Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks

Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic st...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 6
Main Authors Schoenherr, Christina, Byron, Adam, Sandilands, Emma, Paliashvili, Ketevan, Baillie, George S, Garcia-Munoz, Amaya, Valacca, Cristina, Cecconi, Francesco, Serrels, Bryan, Frame, Margaret C
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 31.03.2017
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.
AbstractList Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat' controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.
Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described ‘spatial rheostat’ controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs.DOI: http://dx.doi.org/10.7554/eLife.23172.001
Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described ‘spatial rheostat’ controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs. DOI: http://dx.doi.org/10.7554/eLife.23172.001 In animal bodies, a mesh of proteins – known the extracellular matrix – holds cells together to give the body shape and make it more stable. Cells bind to the matrix using structures called focal adhesions. However, cells do not always stay in one place: in young animals, certain cells need to move around the body to reach their final destination. Adult animals also have some cells that are able to move, for example, to close wounds. The cells move when the focal adhesions that hold these cells in place are taken apart and then rebuilt. These processes are very dynamic and happen all the time when cells move. They are normally tightly controlled to ensure that cells only migrate under appropriate conditions. However, focal adhesions are less well regulated in cancer cells, allowing the cells to migrate away from a tumour to form new tumours elsewhere in the body. Focal adhesions are large structures that contain many proteins. These proteins include FAK and Src, which are particularly important and have been well studied. In order to better understand how focal adhesions are taken apart, Schoenherr et al. wanted to discover new proteins that interact with FAK in skin cancer cells from mice. The experiments show that FAK binds to a protein called Ambra1, which is known to control how other proteins move around inside cells. Ambra1 and FAK work together to regulate the movement of Src away from focal adhesions and into the cell. Furthermore, Ambra1 belongs to a larger network of proteins within the cancer cells that regulates the location of Src. By changing the levels of Src and FAK at focal adhesions, Ambra1 and its other binding partners can control whether the cancer cells are attached to the extracellular matrix or are free to migrate. Overall this work shows that the location and activity of Src within cells needs to be carefully controlled to stop the cells from moving at the wrong time. Further experiments will aim to understand which other proteins are involved in this network and how they contribute to the growth of cancer cells and the spread of tumours around the body. DOI: http://dx.doi.org/10.7554/eLife.23172.002
Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described ‘spatial rheostat’ controlling the Src/FAK pathway. Ambra1 regulates the targeting of active phospho-Src away from focal adhesions into autophagic structures that cancer cells use to survive adhesion stress. Ambra1 binds to both FAK and Src in cancer cells. When FAK is present, Ambra1 is recruited to focal adhesions, promoting FAK-regulated cancer cell direction-sensing and invasion. However, when Ambra1 cannot bind to FAK, abnormally high levels of phospho-Src and phospho-FAK accumulate at focal adhesions, positively regulating adhesion and invasive migration. Spatial control of active Src requires the trafficking proteins Dynactin one and IFITM3, which we identified as Ambra1 binding partners by interaction proteomics. We conclude that Ambra1 is a core component of an intracellular trafficking network linked to tight spatial control of active Src and FAK levels, and so crucially regulates their cancer-associated biological outputs. In animal bodies, a mesh of proteins – known the extracellular matrix – holds cells together to give the body shape and make it more stable. Cells bind to the matrix using structures called focal adhesions. However, cells do not always stay in one place: in young animals, certain cells need to move around the body to reach their final destination. Adult animals also have some cells that are able to move, for example, to close wounds. The cells move when the focal adhesions that hold these cells in place are taken apart and then rebuilt. These processes are very dynamic and happen all the time when cells move. They are normally tightly controlled to ensure that cells only migrate under appropriate conditions. However, focal adhesions are less well regulated in cancer cells, allowing the cells to migrate away from a tumour to form new tumours elsewhere in the body. Focal adhesions are large structures that contain many proteins. These proteins include FAK and Src, which are particularly important and have been well studied. In order to better understand how focal adhesions are taken apart, Schoenherr et al. wanted to discover new proteins that interact with FAK in skin cancer cells from mice. The experiments show that FAK binds to a protein called Ambra1, which is known to control how other proteins move around inside cells. Ambra1 and FAK work together to regulate the movement of Src away from focal adhesions and into the cell. Furthermore, Ambra1 belongs to a larger network of proteins within the cancer cells that regulates the location of Src. By changing the levels of Src and FAK at focal adhesions, Ambra1 and its other binding partners can control whether the cancer cells are attached to the extracellular matrix or are free to migrate. Overall this work shows that the location and activity of Src within cells needs to be carefully controlled to stop the cells from moving at the wrong time. Further experiments will aim to understand which other proteins are involved in this network and how they contribute to the growth of cancer cells and the spread of tumours around the body.
Author Schoenherr, Christina
Byron, Adam
Paliashvili, Ketevan
Valacca, Cristina
Baillie, George S
Serrels, Bryan
Garcia-Munoz, Amaya
Sandilands, Emma
Frame, Margaret C
Cecconi, Francesco
Author_xml – sequence: 1
  givenname: Christina
  orcidid: 0000-0002-0983-6168
  surname: Schoenherr
  fullname: Schoenherr, Christina
  organization: Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 2
  givenname: Adam
  orcidid: 0000-0002-5939-9883
  surname: Byron
  fullname: Byron, Adam
  organization: Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 3
  givenname: Emma
  surname: Sandilands
  fullname: Sandilands, Emma
  organization: Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 4
  givenname: Ketevan
  surname: Paliashvili
  fullname: Paliashvili, Ketevan
  organization: Centre for Nephrology, Division of Medicine, Royal Free Hospital Campus, London, United Kingdom
– sequence: 5
  givenname: George S
  surname: Baillie
  fullname: Baillie, George S
  organization: College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
– sequence: 6
  givenname: Amaya
  surname: Garcia-Munoz
  fullname: Garcia-Munoz, Amaya
  organization: System Biology Ireland, University College Dublin, Dublin, Ireland
– sequence: 7
  givenname: Cristina
  surname: Valacca
  fullname: Valacca, Cristina
  organization: Cell Stress and Survival Group, Danish Cancer Society Research Center, Copenhagen, Denmark
– sequence: 8
  givenname: Francesco
  surname: Cecconi
  fullname: Cecconi, Francesco
  organization: Department of Pediatric Hematology and Oncology, IRCSS Bambino Gesu Children's Hospital, Rome, Italy
– sequence: 9
  givenname: Bryan
  surname: Serrels
  fullname: Serrels, Bryan
  organization: Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
– sequence: 10
  givenname: Margaret C
  orcidid: 0000-0001-5882-1942
  surname: Frame
  fullname: Frame, Margaret C
  organization: Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28362576$$D View this record in MEDLINE/PubMed
BookMark eNpdkt1rFDEUxQep2A_75LsEfBHKtEkmmcm8CEuxWlzwQQXfwp3kzprtbLImMyv735vp1tKal4SbH4dzLue0OPLBY1G8YfSykVJc4eB6vOQVa_iL4oRTSUuqxM-jJ-_j4jylNc2nEUqx9lVxzFVVc9nUJ8V6sekiMJK2MDoYhj2JuJoGGDGRb9EQMKPbuXFPwNt5cHWz-FJu0LpMWGLAG4zE4DAQ53eQXPBk54CMEfremTvnV8Tj-CfEu_S6eNnDkPD84T4rftx8_H79uVx-_XR7vViWRgo2llYoWqNFRYFLbkVXU9myqusVtzVC3dFKtR2lEjtZdawH0zGlOPJeCqRYV2fF7UHXBljrbXQbiHsdwOn7QYgrDXF0ZkDdAAhlhOhlRYVRVnHGpFHKyq4VthdZ68NBazt1ObVBn5MNz0Sf_3j3S6_CTsuqqbOtLPD-QSCG3xOmUW9cmvcFHsOU9MywHJjO6Lv_0HWYos-r0qyVvKGKi9nRxYEyMaQUsX80w6ieK6FxmSuh7yuR6bdP_T-y_wpQ_QUtDrS7
CitedBy_id crossref_primary_10_3390_ijms22010179
crossref_primary_10_1186_s12977_017_0377_y
crossref_primary_10_1007_s10555_023_10085_3
crossref_primary_10_3389_fimmu_2022_1042368
crossref_primary_10_3390_cancers10090278
crossref_primary_10_1155_2022_3770715
crossref_primary_10_3389_fonc_2020_593245
crossref_primary_10_1080_23723556_2021_1949955
crossref_primary_10_3390_biomedicines10040822
crossref_primary_10_1007_s00018_021_03774_1
crossref_primary_10_1016_j_bbamcr_2017_11_005
crossref_primary_10_1038_s41467_021_22772_2
crossref_primary_10_1073_pnas_1811892115
crossref_primary_10_4111_icu_20230294
crossref_primary_10_1007_s00401_021_02347_7
crossref_primary_10_1007_s10495_022_01762_9
crossref_primary_10_3389_fphar_2024_1274209
crossref_primary_10_1146_annurev_cellbio_100617_062559
crossref_primary_10_1007_s00018_023_04878_6
crossref_primary_10_1080_2314808X_2024_2350234
crossref_primary_10_1016_j_chembiol_2020_03_004
crossref_primary_10_1074_jbc_RA120_012565
crossref_primary_10_1111_cas_14743
crossref_primary_10_1007_s11010_020_04030_z
crossref_primary_10_1080_13543776_2018_1414183
crossref_primary_10_1111_febs_14388
crossref_primary_10_1371_journal_pone_0232235
crossref_primary_10_3748_wjg_v24_i41_4643
crossref_primary_10_1080_13543784_2024_2348068
crossref_primary_10_1038_s41568_021_00340_6
Cites_doi 10.1158/0008-5472.CAN-05-2731
10.1083/jcb.201505123
10.1158/1078-0432.CCR-10-2729
10.1038/ncb2708
10.1038/71338
10.1242/jcs.172395
10.1083/jcb.201002100
10.1242/jcs.141978
10.1038/cddis.2014.358
10.1038/cr.2014.85
10.1007/978-1-61779-166-6_19
10.1242/jcs.169102
10.1038/cdd.2012.27
10.1038/nature05925
10.1016/S0092-8674(04)00456-8
10.1038/ncb2386
10.1038/ncb1626
10.1186/1471-2377-13-210
10.3892/or.2013.2428
10.1128/JVI.01328-10
10.3892/or.2014.3522
10.1242/jcs.157560
10.1177/1753425912443392
10.1371/journal.ppat.1001258
10.1016/j.cell.2009.12.017
10.1242/jcs.161547
10.1073/pnas.92.5.1634
10.1016/j.chom.2013.03.006
10.1038/embor.2012.92
10.1242/jcs.094185
10.1128/JVI.01531-10
10.3390/biology3020320
10.1038/322078a0
10.1038/ncb3072
10.1038/ncb1370
10.1111/j.1365-2818.2006.01706.x
10.1002/ijc.26351
10.1074/jbc.271.23.13649
10.1016/j.cub.2010.04.042
10.4161/auto.23278
10.1371/journal.ppat.1002337
10.1038/emboj.2011.49
10.1093/nar/gkv1145
ContentType Journal Article
Copyright 2017, Schoenherr et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2017, Schoenherr et al 2017 Schoenherr et al
Copyright_xml – notice: 2017, Schoenherr et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2017, Schoenherr et al 2017 Schoenherr et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/elife.23172
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database (ProQuest)
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

Publicly Available Content Database

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_7aa48c44f5304c8d82115c88d5b94df4
10_7554_eLife_23172
28362576
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: C157/A15703
– fundername: European Research Council
  grantid: 294440
– fundername: Cancer Research UK
  grantid: 15703
– fundername: ;
  grantid: 14/IA/2395
– fundername: ;
  grantid: Advanced Investigator Grant (294440 Cancer Innovation)
– fundername: ;
  grantid: C157/A15703
GroupedDBID 3V.
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
DIK
DWQXO
ECM
EIF
EMOBN
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NPM
NQS
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RHF
RHI
RNS
RPM
UKHRP
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c541t-d4806ede80a252d4b605913bf82d6ea6b0389b005eb53b1facb1882e2f54e0e63
IEDL.DBID RPM
ISSN 2050-084X
IngestDate Tue Dec 17 15:18:02 EST 2024
Tue Sep 17 21:24:19 EDT 2024
Sat Oct 26 01:44:59 EDT 2024
Tue Nov 12 07:41:13 EST 2024
Fri Dec 06 05:21:10 EST 2024
Sat Nov 02 12:23:46 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords IFITM3
FAK
mouse
cell biology
invasion
Ambra1
Src
cancer biology
trafficking
Language English
License http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-d4806ede80a252d4b605913bf82d6ea6b0389b005eb53b1facb1882e2f54e0e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5939-9883
0000-0001-5882-1942
0000-0002-0983-6168
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5376188/
PMID 28362576
PQID 1952708244
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_7aa48c44f5304c8d82115c88d5b94df4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376188
proquest_miscellaneous_1883180608
proquest_journals_1952708244
crossref_primary_10_7554_eLife_23172
pubmed_primary_28362576
PublicationCentury 2000
PublicationDate 2017-03-31
PublicationDateYYYYMMDD 2017-03-31
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-31
  day: 31
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2017
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – sequence: 0
  name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Pagliarini (bib26) 2012; 19
Yang (bib42) 2013; 30
Verissimo (bib36) 2015; 128
Culver-Hanlon (bib7) 2006; 8
Nitta (bib24) 2014; 7
Vizcaíno (bib37) 2016; 44
Huang (bib14) 2011; 7
Lu (bib22) 2011; 85
Ohbayashi (bib25) 2012; 125
Serrels (bib32) 2010; 20
Waterman-Storer (bib38) 1995; 92
Brass (bib5) 2009; 139
Kuo (bib19) 2012; 757
Strappazzon (bib34) 2011; 30
Fimia (bib11) 2007; 447
Li (bib21) 2014; 127
Wee (bib39) 2012; 18
Sandilands (bib28) 2012; 14
Serrels (bib33) 2007; 9
Feeley (bib10) 2011; 7
Li (bib20) 2011; 17
Bolte (bib4) 2006; 224
Zhao (bib44) 2013; 13
Cianfanelli (bib6) 2015; 17
Nazio (bib23) 2013; 15
Jovasevic (bib15) 2015; 211
Yazdankhah (bib43) 2014; 5
Amini-Bavil-Olyaee (bib1) 2013; 13
Benato (bib3) 2013; 9
Xia (bib41) 2014; 24
Weidner (bib40) 2010; 84
Kedashiro (bib17) 2015; 128
Turriziani (bib35) 2014; 3
de Hoog (bib8) 2004; 117
Di Bartolomeo (bib9) 2010; 191
Andreu (bib2) 2006; 66
Schoenherr (bib30) 2014; 127
Serrels (bib31) 2012; 131
Harte (bib12) 1996; 271
Kedashiro (bib16) 2015; 128
Quintanilla (bib27) 1986; 322
Hu (bib13) 2014; 32
Sandilands (bib29) 2012; 13
King (bib18) 2000; 2
References_xml – volume: 66
  start-page: 1949
  year: 2006
  ident: bib2
  article-title: Identification of the IFITM family as a new molecular marker in human colorectal tumors
  publication-title: Cancer Research
  doi: 10.1158/0008-5472.CAN-05-2731
  contributor:
    fullname: Andreu
– volume: 211
  start-page: 323
  year: 2015
  ident: bib15
  article-title: Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201505123
  contributor:
    fullname: Jovasevic
– volume: 17
  start-page: 3558
  year: 2011
  ident: bib20
  article-title: KLF4-mediated negative regulation of IFITM3 expression plays a critical role in colon cancer pathogenesis
  publication-title: Clinical Cancer Research
  doi: 10.1158/1078-0432.CCR-10-2729
  contributor:
    fullname: Li
– volume: 15
  start-page: 406
  year: 2013
  ident: bib23
  article-title: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2708
  contributor:
    fullname: Nazio
– volume: 2
  start-page: 20
  year: 2000
  ident: bib18
  article-title: Dynactin increases the processivity of the cytoplasmic dynein motor
  publication-title: Nature Cell Biology
  doi: 10.1038/71338
  contributor:
    fullname: King
– volume: 128
  start-page: 4160
  year: 2015
  ident: bib36
  article-title: A microtubule-independent role of p150glued in secretory cargo concentration at endoplasmic reticulum exit sites
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.172395
  contributor:
    fullname: Verissimo
– volume: 191
  start-page: 155
  year: 2010
  ident: bib9
  article-title: The dynamic interaction of AMBRA1 with the dynein motor complex regulates mammalian autophagy
  publication-title: The Journal of Cell Biology
  doi: 10.1083/jcb.201002100
  contributor:
    fullname: Di Bartolomeo
– volume: 127
  start-page: 4574
  year: 2014
  ident: bib21
  article-title: HPS6 interacts with dynactin p150Glued to mediate retrograde trafficking and maturation of lysosomes
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.141978
  contributor:
    fullname: Li
– volume: 5
  start-page: e1403
  year: 2014
  ident: bib43
  article-title: The autophagy regulators Ambra1 and Beclin 1 are required for adult neurogenesis in the brain subventricular zone
  publication-title: Cell Death and Disease
  doi: 10.1038/cddis.2014.358
  contributor:
    fullname: Yazdankhah
– volume: 24
  start-page: 943
  year: 2014
  ident: bib41
  article-title: RNF2 is recruited by WASH to ubiquitinate AMBRA1 leading to downregulation of autophagy
  publication-title: Cell Research
  doi: 10.1038/cr.2014.85
  contributor:
    fullname: Xia
– volume: 757
  start-page: 297
  year: 2012
  ident: bib19
  article-title: Isolation of focal adhesion proteins for biochemical and proteomic analysis
  publication-title: Methods in Molecular Biology
  doi: 10.1007/978-1-61779-166-6_19
  contributor:
    fullname: Kuo
– volume: 128
  start-page: 829
  year: 2015
  ident: bib17
  article-title: LRRK1-phosphorylated CLIP-170 regulates EGFR trafficking by recruiting p150Glued to microtubule plus ends
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.169102
  contributor:
    fullname: Kedashiro
– volume: 19
  start-page: 1495
  year: 2012
  ident: bib26
  article-title: Proteolysis of Ambra1 during apoptosis has a role in the inhibition of the autophagic pro-survival response
  publication-title: Cell Death and Differentiation
  doi: 10.1038/cdd.2012.27
  contributor:
    fullname: Pagliarini
– volume: 447
  start-page: 1121
  year: 2007
  ident: bib11
  article-title: Ambra1 regulates autophagy and development of the nervous system
  publication-title: Nature
  doi: 10.1038/nature05925
  contributor:
    fullname: Fimia
– volume: 117
  start-page: 649
  year: 2004
  ident: bib8
  article-title: RNA and RNA binding proteins participate in early stages of cell spreading through spreading initiation centers
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00456-8
  contributor:
    fullname: de Hoog
– volume: 14
  start-page: 51
  year: 2012
  ident: bib28
  article-title: Autophagic targeting of Src promotes Cancer cell survival following reduced FAK signalling
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb2386
  contributor:
    fullname: Sandilands
– volume: 9
  start-page: 1046
  year: 2007
  ident: bib33
  article-title: Focal adhesion kinase controls actin assembly via a FERM-mediated interaction with the Arp2/3 complex
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1626
  contributor:
    fullname: Serrels
– volume: 13
  start-page: 210
  year: 2013
  ident: bib44
  article-title: The role of IFITM3 in the growth and migration of human glioma cells
  publication-title: BMC Neurology
  doi: 10.1186/1471-2377-13-210
  contributor:
    fullname: Zhao
– volume: 30
  start-page: 171
  year: 2013
  ident: bib42
  article-title: Knockdown of interferon-induced transmembrane protein 3 expression suppresses breast cancer cell growth and colony formation and affects the cell cycle
  publication-title: Oncology Reports
  doi: 10.3892/or.2013.2428
  contributor:
    fullname: Yang
– volume: 84
  start-page: 12646
  year: 2010
  ident: bib40
  article-title: Interferon-induced cell membrane proteins, IFITM3 and tetherin, inhibit vesicular stomatitis virus infection via distinct mechanisms
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01328-10
  contributor:
    fullname: Weidner
– volume: 32
  start-page: 2648
  year: 2014
  ident: bib13
  article-title: Mechanism and biological significance of the overexpression of IFITM3 in gastric cancer
  publication-title: Oncology Reports
  doi: 10.3892/or.2014.3522
  contributor:
    fullname: Hu
– volume: 127
  start-page: 5303
  year: 2014
  ident: bib30
  article-title: Eps8 controls Src- and FAK-dependent phenotypes in squamous carcinoma cells
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.157560
  contributor:
    fullname: Schoenherr
– volume: 18
  start-page: 834
  year: 2012
  ident: bib39
  article-title: Interferon-inducible transmembrane proteins of the innate immune response act as membrane organizers by influencing clathrin and v-ATPase localization and function
  publication-title: Innate Immunity
  doi: 10.1177/1753425912443392
  contributor:
    fullname: Wee
– volume: 7
  start-page: e1001258
  year: 2011
  ident: bib14
  article-title: Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1001258
  contributor:
    fullname: Huang
– volume: 139
  start-page: 1243
  year: 2009
  ident: bib5
  article-title: The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.017
  contributor:
    fullname: Brass
– volume: 128
  start-page: 385
  year: 2015
  ident: bib16
  article-title: LRRK1-phosphorylated CLIP-170 regulates EGFR trafficking by recruiting p150Glued to microtubule plus ends
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.161547
  contributor:
    fullname: Kedashiro
– volume: 92
  start-page: 1634
  year: 1995
  ident: bib38
  article-title: The p150Glued component of the dynactin complex binds to both microtubules and the actin-related protein centractin (Arp-1)
  publication-title: PNAS
  doi: 10.1073/pnas.92.5.1634
  contributor:
    fullname: Waterman-Storer
– volume: 13
  start-page: 452
  year: 2013
  ident: bib1
  article-title: The antiviral effector IFITM3 disrupts intracellular cholesterol homeostasis to block viral entry
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2013.03.006
  contributor:
    fullname: Amini-Bavil-Olyaee
– volume: 13
  start-page: 733
  year: 2012
  ident: bib29
  article-title: Src-dependent autophagic degradation of Ret in FAK-signalling-defective cancer cells
  publication-title: EMBO Reports
  doi: 10.1038/embor.2012.92
  contributor:
    fullname: Sandilands
– volume: 7
  start-page: 4913
  year: 2014
  ident: bib24
  article-title: Autophagy may promote carcinoma cell invasion and correlate with poor prognosis in cholangiocarcinoma
  publication-title: International Journal of Clinical and Experimental Pathology
  contributor:
    fullname: Nitta
– volume: 125
  start-page: 1508
  year: 2012
  ident: bib25
  article-title: Melanoregulin regulates retrograde melanosome transport through interaction with the RILP-p150Glued complex in melanocytes
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.094185
  contributor:
    fullname: Ohbayashi
– volume: 85
  start-page: 2126
  year: 2011
  ident: bib22
  article-title: The IFITM proteins inhibit HIV-1 infection
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01531-10
  contributor:
    fullname: Lu
– volume: 3
  start-page: 320
  year: 2014
  ident: bib35
  article-title: On-beads digestion in conjunction with data-dependent mass spectrometry: a shortcut to quantitative and dynamic interaction proteomics
  publication-title: Biology
  doi: 10.3390/biology3020320
  contributor:
    fullname: Turriziani
– volume: 322
  start-page: 78
  year: 1986
  ident: bib27
  article-title: Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis
  publication-title: Nature
  doi: 10.1038/322078a0
  contributor:
    fullname: Quintanilla
– volume: 17
  start-page: 20
  year: 2015
  ident: bib6
  article-title: AMBRA1 links autophagy to cell proliferation and tumorigenesis by promoting c-Myc dephosphorylation and degradation
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb3072
  contributor:
    fullname: Cianfanelli
– volume: 8
  start-page: 264
  year: 2006
  ident: bib7
  article-title: A microtubule-binding domain in dynactin increases dynein processivity by skating along microtubules
  publication-title: Nature Cell Biology
  doi: 10.1038/ncb1370
  contributor:
    fullname: Culver-Hanlon
– volume: 224
  start-page: 213
  year: 2006
  ident: bib4
  article-title: A guided tour into subcellular colocalization analysis in light microscopy
  publication-title: Journal of Microscopy
  doi: 10.1111/j.1365-2818.2006.01706.x
  contributor:
    fullname: Bolte
– volume: 131
  start-page: 287
  year: 2012
  ident: bib31
  article-title: The role of focal adhesion kinase catalytic activity on the proliferation and migration of squamous cell carcinoma cells
  publication-title: International Journal of Cancer
  doi: 10.1002/ijc.26351
  contributor:
    fullname: Serrels
– volume: 271
  start-page: 13649
  year: 1996
  ident: bib12
  article-title: p130Cas, a substrate associated with v-Src and v-Crk, localizes to focal adhesions and binds to focal adhesion kinase
  publication-title: The Journal of Biological Chemistry
  doi: 10.1074/jbc.271.23.13649
  contributor:
    fullname: Harte
– volume: 20
  start-page: 1086
  year: 2010
  ident: bib32
  article-title: A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.04.042
  contributor:
    fullname: Serrels
– volume: 9
  start-page: 476
  year: 2013
  ident: bib3
  article-title: Ambra1 knockdown in zebrafish leads to incomplete development due to severe defects in organogenesis
  publication-title: Autophagy
  doi: 10.4161/auto.23278
  contributor:
    fullname: Benato
– volume: 7
  start-page: e1002337
  year: 2011
  ident: bib10
  article-title: IFITM3 inhibits influenza A virus infection by preventing cytosolic entry
  publication-title: PLoS Pathogens
  doi: 10.1371/journal.ppat.1002337
  contributor:
    fullname: Feeley
– volume: 30
  start-page: 1195
  year: 2011
  ident: bib34
  article-title: Mitochondrial BCL-2 inhibits AMBRA1-induced autophagy
  publication-title: The EMBO Journal
  doi: 10.1038/emboj.2011.49
  contributor:
    fullname: Strappazzon
– volume: 44
  start-page: D447
  year: 2016
  ident: bib37
  article-title: 2016 update of the PRIDE database and its related tools
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkv1145
  contributor:
    fullname: Vizcaíno
SSID ssj0000748819
Score 2.3662214
Snippet Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described 'spatial rheostat'...
Here, using mouse squamous cell carcinoma cells, we report a completely new function for the autophagy protein Ambra1 as the first described ‘spatial rheostat’...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
SubjectTerms Adaptor Proteins, Signal Transducing - metabolism
Ambra1
Animals
Autophagy
Cancer
Cancer Biology
Carcinoma, Squamous Cell - physiopathology
Cell Adhesion
Cell adhesion & migration
Cell Biology
Cell Line, Tumor
Cell Movement
Dynactin
Dynactin Complex - metabolism
FAK
Focal adhesion kinase
Focal Adhesion Kinase 1 - metabolism
IFITM3
invasion
Invasiveness
Kinases
Medical research
Membrane Proteins - metabolism
Mice
Neurogenesis
Phagocytosis
Proteins
Proteomics
Squamous cell carcinoma
Src
Src protein
src-Family Kinases - metabolism
trafficking
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wqEFBSCnIlrmEdx68cF8SqotBLqdRb5MdEbFVStLutxL9nxg6rXYTEhavtJJMZP76xZr5h7G0MrUIfzdahNaJWSbZ155WrwVgfBmO8zOXbvlyYsyv16Vpf75T6opiwQg9cFDezHh-NSg0aHe_okkOPRUfnkg6dSkNhAhVyx5nKe7DFidl0JSHP4pE5g8_LAd4hmrFy7wjKTP1_g5d_RknuHDuLJ-xwwot8XuR8yh7B-IzdzL-jk9vwNYVD-9vbn3xVSsrDml-uIqdkBaoJwf2YqGG2mJ_XOUcE8SWPZOgVpyt7vhwfPN2X8Yel5_h9IpSgy3M-lvDw9XN2tfj49cNZPRVNqKNWzaZOygkDCZzwUsukAvorXdOGwclkwJtAjHq09iDoNjSDj6FBlA1y0AoEmPYFOxjvRnjJuNHS-ta4KEJQXrowJOGCswmiMiZBhaae9Nj_KNwYPfoUpO4-q7vP6q7Ye9LxdggRWucGNHM_mbn_l5krdvLbQv20ytZ906GEiGEUdp9uu3F9kAb9CHf3OMY53LaEEa5iR8WgW0kQWhlyuCpm90y9J-p-z7j8ljm4iQUHX338P_7tFXssCSzkTMcTdrBZ3cNrhDqb8CbP6l9_Kv9R
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggqvIIfciVuJp1HL_2hLZVV1ULXKDS3iK_AotKtk22lfj3zDjpwiLE1Y4Sax6ebybzIORt8JUEH80wX2nOZBQVmzppWdLG-UZrJ_L4to-f9PmVvFioxRhw68e0yoc7MV_UcRUwRj4pp0oYsFdSvr-5ZTg1Cv-ujiM0HpMnpQBTDvJsFmYTYwHzaMHiDWV5BgznJH1YNukdYBojtgxR7tf_L5D5d67kH8Zn_pw8G1EjnQ1s3iWPUrtHvs9-gKtb0h6Tot319U_aDYPlU08_d4FiyQJOhqCujbgwmc8uWa4UAZRJA7K7oxi4p8v23mHUjN4vHYXvY1sJDKHTdkgS71-Qq_nZl9NzNo5OYEHJcs2itFynmCx3QokoPXgt07LyjRVRJ6c99tVDDUxeVb5sXPAlYO0kGiUTT7p6SXbaVZteE6qB7q7SNnDvpRPWN5Fbb01MQWodUwEMH-lY3wwdMmrwLJDcdSZ3ncldkBOk8eYRbGudF1bd13rUkto4kJMgZaMqLoONFtxTFayNyk9lbGRBDh44VI-61te_JaMgx5tt0BKkoGvT6g6esRYuL665LcirgaGbkwDA0uh2FcRssXrrqNs77fJb7sSNvXDg1W_-f6x98lQgGMiVjAdkZ93dpUOAMmt_lOX1F2Vc9wc
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQXHqpioA2La2M1GsWx_ErJ7RUXSEoXNqVuEV-pd1qm22zCyr_nhknu-oijr3aTuLMw_ONNQ9CPnpXCvDRdO5KxXIReJlXVpg8Km1do5TlqX3b9Y26mIrLW3m7Q9bNOAcCLp917bCf1LSbj_7-eTgDhQf8OtJgDU_jl1kTRwBUNJzFexxMIsZ2XQ84Px3JGuS0qPr8vKfPbFmkVLj_ObT5NGjyHys0eUVeDvCRjnt-75Od2B6Qn-Nf4PMWdInR0XY-f6Bd32E-LunXzlPMXcAWEdS2AQdOJ-OrPKWMANykHvneUbzBp7P23uL1Gb2fWQrfx_oSeJdO2z5afHlIppPP3z5d5EMPhdxLUazyIAxTMUTDLJc8CAfuS1WUrjE8qGiVwwJ7qIrRydIVjfWuANAdeSNFZFGVR2S3XbTxDaFKcm1LZTxzTlhuXBOYcUaH6IVSIWbA-YGO9e--VEYNLgaSu07krhO5M3KONN4swfrWaWDRfa8Hdam1BYHxQjSyZMKbYMBPld6YIF0lQiMycrzmUL2WmbqoYIcAaQRMn2ymQV2QgraNiztYYwyIB1PMZOR1z9DNTgBpKfS_MqK3WL211e2ZdvYjleTGojjw6rf_49_ekRccsUNKfDwmu6vuLr4H5LNyH5JUPwLC-QZ6
  priority: 102
  providerName: Scholars Portal
Title Ambra1 spatially regulates Src activity and Src/FAK-mediated cancer cell invasion via trafficking networks
URI https://www.ncbi.nlm.nih.gov/pubmed/28362576
https://www.proquest.com/docview/1952708244
https://search.proquest.com/docview/1883180608
https://pubmed.ncbi.nlm.nih.gov/PMC5376188
https://doaj.org/article/7aa48c44f5304c8d82115c88d5b94df4
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF615cIFgXgZSrRIXJ3Y6335mFaNKiBVBVTKzdqXwVXiVE5aiX_PzNqJGsSJiw-7a3k0M-v5ZjQPQj45W3Dw0VRqC5ml3LMiLQ3XaZDK2FpKw-L4tvmVvLzhnxdicUTErhYmJu0724zb5WrcNr9ibuXdyk12eWKT6_k5tiDJwXM7Jsdgfh-56PH3q0An87KvxVNgLSfha1OHMQAZhbNrwJ5KRNkHhij26_8XyPw7V_KR8Zk9J88G1EinPXUvyFFoX5Lb6Qpc3ZxuMCnaLJe_adcPlg8b-r1zFEsWcDIENa3Hhcls-iWNlSKAMqlDcXcUA_e0aR8MRs3oQ2MofB_bSmAInbZ9kvjmFbmZXfw4v0yH0QmpEzzfpp7rTAYfdGaYYJ5b8FrKvLC1Zl4GIy321cMbGKwobF4bZ4GhLLBa8JAFWbwmJ-26DW8JlYIpU0jtMmu5YdrWPtNWKx8cl9KHBAQ-8LG66ztkVOBZIOeryPkqcj4hZ8jj_RFsax0X1t3PahBupQzoieO8FkXGnfYa3FPhtPbCltzXPCGnOwlVw13bVHkJFAKS4bD9cb8NtwQ5aNqwvoczWsPPK5OZTsibXqB7SnYKkRB1IOoDUg93QDFjJ-5BEd_995vvyVOGOCEWOZ6Sk213Hz4AytnaEej2Qo3Ik7OLq-tvoxgrgOec61HU9z9_3QR3
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,43310,43805,53791,53793,73745,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege4AXBOIrMMBIvIY6ju24T6hDqwrrKgSbtLfIXxlFIx1JN4n_njvHKxQhXu0ose58vt9dzr8j5I2zpYAYrcptqVguPC_ziRE6D6oytlHK8Ni-7Xip5qfi45k8Swm3PpVV3pyJ8aD2a4c58nExkbwCfyXEu8sfOXaNwr-rqYXGbbKHzOlyRPYODpefPm-zLOAgNfi84WJeBa5zHBarJrwFVFPxHVcUGfv_BTP_rpb8w_3M7pN7CTfS6aDoB-RWaB-Sb9PvEOwWtMeyaHNx8ZN2Q2v50NMvnaN4aQF7Q1DTehwYz6ZHebwrAjiTOlR4RzF1T1fttcG8Gb1eGQrfR2IJTKLTdigT7x-R09nhyft5npon5E6KYpN7oZkKPmhmuOReWIhbJkVpG829CkZZZNZDGwxWlrZojLMFoO3AGykCC6p8TEbtug1PCVUgeVMq7Zi1wnBtG8-01ZUPTijlQwYqT3KsLweOjBpiCxR3HcVdR3Fn5ABlvH0Eia3jwLo7r5Od1JWBneKEaGTJhNNeQ4AqndZe2onwjcjI_o2G6mRtff17b2Tk9XYa7AQlaNqwvoJntIbjiymmM_JkUOh2JQCxFAZeGal2VL2z1N2ZdvU1cnEjGw68-tn_l_WK3JmfHC_qxYfl0XNylyM0iPca98lo012FFwBsNvZl2r2_AFfI-10
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELZgKyFeUBFXoICReA3rOLbjfULbY1VoWVVApb5FvlIWlWxJtpX675lx3IVFiFc7Sqw5PN9M5iDkrbOlAB-tym2pWC48L_OJEToPqjK2UcrwOL7t01wdnoqPZ_Is5T_1Ka3y9k6MF7VfOoyRj4uJ5BXYKyHGTUqLONmfvb_8meMEKfzTmsZp3CVbYBUZH5Gt3YP5yed1xAWMpQb7NxTpVWBGx-F40YR3gHAqvmGWYvf-f0HOvzMn_zBFs23yIGFIOh2Y_pDcCe0j8n36AxzfgvaYIm0uLm5oN4yZDz390jmKBQw4J4Ka1uPCeDY9ymPdCGBO6pD5HcUwPl201wZjaPR6YSh8H5tMYECdtkPKeP-YnM4Ovu4d5mmQQu6kKFa5F5qp4INmhkvuhQUfZlKUttHcq2CUxS57qI_BytIWjXG2AOQdeCNFYEGVT8ioXbbhGaEKuGBKpR2zVhiubeOZtrrywQmlfMiA_YmO9eXQL6MGPwPJXUdy15HcGdlFGq8fwSbXcWHZnddJZ-rKgNQ4IRpZMuG01-CsSqe1l3YifCMysnPLoTppXl__lpOMvFlvg84gBU0bllfwjNZwlTHFdEaeDgxdnwTglkInLCPVBqs3jrq50y6-xb7c2BkHXv38_8d6Te6B4NbHH-ZHL8h9jighljjukNGquwovAeOs7KskvL8Ayqb_ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ambra1+spatially+regulates+Src+activity+and+Src%2FFAK-mediated+cancer+cell+invasion+via+trafficking+networks&rft.jtitle=eLife&rft.au=Christina+Schoenherr&rft.au=Adam+Byron&rft.au=Emma+Sandilands&rft.au=Ketevan+Paliashvili&rft.date=2017-03-31&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=6&rft_id=info:doi/10.7554%2FeLife.23172&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_7aa48c44f5304c8d82115c88d5b94df4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon