Thin-film PMUTs: a review of over 40 years of research
Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the pri...
Saved in:
Published in | Microsystems & nanoengineering Vol. 9; no. 1; pp. 95 - 17 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.07.2023
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices’ design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author’s past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices. |
---|---|
AbstractList | Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices' design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author's past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices.Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices' design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author's past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices. Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices’ design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author’s past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices. Abstract Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through rigorous surveying, scrutinization, and perception, it has been determined that the work in this field began nearly 44 years ago with the primitive development of functional piezoelectric thin-film materials. To date, there are three major companies commercializing thin-film PMUTs on a bulk scale. This commercialization illustrates the extensive contributions made by more than 70 different centers, research institutes, and agencies across 4 different continents regarding the vast development of these devices’ design, manufacturing, and function. This review covers these important contributions in a short yet comprehensive manner; in particular, this paper educates readers about the global PMUT outlook, their governing design principles, their manufacturing methods, nonconventional yet useful PMUT designs, and category-wise applications. Crucial comparison charts of thin-film piezoelectric material used in PMUTs, and their categorically targeted applications are depicted and discussed to enlighten any MEMS designer who plans to work with PMUTs. Moreover, each relevant section features clear future predictions based on the author’s past knowledge and expertise in this field of research and on the findings of a careful literature survey. In short, this review is a one-stop time-efficient guide for anyone interested in learning about these small devices. |
ArticleNumber | 95 |
Author | Lee, Joshua En-Yuan Roy, Kaustav Lee, Chengkuo |
Author_xml | – sequence: 1 givenname: Kaustav surname: Roy fullname: Roy, Kaustav organization: Department of Electrical and Computer Engineering, National University of Singapore, Center for Intelligent Sensor and MEMS (CISM), National University of Singapore – sequence: 2 givenname: Joshua En-Yuan orcidid: 0000-0002-1741-1485 surname: Lee fullname: Lee, Joshua En-Yuan organization: Institute of Microelectronics, ASTAR – sequence: 3 givenname: Chengkuo orcidid: 0000-0002-8886-3649 surname: Lee fullname: Lee, Chengkuo email: elelc@nus.edu.sg organization: Department of Electrical and Computer Engineering, National University of Singapore, Center for Intelligent Sensor and MEMS (CISM), National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37484500$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFv1DAQhS1UREvpH-CAInHhEhh77MThglDVQqUiOGzPlteZ7HqVjYudXdR_j9O00PbQk0cz7z19Gs9rdjCEgRh7y-EjB9SfkuRY6xIElgBKqbJ-wY4ETIVEefCgPmQnKW0AgNdYN6BesUOspZYK4IhVi7Ufys732-LXj6tF-lzYItLe058idEXYUywkFDdkY5oakVIu3foNe9nZPtHJ3XvMrs7PFqffy8uf3y5Ov16WTkk-lgQWtatoWXW8atE1DVeyrhrk5Eg72bVKuqVTpKtGCt0soRIOBUewPPMKPGYXc24b7MZcR7-18cYE681tI8SVsXH0ridDRIhOCgGukq1ztgVbC0ei7USHXZuzvsxZ17vlllpHwxht_yj08WTwa7MKe5P3rRpEnRM-3CXE8HtHaTRbnxz1vR0o7JIRWnIJUMk6S98_kW7CLg55V5MKQHMhMKvePUT6x3L_P1mgZ4GLIaVInXF-tKMPE6HvM9pEp818DSZfg7m9BjMRiCfW-_RnTTibUhYPK4r_sZ9x_QUuYcPH |
CitedBy_id | crossref_primary_10_1002_adsr_202400039 crossref_primary_10_1016_j_sna_2024_115339 crossref_primary_10_1038_s41378_024_00808_z crossref_primary_10_1109_LED_2024_3375956 crossref_primary_10_1016_j_mejo_2024_106260 crossref_primary_10_1007_s11465_023_0772_0 crossref_primary_10_3390_s23198173 crossref_primary_10_1002_gch2_202300244 crossref_primary_10_1038_s41378_024_00783_5 crossref_primary_10_1038_s43246_024_00459_7 crossref_primary_10_1109_JMEMS_2024_3394509 crossref_primary_10_3390_s24092714 crossref_primary_10_1109_TUFFC_2024_3390807 crossref_primary_10_1038_s41377_024_01480_8 crossref_primary_10_1063_5_0224172 crossref_primary_10_1109_JSEN_2024_3445988 crossref_primary_10_35848_1347_4065_ad56e9 crossref_primary_10_35848_1347_4065_ada70c crossref_primary_10_3390_pr12122644 crossref_primary_10_1109_LED_2024_3435685 crossref_primary_10_1109_LSENS_2024_3358105 crossref_primary_10_3390_bioengineering11111097 crossref_primary_10_1063_10_0034714 crossref_primary_10_3390_app14020920 crossref_primary_10_1109_TIM_2024_3398109 crossref_primary_10_3390_mi15010071 crossref_primary_10_3390_mi15111377 crossref_primary_10_1109_TUFFC_2024_3433407 crossref_primary_10_3390_app131910900 crossref_primary_10_1109_JMEMS_2024_3395294 crossref_primary_10_1016_j_sna_2025_116326 crossref_primary_10_1039_D3NR05684H crossref_primary_10_1109_ACCESS_2024_3359906 crossref_primary_10_1109_JSEN_2024_3456297 crossref_primary_10_1109_RBME_2024_3410399 crossref_primary_10_1016_j_tsf_2024_140254 crossref_primary_10_1109_TUFFC_2024_3465589 crossref_primary_10_3390_mi14112089 crossref_primary_10_3390_diagnostics14040440 crossref_primary_10_3390_mi15060781 crossref_primary_10_1016_j_mcna_2024_08_002 crossref_primary_10_3390_bios14120629 crossref_primary_10_1109_TED_2024_3409509 crossref_primary_10_3390_s24061847 crossref_primary_10_1002_adma_202419690 crossref_primary_10_3390_app15052428 crossref_primary_10_3390_mi16020145 |
Cites_doi | 10.3390/s150408020 10.1109/JMEMS.2020.3037298 10.1109/JSSC.2016.2604291 10.1109/JSSC.2014.2364975 10.1109/58.265820 10.3390/s17061381 10.1109/JMEMS.2016.2516510 10.1557/mrs2009.177 10.1149/08616.0013ecst 10.1016/S0924-4247(03)00090-6 10.1021/nn507221f 10.1038/s41467-022-31157-y 10.3390/s130809624 10.1109/JMEMS.2017.2712101 10.1109/58.655620 10.1109/TUFFC.2012.2284 10.1063/1.124055 10.1109/JMEMS.2014.2387154 10.1109/JMEMS.2020.2972729 10.3390/mi10020152 10.1109/TUFFC.2014.006452 10.1109/JMEMS.2015.2472958 10.1063/1.4948973 10.3390/mi9090455 10.1038/s41378-022-00426-7 10.1109/TUFFC.956 10.1038/s41378-022-00413-y 10.1016/j.sna.2003.11.015 10.1109/LED.2015.2459075 10.1109/JMEMS.2020.3043052 10.1109/OJUFFC.2022.3196823 10.1109/TED.2022.3140406 10.1049/mnl.2016.0207 10.1038/s41467-022-29355-9 10.1109/TUFFC.2019.2926211 10.1109/JMEMS.2018.2797684 10.1088/1361-6439/aa851b 10.1063/5.0140069 10.1063/1.4922915 10.1007/s10544-017-0228-6 10.1016/j.nanoen.2019.01.096 10.1063/1.4816085 10.1109/JMEMS.2016.2577038 10.1109/JMEMS.2020.3026547 10.3390/mi11060623 10.1109/TUFFC.2002.1002456 10.1016/j.sna.2017.05.006 10.1016/0250-6874(83)85044-6 10.1038/ncomms9376 10.1063/1.4905441 10.1109/TUFFC.2019.2956463 10.1016/0924-4247(96)01139-9 10.1002/adfm.201500856 10.1016/j.nanoen.2022.107761 10.1109/JSEN.2019.2936469 10.1016/j.sna.2003.11.022 10.1109/JSEN.2011.2157490 10.1038/s41378-022-00396-w 10.1109/JMEMS.2021.3091651 10.1109/TUFFC.2002.1002457 10.1016/j.sna.2017.09.058 10.1002/adma.200803605 10.1038/s41378-022-00449-0 10.1088/1361-6439/aab1bc 10.1109/MEMSYS.2019.8870884 10.1109/IUS46767.2020.9251809 10.1109/MEMSYS.2014.6765589 10.1109/IUS52206.2021.9593772 10.1109/MEMSYS.2017.7863627 10.1109/ISAF.2006.4349279 10.1109/MEMSYS.1991.114779 10.1109/ICSENS.2018.8589662 10.1109/ICEE50728.2020.9777041 10.1109/ISAF.2006.4387848 10.1109/IUS52206.2021.9593339 10.1109/MEMS49605.2023.10052158 10.1109/MEMSYS.2019.8870710 10.1109/MEMS46641.2020.9056448 10.1109/TRANSDUCERS.2011.5969226 10.1109/IUS46767.2020.9251747 10.1109/MEMSYS.2014.6765748 10.1109/ULTSYM.2018.8580227 10.1109/IUS54386.2022.9957829 10.1109/MEMS51782.2021.9375191 10.1109/Transducers50396.2021.9495576 10.1109/IUS52206.2021.9593352 10.1109/IUS46767.2020.9251458 10.1109/ULTSYM.2009.5441602 10.1038/s41598-016-0001-8 10.1021/acsnano.2c12592 10.1109/ULTSYM.2001.991867 10.1109/MEMSYS.2010.5442325 10.1109/ULTSYM.2000.922691 10.1117/12.2650488 10.1109/TRANSDUCERS.2015.7181012 10.1109/MEMSYS.2017.7863363 10.1109/IEDM.1979.189565 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1038/s41378-023-00555-7 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection ProQuest Biological Science Collection Health & Medical Collection (Alumni) Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : directory of open access journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7434 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_eee33c4220c64dccad0a72ce2df2f3fd PMC10359338 37484500 10_1038_s41378_023_00555_7 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: A*STAR | Institute of Microelectronics (A*STAR Institute of Microelectronics) grantid: A18A4b0055; A18A4b0055; A18A4b0055 funderid: https://doi.org/10.13039/501100001481 – fundername: ; grantid: A18A4b0055; A18A4b0055; A18A4b0055 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-e0a38c6eb6f16d3c9915476931ece8c4fd54cbc5e8694289b062c32130a100123 |
IEDL.DBID | C6C |
ISSN | 2055-7434 2096-1030 |
IngestDate | Wed Aug 27 01:20:32 EDT 2025 Thu Aug 21 18:37:28 EDT 2025 Fri Jul 11 03:54:31 EDT 2025 Wed Aug 13 07:17:27 EDT 2025 Thu Apr 03 07:01:47 EDT 2025 Thu Apr 24 22:53:18 EDT 2025 Tue Jul 01 03:27:11 EDT 2025 Fri Feb 21 02:38:37 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electrical and electronic engineering Electronic devices |
Language | English |
License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-e0a38c6eb6f16d3c9915476931ece8c4fd54cbc5e8694289b062c32130a100123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1741-1485 0000-0002-8886-3649 |
OpenAccessLink | https://www.nature.com/articles/s41378-023-00555-7 |
PMID | 37484500 |
PQID | 2840081223 |
PQPubID | 2041946 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eee33c4220c64dccad0a72ce2df2f3fd pubmedcentral_primary_oai_pubmedcentral_nih_gov_10359338 proquest_miscellaneous_2841400647 proquest_journals_2840081223 pubmed_primary_37484500 crossref_citationtrail_10_1038_s41378_023_00555_7 crossref_primary_10_1038_s41378_023_00555_7 springer_journals_10_1038_s41378_023_00555_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-21 |
PublicationDateYYYYMMDD | 2023-07-21 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Seung (CR68) 2015; 9 Zheng (CR86) 2022; 8 Lee (CR75) 2017; 19 Roy (CR83) 2022; 11960 Shi (CR25) 2016; 6 CR37 Royer (CR6) 1983; 4 Shi (CR64) 2016; 108 Sammoura, Kim (CR21) 2012; 59 Dausch (CR17) 2008; 55 Akhbari (CR54) 2016; 25 Dangi (CR82) 2020; 11240 Cai (CR85) 2022; 8 CR49 Ledesma (CR100) 2022; 8 Przybyla (CR101) 2014; 50 CR44 Lu (CR45) 2020; 29 Pop (CR90) 2022; 69 Roy (CR95) 2020; 20 Tipsawat (CR73) 2022; 2 Lu (CR24) 2015; 106 Luo (CR40) 2020; 30 Roy (CR30) 2021; 30 Zhou (CR41) 2017; 266 Chao (CR16) 2007; 6556 Sun (CR103) 2022; 8 Yang (CR46) 2013; 13 CR56 CR55 Huang (CR42) 2022; 103 CR53 Moro (CR89) 2022; 13 Gualtieri (CR36) 1994; 41 CR50 Pratap (CR97) 2018; 86 Pop (CR31) 2022; 13 Lee (CR70) 2015; 25 CR67 CR66 CR65 Ledermann (CR4) 2003; 105 Muralt (CR8) 1996; 53 CR61 Wang (CR63) 2016; 11 Dangi, Pratap (CR32) 2017; 262 Percin, Khuri-Yakub (CR47) 2002; 49 Kusano (CR51) 2018; 27 Sadeghpour (CR52) 2020; 29 Przybyla (CR33) 2011; 11 Dangi (CR81) 2019; 67 Jeong (CR29) 2020; 30 Shin (CR39) 2020; 11 Qiu (CR3) 2015; 15 CR79 CR78 CR76 CR74 CR72 CR71 Akasheh (CR43) 2004; 111 Wang (CR62) 2015; 106 CR5 CR7 Lu, Horsley (CR48) 2015; 24 Bernstein (CR9) 1997; 44 Chen (CR22) 2013; 103 Choi (CR69) 2009; 21 CR87 CR84 Brenner (CR1) 2019; 10 Wang (CR60) 2016; 25 CR80 Dubois, Muralt (CR38) 1999; 74 Wang (CR57) 2015; 36 Dogheche (CR14) 2005; 2 CR19 CR18 Yamashita (CR13) 2004; 114 CR15 Tang (CR93) 2016; 51 Chen (CR59) 2018; 28 Zi (CR91) 2015; 6 CR11 CR99 CR10 CR98 CR96 CR94 CR92 Muralt (CR34) 2009; 34 Perçin, Khuri-Yakub (CR12) 2002; 49 Wang (CR26) 2017; 26 Li (CR35) 2017; 17 Dausch (CR23) 2014; 61 CR20 Ngoc Thao (CR27) 2018; 9 Wang, Lee (CR58) 2015; 24 CR102 Sun (CR28) 2019; 58 Wang (CR88) 2023; 122 Cheng (CR77) 2019; 66 Jung (CR2) 2017; 27 555_CR80 DE Dausch (555_CR23) 2014; 61 A Dangi (555_CR81) 2019; 67 555_CR84 555_CR87 P Muralt (555_CR8) 1996; 53 Y Qiu (555_CR3) 2015; 15 JG Gualtieri (555_CR36) 1994; 41 Q Shi (555_CR25) 2016; 6 Y Lu (555_CR48) 2015; 24 R Lu (555_CR45) 2020; 29 555_CR92 555_CR96 555_CR94 P Tipsawat (555_CR73) 2022; 2 555_CR11 555_CR99 555_CR10 555_CR98 555_CR15 C Sun (555_CR28) 2019; 58 E Ledesma (555_CR100) 2022; 8 C Chao (555_CR16) 2007; 6556 H-Y Tang (555_CR93) 2016; 51 A Dangi (555_CR32) 2017; 262 F Akasheh (555_CR43) 2004; 111 555_CR20 S Akhbari (555_CR54) 2016; 25 J-H Lee (555_CR70) 2015; 25 Z Zhou (555_CR41) 2017; 266 M-Y Choi (555_CR69) 2009; 21 S Sun (555_CR103) 2022; 8 555_CR19 Y Yang (555_CR46) 2013; 13 F Pop (555_CR90) 2022; 69 555_CR18 RJ Przybyla (555_CR33) 2011; 11 F Sammoura (555_CR21) 2012; 59 T Wang (555_CR63) 2016; 11 N Ledermann (555_CR4) 2003; 105 E Shin (555_CR39) 2020; 11 G-L Luo (555_CR40) 2020; 30 Q Shi (555_CR64) 2016; 108 Y Zi (555_CR91) 2015; 6 Q Zheng (555_CR86) 2022; 8 555_CR37 M-A Dubois (555_CR38) 1999; 74 CY Cheng (555_CR77) 2019; 66 K Roy (555_CR83) 2022; 11960 J Li (555_CR35) 2017; 17 G Percin (555_CR47) 2002; 49 Y Huang (555_CR42) 2022; 103 W Seung (555_CR68) 2015; 9 K Yamashita (555_CR13) 2004; 114 Y Kusano (555_CR51) 2018; 27 T Wang (555_CR58) 2015; 24 S Sadeghpour (555_CR52) 2020; 29 DE Dausch (555_CR17) 2008; 55 J Jung (555_CR2) 2017; 27 555_CR44 555_CR49 W Lee (555_CR75) 2017; 19 G Perçin (555_CR12) 2002; 49 A Dangi (555_CR82) 2020; 11240 555_CR102 X Chen (555_CR59) 2018; 28 JJ Bernstein (555_CR9) 1997; 44 555_CR53 555_CR50 555_CR56 555_CR55 F Pop (555_CR31) 2022; 13 R Pratap (555_CR97) 2018; 86 T Wang (555_CR62) 2015; 106 P Muralt (555_CR34) 2009; 34 Y Wang (555_CR88) 2023; 122 P Ngoc Thao (555_CR27) 2018; 9 555_CR61 555_CR67 555_CR66 555_CR65 555_CR7 555_CR5 K Brenner (555_CR1) 2019; 10 Q Wang (555_CR26) 2017; 26 T Wang (555_CR57) 2015; 36 K Roy (555_CR30) 2021; 30 555_CR71 555_CR74 J Cai (555_CR85) 2022; 8 555_CR72 555_CR79 M Wang (555_CR60) 2016; 25 555_CR78 555_CR76 F Moro (555_CR89) 2022; 13 B Chen (555_CR22) 2013; 103 Y Jeong (555_CR29) 2020; 30 K Roy (555_CR95) 2020; 20 Y Lu (555_CR24) 2015; 106 K Dogheche (555_CR14) 2005; 2 RJ Przybyla (555_CR101) 2014; 50 M Royer (555_CR6) 1983; 4 |
References_xml | – volume: 15 start-page: 8020 year: 2015 end-page: 8041 ident: CR3 article-title: Piezoelectric micromachined ultrasound transducer (PMUT) arrays for integrated sensing, actuation and imaging publication-title: Sensors doi: 10.3390/s150408020 – ident: CR74 – volume: 30 start-page: 81 year: 2020 end-page: 89 ident: CR40 article-title: Airborne piezoelectric micromachined ultrasonic transducers for long-range detection publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.3037298 – volume: 51 start-page: 2522 year: 2016 end-page: 2533 ident: CR93 article-title: 3-D ultrasonic fingerprint sensor-on-a-chip publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2016.2604291 – volume: 50 start-page: 320 year: 2014 end-page: 334 ident: CR101 article-title: 3D ultrasonic rangefinder on a chip publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2014.2364975 – volume: 41 start-page: 53 year: 1994 end-page: 59 ident: CR36 article-title: Piezoelectric materials for acoustic wave applications publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.265820 – volume: 17 start-page: 1381 year: 2017 ident: CR35 article-title: Design and fabrication of piezoelectric micromachined ultrasound transducer (pMUT) with partially-etched ZnO film publication-title: Sensors doi: 10.3390/s17061381 – volume: 25 start-page: 326 year: 2016 end-page: 336 ident: CR54 article-title: Bimorph piezoelectric micromachined ultrasonic transducers publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2016.2516510 – volume: 34 start-page: 658 year: 2009 end-page: 664 ident: CR34 article-title: Piezoelectric thin films for sensors, actuators, and energy harvesting publication-title: MRS Bull. doi: 10.1557/mrs2009.177 – ident: CR80 – volume: 86 start-page: 13 year: 2018 end-page: 20 ident: CR97 article-title: (Invited) Fluid spectroscopy with piezoelectric ultrasound MEMS transducers publication-title: ECS Trans. doi: 10.1149/08616.0013ecst – ident: CR71 – ident: CR19 – volume: 105 start-page: 162 year: 2003 end-page: 170 ident: CR4 article-title: 1 0 0-Textured, piezoelectric Pb(Zrx, Ti1−x)O3 thin films for MEMS: integration, deposition and properties publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(03)00090-6 – volume: 9 start-page: 3501 year: 2015 end-page: 3509 ident: CR68 article-title: Nanopatterned textile-based wearable triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/nn507221f – volume: 11240 start-page: 317 year: 2020 end-page: 325 ident: CR82 article-title: A modular approach to neonatal whole-brain photoacoustic imaging publication-title: Photons Ultrasound. Imaging Sens. – ident: CR92 – volume: 2 start-page: 939 year: 2005 end-page: 942 ident: CR14 article-title: Piezoelectric micro-machined ultrasonic transducer (pMUT) for energy harvesting publication-title: Ultrason. Symp. – volume: 13 start-page: 1 year: 2022 end-page: 13 ident: CR89 article-title: Neuromorphic object localization using resistive memories and ultrasonic transducers publication-title: Nat. Commun. doi: 10.1038/s41467-022-31157-y – volume: 13 start-page: 9624 year: 2013 end-page: 9634 ident: CR46 article-title: An ultra-high element density pMUT array with low crosstalk for 3-D medical imaging publication-title: Sensors doi: 10.3390/s130809624 – ident: CR11 – volume: 26 start-page: 1132 year: 2017 end-page: 1139 ident: CR26 article-title: Design, fabrication, and characterization of scandium aluminum nitride-based piezoelectric micromachined ultrasonic transducers publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2017.2712101 – volume: 44 start-page: 960 year: 1997 end-page: 969 ident: CR9 article-title: Micromachined high frequency ferroelectric sonar transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.655620 – volume: 59 start-page: 990 year: 2012 end-page: 998 ident: CR21 article-title: Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2284 – ident: CR5 – ident: CR18 – ident: CR66 – ident: CR72 – volume: 74 start-page: 3032 year: 1999 end-page: 3034 ident: CR38 article-title: Properties of aluminum nitride thin films for piezoelectric transducers and microwave filter applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.124055 – volume: 24 start-page: 1142 year: 2015 end-page: 1149 ident: CR48 article-title: Modeling, fabrication, and characterization of piezoelectric micromachined ultrasonic transducer arrays based on cavity SOI wafers publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2014.2387154 – volume: 29 start-page: 378 year: 2020 end-page: 386 ident: CR52 article-title: Bendable piezoelectric micromachined ultrasound transducer (PMUT) arrays based on silicon-on-insulator (SOI) technology publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.2972729 – ident: CR10 – volume: 10 start-page: 152 year: 2019 ident: CR1 article-title: Advances in capacitive micromachined ultrasonic transducers publication-title: Micromachines doi: 10.3390/mi10020152 – volume: 11960 start-page: 282 year: 2022 end-page: 288 ident: CR83 article-title: A PMUT based photoacoustic system as a microfluidic concentration detector publication-title: Photons Ultrasound. Imaging Sens. 2022 – volume: 61 start-page: 1754 year: 2014 end-page: 1764 ident: CR23 article-title: In vivo real-time 3-D intracardiac echo using PMUT arrays publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.006452 – volume: 24 start-page: 2083 year: 2015 end-page: 2091 ident: CR58 article-title: Zero-bending piezoelectric micromachined ultrasonic transducer (pMUT) with enhanced transmitting performance publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2015.2472958 – volume: 108 start-page: 193902 year: 2016 ident: CR64 article-title: Investigation of geometric design in piezoelectric microelectromechanical systems diaphragms for ultrasonic energy harvesting publication-title: Appl. Phys. Lett. doi: 10.1063/1.4948973 – volume: 9 start-page: 455 year: 2018 ident: CR27 article-title: Fabrication and characterization of PZT fibered-epitaxial thin film on Si for piezoelectric micromachined ultrasound transducer publication-title: Micromachines doi: 10.3390/mi9090455 – ident: CR94 – ident: CR44 – volume: 8 start-page: 1 year: 2022 end-page: 12 ident: CR85 article-title: Beyond fundamental resonance mode: high-order multi-band ALN PMUT for in vivo photoacoustic imaging publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00426-7 – volume: 55 start-page: 2484 year: 2008 end-page: 2492 ident: CR17 article-title: Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.956 – volume: 8 start-page: 1 year: 2022 end-page: 9 ident: CR100 article-title: Single-cell system using monolithic PMUTs-on-CMOS to monitor fluid hydrodynamic properties publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00413-y – volume: 114 start-page: 147 year: 2004 end-page: 153 ident: CR13 article-title: Ultrasonic micro array sensors using piezoelectric thin films and resonant frequency tuning publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2003.11.015 – volume: 36 start-page: 957 year: 2015 end-page: 959 ident: CR57 article-title: A piezoelectric micromachined ultrasonic transducer using piston-like membrane motion publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2459075 – volume: 30 start-page: 137 year: 2020 end-page: 143 ident: CR29 article-title: Fully flexible PMUT based on polymer materials and stress compensation by adaptive frequency driving publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.3043052 – volume: 2 start-page: 184 year: 2022 end-page: 193 ident: CR73 article-title: 32 element piezoelectric micromachined ultrasound transducer (pmut) phased array for neuromodulation publication-title: IEEE Open J. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/OJUFFC.2022.3196823 – volume: 69 start-page: 1327 year: 2022 end-page: 1332 ident: CR90 article-title: Zero-power ultrasonic wakeup receiver based on MEMS switches for implantable medical devices publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3140406 – ident: CR55 – volume: 11 start-page: 558 year: 2016 end-page: 562 ident: CR63 article-title: Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air publication-title: Micro Nano Lett. doi: 10.1049/mnl.2016.0207 – volume: 13 start-page: 1 year: 2022 end-page: 12 ident: CR31 article-title: Lithium Niobate Piezoelectric Micromachined Ultrasonic Transducers for high data-rate intrabody communication publication-title: Nat. Commun. doi: 10.1038/s41467-022-29355-9 – volume: 66 start-page: 1606 year: 2019 end-page: 1615 ident: CR77 article-title: Thin film PZT-based PMUT arrays for deterministic particle manipulation publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2926211 – volume: 27 start-page: 296 year: 2018 end-page: 304 ident: CR51 article-title: Effects of DC Bias Tuning on Air-Coupled PZT Piezoelectric Micromachined Ultrasonic Transducers publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2018.2797684 – volume: 6556 start-page: 322 year: 2007 end-page: 331 ident: CR16 article-title: Piezoelectric micromachined ultrasonic transducers with rectangular diaphragms for dual-frequency applications publication-title: Micro Nanotechnol. Def. Security – ident: CR102 – ident: CR49 – ident: CR87 – volume: 27 start-page: 113001 year: 2017 ident: CR2 article-title: Review of piezoelectric micromachined ultrasonic transducers and their applications publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa851b – volume: 122 start-page: 133702 year: 2023 ident: CR88 article-title: Microwave-induced thermoacoustic imaging with a multi-cell AlScN piezoelectric micromachined ultrasonic transducer publication-title: Appl. Phys. Lett. doi: 10.1063/5.0140069 – ident: CR61 – ident: CR84 – volume: 106 start-page: 263503 year: 2015 ident: CR24 article-title: Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922915 – volume: 19 start-page: 1 year: 2017 end-page: 9 ident: CR75 article-title: All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation publication-title: Biomed. Microdevices doi: 10.1007/s10544-017-0228-6 – volume: 58 start-page: 612 year: 2019 end-page: 623 ident: CR28 article-title: Self-powered multifunctional monitoring system using hybrid integrated triboelectric nanogenerators and piezoelectric microsensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.096 – ident: CR96 – ident: CR67 – ident: CR15 – volume: 103 start-page: 31118 year: 2013 ident: CR22 article-title: AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging publication-title: Appl. Phys. Lett. doi: 10.1063/1.4816085 – ident: CR50 – volume: 25 start-page: 691 year: 2016 end-page: 700 ident: CR60 article-title: Enhancement of the transmission of piezoelectric micromachined ultrasonic transducer with an isolation trench publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2016.2577038 – volume: 29 start-page: 1412 year: 2020 end-page: 1414 ident: CR45 article-title: A piezoelectric micromachined ultrasonic transducer using thin-film lithium niobate publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.3026547 – ident: CR78 – volume: 11 start-page: 623 year: 2020 ident: CR39 article-title: Development of a high-density piezoelectric micromachined ultrasonic transducer array based on patterned aluminum nitride thin film publication-title: Micromachines doi: 10.3390/mi11060623 – ident: CR99 – volume: 49 start-page: 573 year: 2002 end-page: 584 ident: CR12 article-title: Piezoelectrically actuated flextensional micromachined ultrasound transducers. I. Theory publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2002.1002456 – volume: 262 start-page: 18 year: 2017 end-page: 28 ident: CR32 article-title: System level modeling and design maps of PMUTs with residual stresses publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.05.006 – volume: 4 start-page: 357 year: 1983 end-page: 362 ident: CR6 article-title: ZnO on Si integrated acoustic sensor publication-title: Sens. Actuators doi: 10.1016/0250-6874(83)85044-6 – ident: CR37 – ident: CR53 – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: CR91 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 106 start-page: 13501 year: 2015 ident: CR62 article-title: Micromachined piezoelectric ultrasonic transducer with ultra-wide frequency bandwidth publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905441 – volume: 67 start-page: 801 year: 2019 end-page: 809 ident: CR81 article-title: A photoacoustic imaging device using piezoelectric micromachined ultrasound transducers (PMUTs) publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2956463 – volume: 53 start-page: 398 year: 1996 end-page: 404 ident: CR8 article-title: Piezoelectric actuation of PZT thin-film diaphragms at static and resonant conditions publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(96)01139-9 – volume: 25 start-page: 3203 year: 2015 end-page: 3209 ident: CR70 article-title: Micropatterned P (VDF-TrFE) film-based piezoelectric nanogenerators for highly sensitive self-powered pressure sensors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500856 – volume: 103 start-page: 107761 year: 2022 ident: CR42 article-title: Implementing (K, Na) NbO3-based lead-free ferroelectric films to piezoelectric micromachined ultrasonic transducers publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107761 – volume: 20 start-page: 6802 year: 2020 end-page: 6809 ident: CR95 article-title: Fluid density sensing using piezoelectric micromachined ultrasound transducers publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2936469 – ident: CR79 – ident: CR56 – volume: 111 start-page: 275 year: 2004 end-page: 287 ident: CR43 article-title: Development of piezoelectric micromachined ultrasonic transducers publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2003.11.022 – ident: CR98 – volume: 11 start-page: 2690 year: 2011 end-page: 2697 ident: CR33 article-title: In-air rangefinding with an AlN piezoelectric micromachined ultrasound transducer publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2157490 – ident: CR65 – volume: 8 start-page: 1 year: 2022 end-page: 14 ident: CR103 article-title: MEMS ultrasonic transducers for safe, low-power and portable eye-blinking monitoring publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00396-w – volume: 30 start-page: 642 year: 2021 end-page: 649 ident: CR30 article-title: A PMUT integrated microfluidic system for fluid density sensing publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2021.3091651 – volume: 49 start-page: 585 year: 2002 end-page: 595 ident: CR47 article-title: Piezoelectrically actuated flextensional micromachined ultrasound transducers. II. Fabrication and experiments publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2002.1002457 – volume: 266 start-page: 352 year: 2017 end-page: 360 ident: CR41 article-title: Epitaxial PMnN-PZT/Si MEMS ultrasonic rangefinder with 2 m range at 1 V drive publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.09.058 – volume: 21 start-page: 2185 year: 2009 end-page: 2189 ident: CR69 article-title: Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods publication-title: Adv. Mater. doi: 10.1002/adma.200803605 – volume: 8 start-page: 1 year: 2022 end-page: 12 ident: CR86 article-title: Thin ceramic PZT dual-and multi-frequency pMUT arrays for photoacoustic imaging publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00449-0 – ident: CR7 – ident: CR76 – volume: 28 start-page: 57001 year: 2018 ident: CR59 article-title: Piezoelectric micromachined ultrasonic transducers with low thermoelastic dissipation and high quality factor publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aab1bc – ident: CR20 – volume: 6 start-page: 1 year: 2016 end-page: 10 ident: CR25 article-title: MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices publication-title: Sci. Rep. – volume: 11 start-page: 558 year: 2016 ident: 555_CR63 publication-title: Micro Nano Lett. doi: 10.1049/mnl.2016.0207 – volume: 49 start-page: 585 year: 2002 ident: 555_CR47 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2002.1002457 – ident: 555_CR74 doi: 10.1109/MEMSYS.2019.8870884 – volume: 122 start-page: 133702 year: 2023 ident: 555_CR88 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0140069 – volume: 58 start-page: 612 year: 2019 ident: 555_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.096 – volume: 29 start-page: 378 year: 2020 ident: 555_CR52 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.2972729 – volume: 21 start-page: 2185 year: 2009 ident: 555_CR69 publication-title: Adv. Mater. doi: 10.1002/adma.200803605 – volume: 24 start-page: 2083 year: 2015 ident: 555_CR58 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2015.2472958 – volume: 20 start-page: 6802 year: 2020 ident: 555_CR95 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2936469 – volume: 30 start-page: 81 year: 2020 ident: 555_CR40 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.3037298 – volume: 26 start-page: 1132 year: 2017 ident: 555_CR26 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2017.2712101 – volume: 74 start-page: 3032 year: 1999 ident: 555_CR38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.124055 – volume: 30 start-page: 137 year: 2020 ident: 555_CR29 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.3043052 – volume: 30 start-page: 642 year: 2021 ident: 555_CR30 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2021.3091651 – volume: 24 start-page: 1142 year: 2015 ident: 555_CR48 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2014.2387154 – volume: 29 start-page: 1412 year: 2020 ident: 555_CR45 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2020.3026547 – volume: 53 start-page: 398 year: 1996 ident: 555_CR8 publication-title: Sens. Actuators A Phys. doi: 10.1016/0924-4247(96)01139-9 – volume: 9 start-page: 3501 year: 2015 ident: 555_CR68 publication-title: ACS Nano doi: 10.1021/nn507221f – ident: 555_CR96 doi: 10.1109/IUS46767.2020.9251809 – volume: 86 start-page: 13 year: 2018 ident: 555_CR97 publication-title: ECS Trans. doi: 10.1149/08616.0013ecst – volume: 69 start-page: 1327 year: 2022 ident: 555_CR90 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2022.3140406 – volume: 28 start-page: 57001 year: 2018 ident: 555_CR59 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aab1bc – volume: 103 start-page: 31118 year: 2013 ident: 555_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4816085 – volume: 8 start-page: 1 year: 2022 ident: 555_CR103 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00396-w – ident: 555_CR56 doi: 10.1109/MEMSYS.2014.6765589 – volume: 59 start-page: 990 year: 2012 ident: 555_CR21 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2012.2284 – ident: 555_CR50 doi: 10.1109/IUS52206.2021.9593772 – ident: 555_CR66 doi: 10.1109/MEMSYS.2017.7863627 – volume: 114 start-page: 147 year: 2004 ident: 555_CR13 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2003.11.015 – ident: 555_CR44 doi: 10.1109/ISAF.2006.4349279 – ident: 555_CR7 doi: 10.1109/MEMSYS.1991.114779 – ident: 555_CR94 doi: 10.1109/ICSENS.2018.8589662 – volume: 27 start-page: 296 year: 2018 ident: 555_CR51 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2018.2797684 – ident: 555_CR80 doi: 10.1109/ICEE50728.2020.9777041 – ident: 555_CR37 doi: 10.1109/ISAF.2006.4387848 – ident: 555_CR67 doi: 10.1109/IUS52206.2021.9593339 – volume: 6556 start-page: 322 year: 2007 ident: 555_CR16 publication-title: Micro Nanotechnol. Def. Security – volume: 4 start-page: 357 year: 1983 ident: 555_CR6 publication-title: Sens. Actuators doi: 10.1016/0250-6874(83)85044-6 – volume: 19 start-page: 1 year: 2017 ident: 555_CR75 publication-title: Biomed. Microdevices doi: 10.1007/s10544-017-0228-6 – volume: 36 start-page: 957 year: 2015 ident: 555_CR57 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2015.2459075 – volume: 103 start-page: 107761 year: 2022 ident: 555_CR42 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107761 – ident: 555_CR87 doi: 10.1109/MEMS49605.2023.10052158 – volume: 8 start-page: 1 year: 2022 ident: 555_CR100 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00413-y – volume: 17 start-page: 1381 year: 2017 ident: 555_CR35 publication-title: Sensors doi: 10.3390/s17061381 – ident: 555_CR61 doi: 10.1109/MEMSYS.2019.8870710 – ident: 555_CR76 doi: 10.1109/MEMS46641.2020.9056448 – ident: 555_CR20 doi: 10.1109/TRANSDUCERS.2011.5969226 – volume: 106 start-page: 263503 year: 2015 ident: 555_CR24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922915 – volume: 10 start-page: 152 year: 2019 ident: 555_CR1 publication-title: Micromachines doi: 10.3390/mi10020152 – ident: 555_CR79 doi: 10.1109/IUS46767.2020.9251747 – volume: 41 start-page: 53 year: 1994 ident: 555_CR36 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.265820 – ident: 555_CR49 doi: 10.1109/MEMSYS.2014.6765748 – ident: 555_CR53 doi: 10.1109/ULTSYM.2018.8580227 – volume: 11 start-page: 623 year: 2020 ident: 555_CR39 publication-title: Micromachines doi: 10.3390/mi11060623 – volume: 2 start-page: 184 year: 2022 ident: 555_CR73 publication-title: IEEE Open J. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/OJUFFC.2022.3196823 – ident: 555_CR72 doi: 10.1109/IUS54386.2022.9957829 – ident: 555_CR78 doi: 10.1109/MEMS51782.2021.9375191 – ident: 555_CR98 doi: 10.1109/Transducers50396.2021.9495576 – ident: 555_CR99 doi: 10.1109/IUS52206.2021.9593352 – volume: 25 start-page: 3203 year: 2015 ident: 555_CR70 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500856 – volume: 13 start-page: 9624 year: 2013 ident: 555_CR46 publication-title: Sensors doi: 10.3390/s130809624 – volume: 11960 start-page: 282 year: 2022 ident: 555_CR83 publication-title: Photons Ultrasound. Imaging Sens. 2022 – volume: 25 start-page: 691 year: 2016 ident: 555_CR60 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2016.2577038 – volume: 55 start-page: 2484 year: 2008 ident: 555_CR17 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.956 – volume: 111 start-page: 275 year: 2004 ident: 555_CR43 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2003.11.022 – ident: 555_CR92 doi: 10.1109/TUFFC.2014.006452 – volume: 9 start-page: 455 year: 2018 ident: 555_CR27 publication-title: Micromachines doi: 10.3390/mi9090455 – volume: 66 start-page: 1606 year: 2019 ident: 555_CR77 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2926211 – volume: 27 start-page: 113001 year: 2017 ident: 555_CR2 publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/aa851b – volume: 2 start-page: 939 year: 2005 ident: 555_CR14 publication-title: Ultrason. Symp. – volume: 13 start-page: 1 year: 2022 ident: 555_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29355-9 – volume: 108 start-page: 193902 year: 2016 ident: 555_CR64 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4948973 – volume: 51 start-page: 2522 year: 2016 ident: 555_CR93 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2016.2604291 – ident: 555_CR71 doi: 10.1109/IUS46767.2020.9251458 – volume: 8 start-page: 1 year: 2022 ident: 555_CR85 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00426-7 – volume: 106 start-page: 13501 year: 2015 ident: 555_CR62 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905441 – ident: 555_CR18 doi: 10.1109/ULTSYM.2009.5441602 – volume: 6 start-page: 1 year: 2016 ident: 555_CR25 publication-title: Sci. Rep. doi: 10.1038/s41598-016-0001-8 – volume: 8 start-page: 1 year: 2022 ident: 555_CR86 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-022-00449-0 – ident: 555_CR102 doi: 10.1021/acsnano.2c12592 – volume: 13 start-page: 1 year: 2022 ident: 555_CR89 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31157-y – volume: 50 start-page: 320 year: 2014 ident: 555_CR101 publication-title: IEEE J. Solid State Circuits doi: 10.1109/JSSC.2014.2364975 – ident: 555_CR11 doi: 10.1109/ULTSYM.2001.991867 – ident: 555_CR19 doi: 10.1109/MEMSYS.2010.5442325 – volume: 266 start-page: 352 year: 2017 ident: 555_CR41 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.09.058 – ident: 555_CR10 doi: 10.1109/ULTSYM.2000.922691 – ident: 555_CR84 doi: 10.1117/12.2650488 – volume: 11240 start-page: 317 year: 2020 ident: 555_CR82 publication-title: Photons Ultrasound. Imaging Sens. – ident: 555_CR55 doi: 10.1109/TRANSDUCERS.2015.7181012 – volume: 34 start-page: 658 year: 2009 ident: 555_CR34 publication-title: MRS Bull. doi: 10.1557/mrs2009.177 – volume: 15 start-page: 8020 year: 2015 ident: 555_CR3 publication-title: Sensors doi: 10.3390/s150408020 – volume: 6 start-page: 1 year: 2015 ident: 555_CR91 publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 105 start-page: 162 year: 2003 ident: 555_CR4 publication-title: Sens. Actuators A Phys. doi: 10.1016/S0924-4247(03)00090-6 – volume: 25 start-page: 326 year: 2016 ident: 555_CR54 publication-title: J. Microelectromechanical Syst. doi: 10.1109/JMEMS.2016.2516510 – ident: 555_CR15 doi: 10.1109/ISAF.2006.4387848 – volume: 11 start-page: 2690 year: 2011 ident: 555_CR33 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2157490 – ident: 555_CR65 doi: 10.1109/MEMSYS.2017.7863363 – volume: 49 start-page: 573 year: 2002 ident: 555_CR12 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2002.1002456 – volume: 262 start-page: 18 year: 2017 ident: 555_CR32 publication-title: Sens. Actuators A Phys. doi: 10.1016/j.sna.2017.05.006 – volume: 67 start-page: 801 year: 2019 ident: 555_CR81 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2956463 – volume: 61 start-page: 1754 year: 2014 ident: 555_CR23 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2014.006452 – volume: 44 start-page: 960 year: 1997 ident: 555_CR9 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/58.655620 – ident: 555_CR5 doi: 10.1109/IEDM.1979.189565 |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5095966 |
SecondaryResourceType | review_article |
Snippet | Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein. Through... Abstract Thin-film PMUTs have been important research topics among microultrasound experts, and a concise review on their research progress is reported herein.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 95 |
SubjectTerms | 639/166/987 639/925/927/1007 Commercialization Design Engineering Literature reviews Manufacturing Microelectromechanical systems Piezoelectricity Production methods Research facilities Review Review Article Reviews Thin films |
SummonAdditionalLinks | – databaseName: DOAJ : directory of open access journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hnuCAKM_QUhmJG1j1K47DDSqqCqmIQ1fqzUrssVqpZCt2e-i_r8fJLrs8L1z9UEYzY8_nePwNwBuRUqyFTDy1jeKmReStdR2XfZ9Mk1I3cumdfrEnM_P5vD7fKPVFOWEjPfCouENE1DoYpUSwJubvRdE1KqCKSSWdIu2-OeZtHKbK35VGE_PU9EpGaHe4yLs1kckqzYl3qubNViQqhP2_Q5m_Jkv-dGNaAtHxI3g4IUj2YZR8F-7h8BgebPAKPgFL1Th5urz6xr6ezs4W71nHxjcqbJ4YJW0yI9htdvIFNUyEPxdPYXb86ezohE8FEniojVxyFJ12wWJvk7RRh4z1akPFDSUGdMFkM5jQhxqdbfMxo-2FVUGrHLY6WcDUM9gZ5gO-AJZMMlJJg65DEzMsdKZNgcBcSDHapgK5UpYPE3s4FbG48uUWWzs_KthnBfuiYJ_nvF3PuR65M_46-iPZYD2SeK9LQ_YGP3mD_5c3VLC_sqCfFuPC5whMyCcDoQper7vzMqK7kW7A-U0Zk4-a9PK2guejwdeSEEOPqYWowG25wpao2z3D5UWh6pbEkKi1q-Ddymt-yPVnXbz8H7rYg_uquHvDldyHneX3G3yVEdSyPyiL5Q4K0RXj priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagXOCA2AkUFCRuYNXLxHG4IEBUFVIRhz7p3azEC63UJqV5PfDv8ThOymPpNbYlZ3Z7xt8Q8pqF4CrGAw1NLSg03tNG6ZbyrgtQh9BOWHqHX9XBCr6sq3W-cBtzWeVsE5OhdoPFO_K9aEbRfUVv9v78B8WuUZhdzS00bpJbCF2GJV31enGnEKUVZrT0dOdSS8Sjwn5zMXKn2GErv6NhUu-N0Z4j3KyQFJGpKlpv-aoE6f-vOPTvcso_cqrJVe3fI3dzjFl-mITiPrnh-wfkzm_Igw-Jwn6dNJycnpXfDldH47uyLadXLOUQSizrLIGVP6MajPghQwIdPyKr_c9Hnw5obqFAbQV8Qz1rpbbKdypw5aSN0WAF2P6Qe-u1hcgosJ2tvFZNPIg0HVPCShEdW8tTuPWY7PRD75-SMkAALjh43XpwMXDU0ASL4Z4Nzqm6IHwmlrEZXxzbXJyalOeW2kwENpHAJhHYxDVvljXnE7rGtbM_Ig-WmYiMnT4MF99NVjTjvZfSghDMKnBRPh1ra2G9cEEEGVxBdmcOmqyuo7kSroK8WoajomH2pO39cJnmxMMovs0tyJOJ4ctOEMMHKsYKordEYWur2yP9yXEC8-aIoSilLsjbWWqu9vV_Wjy7_jeek9siCXJNBd8lO5uLS_8iRk-b7mVSkV8ZLhCG priority: 102 providerName: ProQuest |
Title | Thin-film PMUTs: a review of over 40 years of research |
URI | https://link.springer.com/article/10.1038/s41378-023-00555-7 https://www.ncbi.nlm.nih.gov/pubmed/37484500 https://www.proquest.com/docview/2840081223 https://www.proquest.com/docview/2841400647 https://pubmed.ncbi.nlm.nih.gov/PMC10359338 https://doaj.org/article/eee33c4220c64dccad0a72ce2df2f3fd |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB71cYED4k1KWQWJG1j4Fcfhtl26VCu2qmhX2puVOHZbqWRRd3vov8fjJFsWChKXWIrH0mg89nx-zGeAd9T7OqPME1_knMjCOVIoXRJWVV7m3pctl970WB3N5GSezbeA97kw8dJ-pLSM03R_O-zjMky2yAXLBUHaqIzk27CL1O3o1SM1uttXyQVyTnX5MVToe5puxKBI1X8fvvzzmuRvZ6UxBI0fw6MOO6bDVtsnsOWap_DwF0bBZ6DwHU7iL6--pyfT2dnyU1qmbXZKuvApXtdMJU1vg3sv8UdH9XPxHGbjw7PREemeRiA2k2xFHC2FtspVyjNVCxtQXibxWUPmrNNWhg6QtrKZ06oIC4yioopbwUPAKlmEUS9gp1k07hWkXnrJOJNOl07WARBqWXiLMM76ulZ5Aqw3lrEdbzg-X3Fl4vm10KY1sAkGNtHAJrR5v27zo2XN-Kf0AfbBWhIZr-OPxfW56TzAOOeEsJJzapWsg9_VtMy5dbz23AtfJ7Df96DphuHShNiLmCdAoATerqvDAMJTkbJxi5soExaZmHObwMu2w9eaIDePzChNQG-4woaqmzXN5UUk6WbIjRjW_wl86L3mTq-_22Lv_8RfwwMeHTsnnO3Dzur6xr0JKGlVDWA7n-fhq8dfBrA7HE5OJ1h-nn49DeXB4fHJt0EcOoO4D_ETswwQdA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5QAcEDspBYIEJ7AaL0kcJITYhintVBxmpN7cxAut1CalmQr1T_Eb8XOSKcPSW69eIuf5bd6-D-B54pxJE-qIK3JGRGEtKTJZElpVTuTOlR2W3mQnG8_El910dwV-Dm9h8Frl4BODozaNxj3yDe9GMXz5aPb2-DtB1ig8XR0oNDq12LJnP_ySrX2z-dHP7wvGRp-mH8akZxUgOhV0TmxScqkzW2WOZoZrnyClAhkBqdVWauHHLnSlUyuzwufmRZVkTHPmfX1JQwbiv3sFrgrOC7QoOfo86K_w1iEGdPawx5NzxL9Cfju_UiDI6NW_20m43Gh9_EB4W8YJImGlJF-KjYFC4F9579_XN_84ww2hcXQLbvY5bfyuU8LbsGLrO3DjN6TDu5AhPyhxB4dH8dfJbNq-jsu4ezUTNy7Ga6SxSOIzL98WC3oIov17MLsU4d6H1bqp7UOInXCCMiqsLK0wPlGVonAa00vtjMnyCOggLKV7PHOk1ThU4VydS9UJWHkBqyBg5fu8XPQ57tA8Lmz9Hudg0RKRuENBc_JN9YatrLWca8FYojNhvD2YpMyZtsw45rgzEawPM6h699Cqc2WO4Nmi2hs2ntaUtW1OQxu_-MW3wBE86CZ8MRLEDBJpkkQgl1RhaajLNfXBfgAPp4jZyLmM4NWgNefj-r8s1i7-jadwbTydbKvtzZ2tR3CdBaXOCaPrsDo_ObWPfeY2r54Ec4lh77Lt8xcx5Uv8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRUJwQOwECgQJTmBNvGRDQggoo5bSqoeONDc3cWxaqSSlmQr1r_HreM9ZyrD01quXyHl-m7fvA3gROVfFEXfM5algKreW5UlWMF6WTqXOFR2W3vZOsjFTn-fxfAV-Dm9h6Frl4BO9o64aQ3vkE3SjFL4wmk1cfy1id3367vg7IwYpOmkd6DQ6FdmyZz9w-da-3VzHuX4pxPTT3scN1jMMMBMrvmA2KmRmElsmjieVNJgsxYrYAbk1NjMK_0OZ0sQ2S3LM0_MySoSRAv1-wX02gt-9AldTGXOysXQ-hnKFlqIGpHa_35NKwsIirjtcNTBi9-rf8EQym7QYSwjqVkhGqFgxS5fipKcT-FcO_PdVzj_Oc32YnN6Cm31-G77vFPI2rNj6Dtz4DfXwLiTEFcrc4dG3cHd7tte-CYuwe0ETNi6kK6WhisIzlG9LBT0c0cE9mF2KcO_Dat3U9iGETjnFBVc2K6yqMGnNVO4MpZrGVVWSBsAHYWnTY5sTxcaR9mfsMtOdgDUKWHsBa-zzauxz3CF7XNj6A83B2JJQuX1Bc_JV90aurbVSGiVEZBJVoW1UUZEKY0XlhJOuCmBtmEHdu4pWnyt2AM_HajRyOrkpatuc-ja4EKZ3wQE86CZ8HAnhB6k4igLIllRhaajLNfXhgQcS54TfKGUWwOtBa87H9X9ZPLr4N57BNbRM_WVzZ-sxXBdep1Mm-BqsLk5O7RNM4hblU28tIexftnn-AgeiUCk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thin-film+PMUTs%3A+a+review+of+over+40+years+of+research&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Roy%2C+Kaustav&rft.au=Lee%2C+Joshua+En-Yuan&rft.au=Lee%2C+Chengkuo&rft.date=2023-07-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2055-7434&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41378-023-00555-7&rft.externalDocID=10_1038_s41378_023_00555_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |