Screening and Characterization of New Acetobacter fabarum and Acetobacter pasteurianus Strains with High Ethanol–Thermo Tolerance and the Optimization of Acetic Acid Production

The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes wi...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 10; no. 9; p. 1741
Main Authors El-Askri, Taoufik, Yatim, Meriem, Sehli, Youness, Rahou, Abdelilah, Belhaj, Abdelhaq, Castro, Remedios, Durán-Guerrero, Enrique, Hafidi, Majida, Zouhair, Rachid
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.08.2022
MDPI
Subjects
Online AccessGet full text
ISSN2076-2607
2076-2607
DOI10.3390/microorganisms10091741

Cover

Abstract The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.
AbstractList The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.
The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO 2 and H 2 O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus . The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% ( v / v ) of ethanol. All six strains tolerated an ethanol concentration of 16% ( v / v ). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% ( v / v ) for the strains of FAGD1, FAGD10 and FAGD18, and 3% ( v / v ) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% ( v / v ). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.
The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO₂ and H₂O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.
The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.
Author El-Askri, Taoufik
Rahou, Abdelilah
Castro, Remedios
Hafidi, Majida
Belhaj, Abdelhaq
Zouhair, Rachid
Durán-Guerrero, Enrique
Yatim, Meriem
Sehli, Youness
AuthorAffiliation 1 Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
2 Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain
3 Laboratory of Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
AuthorAffiliation_xml – name: 3 Laboratory of Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
– name: 1 Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco
– name: 2 Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain
Author_xml – sequence: 1
  givenname: Taoufik
  orcidid: 0000-0002-7619-3676
  surname: El-Askri
  fullname: El-Askri, Taoufik
– sequence: 2
  givenname: Meriem
  orcidid: 0000-0002-6207-2822
  surname: Yatim
  fullname: Yatim, Meriem
– sequence: 3
  givenname: Youness
  orcidid: 0000-0002-4070-3996
  surname: Sehli
  fullname: Sehli, Youness
– sequence: 4
  givenname: Abdelilah
  surname: Rahou
  fullname: Rahou, Abdelilah
– sequence: 5
  givenname: Abdelhaq
  surname: Belhaj
  fullname: Belhaj, Abdelhaq
– sequence: 6
  givenname: Remedios
  orcidid: 0000-0002-6419-2473
  surname: Castro
  fullname: Castro, Remedios
– sequence: 7
  givenname: Enrique
  orcidid: 0000-0003-2073-3394
  surname: Durán-Guerrero
  fullname: Durán-Guerrero, Enrique
– sequence: 8
  givenname: Majida
  surname: Hafidi
  fullname: Hafidi, Majida
– sequence: 9
  givenname: Rachid
  surname: Zouhair
  fullname: Zouhair, Rachid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36144343$$D View this record in MEDLINE/PubMed
BookMark eNqNklFu1DAQhiNURMvSK1SReOFlwU5iO5EQUrUqtFJFkbo8WxPb2XiV2IvttIIn7sAFOAQn4CicBCfbot0KCeSHsTz_fDMa_0-TA2ONSpITjF7meYVe9Vo4a90KjPa9xwhVmBX4UXKUIUbnGUXsYOd-mBx7v0ZolOUlwU-Sw5ziosiL_Cj5cS2cUkabVQpGposWHIignP4CQVuT2iZ9r27TU6GCrafMz-8N1OCGfirYS2zABzU4DWbw6XVwoI1Pb3Vo03O9atOz0IKx3a-v35atcr1Nl7ZTDoxQEyq0Kr3aBN3v9B7xWsSgZfrBWTmIMfMsedxA59XxXZwlH9-eLRfn88urdxeL08u5IAUOc8lYVUItQBBaS5Fh2TRlzUhNkJRxBZkgWUVroJKWTCGMMoRBCoEQoAoIzmfJxZYrLaz5xuke3GduQfPpIf4ABxfn6xQvBCUlFpCRhhQMZJWVQkpMiizHChUost5sWZuh7pUUysT9dHvQ_YzRLV_ZG14RhGjOIuDFHcDZT4PygffaC9V1YJQdPM9YbJXlFS7_Q4oZrXISzyx5_kC6toMzcaujihKSswl4sjv8n6nvfRQFr7eCaEzvnWq40GH6xdEFHceIj87lf3duLKcPyu87_KPwN5cq_nI
CitedBy_id crossref_primary_10_22207_JPAM_17_4_32
crossref_primary_10_3390_fermentation10040200
crossref_primary_10_1002_jctb_7289
crossref_primary_10_3390_antibiotics13070626
crossref_primary_10_1016_j_fbio_2024_105198
crossref_primary_10_3390_fermentation9050447
crossref_primary_10_3390_fermentation11010038
crossref_primary_10_3390_fermentation10010018
crossref_primary_10_1016_j_foodres_2023_113742
crossref_primary_10_3389_fmicb_2024_1405564
crossref_primary_10_1051_bioconf_202410810005
crossref_primary_10_3390_app13137366
crossref_primary_10_3390_fermentation11020105
crossref_primary_10_4236_fns_2023_147042
Cites_doi 10.1016/j.enzmictec.2006.01.020
10.3390/ijerph19010463
10.1016/j.jbiosc.2015.06.005
10.1080/09168451.2015.1104235
10.1080/09168451.2019.1703638
10.15294/biosaintifika.v9i3.10241
10.4236/aim.2022.124014
10.1080/07388550802046749
10.1017/S0954102009990745
10.1080/07388551.2020.1743231
10.1007/s00217-012-1885-6
10.1271/bbb.100183
10.1016/j.scitotenv.2019.07.070
10.1093/bbb/zbab009
10.1016/j.jfca.2022.104699
10.1016/j.ijfoodmicro.2015.03.013
10.3923/jm.2008.209.212
10.1080/09168451.2014.882758
10.1093/molbev/msm092
10.1007/s11274-015-1961-8
10.9755/ejfa.v26i9.18122
10.1016/j.scitotenv.2021.149292
10.2323/jgam.45.23
10.1016/j.syapm.2012.09.002
10.1016/j.procbio.2020.07.022
10.1186/s13568-021-01189-6
10.1016/j.ijfoodmicro.2007.05.015
10.1007/s12088-013-0414-z
10.1002/bab.1941
10.30699/ijmm.13.4.251
10.1007/s00217-010-1331-6
10.1016/j.biotechadv.2014.12.001
10.4314/jab.v95i1.8
10.1111/j.1574-6968.2004.tb09605.x
10.1016/j.copbio.2017.08.007
10.1007/s00253-017-8453-8
10.4236/aim.2019.96034
10.1080/15422119.2016.1185017
10.1007/s00253-015-6762-3
10.1007/s11274-015-1799-0
10.17113/ftb.56.02.18.5593
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7T7
8FD
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/microorganisms10091741
DatabaseName CrossRef
PubMed
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection (Hollins)
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database

PubMed
AGRICOLA
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-2607
ExternalDocumentID oai_doaj_org_article_4c6581ca25f547ad928cdd154231e040
PMC9500637
36144343
10_3390_microorganisms10091741
Genre Journal Article
GeographicLocations Morocco
GeographicLocations_xml – name: Morocco
GrantInformation_xml – fundername: Centre National de la Recherche Scientifique
  grantid: PPR2/2016/47
– fundername: National Center for Scientific and Technical Research (CNRST)
  grantid: PPR2/2016/47
GroupedDBID 53G
5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ACPRK
AFKRA
AFPKN
AFRAH
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
GS5
GX1
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RNS
RPM
NPM
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c541t-d7798abcac56bdc21dff8b75b50dd3612c5296ba6d687e010201adcc00a09a513
IEDL.DBID DOA
ISSN 2076-2607
IngestDate Wed Aug 27 01:28:50 EDT 2025
Thu Aug 21 18:39:38 EDT 2025
Thu Sep 04 20:27:07 EDT 2025
Fri Sep 05 11:18:44 EDT 2025
Fri Jul 25 12:00:03 EDT 2025
Thu Jan 02 22:52:45 EST 2025
Tue Jul 01 01:32:34 EDT 2025
Thu Apr 24 22:56:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Acetobacter fabarum
pH
acetic acid bacteria
ethanol–thermo-tolerant strains
acetic acid tolerant
Acetobacter pasteurianus
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-d7798abcac56bdc21dff8b75b50dd3612c5296ba6d687e010201adcc00a09a513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4070-3996
0000-0002-7619-3676
0000-0003-2073-3394
0000-0002-6207-2822
0000-0002-6419-2473
OpenAccessLink https://doaj.org/article/4c6581ca25f547ad928cdd154231e040
PMID 36144343
PQID 2716553718
PQPubID 2032358
ParticipantIDs doaj_primary_oai_doaj_org_article_4c6581ca25f547ad928cdd154231e040
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9500637
proquest_miscellaneous_2723123918
proquest_miscellaneous_2717693535
proquest_journals_2716553718
pubmed_primary_36144343
crossref_citationtrail_10_3390_microorganisms10091741
crossref_primary_10_3390_microorganisms10091741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220829
PublicationDateYYYYMMDD 2022-08-29
PublicationDate_xml – month: 8
  year: 2022
  text: 20220829
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Microorganisms (Basel)
PublicationTitleAlternate Microorganisms
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Arifuzzaman (ref_35) 2014; 8
Chen (ref_16) 2016; 32
Perumpuli (ref_20) 2014; 78
Qiu (ref_9) 2021; 11
Dartnell (ref_21) 2010; 22
Pothimon (ref_18) 2020; 98
Kappeng (ref_36) 2009; 3
Raspor (ref_15) 2008; 28
Gao (ref_31) 2020; 40
Pretorius (ref_29) 2002; 52
Benagli (ref_11) 2013; 36
Pal (ref_4) 2017; 46
Torres (ref_10) 2010; 231
Ndoye (ref_14) 2006; 39
Kadere (ref_33) 2008; 7
Tamura (ref_41) 2007; 24
Nakano (ref_46) 2004; 235
Yuan (ref_13) 2013; 236
Mira (ref_30) 2015; 99
Saichana (ref_6) 2015; 33
Barja (ref_8) 2014; 196
Yetiman (ref_12) 2015; 204
(ref_37) 2012; 6
Wang (ref_44) 2015; 31
Lakhlifi (ref_27) 2021; 68
Vashisht (ref_3) 2019; 690
Matsushita (ref_24) 2016; 80
Nakano (ref_45) 2008; 125
Gomes (ref_7) 2018; 56
Yamada (ref_34) 1999; 45
Zheng (ref_40) 2017; 101
Yanti (ref_38) 2017; 9
Shafiee (ref_43) 2019; 13
Kourouma (ref_32) 2022; 12
Matsumoto (ref_25) 2021; 85
ref_42
Merli (ref_1) 2021; 798
Moryadee (ref_17) 2008; 3
Kanchanarach (ref_19) 2010; 74
Mounir (ref_26) 2016; 121
(ref_2) 2018; 49
Matsumoto (ref_47) 2020; 84
Soumahoro (ref_23) 2016; 95
Mamlouk (ref_5) 2013; 53
Castro (ref_28) 2022; 112
Konate (ref_22) 2014; 26
Mathew (ref_39) 2019; 9
References_xml – volume: 39
  start-page: 916
  year: 2006
  ident: ref_14
  article-title: Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar
  publication-title: Enzym. Microb. Technol.
  doi: 10.1016/j.enzmictec.2006.01.020
– ident: ref_42
  doi: 10.3390/ijerph19010463
– volume: 121
  start-page: 166
  year: 2016
  ident: ref_26
  article-title: Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor
  publication-title: J. Biosci. Bioeng.
  doi: 10.1016/j.jbiosc.2015.06.005
– volume: 3
  start-page: 71
  year: 2009
  ident: ref_36
  article-title: Isolation of acetic acid bacteria from honey
  publication-title: Maejo Int. J. Sci. Technol.
– volume: 80
  start-page: 655
  year: 2016
  ident: ref_24
  article-title: Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2015.1104235
– volume: 8
  start-page: 359
  year: 2014
  ident: ref_35
  article-title: Isolation and characterization of Acetobacter and Gluconobacter spp from sugarcane and rotten fruits
  publication-title: Res. Rev. Biosci.
– volume: 84
  start-page: 832
  year: 2020
  ident: ref_47
  article-title: In vitro thermal adaptation of mesophilic Acetobacter pasteurianus NBRC 3283 generates thermotolerant strains with evolutionary trade-offs
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2019.1703638
– volume: 9
  start-page: 387
  year: 2017
  ident: ref_38
  article-title: Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste
  publication-title: Biosaintifika J. Biol. Biol. Educ.
  doi: 10.15294/biosaintifika.v9i3.10241
– volume: 12
  start-page: 177
  year: 2022
  ident: ref_32
  article-title: Thermoresistant, Ethanol-Resistant and Acid-Resistant Properties of Acetic Acid Bacteria Isolated from Fermented Mango Alcohol
  publication-title: Adv. Microbiol.
  doi: 10.4236/aim.2022.124014
– volume: 28
  start-page: 101
  year: 2008
  ident: ref_15
  article-title: Biotechnological applications of acetic acid bacteria
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388550802046749
– volume: 52
  start-page: 155
  year: 2002
  ident: ref_29
  article-title: The occurrence, control and esoteric effect of acetic acid bacteria in winemaking
  publication-title: Ann. Microbiol.
– volume: 22
  start-page: 171
  year: 2010
  ident: ref_21
  article-title: Desiccation resistance of Antarctic Dry Valley bacteria isolated from contrasting locations
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102009990745
– volume: 40
  start-page: 522
  year: 2020
  ident: ref_31
  article-title: Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria: Advances and prospects
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2020.1743231
– volume: 236
  start-page: 573
  year: 2013
  ident: ref_13
  article-title: Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-012-1885-6
– volume: 74
  start-page: 1591
  year: 2010
  ident: ref_19
  article-title: Acetic acid fermentation of acetobacter pasteurianus: Relationship between acetic acid resistance and pellicle polysaccharide formation
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.100183
– volume: 690
  start-page: 956
  year: 2019
  ident: ref_3
  article-title: Waste valorization: Identification of an ethanol tolerant bacterium Acetobacter pasteurianus SKYAA25 for acetic acid production from apple pomace
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.07.070
– volume: 85
  start-page: 1243
  year: 2021
  ident: ref_25
  article-title: Thermal adaptation of acetic acid bacteria for practical high-temperature vinegar fermentation
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1093/bbb/zbab009
– volume: 112
  start-page: 104699
  year: 2022
  ident: ref_28
  article-title: Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using Acetobacter malorum and Gluconobacter oxydans: Study of volatile and polyphenolic composition
  publication-title: J. Food Compos. Anal.
  doi: 10.1016/j.jfca.2022.104699
– volume: 204
  start-page: 9
  year: 2015
  ident: ref_12
  article-title: Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2015.03.013
– volume: 3
  start-page: 209
  year: 2008
  ident: ref_17
  article-title: Isolation of Thermotolerant Acetic Acid Bacteria from Fruits for Vinegar Production
  publication-title: Res. J. Microbiol.
  doi: 10.3923/jm.2008.209.212
– volume: 78
  start-page: 533
  year: 2014
  ident: ref_20
  article-title: Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1080/09168451.2014.882758
– volume: 6
  start-page: 339
  year: 2012
  ident: ref_37
  article-title: Isolation and characterization of acetic acid bacteria in cocoa fermentation
  publication-title: Afr. J. Microbiol. Res.
– volume: 24
  start-page: 1596
  year: 2007
  ident: ref_41
  article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msm092
– volume: 32
  start-page: 14
  year: 2016
  ident: ref_16
  article-title: Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-015-1961-8
– volume: 26
  start-page: 773
  year: 2014
  ident: ref_22
  article-title: Isolation of thermotolerant and high acetic acid-producing Acetobacter pasteurianus from Ivorian palm wine
  publication-title: Emir. J. Food Agric.
  doi: 10.9755/ejfa.v26i9.18122
– volume: 798
  start-page: 149292
  year: 2021
  ident: ref_1
  article-title: Acetic acid bioproduction: The technological innovation change
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149292
– volume: 7
  start-page: 2963
  year: 2008
  ident: ref_33
  article-title: Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi)
  publication-title: Afr. J. Biotechnol.
– volume: 45
  start-page: 23
  year: 1999
  ident: ref_34
  article-title: Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter
  publication-title: J. Gen. Appl. Microbiol.
  doi: 10.2323/jgam.45.23
– volume: 36
  start-page: 75
  year: 2013
  ident: ref_11
  article-title: Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1016/j.syapm.2012.09.002
– volume: 98
  start-page: 41
  year: 2020
  ident: ref_18
  article-title: Conducting High acetic acid and temperature acetification processes by Acetobacter pasteurianus UMCC 2951
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2020.07.022
– volume: 11
  start-page: 29
  year: 2021
  ident: ref_9
  article-title: Classification of acetic acid bacteria and their acid resistant mechanism
  publication-title: AMB Express
  doi: 10.1186/s13568-021-01189-6
– volume: 125
  start-page: 54
  year: 2008
  ident: ref_45
  article-title: Analysis of proteins responsive to acetic acid in Acetobacter: Molecular mechanisms conferring acetic acid resistance in acetic acid bacteria
  publication-title: Int. J. Food Microbiol.
  doi: 10.1016/j.ijfoodmicro.2007.05.015
– volume: 53
  start-page: 377
  year: 2013
  ident: ref_5
  article-title: Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation
  publication-title: Indian J. Microbiol.
  doi: 10.1007/s12088-013-0414-z
– volume: 68
  start-page: 476
  year: 2021
  ident: ref_27
  article-title: Screening and molecular characterization of new thermo- and ethanol-tolerant Acetobacter malorum strains isolated from two biomes Moroccan cactus fruits
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1941
– volume: 13
  start-page: 251
  year: 2019
  ident: ref_43
  article-title: Isolation and Identification of A Novel Strain of Acetobacter ghanensis KBMNS-IAUF-6 from Banana Fruit, Resistant to High Temperature and Ethanol Concentration
  publication-title: Iran. J. Med. Microbiol.
  doi: 10.30699/ijmm.13.4.251
– volume: 231
  start-page: 813
  year: 2010
  ident: ref_10
  article-title: Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production
  publication-title: Eur. Food Res. Technol.
  doi: 10.1007/s00217-010-1331-6
– volume: 196
  start-page: 137
  year: 2014
  ident: ref_8
  article-title: Updates on quick identification of acetic acid bacteria with a focus on the 16S−23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry
  publication-title: Int. J. Food Microbiol.
– volume: 33
  start-page: 1260
  year: 2015
  ident: ref_6
  article-title: Acetic acid bacteria: A group of bacteria with versatile biotechnological applications revue
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.12.001
– volume: 95
  start-page: 8981
  year: 2016
  ident: ref_23
  article-title: Effects of culture conditions on acetic acid production by bacteria isolated from Ivoirian fermenting cocoa (Theobroma cacao L.) beans
  publication-title: J. Appl. Biosci.
  doi: 10.4314/jab.v95i1.8
– volume: 235
  start-page: 315
  year: 2004
  ident: ref_46
  article-title: Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2004.tb09605.x
– volume: 49
  start-page: 115
  year: 2018
  ident: ref_2
  article-title: Acetic acid bacteria in fermented foods and beverages
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.08.007
– volume: 101
  start-page: 7007
  year: 2017
  ident: ref_40
  article-title: Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-017-8453-8
– volume: 9
  start-page: 556
  year: 2019
  ident: ref_39
  article-title: Isolation of Acetic Acid Bacteria and Preparation of Starter Culture for Apple Cider Vinegar Fermentation
  publication-title: Adv. Microbiol.
  doi: 10.4236/aim.2019.96034
– volume: 46
  start-page: 44
  year: 2017
  ident: ref_4
  article-title: Acetic Acid Production and Purification: Critical Review Towards Process Intensification
  publication-title: Sep. Purif. Rev.
  doi: 10.1080/15422119.2016.1185017
– volume: 99
  start-page: 6215
  year: 2015
  ident: ref_30
  article-title: Adaptation and tolerance of bacteria against acetic acid
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-015-6762-3
– volume: 31
  start-page: 255
  year: 2015
  ident: ref_44
  article-title: Overview on mechanisms of acetic acid resistance in acetic acid bacteria
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-015-1799-0
– volume: 56
  start-page: 139
  year: 2018
  ident: ref_7
  article-title: Acetic acid bacteria in the food industry: Systematics, characteristics and applications
  publication-title: Food Technol. Biotechnol.
  doi: 10.17113/ftb.56.02.18.5593
SSID ssj0000913851
Score 2.287277
Snippet The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1741
SubjectTerms acetates
Acetic acid
Acetic acid bacteria
acetic acid tolerant
Acetobacter
Acetobacter fabarum
Acetobacter pasteurianus
Acid production
Acids
Adaptation
Aridity
Bacteria
Biotopes
Carbon dioxide
Cooling systems
Drug tolerance
Environmental conditions
Ethanol
ethanol–thermo-tolerant strains
Fermentation
Fruits
Gene sequencing
genes
Glucose
Gram-negative bacteria
Heat resistance
High temperature
industry
Metabolism
Microorganisms
Morphology
Optimization
Oxidation
Peptones
pH effects
Production capacity
Raw materials
rRNA 16S
Semiarid zones
Strains (organisms)
Substrates
summer
Vinegar
vinegars
Yeast
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NatwwEBZtQqGX0v84TYsKvZq1ZcmyTyUJG0KhaWgSyM1II5kurO1tvHvore-QN-kj9Uk6Y3vd3RLSk8EayzYz-vRppJlh7IPI0txCokJnEAKJUoeZEzKUCsAjavpIUOzw57P09Ep-ulbXg8OtHY5VrjGxA2rXAPnIJwKJvVIJQunHxfeQqkbR7upQQuMh20UIztDOd4-mZ-dfRy8LZb1ETtGHBie4vp9UdM6tr5jUVm1MElrGW7NSl7z_Lsb578HJjZno5Cl7MlBIftjr_Bl74Ovn7FFfVPLHC_brAugsDU5J3NSOH48ZmfuAS96UHJGNH4KnsUwtvKR9_VXVyW_eXxi0gRWaaL1q-UVXTaLl5LnldDyET8nt3sx__7xFY7upGn7ZzD0V6vBdT0gt-RdEpGrjzdT7DPAyc_y8TzaLLS_Z1cn08vg0HCozhKBkvAyd1nlmLBhQqXUgYleWmdXKqsi5BEkT0HauNalLM-0pbV0UGwcQRSbKjYqTV2ynbmq_x3hkpbFxKTXpIS9Tq0HmkRM-xYUPWBswtdZMAUPacvrfeYHLF9JocbdGAzYZn1v0iTv--8QRKX6UpsTb3Q2ULIZxXEhAyhaDEapUUhuXiwycQx6KPNkjIAbsYG02xYAGbfHXdgP2fmzGcUybM6b2zaqTobKUKlH3yeBbRJJTP697Sxy_NqGVfSKTgOktG936ne2WevatyyeeKyKqev_-T3_DHgsK_YgoaueA7SxvVv4tErKlfTeMuj-sVj7S
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datVAEF5KRfBG_DdaZQVvY5P9yc-FSC0tRagK7YHehf0LHjhJ2pMTsHd9h76AD-ET-Cg-iTObnNDIod54FcjsbrKZn_0muzNDyFuWJbk2XIZWgQlESB1mlolQSGMcWE0XMYwdPv6cHM3EpzN5tkXW5VKHD9hudO2wntRsuXj3_eLyAyj8e_Q4wWXfrfDoWl8Eqa3aGFADwGzwiO7A6pSgQ3Y8QH5vnfOYA8rog4Vv6T5Zp3w6_00Y9O-jlDfWpsMH5P4AKuleLwUPyZarH5G7fZnJy8fk54nB0zWwSFFVW7o_5mjuQzBpU1KwdXTPONRupPz6UeJWf1f5DhPCuQK56EBs666lJ77CREvxby7FIyP0AH_FN4vfV9cggMuqoafNwmHxDueHArhJv4CVqm48G4efG7jMLf3aJ6AFyhMyOzw43T8Kh2oNoZEiXoU2TfNMaaOMTLQ1LLZlmelUahlZywFIGdzi1SqxSZY6TGUXxcoaE0UqypWM-VOyXTe1e05opIXScSlS5EReJjo1Io8scwk4Q0brgMg1bwozpDLH-S4KcGmQp8VmngZkd-x33ifz-GePj8j6sTUm4_Y3oGUx6HYhDMC42CgmSylSZXOWGWsBmwJ2dmAkA7KzFpxiLeAFA0dVSg7QICBvRjLoNm7YqNo1nW-DpSoll7e1gacwnuM4z3pZHN-Wo7fPBQ9IOpHSyXSmlHr-zecYzyWC1_TF_5j_S3KPYdBIhPE-O2R7tezcK4ByK_3a6-YfF4NThA
  priority: 102
  providerName: Scholars Portal
Title Screening and Characterization of New Acetobacter fabarum and Acetobacter pasteurianus Strains with High Ethanol–Thermo Tolerance and the Optimization of Acetic Acid Production
URI https://www.ncbi.nlm.nih.gov/pubmed/36144343
https://www.proquest.com/docview/2716553718
https://www.proquest.com/docview/2717693535
https://www.proquest.com/docview/2723123918
https://pubmed.ncbi.nlm.nih.gov/PMC9500637
https://doaj.org/article/4c6581ca25f547ad928cdd154231e040
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LatwwUJSUQi-l77pNgwq9mpUtybaOSdgQCklDk0BuRi_ThV07xOtDbvmH_EA_ol_QT-mXdMZyzLqE5tLLGnZGsuUZzcOaByGf0yJTxnIZOw0iEE3quHCpiIW01oPU9CzF3OGj4-zwXHy5kBcbrb4wJiyUBw4vbiYs6MjE6lRWUuTaqbSwzoHiB8PEAwei9GWKbThTvQxWCQdbIqQEc_DrZyuMbwudktpVmyBGLpKJNuqL9t9naf4dMLmhgQ6ek2eD6Uh3wyO_II98_ZI8Cc0kr1-Rn6cWY2hAFVFdO7o_VmIOiZa0qShINLprPe5hhPz6UeGBfrfqB0wAlxqo3wFz1l1LT_s-Ei3Fb7YUA0PoHD-4N8vfN7fAZlerhp41S48tOnw_FRiV9CvIotXGvXH6hYXLwtGTUGYWIK_J-cH8bP8wHnoyxFaKZB27PFeFNlZbmRln08RVVWFyaSRzjoO5ZPEg1-jMZUXusWAdS7SzljHNlJYJf0O26qb27whlRmiTVCJHSqgqM7kVirnUZ-DyWGMiIu9oU9qhYDmud1mC44I0Le-naURm47jLULLjwRF7SPoRG0tu938AZjkwYvkQI0Zk-45xykEOtGUK7qiUHAyAiHwawbCD8VhG177pehxsSCm5_BcO3CXlCud5G3hxfFqOPj0XPCL5hEsny5lC6sX3vpK4kmii5u__x_o_kKcppoYwzOrZJlvrq85_BINtbXbI47358cm3nX6Pwu-RKP4AOaNKKA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVAg2iDeBAoMESyv2PPxYINSWVCltQ0VTqTszL4tIiR3qRKg7_oH_YMEn8SXcazsmQVVZdWXJcz22de-cOTNzH4S8ZnGYaMOlZxVAIFJqL7ZMeEIa4wA1nc8wdvhoGA5OxYczebZBfi5jYdCtcomJFVDbwuAeeY8BsZeSA5S-m331sGoUnq4uS2jUZnHgLr7Bkq18u_8e9PuGsb3-aHfgNVUFPCNFMPdsFCWx0kYZGWprWGCzLNaR1NK3lsOEb_AoUqvQhnHkMOWaHyhrjO8rP1Ey4NDvDbIpMKK1QzZ3-sPjT-2uDmbZBA5ThyJznvi9KfrV1RWaymkZoEQkgrVZsCoWcBnD_ddRc2Xm27tL7jSUlW7XNnaPbLj8PrlZF7G8eEB-nRj03YEpkKrc0t02A3Qd4EmLjAKS0m3jEDuwhWboR7CYVvKr92cKbG4BQyJflPSkql5RUtwppuiOQvu4zV9Mfn__AcZ9Pi3oqJg4LAziqp6AytKPgIDTlTdj72MDl7Glx3VyW2h5SE6vRWePSCcvcveEUF8LpYNMRKiHJAt1ZETiW-ZCWGgZrbtELjWTmiZNOv7vJIXlEmo0vVyjXdJrn5vViUL--8QOKr6VxkTf1Q2QTBvcSIUBihgYxWQmRaRswmJjLfBe4OUOALhLtpZmkzboU6Z_x0qXvGqbATfwMEjlrlhUMlgGU3J5lQy8hfEE-3lcW2L7tRx3ErjgXRKt2eja76y35OMvVf7yRCIxjp5e_ekvya3B6OgwPdwfHjwjtxmGnfgYMbRFOvPzhXsOZHCuXzQjkJLP1z3o_wBkMXxh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVCA2iDeBAoMESyv2PPxYINRHopZCiGgrdefOyyJSYoc6EeqOf-BPWPI5fAn32o5JUFVWXVnyXI9t3TtnzszcByGvWRwm2nDpWQUQiJTaiy0TnpDGOEBN5zOMHf44DPdPxPtTebpBfi1jYdCtcomJFVDbwuAeeY8BsZeSA5T2ssYtYrQ3eDf76mEFKTxpXZbTqE3k0F18g-Vb-fZgD3T9hrFB_3h332sqDHhGimDu2ShKYqWNMjLU1rDAZlmsI6mlby2Hyd_gsaRWoQ3jyGH6NT9Q1hjfV36iZMCh3xtkM4JZUXTI5k5_OPrc7vBgxk3gM3VYMueJ35uij11dramclgFKRCJYmxGrwgGXsd1_nTZXZsHBXXKnoa90u7a3e2TD5ffJzbqg5cUD8vPIoB8PTIdU5Zbuttmg62BPWmQUUJVuG4c4gi00Q5-CxbSSX70_U2B_Cxge-aKkR1Uli5LirjFF1xTaxy3_YvL7-w8w9PNpQY-LicMiIa7qCWgt_QRoOF15M_Y-NnAZWzqqE91Cy0Nyci06e0Q6eZG7J4T6WigdZCJCPSRZqCMjEt8yF8Kiy2jdJXKpmdQ0KdPxfycpLJ1Qo-nlGu2SXvvcrE4a8t8ndlDxrTQm_a5ugGTaYEgqDNDFwCgmMykiZRMWG2uBAwNHdwDGXbK1NJu0QaIy_TtuuuRV2wwYggdDKnfFopLBkpiSy6tk4C2MJ9jP49oS26_luKvABe-SaM1G135nvSUff6lymScSSXL09OpPf0luwWBPPxwMD5-R2wwjUHwMHtoinfn5wj0HXjjXL5oBSMnZdY_5P4ILgI0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+and+Characterization+of+New+Acetobacter%C2%A0fabarum+and+Acetobacter%C2%A0pasteurianus+Strains+with+High+Ethanol%E2%80%93Thermo+Tolerance+and+the+Optimization+of+Acetic+Acid+Production&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Taoufik+El-Askri&rft.au=Meriem+Yatim&rft.au=Youness+Sehli&rft.au=Abdelilah+Rahou&rft.date=2022-08-29&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=10&rft.issue=9&rft.spage=1741&rft_id=info:doi/10.3390%2Fmicroorganisms10091741&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c6581ca25f547ad928cdd154231e040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon