Thin-film PMUTs: a review of over 40 years of research

Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the pri...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 9; no. 1; pp. 95 - 17
Main Authors Roy, Kaustav, Lee, Joshua En-Yuan, Lee, Chengkuo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.07.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices’ design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author’s past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices.
AbstractList Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices' design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author's past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices.Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices' design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author's past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices.
Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices’ design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author’s past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices.
Abstract Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices’ design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author’s past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices.
ArticleNumber 95
Author Lee, Joshua En-Yuan
Roy, Kaustav
Lee, Chengkuo
Author_xml – sequence: 1
  givenname: Kaustav
  surname: Roy
  fullname: Roy, Kaustav
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Center for Intelligent Sensor and MEMS (CISM), National University of Singapore
– sequence: 2
  givenname: Joshua En-Yuan
  orcidid: 0000-0002-1741-1485
  surname: Lee
  fullname: Lee, Joshua En-Yuan
  organization: Institute of Microelectronics, ASTAR
– sequence: 3
  givenname: Chengkuo
  orcidid: 0000-0002-8886-3649
  surname: Lee
  fullname: Lee, Chengkuo
  email: elelc@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Center for Intelligent Sensor and MEMS (CISM), National University of Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37484500$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFv1DAQhS1UREvpH-CAInHhEhh77MThglDVQqUiOGzPlteZ7HqVjYudXdR_j9O00PbQk0cz7z19Gs9rdjCEgRh7y-EjB9SfkuRY6xIElgBKqbJ-wY4ETIVEefCgPmQnKW0AgNdYN6BesUOspZYK4IhVi7Ufys732-LXj6tF-lzYItLe058idEXYUywkFDdkY5oakVIu3foNe9nZPtHJ3XvMrs7PFqffy8uf3y5Ov16WTkk-lgQWtatoWXW8atE1DVeyrhrk5Eg72bVKuqVTpKtGCt0soRIOBUewPPMKPGYXc24b7MZcR7-18cYE681tI8SVsXH0ridDRIhOCgGukq1ztgVbC0ei7USHXZuzvsxZ17vlllpHwxht_yj08WTwa7MKe5P3rRpEnRM-3CXE8HtHaTRbnxz1vR0o7JIRWnIJUMk6S98_kW7CLg55V5MKQHMhMKvePUT6x3L_P1mgZ4GLIaVInXF-tKMPE6HvM9pEp818DSZfg7m9BjMRiCfW-_RnTTibUhYPK4r_sZ9x_QUuYcPH
CitedBy_id crossref_primary_10_1002_adsr_202400039
crossref_primary_10_1016_j_sna_2024_115339
crossref_primary_10_1038_s41378_024_00808_z
crossref_primary_10_1109_LED_2024_3375956
crossref_primary_10_1016_j_mejo_2024_106260
crossref_primary_10_1007_s11465_023_0772_0
crossref_primary_10_3390_s23198173
crossref_primary_10_1002_gch2_202300244
crossref_primary_10_1038_s41378_024_00783_5
crossref_primary_10_1038_s43246_024_00459_7
crossref_primary_10_1109_JMEMS_2024_3394509
crossref_primary_10_3390_s24092714
crossref_primary_10_1109_TUFFC_2024_3390807
crossref_primary_10_1038_s41377_024_01480_8
crossref_primary_10_1063_5_0224172
crossref_primary_10_1109_JSEN_2024_3445988
crossref_primary_10_35848_1347_4065_ad56e9
crossref_primary_10_35848_1347_4065_ada70c
crossref_primary_10_3390_pr12122644
crossref_primary_10_1109_LED_2024_3435685
crossref_primary_10_1109_LSENS_2024_3358105
crossref_primary_10_3390_bioengineering11111097
crossref_primary_10_1063_10_0034714
crossref_primary_10_3390_app14020920
crossref_primary_10_1109_TIM_2024_3398109
crossref_primary_10_3390_mi15010071
crossref_primary_10_3390_mi15111377
crossref_primary_10_1109_TUFFC_2024_3433407
crossref_primary_10_3390_app131910900
crossref_primary_10_1109_JMEMS_2024_3395294
crossref_primary_10_1016_j_sna_2025_116326
crossref_primary_10_1039_D3NR05684H
crossref_primary_10_1109_ACCESS_2024_3359906
crossref_primary_10_1109_JSEN_2024_3456297
crossref_primary_10_1109_RBME_2024_3410399
crossref_primary_10_1016_j_tsf_2024_140254
crossref_primary_10_1109_TUFFC_2024_3465589
crossref_primary_10_3390_mi14112089
crossref_primary_10_3390_diagnostics14040440
crossref_primary_10_3390_mi15060781
crossref_primary_10_1016_j_mcna_2024_08_002
crossref_primary_10_3390_bios14120629
crossref_primary_10_1109_TED_2024_3409509
crossref_primary_10_3390_s24061847
crossref_primary_10_1002_adma_202419690
crossref_primary_10_3390_app15052428
crossref_primary_10_3390_mi16020145
Cites_doi 10.3390/s150408020
10.1109/JMEMS.2020.3037298
10.1109/JSSC.2016.2604291
10.1109/JSSC.2014.2364975
10.1109/58.265820
10.3390/s17061381
10.1109/JMEMS.2016.2516510
10.1557/mrs2009.177
10.1149/08616.0013ecst
10.1016/S0924-4247(03)00090-6
10.1021/nn507221f
10.1038/s41467-022-31157-y
10.3390/s130809624
10.1109/JMEMS.2017.2712101
10.1109/58.655620
10.1109/TUFFC.2012.2284
10.1063/1.124055
10.1109/JMEMS.2014.2387154
10.1109/JMEMS.2020.2972729
10.3390/mi10020152
10.1109/TUFFC.2014.006452
10.1109/JMEMS.2015.2472958
10.1063/1.4948973
10.3390/mi9090455
10.1038/s41378-022-00426-7
10.1109/TUFFC.956
10.1038/s41378-022-00413-y
10.1016/j.sna.2003.11.015
10.1109/LED.2015.2459075
10.1109/JMEMS.2020.3043052
10.1109/OJUFFC.2022.3196823
10.1109/TED.2022.3140406
10.1049/mnl.2016.0207
10.1038/s41467-022-29355-9
10.1109/TUFFC.2019.2926211
10.1109/JMEMS.2018.2797684
10.1088/1361-6439/aa851b
10.1063/5.0140069
10.1063/1.4922915
10.1007/s10544-017-0228-6
10.1016/j.nanoen.2019.01.096
10.1063/1.4816085
10.1109/JMEMS.2016.2577038
10.1109/JMEMS.2020.3026547
10.3390/mi11060623
10.1109/TUFFC.2002.1002456
10.1016/j.sna.2017.05.006
10.1016/0250-6874(83)85044-6
10.1038/ncomms9376
10.1063/1.4905441
10.1109/TUFFC.2019.2956463
10.1016/0924-4247(96)01139-9
10.1002/adfm.201500856
10.1016/j.nanoen.2022.107761
10.1109/JSEN.2019.2936469
10.1016/j.sna.2003.11.022
10.1109/JSEN.2011.2157490
10.1038/s41378-022-00396-w
10.1109/JMEMS.2021.3091651
10.1109/TUFFC.2002.1002457
10.1016/j.sna.2017.09.058
10.1002/adma.200803605
10.1038/s41378-022-00449-0
10.1088/1361-6439/aab1bc
10.1109/MEMSYS.2019.8870884
10.1109/IUS46767.2020.9251809
10.1109/MEMSYS.2014.6765589
10.1109/IUS52206.2021.9593772
10.1109/MEMSYS.2017.7863627
10.1109/ISAF.2006.4349279
10.1109/MEMSYS.1991.114779
10.1109/ICSENS.2018.8589662
10.1109/ICEE50728.2020.9777041
10.1109/ISAF.2006.4387848
10.1109/IUS52206.2021.9593339
10.1109/MEMS49605.2023.10052158
10.1109/MEMSYS.2019.8870710
10.1109/MEMS46641.2020.9056448
10.1109/TRANSDUCERS.2011.5969226
10.1109/IUS46767.2020.9251747
10.1109/MEMSYS.2014.6765748
10.1109/ULTSYM.2018.8580227
10.1109/IUS54386.2022.9957829
10.1109/MEMS51782.2021.9375191
10.1109/Transducers50396.2021.9495576
10.1109/IUS52206.2021.9593352
10.1109/IUS46767.2020.9251458
10.1109/ULTSYM.2009.5441602
10.1038/s41598-016-0001-8
10.1021/acsnano.2c12592
10.1109/ULTSYM.2001.991867
10.1109/MEMSYS.2010.5442325
10.1109/ULTSYM.2000.922691
10.1117/12.2650488
10.1109/TRANSDUCERS.2015.7181012
10.1109/MEMSYS.2017.7863363
10.1109/IEDM.1979.189565
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1038/s41378-023-00555-7
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : directory of open access journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database



PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 17
ExternalDocumentID oai_doaj_org_article_eee33c4220c64dccad0a72ce2df2f3fd
PMC10359338
37484500
10_1038_s41378_023_00555_7
Genre Journal Article
Review
GrantInformation_xml – fundername: A*STAR | Institute of Microelectronics (A*STAR Institute of Microelectronics)
  grantid: A18A4b0055; A18A4b0055; A18A4b0055
  funderid: https://doi.org/10.13039/501100001481
– fundername: ;
  grantid: A18A4b0055; A18A4b0055; A18A4b0055
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-e0a38c6eb6f16d3c9915476931ece8c4fd54cbc5e8694289b062c32130a100123
IEDL.DBID C6C
ISSN 2055-7434
2096-1030
IngestDate Wed Aug 27 01:20:32 EDT 2025
Thu Aug 21 18:37:28 EDT 2025
Fri Jul 11 03:54:31 EDT 2025
Wed Aug 13 07:17:27 EDT 2025
Thu Apr 03 07:01:47 EDT 2025
Thu Apr 24 22:53:18 EDT 2025
Tue Jul 01 03:27:11 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electrical and electronic engineering
Electronic devices
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e0a38c6eb6f16d3c9915476931ece8c4fd54cbc5e8694289b062c32130a100123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1741-1485
0000-0002-8886-3649
OpenAccessLink https://www.nature.com/articles/s41378-023-00555-7
PMID 37484500
PQID 2840081223
PQPubID 2041946
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_eee33c4220c64dccad0a72ce2df2f3fd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10359338
proquest_miscellaneous_2841400647
proquest_journals_2840081223
pubmed_primary_37484500
crossref_citationtrail_10_1038_s41378_023_00555_7
crossref_primary_10_1038_s41378_023_00555_7
springer_journals_10_1038_s41378_023_00555_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-21
PublicationDateYYYYMMDD 2023-07-21
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Seung (CR68) 2015; 9
Zheng (CR86) 2022; 8
Lee (CR75) 2017; 19
Roy (CR83) 2022; 11960
Shi (CR25) 2016; 6
CR37
Royer (CR6) 1983; 4
Shi (CR64) 2016; 108
Sammoura, Kim (CR21) 2012; 59
Dausch (CR17) 2008; 55
Akhbari (CR54) 2016; 25
Dangi (CR82) 2020; 11240
Cai (CR85) 2022; 8
CR49
Ledesma (CR100) 2022; 8
Przybyla (CR101) 2014; 50
CR44
Lu (CR45) 2020; 29
Pop (CR90) 2022; 69
Roy (CR95) 2020; 20
Tipsawat (CR73) 2022; 2
Lu (CR24) 2015; 106
Luo (CR40) 2020; 30
Roy (CR30) 2021; 30
Zhou (CR41) 2017; 266
Chao (CR16) 2007; 6556
Sun (CR103) 2022; 8
Yang (CR46) 2013; 13
CR56
CR55
Huang (CR42) 2022; 103
CR53
Moro (CR89) 2022; 13
Gualtieri (CR36) 1994; 41
CR50
Pratap (CR97) 2018; 86
Pop (CR31) 2022; 13
Lee (CR70) 2015; 25
CR67
CR66
CR65
Ledermann (CR4) 2003; 105
Muralt (CR8) 1996; 53
CR61
Wang (CR63) 2016; 11
Dangi, Pratap (CR32) 2017; 262
Percin, Khuri-Yakub (CR47) 2002; 49
Kusano (CR51) 2018; 27
Sadeghpour (CR52) 2020; 29
Przybyla (CR33) 2011; 11
Dangi (CR81) 2019; 67
Jeong (CR29) 2020; 30
Shin (CR39) 2020; 11
Qiu (CR3) 2015; 15
CR79
CR78
CR76
CR74
CR72
CR71
Akasheh (CR43) 2004; 111
Wang (CR62) 2015; 106
CR5
CR7
Lu, Horsley (CR48) 2015; 24
Bernstein (CR9) 1997; 44
Chen (CR22) 2013; 103
Choi (CR69) 2009; 21
CR87
CR84
Brenner (CR1) 2019; 10
Wang (CR60) 2016; 25
CR80
Dubois, Muralt (CR38) 1999; 74
Wang (CR57) 2015; 36
Dogheche (CR14) 2005; 2
CR19
CR18
Yamashita (CR13) 2004; 114
CR15
Tang (CR93) 2016; 51
Chen (CR59) 2018; 28
Zi (CR91) 2015; 6
CR11
CR99
CR10
CR98
CR96
CR94
CR92
Muralt (CR34) 2009; 34
Perçin, Khuri-Yakub (CR12) 2002; 49
Wang (CR26) 2017; 26
Li (CR35) 2017; 17
Dausch (CR23) 2014; 61
CR20
Ngoc Thao (CR27) 2018; 9
Wang, Lee (CR58) 2015; 24
CR102
Sun (CR28) 2019; 58
Wang (CR88) 2023; 122
Cheng (CR77) 2019; 66
Jung (CR2) 2017; 27
555_CR80
DE Dausch (555_CR23) 2014; 61
A Dangi (555_CR81) 2019; 67
555_CR84
555_CR87
P Muralt (555_CR8) 1996; 53
Y Qiu (555_CR3) 2015; 15
JG Gualtieri (555_CR36) 1994; 41
Q Shi (555_CR25) 2016; 6
Y Lu (555_CR48) 2015; 24
R Lu (555_CR45) 2020; 29
555_CR92
555_CR96
555_CR94
P Tipsawat (555_CR73) 2022; 2
555_CR11
555_CR99
555_CR10
555_CR98
555_CR15
C Sun (555_CR28) 2019; 58
E Ledesma (555_CR100) 2022; 8
C Chao (555_CR16) 2007; 6556
H-Y Tang (555_CR93) 2016; 51
A Dangi (555_CR32) 2017; 262
F Akasheh (555_CR43) 2004; 111
555_CR20
S Akhbari (555_CR54) 2016; 25
J-H Lee (555_CR70) 2015; 25
Z Zhou (555_CR41) 2017; 266
M-Y Choi (555_CR69) 2009; 21
S Sun (555_CR103) 2022; 8
555_CR19
Y Yang (555_CR46) 2013; 13
F Pop (555_CR90) 2022; 69
555_CR18
RJ Przybyla (555_CR33) 2011; 11
F Sammoura (555_CR21) 2012; 59
T Wang (555_CR63) 2016; 11
N Ledermann (555_CR4) 2003; 105
E Shin (555_CR39) 2020; 11
G-L Luo (555_CR40) 2020; 30
Q Shi (555_CR64) 2016; 108
Y Zi (555_CR91) 2015; 6
Q Zheng (555_CR86) 2022; 8
555_CR37
M-A Dubois (555_CR38) 1999; 74
CY Cheng (555_CR77) 2019; 66
K Roy (555_CR83) 2022; 11960
J Li (555_CR35) 2017; 17
G Percin (555_CR47) 2002; 49
Y Huang (555_CR42) 2022; 103
W Seung (555_CR68) 2015; 9
K Yamashita (555_CR13) 2004; 114
Y Kusano (555_CR51) 2018; 27
T Wang (555_CR58) 2015; 24
S Sadeghpour (555_CR52) 2020; 29
DE Dausch (555_CR17) 2008; 55
J Jung (555_CR2) 2017; 27
555_CR44
555_CR49
W Lee (555_CR75) 2017; 19
G Perçin (555_CR12) 2002; 49
A Dangi (555_CR82) 2020; 11240
555_CR102
X Chen (555_CR59) 2018; 28
JJ Bernstein (555_CR9) 1997; 44
555_CR53
555_CR50
555_CR56
555_CR55
F Pop (555_CR31) 2022; 13
R Pratap (555_CR97) 2018; 86
T Wang (555_CR62) 2015; 106
P Muralt (555_CR34) 2009; 34
Y Wang (555_CR88) 2023; 122
P Ngoc Thao (555_CR27) 2018; 9
555_CR61
555_CR67
555_CR66
555_CR65
555_CR7
555_CR5
K Brenner (555_CR1) 2019; 10
Q Wang (555_CR26) 2017; 26
T Wang (555_CR57) 2015; 36
K Roy (555_CR30) 2021; 30
555_CR71
555_CR74
J Cai (555_CR85) 2022; 8
555_CR72
555_CR79
M Wang (555_CR60) 2016; 25
555_CR78
555_CR76
F Moro (555_CR89) 2022; 13
B Chen (555_CR22) 2013; 103
Y Jeong (555_CR29) 2020; 30
K Roy (555_CR95) 2020; 20
Y Lu (555_CR24) 2015; 106
K Dogheche (555_CR14) 2005; 2
RJ Przybyla (555_CR101) 2014; 50
M Royer (555_CR6) 1983; 4
References_xml – volume: 15
  start-page: 8020
  year: 2015
  end-page: 8041
  ident: CR3
  article-title: Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging
  publication-title: Sensors
  doi: 10.3390/s150408020
– ident: CR74
– volume: 30
  start-page: 81
  year: 2020
  end-page: 89
  ident: CR40
  article-title: Airborne piezoelectric micromachined ultrasonic transducers for long-range detection
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.3037298
– volume: 51
  start-page: 2522
  year: 2016
  end-page: 2533
  ident: CR93
  article-title: 3-D ultrasonic fingerprint sensor-on-a-chip
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2016.2604291
– volume: 50
  start-page: 320
  year: 2014
  end-page: 334
  ident: CR101
  article-title: 3D ultrasonic rangefinder on a chip
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2014.2364975
– volume: 41
  start-page: 53
  year: 1994
  end-page: 59
  ident: CR36
  article-title: Piezoelectric materials for acoustic wave applications
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.265820
– volume: 17
  start-page: 1381
  year: 2017
  ident: CR35
  article-title: Design and fabrication of piezoelectric micromachined ultrasound transducer (pMUT) with partially-etched ZnO film
  publication-title: Sensors
  doi: 10.3390/s17061381
– volume: 25
  start-page: 326
  year: 2016
  end-page: 336
  ident: CR54
  article-title: Bimorph piezoelectric micromachined ultrasonic transducers
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2016.2516510
– volume: 34
  start-page: 658
  year: 2009
  end-page: 664
  ident: CR34
  article-title: Piezoelectric thin films for sensors, actuators, and energy harvesting
  publication-title: MRS Bull.
  doi: 10.1557/mrs2009.177
– ident: CR80
– volume: 86
  start-page: 13
  year: 2018
  end-page: 20
  ident: CR97
  article-title: (Invited) Fluid spectroscopy with piezoelectric ultrasound MEMS transducers
  publication-title: ECS Trans.
  doi: 10.1149/08616.0013ecst
– ident: CR71
– ident: CR19
– volume: 105
  start-page: 162
  year: 2003
  end-page: 170
  ident: CR4
  article-title: 1 0 0-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(03)00090-6
– volume: 9
  start-page: 3501
  year: 2015
  end-page: 3509
  ident: CR68
  article-title: Nanopatterned textile-based wearable triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/nn507221f
– volume: 11240
  start-page: 317
  year: 2020
  end-page: 325
  ident: CR82
  article-title: A modular approach to neonatal whole-brain photoacoustic imaging
  publication-title: Photons Ultrasound. Imaging Sens.
– ident: CR92
– volume: 2
  start-page: 939
  year: 2005
  end-page: 942
  ident: CR14
  article-title: Piezoelectric micro-machined ultrasonic transducer (pMUT) for energy harvesting
  publication-title: Ultrason. Symp.
– volume: 13
  start-page: 1
  year: 2022
  end-page: 13
  ident: CR89
  article-title: Neuromorphic object localization using resistive memories and ultrasonic transducers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31157-y
– volume: 13
  start-page: 9624
  year: 2013
  end-page: 9634
  ident: CR46
  article-title: An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging
  publication-title: Sensors
  doi: 10.3390/s130809624
– ident: CR11
– volume: 26
  start-page: 1132
  year: 2017
  end-page: 1139
  ident: CR26
  article-title: Design, fabrication, and characterization of scandium aluminum nitride-based piezoelectric micromachined ultrasonic transducers
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2017.2712101
– volume: 44
  start-page: 960
  year: 1997
  end-page: 969
  ident: CR9
  article-title: Micromachined high frequency ferroelectric sonar transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.655620
– volume: 59
  start-page: 990
  year: 2012
  end-page: 998
  ident: CR21
  article-title: Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2284
– ident: CR5
– ident: CR18
– ident: CR66
– ident: CR72
– volume: 74
  start-page: 3032
  year: 1999
  end-page: 3034
  ident: CR38
  article-title: Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124055
– volume: 24
  start-page: 1142
  year: 2015
  end-page: 1149
  ident: CR48
  article-title: Modeling, fabrication, and characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2014.2387154
– volume: 29
  start-page: 378
  year: 2020
  end-page: 386
  ident: CR52
  article-title: Bendable piezoelectric micromachined ultrasound transducer (PMUT) arrays based on silicon-on-insulator (SOI) technology
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.2972729
– ident: CR10
– volume: 10
  start-page: 152
  year: 2019
  ident: CR1
  article-title: Advances in capacitive micromachined ultrasonic transducers
  publication-title: Micromachines
  doi: 10.3390/mi10020152
– volume: 11960
  start-page: 282
  year: 2022
  end-page: 288
  ident: CR83
  article-title: A PMUT based photoacoustic system as a microfluidic concentration detector
  publication-title: Photons Ultrasound. Imaging Sens. 2022
– volume: 61
  start-page: 1754
  year: 2014
  end-page: 1764
  ident: CR23
  article-title: In vivo real-time 3-D intracardiac echo using PMUT arrays
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.006452
– volume: 24
  start-page: 2083
  year: 2015
  end-page: 2091
  ident: CR58
  article-title: Zero-bending piezoelectric micromachined ultrasonic transducer (pMUT) with enhanced transmitting performance
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2015.2472958
– volume: 108
  start-page: 193902
  year: 2016
  ident: CR64
  article-title: Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948973
– volume: 9
  start-page: 455
  year: 2018
  ident: CR27
  article-title: Fabrication and characterization of PZT fibered-epitaxial thin film on Si for piezoelectric micromachined ultrasound transducer
  publication-title: Micromachines
  doi: 10.3390/mi9090455
– ident: CR94
– ident: CR44
– volume: 8
  start-page: 1
  year: 2022
  end-page: 12
  ident: CR85
  article-title: Beyond fundamental resonance mode: high-order multi-band ALN PMUT for in vivo photoacoustic imaging
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00426-7
– volume: 55
  start-page: 2484
  year: 2008
  end-page: 2492
  ident: CR17
  article-title: Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.956
– volume: 8
  start-page: 1
  year: 2022
  end-page: 9
  ident: CR100
  article-title: Single-cell system using monolithic PMUTs-on-CMOS to monitor fluid hydrodynamic properties
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00413-y
– volume: 114
  start-page: 147
  year: 2004
  end-page: 153
  ident: CR13
  article-title: Ultrasonic micro array sensors using piezoelectric thin films and resonant frequency tuning
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2003.11.015
– volume: 36
  start-page: 957
  year: 2015
  end-page: 959
  ident: CR57
  article-title: A piezoelectric micromachined ultrasonic transducer using piston-like membrane motion
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2459075
– volume: 30
  start-page: 137
  year: 2020
  end-page: 143
  ident: CR29
  article-title: Fully flexible PMUT based on polymer materials and stress compensation by adaptive frequency driving
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.3043052
– volume: 2
  start-page: 184
  year: 2022
  end-page: 193
  ident: CR73
  article-title: 32 element piezoelectric micromachined ultrasound transducer (pmut) phased array for neuromodulation
  publication-title: IEEE Open J. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/OJUFFC.2022.3196823
– volume: 69
  start-page: 1327
  year: 2022
  end-page: 1332
  ident: CR90
  article-title: Zero-power ultrasonic wakeup receiver based on MEMS switches for implantable medical devices
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3140406
– ident: CR55
– volume: 11
  start-page: 558
  year: 2016
  end-page: 562
  ident: CR63
  article-title: Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2016.0207
– volume: 13
  start-page: 1
  year: 2022
  end-page: 12
  ident: CR31
  article-title: Lithium Niobate Piezoelectric Micromachined Ultrasonic Transducers for high data-rate intrabody communication
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29355-9
– volume: 66
  start-page: 1606
  year: 2019
  end-page: 1615
  ident: CR77
  article-title: Thin film PZT-based PMUT arrays for deterministic particle manipulation
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2926211
– volume: 27
  start-page: 296
  year: 2018
  end-page: 304
  ident: CR51
  article-title: Effects of DC Bias Tuning on Air-Coupled PZT Piezoelectric Micromachined Ultrasonic Transducers
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2018.2797684
– volume: 6556
  start-page: 322
  year: 2007
  end-page: 331
  ident: CR16
  article-title: Piezoelectric micromachined ultrasonic transducers with rectangular diaphragms for dual-frequency applications
  publication-title: Micro Nanotechnol. Def. Security
– ident: CR102
– ident: CR49
– ident: CR87
– volume: 27
  start-page: 113001
  year: 2017
  ident: CR2
  article-title: Review of piezoelectric micromachined ultrasonic transducers and their applications
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa851b
– volume: 122
  start-page: 133702
  year: 2023
  ident: CR88
  article-title: Microwave-induced thermoacoustic imaging with a multi-cell AlScN piezoelectric micromachined ultrasonic transducer
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0140069
– ident: CR61
– ident: CR84
– volume: 106
  start-page: 263503
  year: 2015
  ident: CR24
  article-title: Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922915
– volume: 19
  start-page: 1
  year: 2017
  end-page: 9
  ident: CR75
  article-title: All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-017-0228-6
– volume: 58
  start-page: 612
  year: 2019
  end-page: 623
  ident: CR28
  article-title: Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.096
– ident: CR96
– ident: CR67
– ident: CR15
– volume: 103
  start-page: 31118
  year: 2013
  ident: CR22
  article-title: AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4816085
– ident: CR50
– volume: 25
  start-page: 691
  year: 2016
  end-page: 700
  ident: CR60
  article-title: Enhancement of the transmission of piezoelectric micromachined ultrasonic transducer with an isolation trench
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2016.2577038
– volume: 29
  start-page: 1412
  year: 2020
  end-page: 1414
  ident: CR45
  article-title: A piezoelectric micromachined ultrasonic transducer using thin-film lithium niobate
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.3026547
– ident: CR78
– volume: 11
  start-page: 623
  year: 2020
  ident: CR39
  article-title: Development of a high-density piezoelectric micromachined ultrasonic transducer array based on patterned aluminum nitride thin film
  publication-title: Micromachines
  doi: 10.3390/mi11060623
– ident: CR99
– volume: 49
  start-page: 573
  year: 2002
  end-page: 584
  ident: CR12
  article-title: Piezoelectrically actuated flextensional micromachined ultrasound transducers. I. Theory
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2002.1002456
– volume: 262
  start-page: 18
  year: 2017
  end-page: 28
  ident: CR32
  article-title: System level modeling and design maps of PMUTs with residual stresses
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.05.006
– volume: 4
  start-page: 357
  year: 1983
  end-page: 362
  ident: CR6
  article-title: ZnO on Si integrated acoustic sensor
  publication-title: Sens. Actuators
  doi: 10.1016/0250-6874(83)85044-6
– ident: CR37
– ident: CR53
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: CR91
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 106
  start-page: 13501
  year: 2015
  ident: CR62
  article-title: Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905441
– volume: 67
  start-page: 801
  year: 2019
  end-page: 809
  ident: CR81
  article-title: A photoacoustic imaging device using piezoelectric micromachined ultrasound transducers (PMUTs)
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2956463
– volume: 53
  start-page: 398
  year: 1996
  end-page: 404
  ident: CR8
  article-title: Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(96)01139-9
– volume: 25
  start-page: 3203
  year: 2015
  end-page: 3209
  ident: CR70
  article-title: Micropatterned P (VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500856
– volume: 103
  start-page: 107761
  year: 2022
  ident: CR42
  article-title: Implementing (K, Na) NbO3-based lead-free ferroelectric films to piezoelectric micromachined ultrasonic transducers
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107761
– volume: 20
  start-page: 6802
  year: 2020
  end-page: 6809
  ident: CR95
  article-title: Fluid density sensing using piezoelectric micromachined ultrasound transducers
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2936469
– ident: CR79
– ident: CR56
– volume: 111
  start-page: 275
  year: 2004
  end-page: 287
  ident: CR43
  article-title: Development of piezoelectric micromachined ultrasonic transducers
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2003.11.022
– ident: CR98
– volume: 11
  start-page: 2690
  year: 2011
  end-page: 2697
  ident: CR33
  article-title: In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2157490
– ident: CR65
– volume: 8
  start-page: 1
  year: 2022
  end-page: 14
  ident: CR103
  article-title: MEMS ultrasonic transducers for safe, low-power and portable eye-blinking monitoring
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00396-w
– volume: 30
  start-page: 642
  year: 2021
  end-page: 649
  ident: CR30
  article-title: A PMUT integrated microfluidic system for fluid density sensing
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2021.3091651
– volume: 49
  start-page: 585
  year: 2002
  end-page: 595
  ident: CR47
  article-title: Piezoelectrically actuated flextensional micromachined ultrasound transducers. II. Fabrication and experiments
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2002.1002457
– volume: 266
  start-page: 352
  year: 2017
  end-page: 360
  ident: CR41
  article-title: Epitaxial PMnN-PZT/Si MEMS ultrasonic rangefinder with 2 m range at 1 V drive
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.09.058
– volume: 21
  start-page: 2185
  year: 2009
  end-page: 2189
  ident: CR69
  article-title: Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803605
– volume: 8
  start-page: 1
  year: 2022
  end-page: 12
  ident: CR86
  article-title: Thin ceramic PZT dual-and multi-frequency pMUT arrays for photoacoustic imaging
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00449-0
– ident: CR7
– ident: CR76
– volume: 28
  start-page: 57001
  year: 2018
  ident: CR59
  article-title: Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aab1bc
– ident: CR20
– volume: 6
  start-page: 1
  year: 2016
  end-page: 10
  ident: CR25
  article-title: MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices
  publication-title: Sci. Rep.
– volume: 11
  start-page: 558
  year: 2016
  ident: 555_CR63
  publication-title: Micro Nano Lett.
  doi: 10.1049/mnl.2016.0207
– volume: 49
  start-page: 585
  year: 2002
  ident: 555_CR47
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2002.1002457
– ident: 555_CR74
  doi: 10.1109/MEMSYS.2019.8870884
– volume: 122
  start-page: 133702
  year: 2023
  ident: 555_CR88
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0140069
– volume: 58
  start-page: 612
  year: 2019
  ident: 555_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.096
– volume: 29
  start-page: 378
  year: 2020
  ident: 555_CR52
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.2972729
– volume: 21
  start-page: 2185
  year: 2009
  ident: 555_CR69
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200803605
– volume: 24
  start-page: 2083
  year: 2015
  ident: 555_CR58
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2015.2472958
– volume: 20
  start-page: 6802
  year: 2020
  ident: 555_CR95
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2936469
– volume: 30
  start-page: 81
  year: 2020
  ident: 555_CR40
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.3037298
– volume: 26
  start-page: 1132
  year: 2017
  ident: 555_CR26
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2017.2712101
– volume: 74
  start-page: 3032
  year: 1999
  ident: 555_CR38
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.124055
– volume: 30
  start-page: 137
  year: 2020
  ident: 555_CR29
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.3043052
– volume: 30
  start-page: 642
  year: 2021
  ident: 555_CR30
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2021.3091651
– volume: 24
  start-page: 1142
  year: 2015
  ident: 555_CR48
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2014.2387154
– volume: 29
  start-page: 1412
  year: 2020
  ident: 555_CR45
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2020.3026547
– volume: 53
  start-page: 398
  year: 1996
  ident: 555_CR8
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/0924-4247(96)01139-9
– volume: 9
  start-page: 3501
  year: 2015
  ident: 555_CR68
  publication-title: ACS Nano
  doi: 10.1021/nn507221f
– ident: 555_CR96
  doi: 10.1109/IUS46767.2020.9251809
– volume: 86
  start-page: 13
  year: 2018
  ident: 555_CR97
  publication-title: ECS Trans.
  doi: 10.1149/08616.0013ecst
– volume: 69
  start-page: 1327
  year: 2022
  ident: 555_CR90
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2022.3140406
– volume: 28
  start-page: 57001
  year: 2018
  ident: 555_CR59
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aab1bc
– volume: 103
  start-page: 31118
  year: 2013
  ident: 555_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4816085
– volume: 8
  start-page: 1
  year: 2022
  ident: 555_CR103
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00396-w
– ident: 555_CR56
  doi: 10.1109/MEMSYS.2014.6765589
– volume: 59
  start-page: 990
  year: 2012
  ident: 555_CR21
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2012.2284
– ident: 555_CR50
  doi: 10.1109/IUS52206.2021.9593772
– ident: 555_CR66
  doi: 10.1109/MEMSYS.2017.7863627
– volume: 114
  start-page: 147
  year: 2004
  ident: 555_CR13
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2003.11.015
– ident: 555_CR44
  doi: 10.1109/ISAF.2006.4349279
– ident: 555_CR7
  doi: 10.1109/MEMSYS.1991.114779
– ident: 555_CR94
  doi: 10.1109/ICSENS.2018.8589662
– volume: 27
  start-page: 296
  year: 2018
  ident: 555_CR51
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2018.2797684
– ident: 555_CR80
  doi: 10.1109/ICEE50728.2020.9777041
– ident: 555_CR37
  doi: 10.1109/ISAF.2006.4387848
– ident: 555_CR67
  doi: 10.1109/IUS52206.2021.9593339
– volume: 6556
  start-page: 322
  year: 2007
  ident: 555_CR16
  publication-title: Micro Nanotechnol. Def. Security
– volume: 4
  start-page: 357
  year: 1983
  ident: 555_CR6
  publication-title: Sens. Actuators
  doi: 10.1016/0250-6874(83)85044-6
– volume: 19
  start-page: 1
  year: 2017
  ident: 555_CR75
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-017-0228-6
– volume: 36
  start-page: 957
  year: 2015
  ident: 555_CR57
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2015.2459075
– volume: 103
  start-page: 107761
  year: 2022
  ident: 555_CR42
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107761
– ident: 555_CR87
  doi: 10.1109/MEMS49605.2023.10052158
– volume: 8
  start-page: 1
  year: 2022
  ident: 555_CR100
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00413-y
– volume: 17
  start-page: 1381
  year: 2017
  ident: 555_CR35
  publication-title: Sensors
  doi: 10.3390/s17061381
– ident: 555_CR61
  doi: 10.1109/MEMSYS.2019.8870710
– ident: 555_CR76
  doi: 10.1109/MEMS46641.2020.9056448
– ident: 555_CR20
  doi: 10.1109/TRANSDUCERS.2011.5969226
– volume: 106
  start-page: 263503
  year: 2015
  ident: 555_CR24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922915
– volume: 10
  start-page: 152
  year: 2019
  ident: 555_CR1
  publication-title: Micromachines
  doi: 10.3390/mi10020152
– ident: 555_CR79
  doi: 10.1109/IUS46767.2020.9251747
– volume: 41
  start-page: 53
  year: 1994
  ident: 555_CR36
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.265820
– ident: 555_CR49
  doi: 10.1109/MEMSYS.2014.6765748
– ident: 555_CR53
  doi: 10.1109/ULTSYM.2018.8580227
– volume: 11
  start-page: 623
  year: 2020
  ident: 555_CR39
  publication-title: Micromachines
  doi: 10.3390/mi11060623
– volume: 2
  start-page: 184
  year: 2022
  ident: 555_CR73
  publication-title: IEEE Open J. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/OJUFFC.2022.3196823
– ident: 555_CR72
  doi: 10.1109/IUS54386.2022.9957829
– ident: 555_CR78
  doi: 10.1109/MEMS51782.2021.9375191
– ident: 555_CR98
  doi: 10.1109/Transducers50396.2021.9495576
– ident: 555_CR99
  doi: 10.1109/IUS52206.2021.9593352
– volume: 25
  start-page: 3203
  year: 2015
  ident: 555_CR70
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201500856
– volume: 13
  start-page: 9624
  year: 2013
  ident: 555_CR46
  publication-title: Sensors
  doi: 10.3390/s130809624
– volume: 11960
  start-page: 282
  year: 2022
  ident: 555_CR83
  publication-title: Photons Ultrasound. Imaging Sens. 2022
– volume: 25
  start-page: 691
  year: 2016
  ident: 555_CR60
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2016.2577038
– volume: 55
  start-page: 2484
  year: 2008
  ident: 555_CR17
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.956
– volume: 111
  start-page: 275
  year: 2004
  ident: 555_CR43
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2003.11.022
– ident: 555_CR92
  doi: 10.1109/TUFFC.2014.006452
– volume: 9
  start-page: 455
  year: 2018
  ident: 555_CR27
  publication-title: Micromachines
  doi: 10.3390/mi9090455
– volume: 66
  start-page: 1606
  year: 2019
  ident: 555_CR77
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2926211
– volume: 27
  start-page: 113001
  year: 2017
  ident: 555_CR2
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/aa851b
– volume: 2
  start-page: 939
  year: 2005
  ident: 555_CR14
  publication-title: Ultrason. Symp.
– volume: 13
  start-page: 1
  year: 2022
  ident: 555_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29355-9
– volume: 108
  start-page: 193902
  year: 2016
  ident: 555_CR64
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4948973
– volume: 51
  start-page: 2522
  year: 2016
  ident: 555_CR93
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2016.2604291
– ident: 555_CR71
  doi: 10.1109/IUS46767.2020.9251458
– volume: 8
  start-page: 1
  year: 2022
  ident: 555_CR85
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00426-7
– volume: 106
  start-page: 13501
  year: 2015
  ident: 555_CR62
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905441
– ident: 555_CR18
  doi: 10.1109/ULTSYM.2009.5441602
– volume: 6
  start-page: 1
  year: 2016
  ident: 555_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-016-0001-8
– volume: 8
  start-page: 1
  year: 2022
  ident: 555_CR86
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-022-00449-0
– ident: 555_CR102
  doi: 10.1021/acsnano.2c12592
– volume: 13
  start-page: 1
  year: 2022
  ident: 555_CR89
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31157-y
– volume: 50
  start-page: 320
  year: 2014
  ident: 555_CR101
  publication-title: IEEE J. Solid State Circuits
  doi: 10.1109/JSSC.2014.2364975
– ident: 555_CR11
  doi: 10.1109/ULTSYM.2001.991867
– ident: 555_CR19
  doi: 10.1109/MEMSYS.2010.5442325
– volume: 266
  start-page: 352
  year: 2017
  ident: 555_CR41
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.09.058
– ident: 555_CR10
  doi: 10.1109/ULTSYM.2000.922691
– ident: 555_CR84
  doi: 10.1117/12.2650488
– volume: 11240
  start-page: 317
  year: 2020
  ident: 555_CR82
  publication-title: Photons Ultrasound. Imaging Sens.
– ident: 555_CR55
  doi: 10.1109/TRANSDUCERS.2015.7181012
– volume: 34
  start-page: 658
  year: 2009
  ident: 555_CR34
  publication-title: MRS Bull.
  doi: 10.1557/mrs2009.177
– volume: 15
  start-page: 8020
  year: 2015
  ident: 555_CR3
  publication-title: Sensors
  doi: 10.3390/s150408020
– volume: 6
  start-page: 1
  year: 2015
  ident: 555_CR91
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 105
  start-page: 162
  year: 2003
  ident: 555_CR4
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/S0924-4247(03)00090-6
– volume: 25
  start-page: 326
  year: 2016
  ident: 555_CR54
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/JMEMS.2016.2516510
– ident: 555_CR15
  doi: 10.1109/ISAF.2006.4387848
– volume: 11
  start-page: 2690
  year: 2011
  ident: 555_CR33
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2157490
– ident: 555_CR65
  doi: 10.1109/MEMSYS.2017.7863363
– volume: 49
  start-page: 573
  year: 2002
  ident: 555_CR12
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2002.1002456
– volume: 262
  start-page: 18
  year: 2017
  ident: 555_CR32
  publication-title: Sens. Actuators A Phys.
  doi: 10.1016/j.sna.2017.05.006
– volume: 67
  start-page: 801
  year: 2019
  ident: 555_CR81
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2956463
– volume: 61
  start-page: 1754
  year: 2014
  ident: 555_CR23
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2014.006452
– volume: 44
  start-page: 960
  year: 1997
  ident: 555_CR9
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.655620
– ident: 555_CR5
  doi: 10.1109/IEDM.1979.189565
SSID ssj0001737905
ssib048324881
Score 2.5095966
SecondaryResourceType review_article
Snippet Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through...
Abstract Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 95
SubjectTerms 639/166/987
639/925/927/1007
Commercialization
Design
Engineering
Literature reviews
Manufacturing
Microelectromechanical systems
Piezoelectricity
Production methods
Research facilities
Review
Review Article
Reviews
Thin films
SummonAdditionalLinks – databaseName: DOAJ : directory of open access journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM_QUhmJG1j1K47DDSqqCqmIQ1fqzUrssVqpZCt2e-i_r8fJLrs8L1z9UEYzY8_nePwNwBuRUqyFTDy1jeKmReStdR2XfZ9Mk1I3cumdfrEnM_P5vD7fKPVFOWEjPfCouENE1DoYpUSwJubvRdE1KqCKSSWdIu2-OeZtHKbK35VGE_PU9EpGaHe4yLs1kckqzYl3qubNViQqhP2_Q5m_Jkv-dGNaAtHxI3g4IUj2YZR8F-7h8BgebPAKPgFL1Th5urz6xr6ezs4W71nHxjcqbJ4YJW0yI9htdvIFNUyEPxdPYXb86ezohE8FEniojVxyFJ12wWJvk7RRh4z1akPFDSUGdMFkM5jQhxqdbfMxo-2FVUGrHLY6WcDUM9gZ5gO-AJZMMlJJg65DEzMsdKZNgcBcSDHapgK5UpYPE3s4FbG48uUWWzs_KthnBfuiYJ_nvF3PuR65M_46-iPZYD2SeK9LQ_YGP3mD_5c3VLC_sqCfFuPC5whMyCcDoQper7vzMqK7kW7A-U0Zk4-a9PK2guejwdeSEEOPqYWowG25wpao2z3D5UWh6pbEkKi1q-Ddymt-yPVnXbz8H7rYg_uquHvDldyHneX3G3yVEdSyPyiL5Q4K0RXj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagXOCA2AkUFCRuYNXLxHG4IEBUFVIRhz7p3azEC63UJqV5PfDv8ThOymPpNbYlZ3Z7xt8Q8pqF4CrGAw1NLSg03tNG6ZbyrgtQh9BOWHqHX9XBCr6sq3W-cBtzWeVsE5OhdoPFO_K9aEbRfUVv9v78B8WuUZhdzS00bpJbCF2GJV31enGnEKUVZrT0dOdSS8Sjwn5zMXKn2GErv6NhUu-N0Z4j3KyQFJGpKlpv-aoE6f-vOPTvcso_cqrJVe3fI3dzjFl-mITiPrnh-wfkzm_Igw-Jwn6dNJycnpXfDldH47uyLadXLOUQSizrLIGVP6MajPghQwIdPyKr_c9Hnw5obqFAbQV8Qz1rpbbKdypw5aSN0WAF2P6Qe-u1hcgosJ2tvFZNPIg0HVPCShEdW8tTuPWY7PRD75-SMkAALjh43XpwMXDU0ASL4Z4Nzqm6IHwmlrEZXxzbXJyalOeW2kwENpHAJhHYxDVvljXnE7rGtbM_Ig-WmYiMnT4MF99NVjTjvZfSghDMKnBRPh1ra2G9cEEEGVxBdmcOmqyuo7kSroK8WoajomH2pO39cJnmxMMovs0tyJOJ4ctOEMMHKsYKordEYWur2yP9yXEC8-aIoSilLsjbWWqu9vV_Wjy7_jeek9siCXJNBd8lO5uLS_8iRk-b7mVSkV8ZLhCG
  priority: 102
  providerName: ProQuest
Title Thin-film PMUTs: a review of over 40 years of research
URI https://link.springer.com/article/10.1038/s41378-023-00555-7
https://www.ncbi.nlm.nih.gov/pubmed/37484500
https://www.proquest.com/docview/2840081223
https://www.proquest.com/docview/2841400647
https://pubmed.ncbi.nlm.nih.gov/PMC10359338
https://doaj.org/article/eee33c4220c64dccad0a72ce2df2f3fd
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71cYED4k1KWQWJG1j4Fcfhtl26VCu2qmhX2puVOHZbqWRRd3vov8fjJFsWChKXWIrH0mg89nx-zGeAd9T7OqPME1_knMjCOVIoXRJWVV7m3pctl970WB3N5GSezbeA97kw8dJ-pLSM03R_O-zjMky2yAXLBUHaqIzk27CL1O3o1SM1uttXyQVyTnX5MVToe5puxKBI1X8fvvzzmuRvZ6UxBI0fw6MOO6bDVtsnsOWap_DwF0bBZ6DwHU7iL6--pyfT2dnyU1qmbXZKuvApXtdMJU1vg3sv8UdH9XPxHGbjw7PREemeRiA2k2xFHC2FtspVyjNVCxtQXibxWUPmrNNWhg6QtrKZ06oIC4yioopbwUPAKlmEUS9gp1k07hWkXnrJOJNOl07WARBqWXiLMM76ulZ5Aqw3lrEdbzg-X3Fl4vm10KY1sAkGNtHAJrR5v27zo2XN-Kf0AfbBWhIZr-OPxfW56TzAOOeEsJJzapWsg9_VtMy5dbz23AtfJ7Df96DphuHShNiLmCdAoATerqvDAMJTkbJxi5soExaZmHObwMu2w9eaIDePzChNQG-4woaqmzXN5UUk6WbIjRjW_wl86L3mTq-_22Lv_8RfwwMeHTsnnO3Dzur6xr0JKGlVDWA7n-fhq8dfBrA7HE5OJ1h-nn49DeXB4fHJt0EcOoO4D_ETswwQdA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5QAcEDspBYIEJ7AaL0kcJITYhintVBxmpN7cxAut1CalmQr1T_Eb8XOSKcPSW69eIuf5bd6-D-B54pxJE-qIK3JGRGEtKTJZElpVTuTOlR2W3mQnG8_El910dwV-Dm9h8Frl4BODozaNxj3yDe9GMXz5aPb2-DtB1ig8XR0oNDq12LJnP_ySrX2z-dHP7wvGRp-mH8akZxUgOhV0TmxScqkzW2WOZoZrnyClAhkBqdVWauHHLnSlUyuzwufmRZVkTHPmfX1JQwbiv3sFrgrOC7QoOfo86K_w1iEGdPawx5NzxL9Cfju_UiDI6NW_20m43Gh9_EB4W8YJImGlJF-KjYFC4F9579_XN_84ww2hcXQLbvY5bfyuU8LbsGLrO3DjN6TDu5AhPyhxB4dH8dfJbNq-jsu4ezUTNy7Ga6SxSOIzL98WC3oIov17MLsU4d6H1bqp7UOInXCCMiqsLK0wPlGVonAa00vtjMnyCOggLKV7PHOk1ThU4VydS9UJWHkBqyBg5fu8XPQ57tA8Lmz9Hudg0RKRuENBc_JN9YatrLWca8FYojNhvD2YpMyZtsw45rgzEawPM6h699Cqc2WO4Nmi2hs2ntaUtW1OQxu_-MW3wBE86CZ8MRLEDBJpkkQgl1RhaajLNfXBfgAPp4jZyLmM4NWgNefj-r8s1i7-jadwbTydbKvtzZ2tR3CdBaXOCaPrsDo_ObWPfeY2r54Ec4lh77Lt8xcx5Uv8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJwQOwECgQJTmBNvGRDQggoo5bSqoeONDc3cWxaqSSlmQr1r_HreM9ZyrD01quXyHl-m7fvA3gROVfFEXfM5algKreW5UlWMF6WTqXOFR2W3vZOsjFTn-fxfAV-Dm9h6Frl4BO9o64aQ3vkE3SjFL4wmk1cfy1id3367vg7IwYpOmkd6DQ6FdmyZz9w-da-3VzHuX4pxPTT3scN1jMMMBMrvmA2KmRmElsmjieVNJgsxYrYAbk1NjMK_0OZ0sQ2S3LM0_MySoSRAv1-wX02gt-9AldTGXOysXQ-hnKFlqIGpHa_35NKwsIirjtcNTBi9-rf8EQym7QYSwjqVkhGqFgxS5fipKcT-FcO_PdVzj_Oc32YnN6Cm31-G77vFPI2rNj6Dtz4DfXwLiTEFcrc4dG3cHd7tte-CYuwe0ETNi6kK6WhisIzlG9LBT0c0cE9mF2KcO_Dat3U9iGETjnFBVc2K6yqMGnNVO4MpZrGVVWSBsAHYWnTY5sTxcaR9mfsMtOdgDUKWHsBa-zzauxz3CF7XNj6A83B2JJQuX1Bc_JV90aurbVSGiVEZBJVoW1UUZEKY0XlhJOuCmBtmEHdu4pWnyt2AM_HajRyOrkpatuc-ja4EKZ3wQE86CZ8HAnhB6k4igLIllRhaajLNfXhgQcS54TfKGUWwOtBa87H9X9ZPLr4N57BNbRM_WVzZ-sxXBdep1Mm-BqsLk5O7RNM4hblU28tIexftnn-AgeiUCk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin-film+PMUTs%3A+a+review+of+over+40+years+of+research&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Roy%2C+Kaustav&rft.au=Lee%2C+Joshua+En-Yuan&rft.au=Lee%2C+Chengkuo&rft.date=2023-07-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2055-7434&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41378-023-00555-7&rft.externalDocID=10_1038_s41378_023_00555_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon