How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape
Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure...
Saved in:
Published in | Astrophysical journal. Letters Vol. 836; no. 1; p. L3 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Goddard Space Flight Center
The American Astronomical Society
10.02.2017
The American Astonomical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri's terrestrial planet. |
---|---|
AbstractList | Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds of Myr, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri’s terrestrial planet. Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) (Extreme Ultraviolet) fluxes from their host stars that can initiate atmospheric erosion. Atmospheric loss affects exoplanetary habitability in terms of surface water inventory, atmospheric pressure, the efficiency of greenhouse warming, and the dosage of the UV surface irradiation. Thermal escape models suggest that exoplanetary atmospheres around active K-M stars should undergo massive hydrogen escape, while heavier species including oxygen will accumulate forming an oxidizing atmosphere. Here, we show that non-thermal oxygen ion escape could be as important as thermal, hydrodynamic H escape in removing the constituents of water from exoplanetary atmospheres under supersolar XUV irradiation. Our models suggest that the atmospheres of a significant fraction of Earth-like exoplanets around M dwarfs and active K stars exposed to high XUV fluxes will incur a significant atmospheric loss rate of oxygen and nitrogen, which will make them uninhabitable within a few tens to hundreds million years, given a low replenishment rate from volcanism or cometary bombardment. Our non-thermal escape models have important implications for the habitability of the Proxima Centauri's terrestrial planet. |
Audience | PUBLIC |
Author | France, Kevin Loyd, R. O. P. Danchi, William C. Glocer, Alex Sojka, Jan Liemohn, Michael W. Airapetian, Vladimir S. Khazanov, George V. |
Author_xml | – sequence: 1 givenname: Vladimir S. orcidid: 0000-0003-4452-0588 surname: Airapetian fullname: Airapetian, Vladimir S. organization: NASA/GSFC, Greenbelt, MD, USA – sequence: 2 givenname: Alex surname: Glocer fullname: Glocer, Alex organization: NASA/GSFC, Greenbelt, MD, USA – sequence: 3 givenname: George V. surname: Khazanov fullname: Khazanov, George V. organization: NASA/GSFC, Greenbelt, MD, USA – sequence: 4 givenname: R. O. P. orcidid: 0000-0001-5646-6668 surname: Loyd fullname: Loyd, R. O. P. organization: University of Colorado /LASP, Boulder, CO, USA – sequence: 5 givenname: Kevin orcidid: 0000-0002-1002-3674 surname: France fullname: France, Kevin organization: University of Colorado /LASP, Boulder, CO, USA – sequence: 6 givenname: Jan surname: Sojka fullname: Sojka, Jan organization: Utah State University , Logan, UT, USA – sequence: 7 givenname: William C. surname: Danchi fullname: Danchi, William C. organization: NASA/GSFC, Greenbelt, MD, USA – sequence: 8 givenname: Michael W. surname: Liemohn fullname: Liemohn, Michael W. organization: University of Michigan , Ann Arbor, MI, USA |
BackLink | https://www.osti.gov/biblio/22654549$$D View this record in Osti.gov |
BookMark | eNqNkcFqGzEQhkVJoEnaFyg9CEqhF8ca7WpXORUT0jhgKGlTArmIWXmE12ykrSQT-vaV2eBDKKHoIM3o--eXZk7ZkQ-eGPsA4rzSdTuXooaZllDNddXMYb6q3rCTQ_LocBbqLTtNaSuEFA3oE3a7DE98GdLYZ-wG4otI_OeIlvg9Yd5Q5AvnyGZa8yV2z9BDMU9f-d2G-I9Q4uD4TfD8Klkc6R07djgkev-8n7Ff367uLpez1ffrm8vFamZVDXm2Vp2SCA1Zi0hWtq2Drupcg9CBvZBASlvn1uBAdW3Ji6atG-pUg9piq6sz9mmqG1LuTbJ9JruxwfvyWiNlo2pVXxTqy0SNMfzeUcrmsU-WhgE9hV0yoHUNIMr6D7RtdS10JQuqJ9TGkFIkZ4o95j74HLEfDAizH4vZd93sJ2DKWAyYVVWk8oV0jP0jxj-viz5OIo8JTTFJhQIthKiU2n_y83Tdh9Fswy760niD43Y4lDDj2hXu_B_cK75_AdBkszI |
CitedBy_id | crossref_primary_10_1103_RevModPhys_91_021002 crossref_primary_10_3847_1538_4357_aadd9b crossref_primary_10_3847_1538_4357_ac7c69 crossref_primary_10_3847_1538_4357_ab3be8 crossref_primary_10_1016_j_epsl_2023_118442 crossref_primary_10_31857_S0004629923020081 crossref_primary_10_1093_mnras_staa387 crossref_primary_10_1134_S1063772923110100 crossref_primary_10_3847_1538_4357_acf45a crossref_primary_10_3847_2041_8213_aa7eca crossref_primary_10_2138_rmg_2024_90_11 crossref_primary_10_3847_1538_4357_aa965a crossref_primary_10_1017_S1473550419000016 crossref_primary_10_3847_2041_8213_ab5965 crossref_primary_10_1017_S1743921317004422 crossref_primary_10_1089_ast_2017_1760 crossref_primary_10_1038_s41598_017_14192_4 crossref_primary_10_1134_S003809461905006X crossref_primary_10_1038_s41550_017_0375_y crossref_primary_10_1089_ast_2018_1914 crossref_primary_10_1017_S1473550418000058 crossref_primary_10_1093_mnras_stae1150 crossref_primary_10_1360_SSPMA_2022_0023 crossref_primary_10_3847_1538_4357_aa7cf9 crossref_primary_10_3847_1538_4357_acd330 crossref_primary_10_1029_2019JA027639 crossref_primary_10_52526_25792776_2021_68_2_426 crossref_primary_10_3847_1538_4357_acbe38 crossref_primary_10_3847_1538_3881_ab44b0 crossref_primary_10_3847_2041_8213_abd93a crossref_primary_10_3847_1538_4357_acca14 crossref_primary_10_1051_0004_6361_202451114 crossref_primary_10_1016_j_pss_2021_105322 crossref_primary_10_1089_ast_2016_1589 crossref_primary_10_1093_mnras_staa1021 crossref_primary_10_3847_2041_8213_ab271d crossref_primary_10_1038_s41467_024_52642_6 crossref_primary_10_1038_s41550_019_0689_z crossref_primary_10_3847_1538_4357_ab7b74 crossref_primary_10_1029_2019GL082494 crossref_primary_10_3847_2041_8213_ac4788 crossref_primary_10_1093_mnras_stab492 crossref_primary_10_3389_fspas_2023_1112233 crossref_primary_10_1093_mnras_stad2100 crossref_primary_10_1029_2020GL090763 crossref_primary_10_1007_s41116_017_0009_6 crossref_primary_10_1051_0004_6361_202452378 crossref_primary_10_3390_universe5060149 crossref_primary_10_1073_pnas_1708010115 crossref_primary_10_1007_s10686_021_09710_2 crossref_primary_10_1051_0004_6361_202038280 crossref_primary_10_3847_1538_3881_ad8eb5 crossref_primary_10_3389_fmicb_2017_01407 crossref_primary_10_1093_mnras_stac1002 crossref_primary_10_1134_S1063772923020087 crossref_primary_10_1093_mnrasl_slz166 crossref_primary_10_3847_1538_4357_abadf9 crossref_primary_10_1089_ast_2017_1727 crossref_primary_10_1093_mnras_stac2722 crossref_primary_10_1093_mnras_stx1969 crossref_primary_10_3847_1538_3881_ad8ebe crossref_primary_10_3847_1538_4357_aae2bd crossref_primary_10_1089_ast_2017_1729 crossref_primary_10_1093_mnras_sty2682 crossref_primary_10_3847_1538_4357_ad0b7c crossref_primary_10_3847_1538_3881_abf933 crossref_primary_10_1134_S199034132104012X crossref_primary_10_3847_1538_4357_ac081e crossref_primary_10_3847_1538_4357_acd2dc crossref_primary_10_1051_0004_6361_201832776 crossref_primary_10_3847_2041_8213_accb9c crossref_primary_10_1093_mnras_stad2519 crossref_primary_10_1093_mnras_staa3260 crossref_primary_10_3389_fspas_2023_1064076 crossref_primary_10_3847_1538_3881_aba4b2 crossref_primary_10_1051_0004_6361_202347398 crossref_primary_10_1126_sciadv_abi9743 crossref_primary_10_1089_ast_2017_1718 crossref_primary_10_1029_2019JE006276 crossref_primary_10_3847_1538_4357_abe771 crossref_primary_10_1007_s11214_020_00736_0 crossref_primary_10_3847_1538_4357_ac91c7 crossref_primary_10_3390_geosciences8080280 crossref_primary_10_3847_1538_4357_acc842 crossref_primary_10_3847_2041_8213_aab5b5 crossref_primary_10_3847_1538_3881_abb465 crossref_primary_10_1093_mnras_staa3110 crossref_primary_10_3847_1538_4357_ab66b2 crossref_primary_10_1051_0004_6361_201731620 crossref_primary_10_1029_2021JA029753 crossref_primary_10_3847_1538_4357_ab287e crossref_primary_10_1051_0004_6361_202449581 crossref_primary_10_1089_ast_2017_1723 crossref_primary_10_1088_1475_7516_2018_05_020 crossref_primary_10_1051_0004_6361_202141563 crossref_primary_10_3847_2041_8213_ab551f crossref_primary_10_1007_s11207_017_1124_1 crossref_primary_10_1089_ast_2017_1720 crossref_primary_10_3847_1538_3881_aa9bea crossref_primary_10_1017_S1743921320000174 crossref_primary_10_3847_1538_4357_ab4652 crossref_primary_10_1093_mnras_stae1124 crossref_primary_10_1051_0004_6361_202347286 crossref_primary_10_1080_23746149_2019_1630316 crossref_primary_10_1016_j_asr_2024_10_024 crossref_primary_10_1051_0004_6361_201937107 crossref_primary_10_3847_1538_4357_ac6510 crossref_primary_10_1007_s11631_021_00515_w crossref_primary_10_1007_s11214_020_00779_3 crossref_primary_10_1089_ast_2017_1794 crossref_primary_10_3390_universe5070171 crossref_primary_10_3847_1538_3881_ab2385 crossref_primary_10_3847_1538_4357_ab08ed crossref_primary_10_1029_2018JE005727 crossref_primary_10_3847_1538_3881_acdb70 crossref_primary_10_3847_1538_4365_aae1a3 crossref_primary_10_1007_s10509_018_3373_3 crossref_primary_10_1017_S1473550417000179 crossref_primary_10_31857_S0004629923110105 crossref_primary_10_3847_1538_4357_ace9b6 crossref_primary_10_3847_2041_8213_aa8a60 crossref_primary_10_1093_mnras_stac2536 crossref_primary_10_1038_s41550_018_0490_4 crossref_primary_10_1093_astrogeo_atz047 crossref_primary_10_3847_1538_4357_ac5f48 crossref_primary_10_1093_mnras_stab1486 crossref_primary_10_3847_2041_8213_ab0651 crossref_primary_10_3847_1538_3881_ab737f crossref_primary_10_1017_S1743921317004288 crossref_primary_10_1089_ast_2023_0076 crossref_primary_10_1089_ast_2023_0075 crossref_primary_10_3847_1538_3881_ab21e0 crossref_primary_10_1007_s10509_018_3384_0 crossref_primary_10_1007_s10686_022_09846_9 crossref_primary_10_1093_mnras_staa1796 crossref_primary_10_3847_2041_8213_aa8860 crossref_primary_10_3847_1538_4357_ab2a71 crossref_primary_10_1029_2020AV000294 crossref_primary_10_3847_1538_3881_aab608 crossref_primary_10_3847_1538_3881_acbd39 crossref_primary_10_1051_0004_6361_201935543 crossref_primary_10_1134_S1063772921040077 crossref_primary_10_3847_1538_4357_ac7a35 crossref_primary_10_1093_mnras_staa1284 crossref_primary_10_1093_mnras_sty1433 crossref_primary_10_3847_1538_4357_aae36a crossref_primary_10_1029_2022JA030510 crossref_primary_10_3847_1538_4357_aafa74 crossref_primary_10_1017_S1473550419000132 crossref_primary_10_1051_0004_6361_201833941 crossref_primary_10_1590_0001_3765202120200628 crossref_primary_10_1093_mnrasl_slad045 |
Cites_doi | 10.1029/2009JA014418 10.1088/0004-637X/748/1/41 10.1051/0004-6361/201526146 10.1089/ast.2007.0140 10.1038/nature19106 10.1002/2016JA022548 10.1002/2013JA019374 10.1002/2015JA022226 10.1002/2014GL059556 10.1126/science.277.5324.349 10.1126/science.284.5415.790 10.1093/mnras/stw959 10.1029/96JA03962 10.1029/2007JE002946 10.1029/2001JA009200 10.1016/j.icarus.2009.01.012 10.1029/2004JA010829 10.1029/2009JA014662 10.1002/2013JA019661 10.1089/ast.2015.1325 10.1086/304264 10.3847/0004-637X/824/2/102 10.1051/swsc/2013028 10.1029/2010JA015583 10.1088/0004-637X/757/1/95 10.1029/JA092iA05p04649 10.1002/2015JA021728 10.1029/2011JA017136 10.1038/ngeo2719 10.1002/2014JA020269 10.1007/978-1-4614-3290-6_9 10.3847/0004-637X/824/2/101 10.1002/2016GL068327 10.3847/2041-8205/833/1/L4 10.1007/s11207-005-2555-7 10.1016/j.asr.2015.03.023 10.1029/2007SW000372 10.1007/s11214-008-9413-5 10.1029/2004JA010690 10.1088/0004-637X/798/2/112 10.1029/2004JA010782 10.1002/2014GL060785 10.5194/angeo-27-4391-2009 10.1111/j.1365-246X.2006.03009.x 10.1016/j.jastp.2007.08.010 10.1007/978-1-4419-6797-8 10.3847/0004-637X/819/1/84 10.1016/j.jastp.2013.04.005 10.1088/0004-637X/690/1/743 10.1002/2015GL065291 10.1016/S0019-1035(03)00170-2 10.1051/0004-6361/201629576 |
ContentType | Journal Article |
Copyright | 2017. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2017. The American Astronomical Society. All rights reserved. |
DBID | CYE CYI AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
DOI | 10.3847/2041-8213/836/1/L3 |
DatabaseName | NASA Scientific and Technical Information NASA Technical Reports Server CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
DocumentTitleAlternate | How Hospitable are Space Weather Affected Habitable Zones? The Role of Ion Escape |
EISSN | 2041-8213 |
EndPage | L3 |
ExternalDocumentID | 22654549 10_3847_2041_8213_836_1_L3 20180003559 apjlaa561b |
GrantInformation | GSFC-673-2018-001 80GSFC17C0003 |
GroupedDBID | 1JI 2FS 4.4 6J9 AAFWJ AAGCD AAJIO ABDNZ ABHWH ACGFS ACHIP AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU EBS EJD FRP GROUPED_DOAJ IJHAN IOP KOT N5L O3W O43 OK1 PJBAE RIN ROL SY9 T37 ~02 AEINN CYE CYI AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
ID | FETCH-LOGICAL-c541t-d5b52a16eccaaec277f1b3bf6a1b1c921e58cffd1f15b7bf606746eb56a8ca783 |
IEDL.DBID | O3W |
ISSN | 2041-8205 |
IngestDate | Thu May 18 22:34:58 EDT 2023 Fri Jul 11 06:02:19 EDT 2025 Fri Jul 11 05:08:41 EDT 2025 Tue Jul 01 02:52:48 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Fri Aug 15 15:28:57 EDT 2025 Wed Aug 21 03:32:12 EDT 2024 Thu Jan 07 13:52:05 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Planets And Satellites Hydrodynamics Radiation Mechanisms Atmospheres Magnetic Fields Stars |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-d5b52a16eccaaec277f1b3bf6a1b1c921e58cffd1f15b7bf606746eb56a8ca783 |
Notes | LET34441 GSFC ISSN: 2041-8205 GSFC-E-DAA-TN51682 Goddard Space Flight Center E-ISSN: 2041-8213 Report Number: GSFC-E-DAA-TN51682 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5646-6668 0000-0003-4452-0588 0000-0002-1002-3674 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/2041-8213/836/1/L3/pdf |
PQID | 1877840832 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | nasa_ntrs_20180003559 iop_journals_10_3847_2041_8213_836_1_L3 proquest_miscellaneous_1877840832 crossref_primary_10_3847_2041_8213_836_1_L3 osti_scitechconnect_22654549 proquest_miscellaneous_1884110101 crossref_citationtrail_10_3847_2041_8213_836_1_L3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-10 |
PublicationDateYYYYMMDD | 2017-02-10 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Goddard Space Flight Center |
PublicationPlace_xml | – name: Goddard Space Flight Center – name: United States |
PublicationTitle | Astrophysical journal. Letters |
PublicationTitleAbbrev | APJL |
PublicationTitleAlternate | Astrophys. J. Lett |
PublicationYear | 2017 |
Publisher | The American Astronomical Society The American Astonomical Society |
Publisher_xml | – name: The American Astronomical Society – name: The American Astonomical Society |
References | Khazanov (apjlaa561bbib24) 2015; 120 Lammer (apjlaa561bbib28) 2003; 165 Ma (apjlaa561bbib36) 2014; 41 Anderson (apjlaa561bbib4) 2013; 105 Damiano (apjlaa561bbib14) 2010; 115 Fang (apjlaa561bbib16) 2010; 206 Loyd (apjlaa561bbib33) 2016; 824 Bailey (apjlaa561bbib6) 2009; 690 Lundin (apjlaa561bbib35) 2011; 37 Khazanov (apjlaa561bbib23) 2011; Vol. 372 Liemohn (apjlaa561bbib32) 1997; 102 Tian (apjlaa561bbib47) 2008; 113 Collinson (apjlaa561bbib12) 2016; 43 Mulders (apjlaa561bbib39) 2015; 798 Driscoll (apjlaa561bbib15) 2015; 15 Hedin (apjlaa561bbib22) 1987; 92 Glocer (apjlaa561bbib18) 2016 Tu (apjlaa561bbib48) 2016; 577 Cai (apjlaa561bbib8) 2014; 119 Lu (apjlaa561bbib34) 2010; 115 Lee (apjlaa561bbib29) 2015; 42 Anglada-Escudé (apjlaa561bbib5) 2016; 536 Lammer (apjlaa561bbib27) 2008; 139 Kopparapu (apjlaa561bbib25) 2016; 819 Güdel (apjlaa561bbib21) 1997; 483 Claire (apjlaa561bbib11) 2012; 757 Garraffo (apjlaa561bbib17) 2016; 833 Schrijver (apjlaa561bbib43) 2015; 55 Brecht (apjlaa561bbib7) 2016; 121 Kutiev (apjlaa561bbib26) 2013; 3 Mlynczak (apjlaa561bbib37) 2014; 41 Glocer (apjlaa561bbib19) 2012; 117 Christensen (apjlaa561bbib10) 2006; 166 Lennartsson (apjlaa561bbib30) 2004; 109 Airapetian (apjlaa561bbib3) 2016; 9 Woods (apjlaa561bbib50) 2005; 230 Owen (apjlaa561bbib41) 2016; 459 Glocer (apjlaa561bbib20) 2009; 114 Yamauchi (apjlaa561bbib51) 2007; 7 Airapetian (apjlaa561bbib2) 2015 Moore (apjlaa561bbib38) 1997; 277 Chamberlin (apjlaa561bbib9) 2008; 6 Ngwira (apjlaa561bbib40) 2014; 119 Welling (apjlaa561bbib49) 2014; 119 Yu (apjlaa561bbib54) 2009; 27 Lichtenegger (apjlaa561bbib31) 2016; 121 Stamenković (apjlaa561bbib45) 2012; 748 Ribas (apjlaa561bbib42) 2016; 596 Smithtro (apjlaa561bbib44) 2005; 110 Youngblood (apjlaa561bbib53) 2016; 824 Acuña (apjlaa561bbib1) 1999; 284 Strangeway (apjlaa561bbib46) 2005; 110 Yau (apjlaa561bbib52) 2007; 69 Cully (apjlaa561bbib13) 2003; 108 |
References_xml | – volume: 114 year: 2009 ident: apjlaa561bbib20 publication-title: JGR doi: 10.1029/2009JA014418 – volume: 748 start-page: 22 year: 2012 ident: apjlaa561bbib45 publication-title: ApJ doi: 10.1088/0004-637X/748/1/41 – volume: 577 start-page: L3 year: 2016 ident: apjlaa561bbib48 publication-title: A&A doi: 10.1051/0004-6361/201526146 – volume: 7 start-page: 783 year: 2007 ident: apjlaa561bbib51 publication-title: AsBio doi: 10.1089/ast.2007.0140 – volume: 536 start-page: 437 year: 2016 ident: apjlaa561bbib5 publication-title: Natur doi: 10.1038/nature19106 – volume: 121 year: 2016 ident: apjlaa561bbib7 publication-title: JGRA doi: 10.1002/2016JA022548 – volume: 119 start-page: 2691 year: 2014 ident: apjlaa561bbib49 publication-title: JGRA doi: 10.1002/2013JA019374 – volume: 121 start-page: 4718 year: 2016 ident: apjlaa561bbib31 publication-title: JGR doi: 10.1002/2015JA022226 – volume: 41 start-page: 2508 year: 2014 ident: apjlaa561bbib37 publication-title: GeoRL doi: 10.1002/2014GL059556 – volume: 277 start-page: 349 year: 1997 ident: apjlaa561bbib38 publication-title: Sci doi: 10.1126/science.277.5324.349 – volume: 284 start-page: 790 year: 1999 ident: apjlaa561bbib1 publication-title: Sci doi: 10.1126/science.284.5415.790 – volume: 459 start-page: 4088 year: 2016 ident: apjlaa561bbib41 publication-title: MNRAS doi: 10.1093/mnras/stw959 – year: 2015 ident: apjlaa561bbib2 – volume: 102 start-page: 7523 year: 1997 ident: apjlaa561bbib32 publication-title: JGR doi: 10.1029/96JA03962 – volume: 113 year: 2008 ident: apjlaa561bbib47 publication-title: JGR doi: 10.1029/2007JE002946 – volume: 108 start-page: 1093 year: 2003 ident: apjlaa561bbib13 publication-title: JGR doi: 10.1029/2001JA009200 – volume: 206 start-page: 130 year: 2010 ident: apjlaa561bbib16 publication-title: Icar doi: 10.1016/j.icarus.2009.01.012 – volume: 110 year: 2005 ident: apjlaa561bbib46 publication-title: JGR doi: 10.1029/2004JA010829 – volume: 115 year: 2010 ident: apjlaa561bbib34 publication-title: JGR doi: 10.1029/2009JA014662 – volume: 119 start-page: 4456 year: 2014 ident: apjlaa561bbib40 publication-title: JGR doi: 10.1002/2013JA019661 – volume: 15 start-page: 739 year: 2015 ident: apjlaa561bbib15 publication-title: AsBio doi: 10.1089/ast.2015.1325 – volume: 483 start-page: 947 year: 1997 ident: apjlaa561bbib21 publication-title: ApJ doi: 10.1086/304264 – volume: 824 start-page: 102 year: 2016 ident: apjlaa561bbib33 publication-title: ApJ doi: 10.3847/0004-637X/824/2/102 – volume: 3 start-page: A06 year: 2013 ident: apjlaa561bbib26 publication-title: JSWSC doi: 10.1051/swsc/2013028 – volume: 115 year: 2010 ident: apjlaa561bbib14 publication-title: JGR doi: 10.1029/2010JA015583 – volume: 757 start-page: 95 year: 2012 ident: apjlaa561bbib11 publication-title: ApJ doi: 10.1088/0004-637X/757/1/95 – volume: 92 start-page: 4649 year: 1987 ident: apjlaa561bbib22 publication-title: JGR doi: 10.1029/JA092iA05p04649 – volume: 120 start-page: 9891 year: 2015 ident: apjlaa561bbib24 publication-title: JGR doi: 10.1002/2015JA021728 – volume: 117 year: 2012 ident: apjlaa561bbib19 publication-title: JGR doi: 10.1029/2011JA017136 – volume: 9 start-page: 452 year: 2016 ident: apjlaa561bbib3 publication-title: NatGe doi: 10.1038/ngeo2719 – volume: 119 start-page: 10440 year: 2014 ident: apjlaa561bbib8 publication-title: JGR doi: 10.1002/2014JA020269 – volume: 37 start-page: 309 year: 2011 ident: apjlaa561bbib35 publication-title: Space Science Ser. of ISSI doi: 10.1007/978-1-4614-3290-6_9 – volume: 824 start-page: 101 year: 2016 ident: apjlaa561bbib53 publication-title: ApJ doi: 10.3847/0004-637X/824/2/101 – volume: 43 start-page: 5926 year: 2016 ident: apjlaa561bbib12 publication-title: GeoRL doi: 10.1002/2016GL068327 – volume: 833 start-page: L4 year: 2016 ident: apjlaa561bbib17 publication-title: ApJL doi: 10.3847/2041-8205/833/1/L4 – year: 2016 ident: apjlaa561bbib18 publication-title: JGR – volume: 230 start-page: 375 year: 2005 ident: apjlaa561bbib50 publication-title: SoPh doi: 10.1007/s11207-005-2555-7 – volume: 55 start-page: 2745 year: 2015 ident: apjlaa561bbib43 publication-title: AdSpR doi: 10.1016/j.asr.2015.03.023 – volume: 6 year: 2008 ident: apjlaa561bbib9 publication-title: SpWea doi: 10.1029/2007SW000372 – volume: 139 start-page: 399 year: 2008 ident: apjlaa561bbib27 publication-title: SSRv doi: 10.1007/s11214-008-9413-5 – volume: 109 start-page: A12212 year: 2004 ident: apjlaa561bbib30 publication-title: JGR doi: 10.1029/2004JA010690 – volume: 798 start-page: 112 year: 2015 ident: apjlaa561bbib39 publication-title: ApJ doi: 10.1088/0004-637X/798/2/112 – volume: 110 year: 2005 ident: apjlaa561bbib44 publication-title: JGR doi: 10.1029/2004JA010782 – volume: 41 start-page: 6563 year: 2014 ident: apjlaa561bbib36 publication-title: GeoRL doi: 10.1002/2014GL060785 – volume: 27 start-page: 4391 year: 2009 ident: apjlaa561bbib54 publication-title: AnGeo doi: 10.5194/angeo-27-4391-2009 – volume: 166 start-page: 97 year: 2006 ident: apjlaa561bbib10 publication-title: GeoJ doi: 10.1111/j.1365-246X.2006.03009.x – volume: 69 start-page: 1936 year: 2007 ident: apjlaa561bbib52 publication-title: JASTP doi: 10.1016/j.jastp.2007.08.010 – volume: Vol. 372 year: 2011 ident: apjlaa561bbib23 doi: 10.1007/978-1-4419-6797-8 – volume: 819 start-page: 84 year: 2016 ident: apjlaa561bbib25 publication-title: ApJ doi: 10.3847/0004-637X/819/1/84 – volume: 105 start-page: 313 year: 2013 ident: apjlaa561bbib4 publication-title: JASTP doi: 10.1016/j.jastp.2013.04.005 – volume: 690 start-page: 743 year: 2009 ident: apjlaa561bbib6 publication-title: ApJ doi: 10.1088/0004-637X/690/1/743 – volume: 42 start-page: 9015 year: 2015 ident: apjlaa561bbib29 publication-title: GeoRL doi: 10.1002/2015GL065291 – volume: 165 start-page: 9 year: 2003 ident: apjlaa561bbib28 publication-title: Icar doi: 10.1016/S0019-1035(03)00170-2 – volume: 596 start-page: A111 year: 2016 ident: apjlaa561bbib42 publication-title: A&A doi: 10.1051/0004-6361/201629576 |
SSID | ssj0020618 |
Score | 2.6261263 |
Snippet | Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) fluxes from their host stars that... Atmospheres of exoplanets in the habitable zones around active young G-K-M stars are subject to extreme X-ray and EUV (XUV) (Extreme Ultraviolet) fluxes from... |
SourceID | osti proquest crossref nasa iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | L3 |
SubjectTerms | Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Atmospheric models Atmospherics COSMIC X-RAY BURSTS COSMIC X-RAY SOURCES EROSION Extrasolar planets EXTREME ULTRAVIOLET RADIATION Geophysics GREENHOUSES HARD X RADIATION HYDRODYNAMICS HYDROGEN IRRADIATION MAGNETIC FIELDS NITROGEN Oxygen OXYGEN IONS Planetary atmospheres PLANETS planets and satellites: atmospheres planets and satellites: magnetic fields radiation mechanisms: general Red dwarf stars SATELLITE ATMOSPHERES SATELLITES SPACE STARS stars: activity stars: late-type Stellar atmospheres SURFACES VOLCANISM |
Title | How Hospitable Are Space Weather Affected Habitable Zones? The Role of Ion Escape |
URI | https://iopscience.iop.org/article/10.3847/2041-8213/836/1/L3 https://ntrs.nasa.gov/citations/20180003559 https://www.proquest.com/docview/1877840832 https://www.proquest.com/docview/1884110101 https://www.osti.gov/biblio/22654549 |
Volume | 836 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBbd9NJL6SMl26aLCqU9FHcj6-lTWUrCpoSmr5DQi5Bk6RC26yXeEPrv-8l2FkLpUnyR7ZElz4zmIY9nCHntjXI-cg83lfNCsFoXTidRBA2Kq0qoELtoi89qfiY-XciLITan-xemWQ2i_z2afaLgHoV5fXPIUrjrghWmZHxquJqy6QkfkfvcKJN9r1N-vvG3oKq6gnQ9_IHs_5n5xzPu6KURxoaMXroW-mqnwWL7S1R3-ufoEXk4GI501k_zMbkXl0_I3qzNW9nNr9_0De3a_U5F-5R8nTc3dKgK4hcRHSP9Dgc50vPe6qOzLpQj1nTu_AD0M2fu_0DBO_Rbg_Mm0eNmSQ_bHCa1S86ODn98nBdD_YQiSMHWRS29LB1TmUouhlLrxDz3STnmWahKFqUJKdUsMek1rkNzCRW9VM4Epw1_BhRg3D1CvfBl4r7S8J5EcMknXcVKOMUc17yuxoTdYs-GIbl4rnGxsHAyMsZtxrjNGLfAuGX2hI_Ju02fVZ9aYyv0WxDFDius3Qo5uQPpVpeLzU27qtOY7GbKWsywRX9muu-pEi-xn0ltwYA5gW7IkUZhbWGgwswUuP3qlgUs1mD-sOKWsbnGXIzWcJQhHLfBGAFTC8fz_36TF-RBma2IXH_mYJ_srK-u40vYQGs_IaPj0y-Tjt__AFye-YI |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYkBAvEx9DKxvDSAgeUOgcO7bzhKptVQfV-JyGeLFsx35AXVMtnRD_PT8naaUJUaG85OPsOHfn-7Avd4S8dFpaF7iDm8p5JlilMquiyLwCxWUppA9ttMW5nFyI99-LVTRh-y9MvehF_1ucdomCOxSm-c0hS-GuC5bpnPGh5nLIhlM-XFRxi9xF5zJVb_jIL9c-F9RVW5Sua3NUdP_N_KOfW7ppC--HnJ7bBjpru8aE-0tctzpo_IDs9MYjHXVDfUjuhPkjsjdq0nJ2ffWbvqLtebda0Twmnyf1L9pXBnGzgIaBfoWTHOhlZ_nRURvOESo6sa4H-pGy97-j4B_6pcZ1HelZPaenTQqV2iUX49Nvx5Osr6GQ-UKwZVYVrsgtk4lSNvhcqcgcd1Fa5pgvcxYK7WOsWGSFU7gP7SVkcIW02lul-ROgAO_dI9QJl0fuSgUPSngbXVRlKIWVzHLFq3JA2Ap7xvcJxlOdi5mBo5EwbhLGTcK4AcYNM1M-IG_WbRZdeo2N0K9BFNPPsmYj5OEtSLv4OVs_NGCXAdlNlDUYYYP2TLd7qgU-4iCR2oAJUxJdn6KN_NLASIWpKfD4xYoFDOZh2lyx81DfYCxaKTjLEJCbYLSAuYXj6X9_yXNy79PJ2EzPzj_sk_t5MipSOZqjA7K9vL4Jz2ASLd1hy_R_APQu_Gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+Hospitable+are+Space+Weather+Affected+Habitable+Zones%3F+The+Role+of+Ion+Escape&rft.jtitle=Astrophysical+journal.+Letters&rft.au=Airapetian%2C+Vladimir+S.&rft.au=Glocer%2C+Alex&rft.au=Khazanov%2C+George+V.&rft.au=Loyd%2C+R.O.+P.&rft.date=2017-02-10&rft.pub=The+American+Astonomical+Society&rft.issn=2041-8205&rft.eissn=2041-8213&rft.volume=836&rft.issue=1&rft_id=info:doi/10.3847%2F2041-8213%2F836%2F1%2FL3&rft.externalDBID=CYI&rft.externalDocID=20180003559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-8205&client=summon |