Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics

Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 1554 - 9
Main Authors Dreher, Maximilian, Dombrowski, Pierre Martin, Tripp, Matthias Wolfgang, Münster, Niels, Koert, Ulrich, Witte, Gregor
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.03.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS 2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect. Structuring organic films is of scientific and technological interest. Here, the authors use partially fluorinated organic molecules exhibiting strong intermolecular interactions to form extended 2D molecular nanosheets and control their shape through growth and desorption kinetics.
AbstractList Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS 2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.Structuring organic films is of scientific and technological interest. Here, the authors use partially fluorinated organic molecules exhibiting strong intermolecular interactions to form extended 2D molecular nanosheets and control their shape through growth and desorption kinetics.
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS 2 substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect. Structuring organic films is of scientific and technological interest. Here, the authors use partially fluorinated organic molecules exhibiting strong intermolecular interactions to form extended 2D molecular nanosheets and control their shape through growth and desorption kinetics.
Structuring organic films is of scientific and technological interest. Here, the authors use partially fluorinated organic molecules exhibiting strong intermolecular interactions to form extended 2D molecular nanosheets and control their shape through growth and desorption kinetics.
Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not applicable for the fabrication of organic nanostructures. Instead, molecular self-organisation must be utilised to achieve bottom-up growth of desired structures. Here, we demonstrate control over the mesoscopic shape of 2D molecular nanosheets without affecting their nanoscopic molecular packing motif, using molecules that do not form lateral covalent bonds. We show that anisotropic attractive Coulomb forces between partially fluorinated pentacenes lead to the growth of distinctly elongated nanosheets and that the direction of elongation differs between nanosheets that were grown and ones that were fabricated by partial desorption of a complete molecular monolayer. Using kinetic Monte Carlo simulations, we show that lateral intermolecular interactions alone are sufficient to rationalise the different kinetics of structure formation during nanosheet growth and desorption, without inclusion of interactions between the molecules and the supporting MoS substrate. By comparison of the behaviour of differently fluorinated molecules, experimentally and computationally, we can identify properties of molecules with regard to interactions and molecular packing motifs that are required for an effective utilisation of the observed effect.
ArticleNumber 1554
Author Tripp, Matthias Wolfgang
Münster, Niels
Witte, Gregor
Dreher, Maximilian
Koert, Ulrich
Dombrowski, Pierre Martin
Author_xml – sequence: 1
  givenname: Maximilian
  orcidid: 0000-0002-4917-5835
  surname: Dreher
  fullname: Dreher, Maximilian
  organization: Department of Physics, Philipps-Universität Marburg
– sequence: 2
  givenname: Pierre Martin
  orcidid: 0000-0001-5203-4163
  surname: Dombrowski
  fullname: Dombrowski, Pierre Martin
  organization: Department of Physics, Philipps-Universität Marburg
– sequence: 3
  givenname: Matthias Wolfgang
  surname: Tripp
  fullname: Tripp, Matthias Wolfgang
  organization: Department of Chemistry, Philipps-Universität Marburg
– sequence: 4
  givenname: Niels
  surname: Münster
  fullname: Münster, Niels
  organization: Department of Chemistry, Philipps-Universität Marburg
– sequence: 5
  givenname: Ulrich
  surname: Koert
  fullname: Koert, Ulrich
  organization: Department of Chemistry, Philipps-Universität Marburg
– sequence: 6
  givenname: Gregor
  orcidid: 0000-0003-2237-0953
  surname: Witte
  fullname: Witte, Gregor
  email: gregor.witte@physik.uni-marburg.de
  organization: Department of Physics, Philipps-Universität Marburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36944658$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNURB_0D7BAkdiwCfgVP1YIFQqVKrEA1taN7cx4yNjBTirNv8czaeljUW_8-s7R0b33tDoKMbiqeoPRB4yo_JgZZlw0iNCGCoJoI15UJwQx3GBB6NGD83F1nvMGlUUVloy9qo4pV4zxVp5U4881jK42MUwpDrUPNflSb-PgzDxAqgOEmNfOTbnudvU0Bx9WNQSfY8FHb4pgcumeP1zBTD6GXDhbQ85u2w27-o8PbvImv65e9jBkd367n1W_L7_-uvjeXP_4dnXx-boxLcNTYw1YzqwiPRE9MLuP27aGOykN4bjvueG8F1QpY5ExHeraUgRuBReKUQr0rLpafG2EjR6T30La6QheHx5iWmlIJdDgtKJGMGaU6KRj0kLHlOSMIehaaC3Y4vVp8RrnbuuscaVYMDwyffwT_Fqv4o3GpeZIClwc3t86pPh3dnnSW5-NGwYILs5ZEyGVwARJWtB3T9BNnFMotTpQGCkqSaHePoz0P8tdZwsgF8CkmHNyvTZ-gn1jSkI_lGh6P0d6mSNd5kgf5kiLIiVPpHfuz4roIsoFDiuX7mM_o_oHcD7cIQ
CitedBy_id crossref_primary_10_1021_acs_chemmater_3c01677
crossref_primary_10_1021_acs_chemmater_4c00560
Cites_doi 10.1021/acsnano.8b03513
10.1021/ar5001082
10.1021/nn500064s
10.1039/c2cs35115c
10.1021/cr9502357
10.1063/1.1696269
10.1002/chem.201501399
10.1002/adma.201706103
10.1016/S0039-6028(01)01036-6
10.1038/nature02498
10.1038/nchem.2824
10.1021/acs.jpcc.1c06661
10.1063/1.467192
10.1002/jcc.10009
10.1038/s41378-020-0144-4
10.1039/C8CS00159F
10.1038/nnano.2010.274
10.1146/annurev.physchem.56.092503.141259
10.1063/5.0005188
10.1002/admi.201601083
10.1002/adma.201907101
10.1088/0034-4885/76/6/066501
10.1038/nprot.2012.094
10.1039/D1NR03532K
10.1038/nrmicro3213
10.1039/c2cs35157a
10.1021/acs.chemmater.0c03482
10.1007/s00339-002-2003-6
10.1039/D0SC05633B
10.1002/anie.202006489
10.1063/1.3665923
10.1002/pssr.201600320
10.1016/j.elspec.2015.07.011
10.1038/nature01072
10.1038/s41928-018-0150-9
10.1038/s42004-018-0069-0
10.1021/acs.chemrev.1c00884
10.5281/zenodo.7674282
10.1002/chem.202103653
10.5281/zenodo.7319535
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-37203-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Publicly Available Content Database



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_93c744c97b8e48dab4986440ab5a5dad
PMC10030871
36944658
10_1038_s41467_023_37203_7
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 223848855; 223848855; 223848855; 223848855; 223848855; 223848855
  funderid: https://doi.org/10.13039/501100001659
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 223848855
– fundername: ;
  grantid: 223848855; 223848855; 223848855; 223848855; 223848855; 223848855
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-dcad64d92f27fa4d446555c6e88c261ff6c66f7399cd0ccb0b52036d7679433a3
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:57 EDT 2025
Thu Aug 21 18:38:44 EDT 2025
Fri Jul 11 07:34:58 EDT 2025
Wed Aug 13 08:19:53 EDT 2025
Wed Feb 19 02:13:10 EST 2025
Tue Jul 01 00:58:44 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-dcad64d92f27fa4d446555c6e88c261ff6c66f7399cd0ccb0b52036d7679433a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2237-0953
0000-0002-4917-5835
0000-0001-5203-4163
OpenAccessLink https://www.nature.com/articles/s41467-023-37203-7
PMID 36944658
PQID 2789109382
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_93c744c97b8e48dab4986440ab5a5dad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10030871
proquest_miscellaneous_2789712083
proquest_journals_2789109382
pubmed_primary_36944658
crossref_citationtrail_10_1038_s41467_023_37203_7
crossref_primary_10_1038_s41467_023_37203_7
springer_journals_10_1038_s41467_023_37203_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-21
PublicationDateYYYYMMDD 2023-03-21
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Feng, Ding, Jiang (CR16) 2012; 41
Schwaben (CR30) 2015; 21
Jayaram, McConnell, Dixit, Das, Beveridge (CR18) 2002; 23
Goronzy (CR14) 2018; 12
CR38
Krieg, Weissman, Shirman, Shimoni, Rybtchinski (CR17) 2011; 6
CR36
Dombrowski, Kachel, Neuhaus, Gottfried, Witte (CR35) 2021; 13
Yang (CR1) 2014; 47
Jung, Jang, Cho, Jeon, Jung (CR4) 2020; 32
Meng, Weinberg (CR40) 1994; 100
Dong, Zhou, Wang (CR20) 2020; 378
Breuer (CR23) 2016; 10
Dreher, Günder, Zörb, Witte (CR24) 2020; 32
Forrest (CR2) 2004; 428
Shen, Tao (CR26) 2017; 4
Tumino, Rabia, Bassi, Tosoni, Casari (CR27) 2022; 126
Liu (CR6) 2020; 6
Gobbi, Orgiu, Samorì (CR32) 2018; 30
Hansen, Hansen (CR33) 2001; 481
Hofmann (CR28) 2020; 59
Bischof (CR41) 2022; 28
Mai, Eisenberg (CR9) 2012; 41
Fagan, Fairweather (CR19) 2014; 12
CR3
Cavallini, Gentili, Greco, Valle, Biscarini (CR5) 2012; 7
CR8
Jariwala, Sangwan, Lauhon, Marks, Hersam (CR22) 2014; 8
Scott, Scheraga (CR37) 1965; 42
Thiruvengadathan (CR7) 2013; 76
Percec (CR10) 2002; 419
Ulman (CR11) 1996; 96
Barca (CR39) 2020; 152
Huang (CR31) 2018; 47
Barth (CR12) 2007; 58
CR21
CR43
CR42
Kachel, Dombrowski, Breuer, Gottfried, Witte (CR25) 2021; 12
Kröger (CR29) 2011; 135
Korolkov (CR13) 2017; 9
Breuer, Klues, Witte (CR34) 2015; 204
Barth, Weckesser, Lin, Dmitriev, Kern (CR15) 2003; 76
Y Mai (37203_CR9) 2012; 41
J Dong (37203_CR20) 2020; 378
37203_CR21
D Jariwala (37203_CR22) 2014; 8
PE Hofmann (37203_CR28) 2020; 59
GMJ Barca (37203_CR39) 2020; 152
37203_CR43
RA Scott (37203_CR37) 1965; 42
E Krieg (37203_CR17) 2011; 6
T Breuer (37203_CR23) 2016; 10
W-B Jung (37203_CR4) 2020; 32
P-M Dombrowski (37203_CR35) 2021; 13
37203_CR42
VV Korolkov (37203_CR13) 2017; 9
V Percec (37203_CR10) 2002; 419
M Dreher (37203_CR24) 2020; 32
SR Kachel (37203_CR25) 2021; 12
37203_CR36
L Liu (37203_CR6) 2020; 6
D Bischof (37203_CR41) 2022; 28
R Thiruvengadathan (37203_CR7) 2013; 76
M Gobbi (37203_CR32) 2018; 30
37203_CR38
DP Goronzy (37203_CR14) 2018; 12
RP Fagan (37203_CR19) 2014; 12
JV Barth (37203_CR12) 2007; 58
M Cavallini (37203_CR5) 2012; 7
37203_CR8
I Kröger (37203_CR29) 2011; 135
J Schwaben (37203_CR30) 2015; 21
B Meng (37203_CR40) 1994; 100
37203_CR3
F Tumino (37203_CR27) 2022; 126
YL Huang (37203_CR31) 2018; 47
SR Forrest (37203_CR2) 2004; 428
A Ulman (37203_CR11) 1996; 96
N Shen (37203_CR26) 2017; 4
JV Barth (37203_CR15) 2003; 76
X Feng (37203_CR16) 2012; 41
WN Hansen (37203_CR33) 2001; 481
T Breuer (37203_CR34) 2015; 204
D Yang (37203_CR1) 2014; 47
B Jayaram (37203_CR18) 2002; 23
References_xml – ident: CR43
– volume: 12
  start-page: 7445
  year: 2018
  end-page: 7481
  ident: CR14
  article-title: Supramolecular assemblies on surfaces: nanopatterning, functionality, and reactivity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03513
– volume: 47
  start-page: 1902
  year: 2014
  end-page: 1911
  ident: CR1
  article-title: DNA materials: bridging nanotechnology and biotechnology
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5001082
– volume: 8
  start-page: 1102
  year: 2014
  end-page: 1120
  ident: CR22
  article-title: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides
  publication-title: ACS Nano
  doi: 10.1021/nn500064s
– volume: 41
  start-page: 5969
  year: 2012
  end-page: 5985
  ident: CR9
  article-title: Self-assembly of block copolymers
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35115c
– volume: 96
  start-page: 1533
  year: 1996
  end-page: 1554
  ident: CR11
  article-title: Formation and structure of self-assembled monolayers
  publication-title: Chem. Rev.
  doi: 10.1021/cr9502357
– volume: 42
  start-page: 2209
  year: 1965
  end-page: 2215
  ident: CR37
  article-title: Method for calculating internal rotation barriers
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696269
– volume: 21
  start-page: 13758
  year: 2015
  end-page: 13771
  ident: CR30
  article-title: Efficient syntheses of novel fluoro-substituted pentacenes and azapentacenes: molecular and solid-state properties
  publication-title: Chem.
  doi: 10.1002/chem.201501399
– volume: 30
  start-page: e1706103
  year: 2018
  ident: CR32
  article-title: When 2D materials meet molecules. opportunities and challenges of hybrid organic/inorganic van der Waals heterostructures
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706103
– volume: 481
  start-page: 172
  year: 2001
  end-page: 184
  ident: CR33
  article-title: Standard reference surfaces for work function measurements in air
  publication-title: Surface Science
  doi: 10.1016/S0039-6028(01)01036-6
– volume: 428
  start-page: 911
  year: 2004
  end-page: 918
  ident: CR2
  article-title: The path to ubiquitous and low-cost organic electronic appliances on plastic
  publication-title: Nature
  doi: 10.1038/nature02498
– ident: CR8
– volume: 9
  start-page: 1191
  year: 2017
  end-page: 1197
  ident: CR13
  article-title: Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2824
– volume: 126
  start-page: 1132
  year: 2022
  end-page: 1139
  ident: CR27
  article-title: Interface-driven assembly of pentacene/MoS lateral heterostructures
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c06661
– volume: 100
  start-page: 5280
  year: 1994
  end-page: 5289
  ident: CR40
  article-title: Monte Carlo simulations of temperature programmed desorption spectra
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467192
– volume: 23
  start-page: 1
  year: 2002
  end-page: 14
  ident: CR18
  article-title: Free-energy component analysis of 40 protein-DNA complexes: a consensus view on the thermodynamics of binding at the molecular level
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10009
– ident: CR42
– volume: 6
  start-page: 31
  year: 2020
  ident: CR6
  article-title: “Top-down” and “bottom-up” strategies for wafer-scaled miniaturized gas sensors design and fabrication
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0144-4
– ident: CR21
– volume: 47
  start-page: 3241
  year: 2018
  end-page: 3264
  ident: CR31
  article-title: The organic-2D transition metal dichalcogenide heterointerface
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00159F
– volume: 6
  start-page: 141
  year: 2011
  end-page: 146
  ident: CR17
  article-title: A recyclable supramolecular membrane for size-selective separation of nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.274
– volume: 58
  start-page: 375
  year: 2007
  end-page: 407
  ident: CR12
  article-title: Molecular architectonic on metal surfaces
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.56.092503.141259
– volume: 152
  start-page: 154102
  year: 2020
  ident: CR39
  article-title: Recent developments in the general atomic and molecular electronic structure system
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005188
– volume: 4
  start-page: 1601083
  year: 2017
  ident: CR26
  article-title: Charge transfer and interface engineering of the pentacene and MoS monolayer complex
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201601083
– volume: 28
  start-page: e202103653
  year: 2022
  ident: CR41
  article-title: Regioselective fluorination of acenes: tailoring of molecular electronic levels and solid-state properties
  publication-title: Chemistry
– volume: 32
  start-page: e1907101
  year: 2020
  ident: CR4
  article-title: Recent progress in simple and cost-effective top-down lithography for ≈10 nm scale nanopatterns: from edge lithography to secondary sputtering lithography
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907101
– volume: 76
  start-page: 66501
  year: 2013
  ident: CR7
  article-title: Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/6/066501
– ident: CR3
– ident: CR38
– volume: 7
  start-page: 1668
  year: 2012
  end-page: 1676
  ident: CR5
  article-title: Micro- and nanopatterning by lithographically controlled wetting
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.094
– volume: 13
  start-page: 13816
  year: 2021
  end-page: 13826
  ident: CR35
  article-title: Temperature-programmed desorption of large molecules: influence of thin film structure and origin of intermolecular repulsion
  publication-title: Nanoscale
  doi: 10.1039/D1NR03532K
– volume: 12
  start-page: 211
  year: 2014
  end-page: 222
  ident: CR19
  article-title: Biogenesis and functions of bacterial S-layers
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3213
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  ident: CR16
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 32
  start-page: 9034
  year: 2020
  end-page: 9043
  ident: CR24
  article-title: Van der Waals bound organic semiconductor/2D-material hybrid heterosystems. intrinsic epitaxial alignment of perfluoropentacene films on transition metal dichalcogenides
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03482
– volume: 378
  start-page: 33
  year: 2020
  ident: CR20
  article-title: Towards active self-assembly through DNA nanotechnology
  publication-title: Curr. Chem.
– volume: 76
  start-page: 645
  year: 2003
  end-page: 652
  ident: CR15
  article-title: Supramolecular architectures and nanostructures at metal surfaces
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-002-2003-6
– volume: 12
  start-page: 2575
  year: 2021
  end-page: 2585
  ident: CR25
  article-title: Engineering of TMDC–OSC hybrid interfaces: the thermodynamics of unitary and mixed acene monolayers on MoS
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05633B
– volume: 59
  start-page: 16501
  year: 2020
  end-page: 16505
  ident: CR28
  article-title: Unilaterally fluorinated acenes. synthesis and solid-state properties
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006489
– volume: 135
  start-page: 234703
  year: 2011
  ident: CR29
  article-title: Modeling intermolecular interactions of physisorbed organic molecules using pair potential calculations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3665923
– ident: CR36
– volume: 10
  start-page: 905
  year: 2016
  end-page: 910
  ident: CR23
  article-title: Structure of van der Waals bound hybrids of organic semiconductors and transition metal dichalcogenides. The case of acene films on MoS
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201600320
– volume: 204
  start-page: 102
  year: 2015
  end-page: 115
  ident: CR34
  article-title: Characterization of orientational order in π-conjugated molecular thin films by NEXAFS
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2015.07.011
– volume: 419
  start-page: 384
  year: 2002
  end-page: 387
  ident: CR10
  article-title: Self-organization of supramolecular helical dendrimers into complex electronic materials
  publication-title: Nature
  doi: 10.1038/nature01072
– volume: 135
  start-page: 234703
  year: 2011
  ident: 37203_CR29
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3665923
– ident: 37203_CR3
  doi: 10.1038/s41928-018-0150-9
– volume: 23
  start-page: 1
  year: 2002
  ident: 37203_CR18
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10009
– volume: 30
  start-page: e1706103
  year: 2018
  ident: 37203_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706103
– volume: 76
  start-page: 66501
  year: 2013
  ident: 37203_CR7
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/6/066501
– ident: 37203_CR21
  doi: 10.1038/s42004-018-0069-0
– volume: 96
  start-page: 1533
  year: 1996
  ident: 37203_CR11
  publication-title: Chem. Rev.
  doi: 10.1021/cr9502357
– ident: 37203_CR8
  doi: 10.1021/acs.chemrev.1c00884
– volume: 126
  start-page: 1132
  year: 2022
  ident: 37203_CR27
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c06661
– volume: 100
  start-page: 5280
  year: 1994
  ident: 37203_CR40
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.467192
– volume: 4
  start-page: 1601083
  year: 2017
  ident: 37203_CR26
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201601083
– volume: 32
  start-page: 9034
  year: 2020
  ident: 37203_CR24
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03482
– volume: 21
  start-page: 13758
  year: 2015
  ident: 37203_CR30
  publication-title: Chem.
  doi: 10.1002/chem.201501399
– volume: 41
  start-page: 5969
  year: 2012
  ident: 37203_CR9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35115c
– volume: 6
  start-page: 31
  year: 2020
  ident: 37203_CR6
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0144-4
– ident: 37203_CR42
  doi: 10.5281/zenodo.7674282
– volume: 76
  start-page: 645
  year: 2003
  ident: 37203_CR15
  publication-title: Appl. Phys. A
  doi: 10.1007/s00339-002-2003-6
– volume: 32
  start-page: e1907101
  year: 2020
  ident: 37203_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907101
– volume: 10
  start-page: 905
  year: 2016
  ident: 37203_CR23
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201600320
– volume: 42
  start-page: 2209
  year: 1965
  ident: 37203_CR37
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696269
– volume: 13
  start-page: 13816
  year: 2021
  ident: 37203_CR35
  publication-title: Nanoscale
  doi: 10.1039/D1NR03532K
– volume: 152
  start-page: 154102
  year: 2020
  ident: 37203_CR39
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0005188
– volume: 12
  start-page: 211
  year: 2014
  ident: 37203_CR19
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro3213
– volume: 59
  start-page: 16501
  year: 2020
  ident: 37203_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202006489
– volume: 8
  start-page: 1102
  year: 2014
  ident: 37203_CR22
  publication-title: ACS Nano
  doi: 10.1021/nn500064s
– volume: 378
  start-page: 33
  year: 2020
  ident: 37203_CR20
  publication-title: Curr. Chem.
– volume: 6
  start-page: 141
  year: 2011
  ident: 37203_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.274
– volume: 28
  start-page: e202103653
  year: 2022
  ident: 37203_CR41
  publication-title: Chemistry
  doi: 10.1002/chem.202103653
– volume: 428
  start-page: 911
  year: 2004
  ident: 37203_CR2
  publication-title: Nature
  doi: 10.1038/nature02498
– volume: 204
  start-page: 102
  year: 2015
  ident: 37203_CR34
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/j.elspec.2015.07.011
– volume: 481
  start-page: 172
  year: 2001
  ident: 37203_CR33
  publication-title: Surface Science
  doi: 10.1016/S0039-6028(01)01036-6
– volume: 7
  start-page: 1668
  year: 2012
  ident: 37203_CR5
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.094
– volume: 12
  start-page: 2575
  year: 2021
  ident: 37203_CR25
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC05633B
– volume: 47
  start-page: 3241
  year: 2018
  ident: 37203_CR31
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00159F
– volume: 41
  start-page: 6010
  year: 2012
  ident: 37203_CR16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 9
  start-page: 1191
  year: 2017
  ident: 37203_CR13
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2824
– ident: 37203_CR36
– ident: 37203_CR38
– volume: 419
  start-page: 384
  year: 2002
  ident: 37203_CR10
  publication-title: Nature
  doi: 10.1038/nature01072
– volume: 47
  start-page: 1902
  year: 2014
  ident: 37203_CR1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar5001082
– ident: 37203_CR43
  doi: 10.5281/zenodo.7319535
– volume: 58
  start-page: 375
  year: 2007
  ident: 37203_CR12
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.56.092503.141259
– volume: 12
  start-page: 7445
  year: 2018
  ident: 37203_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03513
SSID ssj0000391844
Score 2.4200692
Snippet Since molecular materials often decompose upon exposure to radiation, lithographic patterning techniques established for inorganic materials are usually not...
Structuring organic films is of scientific and technological interest. Here, the authors use partially fluorinated organic molecules exhibiting strong...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1554
SubjectTerms 119/118
140/146
147/138
639/925/357/1018
639/925/357/341
Anisotropy
Chemical bonds
Covalent bonds
Desorption
Elongation
Fabrication
Fluorination
Humanities and Social Sciences
Inorganic materials
Kinetics
Molybdenum disulfide
Monte Carlo simulation
multidisciplinary
Nanosheets
Nanostructure
Organic chemistry
Radiation effects
Science
Science (multidisciplinary)
Shape control
Substrates
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEJRXSkFG4gZRk9ix4yO0VBUSXKBSb5Zf0a5ovasme9h_z4yd3XZ5XjgmnkSTeXhmYvsbQt5wi8c9K19y7GrClVTgc7Upg2LKK-9klZrBfP4izi_4p8v28k6rL9wTluGBs-COFXOSc6ek7QLvvLEcAcV5ZWxrWm88zr4Q8-4UU2kOZgpKFz6dkqlYdzzwNCdAiCqxMQsr5U4kSoD9v8syf90s-dOKaQpEZw_JgymDpO8z54_IvRAPyH7uKbl-TJZfZ2YZ6LQFnc4jbU7p9aYJLo0mLoZZCONA7ZqOK_wtQk2cDwsgX84dRfyIm1v6dJkPPwxA5ykk2-HaXq3pd8hPEeP5Cbk4-_jt5Lyc2iqUruX1WHpnvOBeNX0je8N9glBrnQhd56Ce6nvhhOglZC7OV87Zyra4WumlQDA5ZthTshcXMTwntK17qICscNJ47qVSHl9QmTqADTSyKUi9EbF2E-Y4tr640mntm3U6q0WDWnRSi5YFebt9ZpkRN_5K_QE1t6VEtOx0A2xITzak_2VDBTna6F1PLjxoPCKMWFsdfMXr7TA4H66omBgWq0wj6wbS2II8y2ay5YQJhZLtCtLtGNAOq7sjcT5LAN91BmqsC_JuY2u3fP1ZFof_QxYvyP0GnQQ8pKmPyN54swovIe8a7avkYj8A0AIpcg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlHzcGL7hHhVFRJcoNLeLL_CrtomYZM97L_H4zi7Wh49JplEjmfGHs_Y3wfwmmo87pnZlCKrCRVMeJ_LVepEKaywhmWBDObrt_rsnH5ZVIuYcBvitsp5TAwDte0M5shP8MQmQh_x4l3_K0XWKKyuRgqNm3ALoctwSxdbsF2OBdHPOaXxrExW8pOBhpHBT1Qp0rOUKTuYjwJs_79izb-3TP5RNw3T0ek9uBvjSPJ-Uvx9uOHaB3B7YpbcPoT--1L1jsSN6GTVkuITuZqpcEmr2m5YOjcORG_JuMHkCFHtaui8eL8yBFEk1nv5cDkdgRi8nCU-5HZX-nJLLnyUikjPj-D89POPj2dpJFdITUXzMbVG2ZpaUTQFaxS1AUitMrXj3PhVVdPUpq4b5uMXYzNjdKYrrFlaViOkXKnKx3DUdq17CqTKG78O0rVhylLLhLD4gUzlzltCwYoE8rmLpYnI40iAcSlDBbzkclKL9GqRQS2SJfBm904_4W5cK_0BNbeTRMzscKNb_5TRBaUoDaPUCKa5o9wqTRGanmZKV6qyyiZwPOtdRkce5N7sEni1e-xdEOsqqnXdZpJheeGD2QSeTGaya0lZC-xZngA_MKCDph4-aVfLAPOdT3CNeQJvZ1vbt-v_ffHs-t94DncKNH9v-0V-DEfjeuNe-Lhq1C-D8_wG44IgdQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4ti5C4IN6EXZCRuEEgDyeODwjxWq2QlgtU2pvlV2hFNylNK23_PTNO0lWhIHFMMokcz3zxOPZ8H8BzbqjcM3ExJ1UTLoVEzKU69jKXTjorkiAGc_alPJ3wz-fF-QGMckdDB3Z7p3akJzVZzl9d_ty8RcC_6UvGq9cdD3DH0ScmzZU8FtfgOo5MgoB6NqT74cucS5zQ8KF2Zv-tO-NToPHfl3v-uYXyt3XUMDyd3IZbQ17J3vWBcAcOfHMXbvRKk5t7sPg61QvPho3pbNaw7CO7GKVxWaObtpt6v-qY2bDVmn6WMN3MuhbNFzPLiFVieWUfDvuSiA7tHMMU3F-Y-Yb9wKyVmJ_vw-Tk07cPp_EgthDbgqer2FntSu5kVmei1twFYrXClr6qLM6y6rq0ZVkLzGesS6w1iSloDdOJkijmcp0_gMOmbfwjYEVa47zIlFZox52Q0tEDEp16jIxMZBGkYxcrOzCRkyDGXIUV8bxSvVsUukUFtygRwYvtPYueh-Of1u_Jc1tL4tAOJ9rldzVAUsncCs6tFKbyvHLacKKq54k2hS6cdhEcj35XY1wqKhwmBq4K3-LZ9jJCktZZdOPbdW8j0gyT2wge9mGybUleSurZKoJqJ4B2mrp7pZlNA-132tM3phG8HGPtql1_74vH_2d-BDczggNiIUuP4XC1XPsnmHetzNMApl9KlCfH
  priority: 102
  providerName: Scholars Portal
Title Shape control in 2D molecular nanosheets by tuning anisotropic intermolecular interactions and assembly kinetics
URI https://link.springer.com/article/10.1038/s41467-023-37203-7
https://www.ncbi.nlm.nih.gov/pubmed/36944658
https://www.proquest.com/docview/2789109382
https://www.proquest.com/docview/2789712083
https://pubmed.ncbi.nlm.nih.gov/PMC10030871
https://doaj.org/article/93c744c97b8e48dab4986440ab5a5dad
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB7tQ0hcEG8CS2UkbhCRh-PHsVu2rCrtCrGs1Fvk2A6t2E2qJj303-Nxkq4KCxIXR4nH0cQzE48f8w3Ae1pguGdkQopZTajk0tlcrEIrU2mk0TzyyWAuLtn5NZ3Ns_kBJEMsjD-07yEt_W96OB32qaHepN0IE2JelTTkh3CM0O2o1RM22a2rIOK5oLSPj4lScU_TvTHIQ_Xf51_-eUzyt71SPwRNH8Oj3nck447bJ3Bgq6fwoMsmuX0Gq6uFWlnSHz4ny4okn8ntkP6WVKqqm4W1bUOKLWk3uCBCVLVsake-WmqCyBHrO3p_24U9NI7OEOdm29viZkt-Os8U0Z2fw_X07PvkPOwTKoQ6o3EbGq0Mo0YmZcJLRY0HT8s0s0JoN5MqS6YZK7nzWbSJtC6iIsN9SsMZwsilKn0BR1Vd2VdAsrh0c5-Caa4MNVxKgy-IVGyd9BOeBBAPXZzrHm0ck17c5H7XOxV5J5bciSX3Ysl5AB92bVYd1sY_qU9RcjtKxMn2D-r1j7zXm1ym2umIlrwQlgqjCopw9DRSRaYyo0wAJ4Pc8954mxyDgxFlS7iveLerdmaHeymqsvWmo-Fx4hzYAF52arLjJGUSe1YEIPYUaI_V_ZpqufDQ3nEH0RgH8HHQtTu-_t4Xr_-P_A08TNAcnC0k8QkcteuNfet8q7YYwSGfc1eK6ZcRHI_Hs6uZu56eXX79NvKGNvKrFq68oOIXQjkk6w
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIcReEJ8jMMBI8ATREseJ4weEgDF17OOFTeqbcWyHVtuS0rRC_af4G_E5Savysbc9trlGru_Od_b5fj-AV6zAds_IhAxZTZjgwvlcrEIrEmGE0TzyZDDHJ9ngjH0ZpsMN-NX3wuC1yn5N9Au1qTWeke9ixyZCH-X0_eRHiKxRWF3tKTRaszi0i59uy9a8O9hz-n1N6f7n00-DsGMVCHXK4llotDIZM4KWlJeKGY8glurM5rl224myzHSWldwFbm0irYuoSLFYZ3iGWGqJStx7b8BNF3gj9Cg-5MszHURbzxnrenOiJN9tmF-JXGAMkQ4mCfla_PM0Af_Kbf--ovlHndaHv_27cKfLW8mH1tDuwYat7sOtlsly8QAmX0dqYkl38Z2MK0L3yGVPvUsqVdXNyNpZQ4oFmc3xMIaoatzUTnwy1gRRK6Yref-xbblonJwhLsW3l8XFgpy7rBiRpR_C2bVM-yPYrOrKPgaSxqXbdxWZ5soww4Uw-IJIxdZZHuU0gLifYqk7pHMk3LiQvuKe5LJVi3RqkV4tkgfwZvmbSYvzcaX0R9TcUhIxuv0X9fS77FxeikRzxrTgRW5ZblTBEAqfRapIVWqUCWCn17vsFo5Grsw8gJfLx87lsY6jKlvPWxkeU5c8B7DdmslyJEkmcGbzAPI1A1ob6vqTajzysOJxCw8ZB_C2t7XVuP4_F0-u_hsv4Pbg9PhIHh2cHD6FLYqu4PyAxjuwOZvO7TOX082K596RCHy7bs_9DQjYXTo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRAviG8CA4wETxA1cZw4fkAIKNXGYEKCSX3zHNuhFVtSmlao_xp_HT4naVU-9rbHJJfI8d3ZZ5_v9wN4xgos94xMyJDVhAkunM_FKrQiEUYYzSNPBvPpKNs_Zh_G6XgHfvW1MHissh8T_UBtao175AOs2EToo5wOyu5YxOfh6PXsR4gMUphp7ek0WhM5tKufbvnWvDoYOl0_p3T0_uu7_bBjGAh1yuJFaLQyGTOClpSXihmPJpbqzOa5dkuLssx0lpXcTeLaRFoXUZFi4s7wDHHVEpW4716CyzxJY_QxPubr_R1EXs8Z6-p0oiQfNMyPSm6SDJEaJgn51lzoKQP-Fef-fVzzj5ytnwpHN-B6F8OSN63R3YQdW92CKy2r5eo2zL5M1MyS7hA8mVaEDslZT8NLKlXVzcTaRUOKFVkscWOGqGra1E58NtUEESzmG3l_2ZZfNE7OEBfu27PidEW-uwgZUabvwPGFdPtd2K3qyt4HksalW4MVmebKMMOFMPiBSMXWWSHlNIC472KpO9RzJN84lT77nuSyVYt0apFeLZIH8GL9zqzF_DhX-i1qbi2JeN3-Rj3_Jjv3lyLRnDEteJFblhtVMITFZ5EqUpUaZQLY6_Uuu0GkkRuTD-Dp-rFzf8zpqMrWy1aGx9QF0gHca81k3ZIkE9izeQD5lgFtNXX7STWdeIjxuIWKjAN42dvapl3_74sH5__GE7jqfFZ-PDg6fAjXKHqCcwMa78HuYr60j1x4tygeez8icHLRjvsbWTthcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shape+control+in+2D+molecular+nanosheets+by+tuning+anisotropic+intermolecular+interactions+and+assembly+kinetics&rft.jtitle=Nature+communications&rft.au=Dreher%2C+Maximilian&rft.au=Dombrowski%2C+Pierre+Martin&rft.au=Tripp%2C+Matthias+Wolfgang&rft.au=M%C3%BCnster%2C+Niels&rft.date=2023-03-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-37203-7&rft.externalDocID=10_1038_s41467_023_37203_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon