Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5314 - 12 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
Nanoconfining single metal atom catalysts leads to faster decontamination, primarily due to improved interfacial mass transfer. This study identifies a change in the catalytic pathway as an additional significant factor contributing to the enhanced performance. |
---|---|
AbstractList | The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications. The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications. The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications. Nanoconfining single metal atom catalysts leads to faster decontamination, primarily due to improved interfacial mass transfer. This study identifies a change in the catalytic pathway as an additional significant factor contributing to the enhanced performance. The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.Nanoconfining single metal atom catalysts leads to faster decontamination, primarily due to improved interfacial mass transfer. This study identifies a change in the catalytic pathway as an additional significant factor contributing to the enhanced performance. Abstract The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications. |
ArticleNumber | 5314 |
Author | Wang, Yun-Jie Wang, Chao Xia, Wen-Qi Li, Wen-Wei Meng, Yan Si, Yang Cao, Xu Liu, Tian Chen, Jie-Jie Liu, Yu-Qin Guo, Zhi-Yan |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0003-3645-7662 surname: Meng fullname: Meng, Yan organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China – sequence: 2 givenname: Yu-Qin orcidid: 0009-0003-1658-3714 surname: Liu fullname: Liu, Yu-Qin organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China – sequence: 3 givenname: Chao orcidid: 0000-0002-3378-6594 surname: Wang fullname: Wang, Chao organization: National Synchrotron Radiation Laboratory, University of Science & Technology of China – sequence: 4 givenname: Yang surname: Si fullname: Si, Yang organization: Kunming Institute of Physics – sequence: 5 givenname: Yun-Jie orcidid: 0000-0002-3080-5518 surname: Wang fullname: Wang, Yun-Jie organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China – sequence: 6 givenname: Wen-Qi orcidid: 0000-0002-7225-1445 surname: Xia fullname: Xia, Wen-Qi organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China – sequence: 7 givenname: Tian orcidid: 0009-0002-8129-0654 surname: Liu fullname: Liu, Tian organization: Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China – sequence: 8 givenname: Xu orcidid: 0009-0005-5982-5837 surname: Cao fullname: Cao, Xu organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China – sequence: 9 givenname: Zhi-Yan orcidid: 0000-0002-6572-2931 surname: Guo fullname: Guo, Zhi-Yan email: gzy2018@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China – sequence: 10 givenname: Jie-Jie orcidid: 0000-0002-2539-8305 surname: Chen fullname: Chen, Jie-Jie organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China – sequence: 11 givenname: Wen-Wei orcidid: 0000-0001-9280-0045 surname: Li fullname: Li, Wen-Wei email: wwli@ustc.edu.cn organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38906879$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFvFCEUxyemxtbaL-DBkHjxMgozDDAnYxqrTRq96JkA89iyMrACW9365WV3a2176Fxmwvz-v_eA97w5CDFA07wk-C3BvXiXKaGMt7ijLR0ZHtruSXPUYUpawrv-4M73YXOS8xLXpx-JoPRZc9iLETPBx6PmzxcVoonBugAzhIJyAUgZ1WpJTc4oj1aqXP5SG1SSCtkVFwNyAWUXFh6QKnFGtgZjaL37Acioovwmu4xsTMjNqxSvKoribzep6l8X59212mpeNE-t8hlObt7Hzfezj99OP7cXXz-dn364aM1ASWknDJ22xFAM1jIjQI-asoFPBoxQdDBYDwNlzGqMCRVsGhlXnAuLydSPmvXHzfneO0W1lKvkZpU2MiondwsxLaRKxRkPkky0q1bTU0Op7jvFLIDG3Gg1gWa8ut7vXau1nqG2EOqx-HvS-3-Cu5SLeCUJIWM3YlENb24MKf5cQy5ydtmA9ypAXGfZY06wGDijFX39AF3GdQr1rLbUFqLDUKlXd1u67eXfJVeg2wMmxZwT2FuEYLkdJrkfJlmHSe6GSXY1JB6EjCu7a6vbcv7xaL-P5lonLCD9b_uR1F8iNuIw |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_4c04376 crossref_primary_10_1002_adfm_202425522 crossref_primary_10_1016_j_watres_2024_122960 crossref_primary_10_1002_smll_202409560 crossref_primary_10_1039_D4TA07260J crossref_primary_10_1016_j_jwpe_2025_107383 crossref_primary_10_1016_j_seppur_2025_131742 crossref_primary_10_1002_adfm_202423509 crossref_primary_10_1016_j_jclepro_2025_144762 crossref_primary_10_1016_j_apcatb_2024_124988 crossref_primary_10_1038_s41467_025_56246_6 crossref_primary_10_1016_j_apcatb_2025_125218 crossref_primary_10_1016_j_cclet_2025_110898 crossref_primary_10_1016_j_cej_2024_156524 crossref_primary_10_1016_j_seppur_2024_129298 crossref_primary_10_1021_acsestengg_5c00035 crossref_primary_10_1016_j_cej_2024_156407 crossref_primary_10_1016_j_apcatb_2024_124424 crossref_primary_10_1016_j_apcatb_2025_125056 crossref_primary_10_1016_j_watres_2025_123173 crossref_primary_10_1038_s41467_025_57560_9 crossref_primary_10_1021_acs_est_4c11311 crossref_primary_10_1016_j_apcatb_2025_125283 crossref_primary_10_1021_acs_est_4c10073 crossref_primary_10_1016_j_efmat_2025_02_004 crossref_primary_10_1039_D4CP03149K crossref_primary_10_1016_j_seppur_2025_131570 crossref_primary_10_1016_j_jclepro_2025_144934 crossref_primary_10_1021_acsami_4c21167 crossref_primary_10_1016_j_jhazmat_2025_137862 crossref_primary_10_1002_adsu_202400634 crossref_primary_10_1002_advs_202413731 crossref_primary_10_1016_j_eesus_2025_02_004 crossref_primary_10_1038_s41467_024_55622_y crossref_primary_10_1021_acs_inorgchem_4c04369 crossref_primary_10_1021_acscatal_4c05569 crossref_primary_10_1016_j_watres_2025_123460 |
Cites_doi | 10.1021/acs.est.1c00020 10.1038/s44221-023-00098-1 10.1021/acs.est.2c01968 10.1038/s41565-020-0652-2 10.1021/acsestengg.1c00007 10.1038/s41467-020-20071-w 10.1021/acs.est.2c01759 10.1021/jacs.8b05992 10.1038/s41598-019-52013-y 10.1073/pnas.2220608120 10.1016/j.apcatb.2023.122368 10.1073/pnas.2311585120 10.1021/acs.est.3c05153 10.1038/s41565-018-0216-x 10.1016/j.jhazmat.2020.124082 10.1002/adma.202209552 10.1063/1.2841941 10.1002/adfm.202203001 10.1021/acs.est.2c01913 10.1016/j.nanoen.2019.104409 10.1021/acs.est.1c05862 10.1002/adma.201901666 10.1021/acs.est.7b05563 10.1021/acs.nanolett.1c04815 10.1021/acs.est.0c01065 10.1038/s41467-024-45106-4 10.1021/acs.est.1c04600 10.1021/jacs.2c01194 10.1016/j.apcatb.2015.03.049 10.1073/pnas.2219923120 10.1021/acs.est.2c00706 10.1038/s41467-020-15591-4 10.1038/s41467-021-23388-2 10.1038/s41467-022-30560-9 10.1021/acs.est.9b05856 10.1006/jcph.1995.1039 10.1002/anie.202308091 10.1038/s41467-024-46739-1 10.1002/anie.202310934 10.1021/acs.est.1c02042 10.1103/PhysRevLett.77.3865 10.1021/acs.est.9b03648 10.1038/s41467-021-25811-0 10.1016/j.watres.2023.120678 10.1073/pnas.1819382116 10.1038/s41563-023-01560-x 10.1103/PhysRevB.54.11169 10.1073/pnas.2317394121 10.1038/s41467-024-46175-1 10.1021/ja9621760 10.1021/acs.est.1c05374 10.1016/j.jhazmat.2021.126152 10.1103/PhysRevB.94.205134 10.1021/acs.est.1c03758 10.1063/1.463940 10.1002/anie.202200755 10.1038/s41467-020-14287-z 10.1002/anie.202304754 10.1039/C7TA05936A 10.1002/anie.202113498 10.1021/acscatal.1c02031 10.1016/j.cej.2020.127097 10.1021/jacs.3c00537 10.1038/s41467-022-31807-1 10.1021/acscatal.5b01223 10.1038/s41563-019-0571-5 10.1002/anie.202313298 10.1016/j.jhazmat.2023.132538 10.1038/s41467-024-45481-y 10.1021/jacs.5b05619 10.1021/acs.est.8b00959 10.1038/s41467-023-38677-1 10.1016/j.apcatb.2022.121593 10.1002/advs.202304088 10.1021/acs.est.0c02192 10.1016/j.watres.2023.119957 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-49605-2 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Open Access资源_DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1d42ec8c34c44b32a6feeb07cbadeb67 PMC11192908 38906879 10_1038_s41467_024_49605_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52192681; U21A20160; 51821006; 12275271 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52192681 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 51821006 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U21A20160 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 12275271 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-d0e2bf1c40eff6c8eb9b4657dcec8a45c0b55466fb001486d967a778f01d39b63 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:25 EDT 2025 Thu Aug 21 18:33:36 EDT 2025 Mon Jul 21 12:07:01 EDT 2025 Wed Aug 13 07:01:32 EDT 2025 Thu Apr 03 07:05:46 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 01 02:11:14 EDT 2025 Fri Feb 21 02:37:38 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-d0e2bf1c40eff6c8eb9b4657dcec8a45c0b55466fb001486d967a778f01d39b63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0005-5982-5837 0000-0001-9280-0045 0000-0002-2539-8305 0000-0003-3645-7662 0000-0002-7225-1445 0000-0002-3378-6594 0009-0002-8129-0654 0000-0002-3080-5518 0000-0002-6572-2931 0009-0003-1658-3714 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49605-2 |
PMID | 38906879 |
PQID | 3070857455 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d42ec8c34c44b32a6feeb07cbadeb67 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11192908 proquest_miscellaneous_3071085764 proquest_journals_3070857455 pubmed_primary_38906879 crossref_primary_10_1038_s41467_024_49605_2 crossref_citationtrail_10_1038_s41467_024_49605_2 springer_journals_10_1038_s41467_024_49605_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-22 |
PublicationDateYYYYMMDD | 2024-06-22 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR30) 2020; 11 Peng (CR50) 2021; 55 Xin (CR14) 2023; 10 Wang (CR52) 2021; 417 Zhang, Hedtke, Zhou, Elimelech, Kim (CR19) 2021; 1 Liang (CR66) 2022; 32 Gong (CR55) 2023; 62 Zhong (CR63) 2022; 22 Martyna, Klein, Tuckerman (CR70) 1992; 97 Jung (CR31) 2020; 19 Gu (CR35) 2023; 120 Zhao (CR49) 2023; 236 Wan (CR29) 2021; 12 Yue (CR68) 2015; 137 Kresse, Furthmüller (CR73) 1996; 54 Jiang (CR9) 2022; 56 Yun, Lee, Kim, Park, Lee (CR41) 2018; 52 Yao (CR44) 2022; 56 Ren (CR39) 2023; 22 Gao, Chen, Zhu, Li, Hu (CR60) 2020; 54 Weng (CR13) 2023; 62 Miao (CR51) 2021; 11 Plimpton (CR72) 1995; 117 Kumar (CR28) 2023; 145 Li (CR4) 2019; 9 Wu, Yang, Wang, Wang (CR17) 2023; 120 Liu (CR43) 2020; 11 Jorgensen, Maxwell, Tirado-Rives (CR71) 1996; 118 Thomas, Dionysiou, Pillai (CR7) 2021; 404 Huang (CR56) 2021; 55 Zhang, Zheng, Tratnyek (CR2) 2023; 1 Wei (CR38) 2022; 56 Li, Shan, Pan (CR47) 2018; 52 Yan (CR54) 2023; 57 Sheppard, Terrell, Henkelman (CR76) 2008; 128 Meng (CR21) 2022; 13 Wordsworth (CR37) 2022; 61 Liu (CR10) 2024; 15 Li (CR8) 2023; 62 Yu (CR34) 2019; 31 Yang (CR58) 2022; 315 Wu, Li, Zu, Lai, Wang (CR65) 2023; 246 Song (CR46) 2023; 35 Liang (CR5) 2024; 121 Zhang (CR69) 2015; 5 Wu (CR18) 2021; 55 Zhao (CR64) 2022; 56 Grommet, Feller, Klajn (CR22) 2020; 15 Yu (CR67) 2024; 15 Zhao (CR53) 2017; 5 Huang, Zhang (CR57) 2019; 53 Wang (CR61) 2024; 15 Perdew, Burke, Ernzerhof (CR74) 1996; 77 Shao (CR48) 2021; 55 Qian, Gao, Pan (CR20) 2020; 54 Chen (CR33) 2022; 144 Sheng (CR27) 2015; 176 Entwistle (CR75) 2016; 94 Hodges, Cates, Kim (CR1) 2018; 13 Wang, Lin, He, Wu, Yang (CR16) 2024; 461 Zeng (CR36) 2020; 69 Peydayesh, Mezzenga (CR3) 2021; 12 Zhang (CR62) 2020; 54 Liu (CR24) 2022; 61 Wang (CR59) 2021; 404 Hu (CR32) 2023; 62 Song (CR45) 2023; 325 Yang (CR11) 2021; 55 Liu (CR15) 2023; 14 Yang, Qian, Yu, Pan (CR23) 2019; 116 Zhang (CR6) 2022; 13 Zhao (CR42) 2020; 11 Zhang (CR25) 2024; 15 Ren (CR12) 2022; 56 Li (CR26) 2018; 140 Guo (CR40) 2023; 120 BC Hodges (49605_CR1) 2018; 13 S Zhang (49605_CR19) 2021; 1 J Song (49605_CR46) 2023; 35 X Wang (49605_CR30) 2020; 11 B Wang (49605_CR61) 2024; 15 WL Jorgensen (49605_CR71) 1996; 118 Z Zeng (49605_CR36) 2020; 69 F Wang (49605_CR59) 2021; 404 P Kumar (49605_CR28) 2023; 145 Z Yang (49605_CR23) 2019; 116 Y Zhao (49605_CR53) 2017; 5 W Ren (49605_CR12) 2022; 56 C Meng (49605_CR21) 2022; 13 J Song (49605_CR45) 2023; 325 E Jung (49605_CR31) 2020; 19 Z Liang (49605_CR5) 2024; 121 J Qian (49605_CR20) 2020; 54 X Sheng (49605_CR27) 2015; 176 Y-J Zhang (49605_CR6) 2022; 13 S Zhang (49605_CR62) 2020; 54 X Li (49605_CR26) 2018; 140 C Liu (49605_CR24) 2022; 61 Y Yan (49605_CR54) 2023; 57 LL Zhang (49605_CR69) 2015; 5 Y Zhong (49605_CR63) 2022; 22 F Li (49605_CR8) 2023; 62 Y Yang (49605_CR58) 2022; 315 Q-Y Wu (49605_CR17) 2023; 120 Z Weng (49605_CR13) 2023; 62 L Wu (49605_CR18) 2021; 55 J Miao (49605_CR51) 2021; 11 D Sheppard (49605_CR76) 2008; 128 Q Yue (49605_CR68) 2015; 137 Z-Y Guo (49605_CR40) 2023; 120 Q Ren (49605_CR39) 2023; 22 G Kresse (49605_CR73) 1996; 54 S Zhang (49605_CR2) 2023; 1 M Peydayesh (49605_CR3) 2021; 12 X Zhang (49605_CR25) 2024; 15 X Liang (49605_CR66) 2022; 32 P Yu (49605_CR34) 2019; 31 W Wan (49605_CR29) 2021; 12 J Hu (49605_CR32) 2023; 62 AB Grommet (49605_CR22) 2020; 15 E-T Yun (49605_CR41) 2018; 52 H-Z Liu (49605_CR10) 2024; 15 S Xin (49605_CR14) 2023; 10 M Huang (49605_CR56) 2021; 55 KZ Huang (49605_CR57) 2019; 53 JP Perdew (49605_CR74) 1996; 77 J Jiang (49605_CR9) 2022; 56 Y Wang (49605_CR16) 2024; 461 Y Yao (49605_CR44) 2022; 56 Z Yang (49605_CR11) 2021; 55 S Plimpton (49605_CR72) 1995; 117 J Wordsworth (49605_CR37) 2022; 61 GJ Martyna (49605_CR70) 1992; 97 T Liu (49605_CR15) 2023; 14 Y Wei (49605_CR38) 2022; 56 C-H Gu (49605_CR35) 2023; 120 J Peng (49605_CR50) 2021; 55 L Wang (49605_CR52) 2021; 417 B Wu (49605_CR65) 2023; 246 Z Yu (49605_CR67) 2024; 15 Y Zhao (49605_CR64) 2022; 56 MT Entwistle (49605_CR75) 2016; 94 N Thomas (49605_CR7) 2021; 404 H Li (49605_CR47) 2018; 52 P Shao (49605_CR48) 2021; 55 C Liu (49605_CR43) 2020; 11 F Gong (49605_CR55) 2023; 62 Y Gao (49605_CR60) 2020; 54 Y Zhao (49605_CR49) 2023; 236 S Chen (49605_CR33) 2022; 144 Y Zhao (49605_CR42) 2020; 11 J Li (49605_CR4) 2019; 9 |
References_xml | – volume: 55 start-page: 9189 year: 2021 end-page: 9198 ident: CR50 article-title: Insights into the electron-transfer mechanism of permanganate activation by graphite for enhanced oxidation of sulfamethoxazole publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00020 – volume: 1 start-page: 666 year: 2023 end-page: 681 ident: CR2 article-title: Advanced redox processes for sustainable water treatment publication-title: Nat. Water doi: 10.1038/s44221-023-00098-1 – volume: 56 start-page: 8984 year: 2022 end-page: 8992 ident: CR38 article-title: Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01968 – volume: 15 start-page: 256 year: 2020 end-page: 271 ident: CR22 article-title: Chemical reactivity under nanoconfinement publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0652-2 – volume: 1 start-page: 706 year: 2021 end-page: 724 ident: CR19 article-title: Environmental applications of engineered materials with nanoconfinement publication-title: ACS EST Eng. doi: 10.1021/acsestengg.1c00007 – volume: 11 year: 2020 ident: CR42 article-title: Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production publication-title: Nat. Commun. doi: 10.1038/s41467-020-20071-w – volume: 56 start-page: 10710 year: 2022 end-page: 10720 ident: CR64 article-title: Selective degradation of electron-rich organic pollutants induced by CuO@Biochar: the key role of outer-sphere interaction and singlet oxygen publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01759 – volume: 140 start-page: 12469 year: 2018 end-page: 12475 ident: CR26 article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 9 year: 2019 ident: CR4 article-title: Mesoporous bimetallic Fe/Co as highly active heterogeneous Fenton catalyst for the degradation of tetracycline hydrochlorides publication-title: Sci. Rep. doi: 10.1038/s41598-019-52013-y – volume: 120 year: 2023 ident: CR40 article-title: Crystallinity engineering for overcoming the activity–stability tradeoff of spinel oxide in Fenton-like catalysis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2220608120 – volume: 325 year: 2023 ident: CR45 article-title: Unsaturated single-atom CoN sites for improved fenton-like reaction towards high-valent metal species publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2023.122368 – volume: 120 year: 2023 ident: CR35 article-title: Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2311585120 – volume: 57 start-page: 12153 year: 2023 end-page: 12179 ident: CR54 article-title: Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c05153 – volume: 13 start-page: 642 year: 2018 end-page: 650 ident: CR1 article-title: Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0216-x – volume: 404 year: 2021 ident: CR7 article-title: Heterogeneous Fenton catalysts: a review of recent advances publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124082 – volume: 35 year: 2023 ident: CR46 article-title: Asymmetrically coordinated CoB N moieties for selective generation of high-valence Co-Oxo species via coupled electron–proton transfer in fenton-like reactions publication-title: Adv. Mater. doi: 10.1002/adma.202209552 – volume: 128 start-page: 134106 year: 2008 ident: CR76 article-title: Optimization methods for finding minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.2841941 – volume: 32 year: 2022 ident: CR66 article-title: Coordination number dependent catalytic activity of single-atom cobalt catalysts for fenton-like reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203001 – volume: 56 start-page: 5611 year: 2022 end-page: 5619 ident: CR9 article-title: Nitrogen vacancy-modulated peroxymonosulfate nonradical activation for organic contaminant removal via high-valent cobalt-oxo species publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01913 – volume: 69 year: 2020 ident: CR36 article-title: Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104409 – volume: 55 start-page: 14494 year: 2021 end-page: 14514 ident: CR11 article-title: Toward selective oxidation of contaminants in aqueous systems publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05862 – volume: 31 year: 2019 ident: CR34 article-title: Co nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–Air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201901666 – volume: 52 start-page: 2197 year: 2018 end-page: 2205 ident: CR47 article-title: Fe(III)-doped g-C N mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05563 – volume: 22 start-page: 2554 year: 2022 end-page: 2560 ident: CR63 article-title: Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C–C coupling toward CO eletroreduction publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04815 – volume: 54 start-page: 8509 year: 2020 end-page: 8526 ident: CR20 article-title: Nanoconfinement-mediated water treatment: from fundamental to application publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01065 – volume: 15 year: 2024 ident: CR25 article-title: Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction publication-title: Nat. Commun. doi: 10.1038/s41467-024-45106-4 – volume: 55 start-page: 15400 year: 2021 end-page: 15411 ident: CR18 article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O ) in the Fe–Co LDH/peroxymonosulfate system publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04600 – volume: 144 start-page: 14505 year: 2022 end-page: 14516 ident: CR33 article-title: Identification of the highly active Co–N coordination motif for selective oxygen reduction to hydrogen peroxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01194 – volume: 176 start-page: 212 year: 2015 end-page: 224 ident: CR27 article-title: N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O to H O publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.03.049 – volume: 120 year: 2023 ident: CR17 article-title: Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt–oxo species formation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2219923120 – volume: 56 start-page: 8833 year: 2022 end-page: 8843 ident: CR44 article-title: Rational regulation of Co–N–C coordination for high-efficiency generation of O toward nearly 100% selective degradation of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00706 – volume: 11 year: 2020 ident: CR43 article-title: An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy publication-title: Nat. Commun. doi: 10.1038/s41467-020-15591-4 – volume: 12 year: 2021 ident: CR3 article-title: Protein nanofibrils for next generation sustainable water purification publication-title: Nat. Commun. doi: 10.1038/s41467-021-23388-2 – volume: 13 year: 2022 ident: CR6 article-title: Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination publication-title: Nat. Commun. doi: 10.1038/s41467-022-30560-9 – volume: 54 start-page: 1232 year: 2020 end-page: 1241 ident: CR60 article-title: New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05856 – volume: 117 start-page: 1 year: 1995 end-page: 19 ident: CR72 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 62 year: 2023 ident: CR55 article-title: Universal sub-nanoreactor strategy for synthesis of yolk-shell MoS supported single atom electrocatalysts toward robust hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202308091 – volume: 15 year: 2024 ident: CR10 article-title: Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization publication-title: Nat. Commun. doi: 10.1038/s41467-024-46739-1 – volume: 62 year: 2023 ident: CR13 article-title: Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100 % selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202310934 – volume: 55 start-page: 16078 year: 2021 end-page: 16087 ident: CR48 article-title: Revisiting the graphitized nanodiamond-mediated activation of peroxymonosulfate: singlet oxygenation versus electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02042 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR74 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 53 start-page: 12610 year: 2019 end-page: 12620 ident: CR57 article-title: Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO ) and the development of galvanic oxidation processes (GOPs) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03648 – volume: 12 year: 2021 ident: CR29 article-title: Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts publication-title: Nat. Commun. doi: 10.1038/s41467-021-25811-0 – volume: 246 start-page: 120678 year: 2023 ident: CR65 article-title: Polar electric field-modulated peroxymonosulfate selective activation for removal of organic contaminants via non-radical electron transfer process publication-title: Water Res. doi: 10.1016/j.watres.2023.120678 – volume: 116 start-page: 6659 year: 2019 end-page: 6664 ident: CR23 article-title: Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1819382116 – volume: 22 start-page: 999 year: 2023 end-page: 1006 ident: CR39 article-title: Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01560-x – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR73 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 121 year: 2024 ident: CR5 article-title: Effective green treatment of sewage sludge from Fenton reactions: utilizing MoS for sustainable resource recovery publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2317394121 – volume: 15 year: 2024 ident: CR61 article-title: Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts publication-title: Nat. Commun. doi: 10.1038/s41467-024-46175-1 – volume: 118 start-page: 11225 year: 1996 end-page: 11236 ident: CR71 article-title: Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 56 start-page: 78 year: 2022 end-page: 97 ident: CR12 article-title: Origins of electron-transfer regime in persulfate-based nonradical oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05374 – volume: 417 year: 2021 ident: CR52 article-title: Effective activation of peroxymonosulfate with natural manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126152 – volume: 94 year: 2016 ident: CR75 article-title: Local density approximations from finite systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.205134 – volume: 55 start-page: 15361 year: 2021 end-page: 15370 ident: CR56 article-title: In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03758 – volume: 97 start-page: 2635 year: 1992 end-page: 2643 ident: CR70 article-title: Nosé–Hoover chains: the canonical ensemble via continuous dynamics publication-title: J. Chem. Phys. doi: 10.1063/1.463940 – volume: 61 year: 2022 ident: CR37 article-title: The influence of nanoconfinement on electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200755 – volume: 11 year: 2020 ident: CR30 article-title: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-020-14287-z – volume: 62 year: 2023 ident: CR32 article-title: Uncovering dynamic edge-sites in atomic Co−N−C electrocatalyst for selective hydrogen peroxide production publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202304754 – volume: 5 start-page: 19672 year: 2017 end-page: 19679 ident: CR53 article-title: Fe C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05936A – volume: 61 year: 2022 ident: CR24 article-title: Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C−C coupling publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202113498 – volume: 11 start-page: 9569 year: 2021 end-page: 9577 ident: CR51 article-title: Spin-state-dependent peroxymonosulfate activation of single-atom M–N moieties via a radical-free pathway publication-title: ACS Catal. doi: 10.1021/acscatal.1c02031 – volume: 404 year: 2021 ident: CR59 article-title: Insights into the transformations of Mn species for peroxymonosulfate activation by tuning the Mn O shapes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127097 – volume: 145 start-page: 8052 year: 2023 end-page: 8063 ident: CR28 article-title: High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00537 – volume: 13 year: 2022 ident: CR21 article-title: Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels publication-title: Nat. Commun. doi: 10.1038/s41467-022-31807-1 – volume: 5 start-page: 6563 year: 2015 end-page: 6572 ident: CR69 article-title: Co-N-C catalyst for C-C coupling reactions: on the catalytic performance and active sites publication-title: ACS Catal. doi: 10.1021/acscatal.5b01223 – volume: 19 start-page: 436 year: 2020 end-page: 442 ident: CR31 article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H O production publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 62 year: 2023 ident: CR8 article-title: Efficient removal of antibiotic resistance genes through 4f-2p-3d gradient orbital coupling mediated Fenton-like redox processes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202313298 – volume: 461 start-page: 132538 year: 2024 ident: CR16 article-title: Singlet oxygen: properties, generation, detection, and environmental applications publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132538 – volume: 15 year: 2024 ident: CR67 article-title: Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment publication-title: Nat. Commun. doi: 10.1038/s41467-024-45481-y – volume: 137 start-page: 13282 year: 2015 end-page: 13289 ident: CR68 article-title: An interface coassembly in biliquid phase: toward core–shell magnetic mesoporous silica microspheres with tunable pore size publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05619 – volume: 52 start-page: 7032 year: 2018 end-page: 7042 ident: CR41 article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 – volume: 14 year: 2023 ident: CR15 article-title: Water decontamination via nonradical process by nanoconfined Fenton-like catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-023-38677-1 – volume: 315 year: 2022 ident: CR58 article-title: Crystallinity and valence states of manganese oxides in Fenton-like polymerization of phenolic pollutants for carbon recycling against degradation publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2022.121593 – volume: 10 year: 2023 ident: CR14 article-title: Electron delocalization realizes speedy fenton-like catalysis over a high-loading and low-valence zinc single-atom catalyst publication-title: Adv. Sci. doi: 10.1002/advs.202304088 – volume: 54 start-page: 10868 year: 2020 end-page: 10875 ident: CR62 article-title: Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02192 – volume: 236 year: 2023 ident: CR49 article-title: Selective activation of peroxymonosulfate govern by B-site metal in delafossite for efficient pollutants degradation: pivotal role of d orbital electronic configuration publication-title: Water Res. doi: 10.1016/j.watres.2023.119957 – volume: 120 year: 2023 ident: 49605_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2311585120 – volume: 1 start-page: 706 year: 2021 ident: 49605_CR19 publication-title: ACS EST Eng. doi: 10.1021/acsestengg.1c00007 – volume: 13 start-page: 642 year: 2018 ident: 49605_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0216-x – volume: 11 start-page: 9569 year: 2021 ident: 49605_CR51 publication-title: ACS Catal. doi: 10.1021/acscatal.1c02031 – volume: 12 year: 2021 ident: 49605_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23388-2 – volume: 120 year: 2023 ident: 49605_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2219923120 – volume: 32 year: 2022 ident: 49605_CR66 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203001 – volume: 13 year: 2022 ident: 49605_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30560-9 – volume: 22 start-page: 2554 year: 2022 ident: 49605_CR63 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04815 – volume: 9 year: 2019 ident: 49605_CR4 publication-title: Sci. Rep. doi: 10.1038/s41598-019-52013-y – volume: 1 start-page: 666 year: 2023 ident: 49605_CR2 publication-title: Nat. Water doi: 10.1038/s44221-023-00098-1 – volume: 315 year: 2022 ident: 49605_CR58 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2022.121593 – volume: 15 year: 2024 ident: 49605_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-024-46739-1 – volume: 14 year: 2023 ident: 49605_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38677-1 – volume: 117 start-page: 1 year: 1995 ident: 49605_CR72 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 325 year: 2023 ident: 49605_CR45 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2023.122368 – volume: 69 year: 2020 ident: 49605_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104409 – volume: 57 start-page: 12153 year: 2023 ident: 49605_CR54 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c05153 – volume: 13 year: 2022 ident: 49605_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-022-31807-1 – volume: 236 year: 2023 ident: 49605_CR49 publication-title: Water Res. doi: 10.1016/j.watres.2023.119957 – volume: 62 year: 2023 ident: 49605_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202313298 – volume: 61 year: 2022 ident: 49605_CR37 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200755 – volume: 55 start-page: 15361 year: 2021 ident: 49605_CR56 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c03758 – volume: 11 year: 2020 ident: 49605_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15591-4 – volume: 121 year: 2024 ident: 49605_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2317394121 – volume: 94 year: 2016 ident: 49605_CR75 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.205134 – volume: 176 start-page: 212 year: 2015 ident: 49605_CR27 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.03.049 – volume: 5 start-page: 19672 year: 2017 ident: 49605_CR53 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA05936A – volume: 31 year: 2019 ident: 49605_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201901666 – volume: 35 year: 2023 ident: 49605_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.202209552 – volume: 417 year: 2021 ident: 49605_CR52 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126152 – volume: 128 start-page: 134106 year: 2008 ident: 49605_CR76 publication-title: J. Chem. Phys. doi: 10.1063/1.2841941 – volume: 15 start-page: 256 year: 2020 ident: 49605_CR22 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0652-2 – volume: 54 start-page: 1232 year: 2020 ident: 49605_CR60 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05856 – volume: 54 start-page: 10868 year: 2020 ident: 49605_CR62 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c02192 – volume: 56 start-page: 5611 year: 2022 ident: 49605_CR9 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01913 – volume: 11 year: 2020 ident: 49605_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20071-w – volume: 77 start-page: 3865 year: 1996 ident: 49605_CR74 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 404 year: 2021 ident: 49605_CR7 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124082 – volume: 140 start-page: 12469 year: 2018 ident: 49605_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05992 – volume: 246 start-page: 120678 year: 2023 ident: 49605_CR65 publication-title: Water Res. doi: 10.1016/j.watres.2023.120678 – volume: 62 year: 2023 ident: 49605_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202310934 – volume: 15 year: 2024 ident: 49605_CR67 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45481-y – volume: 53 start-page: 12610 year: 2019 ident: 49605_CR57 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b03648 – volume: 56 start-page: 8833 year: 2022 ident: 49605_CR44 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00706 – volume: 461 start-page: 132538 year: 2024 ident: 49605_CR16 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.132538 – volume: 5 start-page: 6563 year: 2015 ident: 49605_CR69 publication-title: ACS Catal. doi: 10.1021/acscatal.5b01223 – volume: 54 start-page: 11169 year: 1996 ident: 49605_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 56 start-page: 78 year: 2022 ident: 49605_CR12 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05374 – volume: 145 start-page: 8052 year: 2023 ident: 49605_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c00537 – volume: 55 start-page: 16078 year: 2021 ident: 49605_CR48 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c02042 – volume: 120 year: 2023 ident: 49605_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2220608120 – volume: 11 year: 2020 ident: 49605_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14287-z – volume: 116 start-page: 6659 year: 2019 ident: 49605_CR23 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1819382116 – volume: 54 start-page: 8509 year: 2020 ident: 49605_CR20 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01065 – volume: 144 start-page: 14505 year: 2022 ident: 49605_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01194 – volume: 15 year: 2024 ident: 49605_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-024-46175-1 – volume: 97 start-page: 2635 year: 1992 ident: 49605_CR70 publication-title: J. Chem. Phys. doi: 10.1063/1.463940 – volume: 137 start-page: 13282 year: 2015 ident: 49605_CR68 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05619 – volume: 56 start-page: 8984 year: 2022 ident: 49605_CR38 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01968 – volume: 55 start-page: 15400 year: 2021 ident: 49605_CR18 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04600 – volume: 118 start-page: 11225 year: 1996 ident: 49605_CR71 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9621760 – volume: 62 year: 2023 ident: 49605_CR55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202308091 – volume: 56 start-page: 10710 year: 2022 ident: 49605_CR64 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c01759 – volume: 404 year: 2021 ident: 49605_CR59 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127097 – volume: 61 year: 2022 ident: 49605_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202113498 – volume: 62 year: 2023 ident: 49605_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202304754 – volume: 55 start-page: 9189 year: 2021 ident: 49605_CR50 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c00020 – volume: 15 year: 2024 ident: 49605_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-024-45106-4 – volume: 22 start-page: 999 year: 2023 ident: 49605_CR39 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01560-x – volume: 52 start-page: 2197 year: 2018 ident: 49605_CR47 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05563 – volume: 12 year: 2021 ident: 49605_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25811-0 – volume: 19 start-page: 436 year: 2020 ident: 49605_CR31 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0571-5 – volume: 55 start-page: 14494 year: 2021 ident: 49605_CR11 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05862 – volume: 10 year: 2023 ident: 49605_CR14 publication-title: Adv. Sci. doi: 10.1002/advs.202304088 – volume: 52 start-page: 7032 year: 2018 ident: 49605_CR41 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00959 |
SSID | ssj0000391844 |
Score | 2.6570656 |
Snippet | The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to... Abstract The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5314 |
SubjectTerms | 119/118 140/133 140/146 147/137 147/143 639/638/169/896 639/638/77/885 639/638/77/887 Active sites Catalysis Catalysts Chlorophenol Cobalt Decontamination Degradation Electron transfer Electronic structure Humanities and Social Sciences Mass transfer multidisciplinary Oxidants Oxidation Oxidizing agents p-Chlorophenol Performance enhancement Phenolic compounds Phenols Pollutants Reaction kinetics Regulatory mechanisms (biology) Science Science (multidisciplinary) Silica Single atom catalysts Singlet oxygen Water pollution Water purification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QJCQuCMZXYZuCxA2qpambpEdAmyYkODFptyifouLRN7E3wcQ_j532Pfb4vHDpoU0rN3bin-3YZuwZRBdVVLnOEi9ooEDdC5FqIZOIvTBOC0oUfvtOnZzCm7Pu7FqrLzoTNpUHnibusIkgUzChhQDgW-lUTskLHbyLyauSR44675oxVfbgtkfTBeYsGdGawwsoewIRA4jau1puaaJSsP93KPPXw5I_RUyLIjq-w27PCJK_nCi_y26kcZfdnHpKXt1j33C_XKKRmxE-kuePIxsR4vGR-giUoAynLsRf3BVfkZ4qR7b4MHJyGiwSRyP8E8-ptBZeDB8TLw4eqlvCEd_yYe2E4MuvQ0S2cJTcxZzMeZ-dHh-9f31Szx0W6tBBs6qjSNLnJoBIOatgku89qE7jzwbjoAvC0yk2lQlbgVGxV9ppbbJoYtt71T5gO0h-esS4h9aEABS37CE04JJDuxu5nRN-p3EVa9azbcNcfpy6YCxsCYO3xk4cssghWzhkZcWeb945n4pv_HX0K2LiZiQVzi43UJzsLE72X-JUsb21CNh5NV9Y2hdNp6HrKvZ08xjXIQVX3JiWl2UMJXJoBRV7OEnMhhIEhUIZ3VfMbMnSFqnbT8bhQ6n1jaoIAawwFXuxFrsfdP15Lh7_j7l4wm5JWi9C1VLusZ3V58u0jxBs5Q_KavsO-64xnw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkL4pvCQEHiBtXS1k3SEwLENCHBiUnvVuUTKh7t2HsTTPzz2OnH9PjYpYcmrZzYTn6xHZux5-CNl17GPJb4wAMK5I0QIRdlEL4R2ihBF4U_fJRHx_B-Va8mg9tmCquc18S0UPvBkY38gGRT1wrq-tXJ95yqRpF3dSqhcZVdo9RlFNKlVmqxsVD2cw0w3ZURlT7YQFoZiCRA7F7n5c5-lNL2_wtr_h0y-YffNG1Hh7fYzQlH8tcj42-zK6G_w66PlSXP77JfuGoOeNSNCCLJ_seRmQj0eE_VBJJrhlMt4h_mnG9pt0qBW7zrOZkO1oHjUfwbjyEVGF53XwNPZh7KXsIR5fJuNkXw4WfnkTkc5Xc9Xem8x44P3316e5RPdRZyV0Oxzb0IpY2FAxFilE4H21iQtcLBOm2gdsJSLJuMhLBAS99IZZTSURS-aqys7rM9JD88ZNxCpZ0D8l424AowweDpG3keA_6nMBkr5tlu3ZSEnGphrNvkDK90O3KoRQ61iUNtmbEXyzcnYwqOS3u_ISYuPSl9dnoxnH5uJ21sCw8ljs1V4ABsVRoZQ7BCOWt8sFJlbH8WgXbS6U17IYEZe7Y0ozaSi8X0YThLfeg6h5KQsQejxCyUIDQUUqsmY3pHlnZI3W3puy8p4zduSAhjhc7Yy1nsLuj6_1w8unwYj9mNkjRByLws99ne9vQsPEGItbVPkx79BrlfJ0g priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_LiuBF_La6SgRvWkzbaZIe9eGyCHpyYW8hn1p89i27b9HFf96Z9EOeroKXHtq0TDozyS_zydhzCDbIIFOZarzgAQXKTohYijqK0AltlaBE4fcf5NExvDtpT_ZYPefC5KD9XNIyL9NzdNirc8gqTd8CBN1ticvuNSrdTlK9kqvFrkIVzzXAlB8jGn3Fqzt7UC7VfxW-_DNM8jdfad6CDm-xmxN25K9Ham-zvTjcYdfHbpKXd9kPXCk3eLxNCBzJ5seRgQju-EAdBLI7hlP_4W_2km9ph8rBWrwfOJkL1pHj8fsrTzE3FV73XyLPph2qWMIR2fJ-Nj_wzfc-IEM4yux6SuO8x44P335cHZVTb4XSt1BtyyBi7VLlQcSUpNfRdQ5kq3CyXltovXAUvyYToSrQMnRSWaV0ElVoOieb-2wfyY8PGXfQaO-BPJYd-ApstHjiRj6niN-pbMGq-W8bPxUep_4Xa5Md4I02I4cMcshkDpm6YC-Wd07Hshv_HP2GmLiMpJLZ-cbm7JOZRMhUAWqcm2_AA7imtjLF6ITyzobopCrYwSwCZtLjc0Mrom4VtG3Bni2PUQPJrWKHuLnIYyiFQ0ko2INRYhZKEA4KqVVXML0jSzuk7j4Z-s-5yjduQghdhS7Yy1nsftH193_x6P-GP2Y3atIMIcu6PmD727OL-ARh1tY9zXr1ExliJRA priority: 102 providerName: Springer Nature |
Title | Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization |
URI | https://link.springer.com/article/10.1038/s41467-024-49605-2 https://www.ncbi.nlm.nih.gov/pubmed/38906879 https://www.proquest.com/docview/3070857455 https://www.proquest.com/docview/3071085764 https://pubmed.ncbi.nlm.nih.gov/PMC11192908 https://doaj.org/article/1d42ec8c34c44b32a6feeb07cbadeb67 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEN8ERmUk3iDgJI7tPCDUVStTpU0IqNS3yHbsURFS6Dqxin-eOycpKhQkXhIpcRLHd-f7nc93R8gzXulKVMLHPoUDGCg8LhhzMUsdqwqmtGQYKHx6Jk6mfDLLZ3ukL3fUDeDFTtMO60lNl_XLq2_rNyDwr9uQcfXqggdxx-9wAOR5DFPyAWgmiYJ62sH9MDNnBRg06GhOGU9i0N1ZF0ez-zVbuiqk9N-FQ__cTvmbTzWoqvEtcrPDmHTYMsVtsueaO-R6W3VyfZf8gBl1AWawB4CJa4MUCA0gkDZYaSC4bSjWKf6u13SFmixs6qLzhuKyQu0omOlfqHeh-HA9_-xoWALCzCYUEDCd98sUdHE1r4BwFHi77sI975Hp-Pjj6CTuajDENufJKq6YS41PLGfOe2GVM4XhIpfws1ZpnltmcJ-b8Ii-uBJVIaSWUnmWVFlhRHaf7EP33UNCDc-UtRw9mwW3CddOg2UO_OAdvCfREUn60S5tl6Ac62TUZXCUZ6psKVQChcpAoTKNyPPNM1_b9Bz_bH2ERNy0xNTa4cJieV52klomFU_h32zGLecmS7XwzhkmrdGVM0JG5LBngbJn1xJnTpVLnucRebq5DZKK7hfduMVlaIOhHlLwiDxoOWbTE4CNTChZRERt8dJWV7fvNPNPIRs4KCuAuExF5EXPdr_69fexePRfI_eY3EhRMJiI0_SQ7K-Wl-4JoLGVGZBrcibhqMZvB-RgOJx8mMD56Pjs3Xu4OhKjQVjnGARR_Am1hzbV |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFEdx7GdA0K8qi19nFppb8avwIplt3S3Kiv-E7-RGSfZann01ksOiRM5nm_G8_DMEPJMBBtkkE3ecLiAgSLymrGYMx5ZqJm2imGi8N6-HByKj8NquEZ-9bkweKyyl4lJUIepRx_5JmJTV0pU1euj7zl2jcLoat9Co4XFTlycgsk2e7X9Huj7nPOtDwfvBnnXVSD3lSjmeWCRu6bwgsWmkV5HVzshKxV89NqKyjOHJ7dkg_qE0DLUUlmldMOKUNZOlvDdS-QybLwMOUoN1dKng9XWtRBdbg4r9eZMJEmESyDAVqhyvrL_pTYB_9Jt_z6i-UecNm1_WzfI9U5vpW9aoN0ka3Fyi1xpO1kubpOfIKWnYFo3oLSiv5ECeECxpBPsXpBCQRR7H5_aBZ3j7pgOitHRhKKrYhwpmP7faBNTQ-Px6Gukya2E1VIoaNV01Ls-6PTHKAAYKPDLuEshvUMOL4QCd8k6TD_eJ9SJUnsvMFpaC18IGy1Y-4CxJsJ3CpuRol9t47ui59h7Y2xS8L3UpqWQAQqZRCHDM_Ji-c5RW_Lj3NFvkYjLkViuO92YHn82HfebIggO_-ZL4YVwJbeyidEx5Z0N0UmVkY0eAqaTITNzhviMPF0-Bu7HkI6dxOlJGoPpI0qKjNxrEbOcCaiiTGpVZ0SvYGllqqtPJqMvqcI4bICgNjOdkZc97M7m9f-1eHD-bzwhVwcHe7tmd3t_5yG5xpErmMw53yDr8-OT-AjUu7l7nHiKkk8XzcS_AfgEZLk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4llSChgJThCt4zi2c0AIKKuWQsWBSnsLjh-wYtm03a3Kin_Gr2PGSbZaHr31kkPiRI7nm_G8PEPIE-GMk06GNHC4gIEi0pIxnzLumSuZNorhQeEP-3LnQLwbFaM18qs_C4Nplb1MjILaNRZ95APEpi6UKIpB6NIiPm4PXx4epdhBCiOtfTuNFiJ7fnEK5tvsxe420Pop58O3n97spF2HgdQWIpunjnleh8wK5kOQVvu6rIUslLPeaiMKy2rM4pIBdQuhpSulMkrpwDKXl7XM4buXyGWVFxnymBqppX8HK69rIbpzOizXg5mIUgmXQ4DdUKR8ZS-MLQP-pef-na75R8w2boXDG-R6p8PSVy3obpI1P71FrrRdLRe3yU-Q2A2Y2QEUWPQ9UgASKJl0ip0MYliIYh_kU7Ogc9wpY9IYHU8pui0mnpp5850GH5sbT8bfPI0uJqycQkHDpuPeDUKbH2MHwKDAO5PuOOkdcnAhFLhL1mH6_h6htci1tQIjp6WwmTDegOUPeAsevpOZhGT9ale2K4COfTgmVQzE57pqKVQBhapIoYon5NnyncO2_Me5o18jEZcjsXR3vNEcf6k6SVBlTnD4N5sLK0SdcyOD9zVTtjbO11IlZKuHQNXJk1l1hv6EPF4-BkmA4R0z9c1JHINHSZQUCdloEbOcCailTGpVJkSvYGllqqtPpuOvsdo4bIagQjOdkOc97M7m9f-12Dz_Nx6Rq8C-1fvd_b375BpHpmAy5XyLrM-PT_wD0PTm9cPIUpR8vmge_g19KGjv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoconfinement+steers+nonradical+pathway+transition+in+single+atom+fenton-like+catalysis+for+improving+oxidant+utilization&rft.jtitle=Nature+communications&rft.au=Meng%2C+Yan&rft.au=Liu%2C+Yu-Qin&rft.au=Wang%2C+Chao&rft.au=Si%2C+Yang&rft.date=2024-06-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-49605-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_49605_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |