Screening and Characterization of New Acetobacter fabarum and Acetobacter pasteurianus Strains with High Ethanol–Thermo Tolerance and the Optimization of Acetic Acid Production
The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes wi...
Saved in:
Published in | Microorganisms (Basel) Vol. 10; no. 9; p. 1741 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.08.2022
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2076-2607 2076-2607 |
DOI | 10.3390/microorganisms10091741 |
Cover
Abstract | The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures. |
---|---|
AbstractList | The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures. The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO 2 and H 2 O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus . The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% ( v / v ) of ethanol. All six strains tolerated an ethanol concentration of 16% ( v / v ). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% ( v / v ) for the strains of FAGD1, FAGD10 and FAGD18, and 3% ( v / v ) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% ( v / v ). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures. The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO₂ and H₂O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures. The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures.The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria (AAB) to high temperatures and high ethanol concentrations. In this study, we used 25 samples of different fruits from seven Moroccan biotopes with arid and semi-arid environmental conditions as a basic substrate to isolate thermo- and ethanol-tolerant AAB strains. The isolation and morphological, biochemical and metabolic characterization of these bacteria allowed us to isolate a total number of 400 strains with characters similar to AAB, of which six strains (FAGD1, FAGD10, FAGD18 and GCM2, GCM4, GCM15) were found to be mobile and immobile Gram-negative bacteria with ellipsoidal rod-shaped colonies that clustered in pairs and in isolated chains. These strains are capable of producing acetic acid from ethanol, growing on peptone and oxidizing acetate to CO2 and H2O. Strains FAGD1, FAGD10 and FAGD18 show negative growth on YPG medium containing D-glucose > 30%, while strains GCM2, GCM4 and GCM15 show positive growth. These six strains stand out on CARR indicator medium as isolates of the genus Acetobacter ssp. Analysis of 16S rDNA gene sequencing allowed us to differentiate these strains as Acetobacter fabarum and Acetobacter pasteurianus. The study of the tolerance of these six isolates towards pH showed that most of the six strains are unable to grow at pH 3 and pH 9, with an ideal pH of 5. The behavior of the six strains at different concentrations of ethanol shows an optimal production of acetic acid after incubation at concentrations between 6% and 8% (v/v) of ethanol. All six strains tolerated an ethanol concentration of 16% (v/v). The resistance of the strains to acetic acid differs between the species of AAB. The optimum acetic acid production is obtained at a concentration of 1% (v/v) for the strains of FAGD1, FAGD10 and FAGD18, and 3% (v/v) for GCM2, GCM4 and GCM15. These strains are able to tolerate an acetic acid concentration of up to 6% (v/v). The production kinetics of the six strains show the highest levels of growth and acetic acid production at 30 °C. This rate of growth and acetic acid production is high at 35 °C, 37 °C and 40 °C. Above 40 °C, the production of acid is reduced. All six strains continue to produce acetic acid, even at high temperatures up to 48 °C. These strains can be used in the vinegar production industry to minimize the load on cooling systems, especially in countries with high summer temperatures. |
Author | El-Askri, Taoufik Rahou, Abdelilah Castro, Remedios Hafidi, Majida Belhaj, Abdelhaq Zouhair, Rachid Durán-Guerrero, Enrique Yatim, Meriem Sehli, Youness |
AuthorAffiliation | 1 Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco 2 Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain 3 Laboratory of Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco |
AuthorAffiliation_xml | – name: 3 Laboratory of Ecology and Biodiversity of Wetlands Team, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco – name: 1 Laboratory of Plant Biotechnology and Bio-Resources Valorization, Department of Biology, Faculty of Sciences, Moulay Ismail University, Zitoune, Meknes 50050, Morocco – name: 2 Analytical Chemistry Department, Faculty of Sciences-IVAGRO, Agrifood Campus of International Excellence (CeiA3), University of Cadiz, Polígono Río San Pedro, s/n, 11510 Cadiz, Spain |
Author_xml | – sequence: 1 givenname: Taoufik orcidid: 0000-0002-7619-3676 surname: El-Askri fullname: El-Askri, Taoufik – sequence: 2 givenname: Meriem orcidid: 0000-0002-6207-2822 surname: Yatim fullname: Yatim, Meriem – sequence: 3 givenname: Youness orcidid: 0000-0002-4070-3996 surname: Sehli fullname: Sehli, Youness – sequence: 4 givenname: Abdelilah surname: Rahou fullname: Rahou, Abdelilah – sequence: 5 givenname: Abdelhaq surname: Belhaj fullname: Belhaj, Abdelhaq – sequence: 6 givenname: Remedios orcidid: 0000-0002-6419-2473 surname: Castro fullname: Castro, Remedios – sequence: 7 givenname: Enrique orcidid: 0000-0003-2073-3394 surname: Durán-Guerrero fullname: Durán-Guerrero, Enrique – sequence: 8 givenname: Majida surname: Hafidi fullname: Hafidi, Majida – sequence: 9 givenname: Rachid surname: Zouhair fullname: Zouhair, Rachid |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36144343$$D View this record in MEDLINE/PubMed |
BookMark | eNqNklFu1DAQhiNURMvSK1SReOFlwU5iO5EQUrUqtFJFkbo8WxPb2XiV2IvttIIn7sAFOAQn4CicBCfbot0KCeSHsTz_fDMa_0-TA2ONSpITjF7meYVe9Vo4a90KjPa9xwhVmBX4UXKUIUbnGUXsYOd-mBx7v0ZolOUlwU-Sw5ziosiL_Cj5cS2cUkabVQpGposWHIignP4CQVuT2iZ9r27TU6GCrafMz-8N1OCGfirYS2zABzU4DWbw6XVwoI1Pb3Vo03O9atOz0IKx3a-v35atcr1Nl7ZTDoxQEyq0Kr3aBN3v9B7xWsSgZfrBWTmIMfMsedxA59XxXZwlH9-eLRfn88urdxeL08u5IAUOc8lYVUItQBBaS5Fh2TRlzUhNkJRxBZkgWUVroJKWTCGMMoRBCoEQoAoIzmfJxZYrLaz5xuke3GduQfPpIf4ABxfn6xQvBCUlFpCRhhQMZJWVQkpMiizHChUost5sWZuh7pUUysT9dHvQ_YzRLV_ZG14RhGjOIuDFHcDZT4PygffaC9V1YJQdPM9YbJXlFS7_Q4oZrXISzyx5_kC6toMzcaujihKSswl4sjv8n6nvfRQFr7eCaEzvnWq40GH6xdEFHceIj87lf3duLKcPyu87_KPwN5cq_nI |
CitedBy_id | crossref_primary_10_22207_JPAM_17_4_32 crossref_primary_10_3390_fermentation10040200 crossref_primary_10_1002_jctb_7289 crossref_primary_10_3390_antibiotics13070626 crossref_primary_10_1016_j_fbio_2024_105198 crossref_primary_10_3390_fermentation9050447 crossref_primary_10_3390_fermentation11010038 crossref_primary_10_3390_fermentation10010018 crossref_primary_10_1016_j_foodres_2023_113742 crossref_primary_10_3389_fmicb_2024_1405564 crossref_primary_10_1051_bioconf_202410810005 crossref_primary_10_3390_app13137366 crossref_primary_10_3390_fermentation11020105 crossref_primary_10_4236_fns_2023_147042 |
Cites_doi | 10.1016/j.enzmictec.2006.01.020 10.3390/ijerph19010463 10.1016/j.jbiosc.2015.06.005 10.1080/09168451.2015.1104235 10.1080/09168451.2019.1703638 10.15294/biosaintifika.v9i3.10241 10.4236/aim.2022.124014 10.1080/07388550802046749 10.1017/S0954102009990745 10.1080/07388551.2020.1743231 10.1007/s00217-012-1885-6 10.1271/bbb.100183 10.1016/j.scitotenv.2019.07.070 10.1093/bbb/zbab009 10.1016/j.jfca.2022.104699 10.1016/j.ijfoodmicro.2015.03.013 10.3923/jm.2008.209.212 10.1080/09168451.2014.882758 10.1093/molbev/msm092 10.1007/s11274-015-1961-8 10.9755/ejfa.v26i9.18122 10.1016/j.scitotenv.2021.149292 10.2323/jgam.45.23 10.1016/j.syapm.2012.09.002 10.1016/j.procbio.2020.07.022 10.1186/s13568-021-01189-6 10.1016/j.ijfoodmicro.2007.05.015 10.1007/s12088-013-0414-z 10.1002/bab.1941 10.30699/ijmm.13.4.251 10.1007/s00217-010-1331-6 10.1016/j.biotechadv.2014.12.001 10.4314/jab.v95i1.8 10.1111/j.1574-6968.2004.tb09605.x 10.1016/j.copbio.2017.08.007 10.1007/s00253-017-8453-8 10.4236/aim.2019.96034 10.1080/15422119.2016.1185017 10.1007/s00253-015-6762-3 10.1007/s11274-015-1799-0 10.17113/ftb.56.02.18.5593 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
DBID | AAYXX CITATION NPM 7T7 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms10091741 |
DatabaseName | CrossRef PubMed Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection (Hollins) Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed AGRICOLA MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_4c6581ca25f547ad928cdd154231e040 PMC9500637 36144343 10_3390_microorganisms10091741 |
Genre | Journal Article |
GeographicLocations | Morocco |
GeographicLocations_xml | – name: Morocco |
GrantInformation_xml | – fundername: Centre National de la Recherche Scientifique grantid: PPR2/2016/47 – fundername: National Center for Scientific and Technical Research (CNRST) grantid: PPR2/2016/47 |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM NPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c541t-d7798abcac56bdc21dff8b75b50dd3612c5296ba6d687e010201adcc00a09a513 |
IEDL.DBID | DOA |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:28:50 EDT 2025 Thu Aug 21 18:39:38 EDT 2025 Thu Sep 04 20:27:07 EDT 2025 Fri Sep 05 11:18:44 EDT 2025 Fri Jul 25 12:00:03 EDT 2025 Thu Jan 02 22:52:45 EST 2025 Tue Jul 01 01:32:34 EDT 2025 Thu Apr 24 22:56:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Acetobacter fabarum pH acetic acid bacteria ethanol–thermo-tolerant strains acetic acid tolerant Acetobacter pasteurianus |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-d7798abcac56bdc21dff8b75b50dd3612c5296ba6d687e010201adcc00a09a513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4070-3996 0000-0002-7619-3676 0000-0003-2073-3394 0000-0002-6207-2822 0000-0002-6419-2473 |
OpenAccessLink | https://doaj.org/article/4c6581ca25f547ad928cdd154231e040 |
PMID | 36144343 |
PQID | 2716553718 |
PQPubID | 2032358 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4c6581ca25f547ad928cdd154231e040 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9500637 proquest_miscellaneous_2723123918 proquest_miscellaneous_2717693535 proquest_journals_2716553718 pubmed_primary_36144343 crossref_citationtrail_10_3390_microorganisms10091741 crossref_primary_10_3390_microorganisms10091741 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220829 |
PublicationDateYYYYMMDD | 2022-08-29 |
PublicationDate_xml | – month: 8 year: 2022 text: 20220829 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Microorganisms (Basel) |
PublicationTitleAlternate | Microorganisms |
PublicationYear | 2022 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Arifuzzaman (ref_35) 2014; 8 Chen (ref_16) 2016; 32 Perumpuli (ref_20) 2014; 78 Qiu (ref_9) 2021; 11 Dartnell (ref_21) 2010; 22 Pothimon (ref_18) 2020; 98 Kappeng (ref_36) 2009; 3 Raspor (ref_15) 2008; 28 Gao (ref_31) 2020; 40 Pretorius (ref_29) 2002; 52 Benagli (ref_11) 2013; 36 Pal (ref_4) 2017; 46 Torres (ref_10) 2010; 231 Ndoye (ref_14) 2006; 39 Kadere (ref_33) 2008; 7 Tamura (ref_41) 2007; 24 Nakano (ref_46) 2004; 235 Yuan (ref_13) 2013; 236 Mira (ref_30) 2015; 99 Saichana (ref_6) 2015; 33 Barja (ref_8) 2014; 196 Yetiman (ref_12) 2015; 204 (ref_37) 2012; 6 Wang (ref_44) 2015; 31 Lakhlifi (ref_27) 2021; 68 Vashisht (ref_3) 2019; 690 Matsushita (ref_24) 2016; 80 Nakano (ref_45) 2008; 125 Gomes (ref_7) 2018; 56 Yamada (ref_34) 1999; 45 Zheng (ref_40) 2017; 101 Yanti (ref_38) 2017; 9 Shafiee (ref_43) 2019; 13 Kourouma (ref_32) 2022; 12 Matsumoto (ref_25) 2021; 85 ref_42 Merli (ref_1) 2021; 798 Moryadee (ref_17) 2008; 3 Kanchanarach (ref_19) 2010; 74 Mounir (ref_26) 2016; 121 (ref_2) 2018; 49 Matsumoto (ref_47) 2020; 84 Soumahoro (ref_23) 2016; 95 Mamlouk (ref_5) 2013; 53 Castro (ref_28) 2022; 112 Konate (ref_22) 2014; 26 Mathew (ref_39) 2019; 9 |
References_xml | – volume: 39 start-page: 916 year: 2006 ident: ref_14 article-title: Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial vinegar publication-title: Enzym. Microb. Technol. doi: 10.1016/j.enzmictec.2006.01.020 – ident: ref_42 doi: 10.3390/ijerph19010463 – volume: 121 start-page: 166 year: 2016 ident: ref_26 article-title: Simultaneous production of acetic and gluconic acids by a thermotolerant Acetobacter strain during acetous fermentation in a bioreactor publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2015.06.005 – volume: 3 start-page: 71 year: 2009 ident: ref_36 article-title: Isolation of acetic acid bacteria from honey publication-title: Maejo Int. J. Sci. Technol. – volume: 80 start-page: 655 year: 2016 ident: ref_24 article-title: Genomic analyses of thermotolerant microorganisms used for high-temperature fermentations publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2015.1104235 – volume: 8 start-page: 359 year: 2014 ident: ref_35 article-title: Isolation and characterization of Acetobacter and Gluconobacter spp from sugarcane and rotten fruits publication-title: Res. Rev. Biosci. – volume: 84 start-page: 832 year: 2020 ident: ref_47 article-title: In vitro thermal adaptation of mesophilic Acetobacter pasteurianus NBRC 3283 generates thermotolerant strains with evolutionary trade-offs publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2019.1703638 – volume: 9 start-page: 387 year: 2017 ident: ref_38 article-title: Screening of Acetic Acid Bacteria from Pineapple Waste for Bacterial Cellulose Production using Sago Liquid Waste publication-title: Biosaintifika J. Biol. Biol. Educ. doi: 10.15294/biosaintifika.v9i3.10241 – volume: 12 start-page: 177 year: 2022 ident: ref_32 article-title: Thermoresistant, Ethanol-Resistant and Acid-Resistant Properties of Acetic Acid Bacteria Isolated from Fermented Mango Alcohol publication-title: Adv. Microbiol. doi: 10.4236/aim.2022.124014 – volume: 28 start-page: 101 year: 2008 ident: ref_15 article-title: Biotechnological applications of acetic acid bacteria publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388550802046749 – volume: 52 start-page: 155 year: 2002 ident: ref_29 article-title: The occurrence, control and esoteric effect of acetic acid bacteria in winemaking publication-title: Ann. Microbiol. – volume: 22 start-page: 171 year: 2010 ident: ref_21 article-title: Desiccation resistance of Antarctic Dry Valley bacteria isolated from contrasting locations publication-title: Antarct. Sci. doi: 10.1017/S0954102009990745 – volume: 40 start-page: 522 year: 2020 ident: ref_31 article-title: Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria: Advances and prospects publication-title: Crit. Rev. Biotechnol. doi: 10.1080/07388551.2020.1743231 – volume: 236 start-page: 573 year: 2013 ident: ref_13 article-title: Directional isolation of ethanol-tolerant acetic acid bacteria from industrial fermented vinegar publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-012-1885-6 – volume: 74 start-page: 1591 year: 2010 ident: ref_19 article-title: Acetic acid fermentation of acetobacter pasteurianus: Relationship between acetic acid resistance and pellicle polysaccharide formation publication-title: Biosci. Biotechnol. Biochem. doi: 10.1271/bbb.100183 – volume: 690 start-page: 956 year: 2019 ident: ref_3 article-title: Waste valorization: Identification of an ethanol tolerant bacterium Acetobacter pasteurianus SKYAA25 for acetic acid production from apple pomace publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.07.070 – volume: 85 start-page: 1243 year: 2021 ident: ref_25 article-title: Thermal adaptation of acetic acid bacteria for practical high-temperature vinegar fermentation publication-title: Biosci. Biotechnol. Biochem. doi: 10.1093/bbb/zbab009 – volume: 112 start-page: 104699 year: 2022 ident: ref_28 article-title: Production of prickly pear (Opuntia ficus-indica) vinegar in submerged culture using Acetobacter malorum and Gluconobacter oxydans: Study of volatile and polyphenolic composition publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2022.104699 – volume: 204 start-page: 9 year: 2015 ident: ref_12 article-title: Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2015.03.013 – volume: 3 start-page: 209 year: 2008 ident: ref_17 article-title: Isolation of Thermotolerant Acetic Acid Bacteria from Fruits for Vinegar Production publication-title: Res. J. Microbiol. doi: 10.3923/jm.2008.209.212 – volume: 78 start-page: 533 year: 2014 ident: ref_20 article-title: Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka publication-title: Biosci. Biotechnol. Biochem. doi: 10.1080/09168451.2014.882758 – volume: 6 start-page: 339 year: 2012 ident: ref_37 article-title: Isolation and characterization of acetic acid bacteria in cocoa fermentation publication-title: Afr. J. Microbiol. Res. – volume: 24 start-page: 1596 year: 2007 ident: ref_41 article-title: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm092 – volume: 32 start-page: 14 year: 2016 ident: ref_16 article-title: Screening and characterization of ethanol-tolerant and thermotolerant acetic acid bacteria from Chinese vinegar Pei publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-015-1961-8 – volume: 26 start-page: 773 year: 2014 ident: ref_22 article-title: Isolation of thermotolerant and high acetic acid-producing Acetobacter pasteurianus from Ivorian palm wine publication-title: Emir. J. Food Agric. doi: 10.9755/ejfa.v26i9.18122 – volume: 798 start-page: 149292 year: 2021 ident: ref_1 article-title: Acetic acid bioproduction: The technological innovation change publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.149292 – volume: 7 start-page: 2963 year: 2008 ident: ref_33 article-title: Isolation and identification of the genera Acetobacter and Gluconobacter in coconut toddy (mnazi) publication-title: Afr. J. Biotechnol. – volume: 45 start-page: 23 year: 1999 ident: ref_34 article-title: Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter publication-title: J. Gen. Appl. Microbiol. doi: 10.2323/jgam.45.23 – volume: 36 start-page: 75 year: 2013 ident: ref_11 article-title: Rapid identification of acetic acid bacteria using MALDI-TOF mass spectrometry fingerprinting publication-title: Syst. Appl. Microbiol. doi: 10.1016/j.syapm.2012.09.002 – volume: 98 start-page: 41 year: 2020 ident: ref_18 article-title: Conducting High acetic acid and temperature acetification processes by Acetobacter pasteurianus UMCC 2951 publication-title: Process Biochem. doi: 10.1016/j.procbio.2020.07.022 – volume: 11 start-page: 29 year: 2021 ident: ref_9 article-title: Classification of acetic acid bacteria and their acid resistant mechanism publication-title: AMB Express doi: 10.1186/s13568-021-01189-6 – volume: 125 start-page: 54 year: 2008 ident: ref_45 article-title: Analysis of proteins responsive to acetic acid in Acetobacter: Molecular mechanisms conferring acetic acid resistance in acetic acid bacteria publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2007.05.015 – volume: 53 start-page: 377 year: 2013 ident: ref_5 article-title: Acetic Acid Bacteria: Physiology and Carbon Sources Oxidation publication-title: Indian J. Microbiol. doi: 10.1007/s12088-013-0414-z – volume: 68 start-page: 476 year: 2021 ident: ref_27 article-title: Screening and molecular characterization of new thermo- and ethanol-tolerant Acetobacter malorum strains isolated from two biomes Moroccan cactus fruits publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1941 – volume: 13 start-page: 251 year: 2019 ident: ref_43 article-title: Isolation and Identification of A Novel Strain of Acetobacter ghanensis KBMNS-IAUF-6 from Banana Fruit, Resistant to High Temperature and Ethanol Concentration publication-title: Iran. J. Med. Microbiol. doi: 10.30699/ijmm.13.4.251 – volume: 231 start-page: 813 year: 2010 ident: ref_10 article-title: Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production publication-title: Eur. Food Res. Technol. doi: 10.1007/s00217-010-1331-6 – volume: 196 start-page: 137 year: 2014 ident: ref_8 article-title: Updates on quick identification of acetic acid bacteria with a focus on the 16S−23S rRNA gene internal transcribed spacer and the analysis of cell proteins by MALDI-TOF mass spectrometry publication-title: Int. J. Food Microbiol. – volume: 33 start-page: 1260 year: 2015 ident: ref_6 article-title: Acetic acid bacteria: A group of bacteria with versatile biotechnological applications revue publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.12.001 – volume: 95 start-page: 8981 year: 2016 ident: ref_23 article-title: Effects of culture conditions on acetic acid production by bacteria isolated from Ivoirian fermenting cocoa (Theobroma cacao L.) beans publication-title: J. Appl. Biosci. doi: 10.4314/jab.v95i1.8 – volume: 235 start-page: 315 year: 2004 ident: ref_46 article-title: Enhanced expression of aconitase raises acetic acid resistance in Acetobacter aceti publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2004.tb09605.x – volume: 49 start-page: 115 year: 2018 ident: ref_2 article-title: Acetic acid bacteria in fermented foods and beverages publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.08.007 – volume: 101 start-page: 7007 year: 2017 ident: ref_40 article-title: Acetobacter pasteurianus metabolic change induced by initial acetic acid to adapt to acetic acid fermentation conditions publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-017-8453-8 – volume: 9 start-page: 556 year: 2019 ident: ref_39 article-title: Isolation of Acetic Acid Bacteria and Preparation of Starter Culture for Apple Cider Vinegar Fermentation publication-title: Adv. Microbiol. doi: 10.4236/aim.2019.96034 – volume: 46 start-page: 44 year: 2017 ident: ref_4 article-title: Acetic Acid Production and Purification: Critical Review Towards Process Intensification publication-title: Sep. Purif. Rev. doi: 10.1080/15422119.2016.1185017 – volume: 99 start-page: 6215 year: 2015 ident: ref_30 article-title: Adaptation and tolerance of bacteria against acetic acid publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-015-6762-3 – volume: 31 start-page: 255 year: 2015 ident: ref_44 article-title: Overview on mechanisms of acetic acid resistance in acetic acid bacteria publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-015-1799-0 – volume: 56 start-page: 139 year: 2018 ident: ref_7 article-title: Acetic acid bacteria in the food industry: Systematics, characteristics and applications publication-title: Food Technol. Biotechnol. doi: 10.17113/ftb.56.02.18.5593 |
SSID | ssj0000913851 |
Score | 2.287277 |
Snippet | The production of vinegar on an industrial scale from different raw materials is subject to constraints, notably the low tolerance of acetic acid bacteria... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1741 |
SubjectTerms | acetates Acetic acid Acetic acid bacteria acetic acid tolerant Acetobacter Acetobacter fabarum Acetobacter pasteurianus Acid production Acids Adaptation Aridity Bacteria Biotopes Carbon dioxide Cooling systems Drug tolerance Environmental conditions Ethanol ethanol–thermo-tolerant strains Fermentation Fruits Gene sequencing genes Glucose Gram-negative bacteria Heat resistance High temperature industry Metabolism Microorganisms Morphology Optimization Oxidation Peptones pH effects Production capacity Raw materials rRNA 16S Semiarid zones Strains (organisms) Substrates summer Vinegar vinegars Yeast |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NatwwEBZtQqGX0v84TYsKvZq1ZcmyTyUJG0KhaWgSyM1II5kurO1tvHvore-QN-kj9Uk6Y3vd3RLSk8EayzYz-vRppJlh7IPI0txCokJnEAKJUoeZEzKUCsAjavpIUOzw57P09Ep-ulbXg8OtHY5VrjGxA2rXAPnIJwKJvVIJQunHxfeQqkbR7upQQuMh20UIztDOd4-mZ-dfRy8LZb1ETtGHBie4vp9UdM6tr5jUVm1MElrGW7NSl7z_Lsb578HJjZno5Cl7MlBIftjr_Bl74Ovn7FFfVPLHC_brAugsDU5J3NSOH48ZmfuAS96UHJGNH4KnsUwtvKR9_VXVyW_eXxi0gRWaaL1q-UVXTaLl5LnldDyET8nt3sx__7xFY7upGn7ZzD0V6vBdT0gt-RdEpGrjzdT7DPAyc_y8TzaLLS_Z1cn08vg0HCozhKBkvAyd1nlmLBhQqXUgYleWmdXKqsi5BEkT0HauNalLM-0pbV0UGwcQRSbKjYqTV2ynbmq_x3hkpbFxKTXpIS9Tq0HmkRM-xYUPWBswtdZMAUPacvrfeYHLF9JocbdGAzYZn1v0iTv--8QRKX6UpsTb3Q2ULIZxXEhAyhaDEapUUhuXiwycQx6KPNkjIAbsYG02xYAGbfHXdgP2fmzGcUybM6b2zaqTobKUKlH3yeBbRJJTP697Sxy_NqGVfSKTgOktG936ne2WevatyyeeKyKqev_-T3_DHgsK_YgoaueA7SxvVv4tErKlfTeMuj-sVj7S priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3datVAEF5KRfBG_DdaZQVvY5P9yc-FSC0tRagK7YHehf0LHjhJ2pMTsHd9h76AD-ET-Cg-iTObnNDIod54FcjsbrKZn_0muzNDyFuWJbk2XIZWgQlESB1mlolQSGMcWE0XMYwdPv6cHM3EpzN5tkXW5VKHD9hudO2wntRsuXj3_eLyAyj8e_Q4wWXfrfDoWl8Eqa3aGFADwGzwiO7A6pSgQ3Y8QH5vnfOYA8rog4Vv6T5Zp3w6_00Y9O-jlDfWpsMH5P4AKuleLwUPyZarH5G7fZnJy8fk54nB0zWwSFFVW7o_5mjuQzBpU1KwdXTPONRupPz6UeJWf1f5DhPCuQK56EBs666lJ77CREvxby7FIyP0AH_FN4vfV9cggMuqoafNwmHxDueHArhJv4CVqm48G4efG7jMLf3aJ6AFyhMyOzw43T8Kh2oNoZEiXoU2TfNMaaOMTLQ1LLZlmelUahlZywFIGdzi1SqxSZY6TGUXxcoaE0UqypWM-VOyXTe1e05opIXScSlS5EReJjo1Io8scwk4Q0brgMg1bwozpDLH-S4KcGmQp8VmngZkd-x33ifz-GePj8j6sTUm4_Y3oGUx6HYhDMC42CgmSylSZXOWGWsBmwJ2dmAkA7KzFpxiLeAFA0dVSg7QICBvRjLoNm7YqNo1nW-DpSoll7e1gacwnuM4z3pZHN-Wo7fPBQ9IOpHSyXSmlHr-zecYzyWC1_TF_5j_S3KPYdBIhPE-O2R7tezcK4ByK_3a6-YfF4NThA priority: 102 providerName: Scholars Portal |
Title | Screening and Characterization of New Acetobacter fabarum and Acetobacter pasteurianus Strains with High Ethanol–Thermo Tolerance and the Optimization of Acetic Acid Production |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36144343 https://www.proquest.com/docview/2716553718 https://www.proquest.com/docview/2717693535 https://www.proquest.com/docview/2723123918 https://pubmed.ncbi.nlm.nih.gov/PMC9500637 https://doaj.org/article/4c6581ca25f547ad928cdd154231e040 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LatwwUJSUQi-l77pNgwq9mpUtybaOSdgQCklDk0BuRi_ThV07xOtDbvmH_EA_ol_QT-mXdMZyzLqE5tLLGnZGsuUZzcOaByGf0yJTxnIZOw0iEE3quHCpiIW01oPU9CzF3OGj4-zwXHy5kBcbrb4wJiyUBw4vbiYs6MjE6lRWUuTaqbSwzoHiB8PEAwei9GWKbThTvQxWCQdbIqQEc_DrZyuMbwudktpVmyBGLpKJNuqL9t9naf4dMLmhgQ6ek2eD6Uh3wyO_II98_ZI8Cc0kr1-Rn6cWY2hAFVFdO7o_VmIOiZa0qShINLprPe5hhPz6UeGBfrfqB0wAlxqo3wFz1l1LT_s-Ei3Fb7YUA0PoHD-4N8vfN7fAZlerhp41S48tOnw_FRiV9CvIotXGvXH6hYXLwtGTUGYWIK_J-cH8bP8wHnoyxFaKZB27PFeFNlZbmRln08RVVWFyaSRzjoO5ZPEg1-jMZUXusWAdS7SzljHNlJYJf0O26qb27whlRmiTVCJHSqgqM7kVirnUZ-DyWGMiIu9oU9qhYDmud1mC44I0Le-naURm47jLULLjwRF7SPoRG0tu938AZjkwYvkQI0Zk-45xykEOtGUK7qiUHAyAiHwawbCD8VhG177pehxsSCm5_BcO3CXlCud5G3hxfFqOPj0XPCL5hEsny5lC6sX3vpK4kmii5u__x_o_kKcppoYwzOrZJlvrq85_BINtbXbI47358cm3nX6Pwu-RKP4AOaNKKA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVAg2iDeBAoMESyv2PPxYINSWVCltQ0VTqTszL4tIiR3qRKg7_oH_YMEn8SXcazsmQVVZdWXJcz22de-cOTNzH4S8ZnGYaMOlZxVAIFJqL7ZMeEIa4wA1nc8wdvhoGA5OxYczebZBfi5jYdCtcomJFVDbwuAeeY8BsZeSA5S-m331sGoUnq4uS2jUZnHgLr7Bkq18u_8e9PuGsb3-aHfgNVUFPCNFMPdsFCWx0kYZGWprWGCzLNaR1NK3lsOEb_AoUqvQhnHkMOWaHyhrjO8rP1Ey4NDvDbIpMKK1QzZ3-sPjT-2uDmbZBA5ThyJznvi9KfrV1RWaymkZoEQkgrVZsCoWcBnD_ddRc2Xm27tL7jSUlW7XNnaPbLj8PrlZF7G8eEB-nRj03YEpkKrc0t02A3Qd4EmLjAKS0m3jEDuwhWboR7CYVvKr92cKbG4BQyJflPSkql5RUtwppuiOQvu4zV9Mfn__AcZ9Pi3oqJg4LAziqp6AytKPgIDTlTdj72MDl7Glx3VyW2h5SE6vRWePSCcvcveEUF8LpYNMRKiHJAt1ZETiW-ZCWGgZrbtELjWTmiZNOv7vJIXlEmo0vVyjXdJrn5vViUL--8QOKr6VxkTf1Q2QTBvcSIUBihgYxWQmRaRswmJjLfBe4OUOALhLtpZmkzboU6Z_x0qXvGqbATfwMEjlrlhUMlgGU3J5lQy8hfEE-3lcW2L7tRx3ErjgXRKt2eja76y35OMvVf7yRCIxjp5e_ekvya3B6OgwPdwfHjwjtxmGnfgYMbRFOvPzhXsOZHCuXzQjkJLP1z3o_wBkMXxh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVCA2iDeBAoMESyv2PPxYINRHopZCiGgrdefOyyJSYoc6EeqOf-BPWPI5fAn32o5JUFVWXVnyXI9t3TtnzszcByGvWRwm2nDpWQUQiJTaiy0TnpDGOEBN5zOMHf44DPdPxPtTebpBfi1jYdCtcomJFVDbwuAeeY8BsZeSA5T2ssYtYrQ3eDf76mEFKTxpXZbTqE3k0F18g-Vb-fZgD3T9hrFB_3h332sqDHhGimDu2ShKYqWNMjLU1rDAZlmsI6mlby2Hyd_gsaRWoQ3jyGH6NT9Q1hjfV36iZMCh3xtkM4JZUXTI5k5_OPrc7vBgxk3gM3VYMueJ35uij11dramclgFKRCJYmxGrwgGXsd1_nTZXZsHBXXKnoa90u7a3e2TD5ffJzbqg5cUD8vPIoB8PTIdU5Zbuttmg62BPWmQUUJVuG4c4gi00Q5-CxbSSX70_U2B_Cxge-aKkR1Uli5LirjFF1xTaxy3_YvL7-w8w9PNpQY-LicMiIa7qCWgt_QRoOF15M_Y-NnAZWzqqE91Cy0Nyci06e0Q6eZG7J4T6WigdZCJCPSRZqCMjEt8yF8Kiy2jdJXKpmdQ0KdPxfycpLJ1Qo-nlGu2SXvvcrE4a8t8ndlDxrTQm_a5ugGTaYEgqDNDFwCgmMykiZRMWG2uBAwNHdwDGXbK1NJu0QaIy_TtuuuRV2wwYggdDKnfFopLBkpiSy6tk4C2MJ9jP49oS26_luKvABe-SaM1G135nvSUff6lymScSSXL09OpPf0luwWBPPxwMD5-R2wwjUHwMHtoinfn5wj0HXjjXL5oBSMnZdY_5P4ILgI0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+and+Characterization+of+New+Acetobacter%C2%A0fabarum+and+Acetobacter%C2%A0pasteurianus+Strains+with+High+Ethanol%E2%80%93Thermo+Tolerance+and+the+Optimization+of+Acetic+Acid+Production&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Taoufik+El-Askri&rft.au=Meriem+Yatim&rft.au=Youness+Sehli&rft.au=Abdelilah+Rahou&rft.date=2022-08-29&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=10&rft.issue=9&rft.spage=1741&rft_id=info:doi/10.3390%2Fmicroorganisms10091741&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4c6581ca25f547ad928cdd154231e040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |