins
Ribonucleic acid
RNA
RNA Cleavage
RNA modification
RNA viruses
RNA Viruses - genetics
RNA Viruses - metabolism
RNA, Viral - genetics
RNA, Viral - metabolism
RNA-Binding Proteins - genetics
RNA-Binding Proteins - metabolism
Scientific imaging
Sulfolobus solfataricus
Sulfolobus solfataricus - drug effects
Sulfolobus solfataricus - genetics
Sulfolobus solfataricus - immunology
Sulfolobus solfataricus - metabolism
Time Factors
Transcription factors
Viral infections
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED5GYdCX0m1d5y4dGvSp4CaWJdl6bMNCM7ZRuhbyZiRZWg3BLk3ykH_fk-WaeBT2sjfbugf5Tr7vO-t0B3CWGWeoztNYZJTFuCjyGO9ULErEDq55yak_O_zzl7i-Z98XfLHT6svnhIXywEFx45QZrXKjJOIYKx06T4xZSqVNOZHGSee9L2LeTjDV-uAMF2Yiw4G8DCFzbH9Uzl6kIkvZAILaSv2v0cu_syR3YGd2CAcdXySXYZ7v4I2t38Pb0EFy-wFm05BqThpHzNYsK0OaZfWnUehOtkvkkWS1rZHjraoVqWqiiP_lSubzOZnezn_f3JJQyfkI7mff7qbXcdcaITacJevYpgjNkpZSWEMtqhkDTSG504nFEIOlGAVNuEUod5nwe3F4mVm0idSpVA5J20fYq5vafgKSUOcSR6VlhjLNE619iEFpiVSFK6UiOH_RVmG6uuG-fcWywPjBq7ZoVVu0qo3grBd-DOUyXhe78mrvRXyN6_YBWr7oLF_8y_IRjF6MVnQf3qqgyICFkEmeR_C1H8ZPxu-DqNo2Gy8jUEEcY9sIjoON-5kgOiNny9MIsoH1B1MdjtTVQ1uWW_hjzRN28j_e7TPsIzPL27xgOoK99dPGniL7Wesv7UJ_BuaTA20
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7alEIvpe86TYsCOQXcrGU9T6VZumRLU0LawN6MJEupYbHTeHPYf5-R7XWzIfTmxxzEzEjfN9JoBuBAuuCoVXkqJGUpOoVK8c2kokTs4JaXnMa7w6c_xckF-77gi2HDrR3SKjdrYrdQl42Le-QYpCtER50p9eXqbxq7RsXT1aGFxmN4EkuXRa-WCznusSA8KkS8_lqeROA88j-q4D_nQuZsC4i6ev0Pkcz7uZJ3wGf2Ap4PrJF87c38Eh75-hU87ftIrl_DbNonnJMmELd2y8qRZlldNgYXlfUS2SRp1zUyvbZqSVUTQ-LGK5nP52R6Pv91dk76es5v4GL27ff0JB0aJKSOs2yV-hwBWtNSC--oR2VjuCk0DzbzGGiwHGOhCfcI6EGKeCKHj9KjZbTNtQlI3d7CTt3U_j2QjIaQBao9c5RZnlkbAw1KSyQs3BiTwOFGW4UbqofHJhbLAqOIqNqiU23RqTaBg1H4qi-a8bDYcVT7KBIrXXcfmuvLYpg4Rc6cNcoZjTyGlQHBE2PW0lhXTrQLOiSwtzFaMUy_tvjnLAnsj79x4sTTEFP75ibKCFQQxwg3gXe9jceRIEYjc1N5AnLL-ltD3f5TV3-64twiXm6esN3_D-sDPEPmpbq8X7oHO6vrG_8R2c3Kfupc-BaW-Pm2
  priority: 102
  providerName: ProQuest
Title Control of cyclic oligoadenylate synthesis in a type III CRISPR system
URI https://www.ncbi.nlm.nih.gov/pubmed/29963983
https://www.proquest.com/docview/2080669188
https://www.proquest.com/docview/2063715184
https://pubmed.ncbi.nlm.nih.gov/PMC6053304
https://doaj.org/article/34cba8ca92234df990721dabcd09cf9f
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEB72QaGX0nfdboMKeyo4jWU9rFPphg2b0l2WtIHcjCRLW0Ow2yQL9b_vyHZCs-TYm22NwZ4Z6ftGjxmAc2m9pSZLYyEpi9EpshjvdCwKxA5ueMFpODt8fSOu5uzrgi-OYFuMs1fg-mBoF-pJzVfL4Z_fzWfs8MhfhxLR8JP7Vno3TIVM2TGcIiTJUMrguuf57ZAs0U8T1Z3Pe_jOHiK1ifsPsc2Hmyb_QaHJU3jS00fypbP3Mzhy1XN41BWUbF7AZNztPCe1J7axy9KSelne1RpHl2aJtJKsmwop37pck7IimoQZWDKdTsl4Nv1-OyNdYueXMJ9c_hhfxX2lhNhylmxilyJSK1oo4Sx1qHWMO4Xi3iQOIw6WYlA04g6R3UsRlubwUjo0kTKp0h453Cs4qerKvQGSUO8TT5VjljLDE2NCxEFpgcyFa60j-LjVVm77NOKhmsUyx3AiqDZvVZu3qo3gfCf8q8uecVjsIqh9JxJSXrcP6tVd3vegPGXW6MxqhYSGFR5RFIPXQhtbjJT1ykdwtjVavnWjnCIhFkIlWRbBh10z9qCwLKIrV98HGYEK4hjqRvC6s_HuSxCskcJlaQRyz_p7n7rfUpU_2yzdIpxyHrG3_-Pf3sFjJGpZu02YnsHJZnXv3iMZ2pgBHMuFHMDpxeXN7WzQTikMWuf_C2y9DUU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguiDcpBYxULkiBjWMn8QEhWFht6LZCpZX2FmzHLpFWSdtshfKn-I2M84JFFbfektgHZzz2931-zADsxdpqqpLQj2LKfHSKxMc36Uc5YgdXPOfU3R0-OIzmJ-zLki-34NdwF8YdqxzmxHaizivt1shRpCeIjiJIkvdn577LGuV2V4cUGp1b7JvmJ0q2-l36Cfv3FaWzz8fTud9nFfA1Z8HaNyGimqC5iIymBluIGi0S3KrAIDtnIQqICTeIgjaO3DYWPsYGf0eoUEgbuOBLOOXfQOCdOLEXL-NxTQfhOEGE7a4BxgjUb82isOZNGMUh2wC-Nj_AVaT237OZf4Hd7C7c6Vkq-dC51T3YMuV9uNnlrWwewGzaHXAnlSW60atCk2pVnFYSJ7FmheyV1E2JzLIualKURBK30EvSNCXTo_Tb1yPSxY9-CCfXYrpHsF1WpXkCJKDWBpYKwzRligdKOWFDaY4EiUspPXg9WCvTfbRylzRjlaFqcabNWtNmrWk92Bsrn3VBOq6u9tGZfaziImu3H6qL06wfqFnItJKJlgJ5E8stgjVq5FwqnU-EtsJ6sDt0WtYP9zr745wevByLcaC63RdZmurS1YnQQBwVtQePuz4eW4KcAJliEnoQb_T-RlM3S8riRxsMPHKXqSds5__NegG35scHi2yRHu4_hdvI-pL2zDHdhe31xaV5hsxqrZ637kzg-3WPn9-vJDOu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1VW4G4IL4JFDBSuSAFNo6dxAeE6LarhpbVaqFSb6nt2CXSKinNVih_jV_HOB8LiypuvW02Pjjjsd979ngGYDfWVlOVhH4UU-ajUyQ-Pkk_yhE7uOI5p-7u8JdZdHjCPp_y0y34NdyFcWGVw5rYLtR5pd0eOYr0BNFRBCjYbB8WMd-ffrz44bsKUu6kdSin0bnIkWl-onyrP6T7ONZvKJ0efJsc-n2FAV9zFqx8EyLCCZqLyGhqsLeo1yLBrQoMMnUWopgYc4OIaOPIHWnhz9jgpwkVCmkDl4gJl__t2KmiEWzvHczmi_UOD4JzgnjbXQqMEbbfm-PCmndhFIdsAwbbagHXUdx_IzX_gr7pPbjbc1byqXOy-7Blygdwq6ti2TyE6aQLdyeVJbrRy0KTalmcVxKXtGaJXJbUTYk8sy5qUpREErftS9I0JZNF-nW-IF026UdwciPGewyjsirNUyABtTawVBimKVM8UMrJHEpzpEtcSunB28Fame5zl7sSGssMNYwzbdaaNmtN68HuuvFFl7Lj-mZ7zuzrJi7PdvtHdXme9dM2C5lWMtFSIItiuUXoRsWcS6XzsdBWWA92hkHL-slfZ39c1YPX69c4bd1ZjCxNdeXaRGggjvragyfdGK97ggwBeWMSehBvjP5GVzfflMX3NjV45K5Wj9mz_3frFdzGuZMdp7Oj53AHKWDSBiDTHRitLq_MC6RZK_Wy92cCZzc9hX4DTus5SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+cyclic+oligoadenylate+synthesis+in+a+type+III+CRISPR+system&rft.jtitle=eLife&rft.au=Christophe+Rouillon&rft.au=Januka+S+Athukoralage&rft.au=Shirley+Graham&rft.au=Sabine+Gr%C3%BCschow&rft.date=2018-07-02&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=7&rft_id=info:doi/10.7554%2FeLife.36734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_34cba8ca92234df990721dabcd09cf9f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon