Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5314 - 12
Main Authors Meng, Yan, Liu, Yu-Qin, Wang, Chao, Si, Yang, Wang, Yun-Jie, Xia, Wen-Qi, Liu, Tian, Cao, Xu, Guo, Zhi-Yan, Chen, Jie-Jie, Li, Wen-Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications. Nanoconfining single metal atom catalysts leads to faster decontamination, primarily due to improved interfacial mass transfer. This study identifies a change in the catalytic pathway as an additional significant factor contributing to the enhanced performance.
AbstractList The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications. Nanoconfining single metal atom catalysts leads to faster decontamination, primarily due to improved interfacial mass transfer. This study identifies a change in the catalytic pathway as an additional significant factor contributing to the enhanced performance.
The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.Nanoconfining single metal atom catalysts leads to faster decontamination, primarily due to improved interfacial mass transfer. This study identifies a change in the catalytic pathway as an additional significant factor contributing to the enhanced performance.
Abstract The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.
ArticleNumber 5314
Author Wang, Yun-Jie
Wang, Chao
Xia, Wen-Qi
Li, Wen-Wei
Meng, Yan
Si, Yang
Cao, Xu
Liu, Tian
Chen, Jie-Jie
Liu, Yu-Qin
Guo, Zhi-Yan
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0003-3645-7662
  surname: Meng
  fullname: Meng, Yan
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China
– sequence: 2
  givenname: Yu-Qin
  orcidid: 0009-0003-1658-3714
  surname: Liu
  fullname: Liu, Yu-Qin
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-3378-6594
  surname: Wang
  fullname: Wang, Chao
  organization: National Synchrotron Radiation Laboratory, University of Science & Technology of China
– sequence: 4
  givenname: Yang
  surname: Si
  fullname: Si, Yang
  organization: Kunming Institute of Physics
– sequence: 5
  givenname: Yun-Jie
  orcidid: 0000-0002-3080-5518
  surname: Wang
  fullname: Wang, Yun-Jie
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China
– sequence: 6
  givenname: Wen-Qi
  orcidid: 0000-0002-7225-1445
  surname: Xia
  fullname: Xia, Wen-Qi
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China
– sequence: 7
  givenname: Tian
  orcidid: 0009-0002-8129-0654
  surname: Liu
  fullname: Liu, Tian
  organization: Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China
– sequence: 8
  givenname: Xu
  orcidid: 0009-0005-5982-5837
  surname: Cao
  fullname: Cao, Xu
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China
– sequence: 9
  givenname: Zhi-Yan
  orcidid: 0000-0002-6572-2931
  surname: Guo
  fullname: Guo, Zhi-Yan
  email: gzy2018@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China
– sequence: 10
  givenname: Jie-Jie
  orcidid: 0000-0002-2539-8305
  surname: Chen
  fullname: Chen, Jie-Jie
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China
– sequence: 11
  givenname: Wen-Wei
  orcidid: 0000-0001-9280-0045
  surname: Li
  fullname: Li, Wen-Wei
  email: wwli@ustc.edu.cn
  organization: CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Sustainable Energy and Environmental Materials Innovation Center, Suzhou Institute for Advanced Research, University of Science & Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38906879$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFvFCEUxyemxtbaL-DBkHjxMgozDDAnYxqrTRq96JkA89iyMrACW9365WV3a2176Fxmwvz-v_eA97w5CDFA07wk-C3BvXiXKaGMt7ijLR0ZHtruSXPUYUpawrv-4M73YXOS8xLXpx-JoPRZc9iLETPBx6PmzxcVoonBugAzhIJyAUgZ1WpJTc4oj1aqXP5SG1SSCtkVFwNyAWUXFh6QKnFGtgZjaL37Acioovwmu4xsTMjNqxSvKoribzep6l8X59212mpeNE-t8hlObt7Hzfezj99OP7cXXz-dn364aM1ASWknDJ22xFAM1jIjQI-asoFPBoxQdDBYDwNlzGqMCRVsGhlXnAuLydSPmvXHzfneO0W1lKvkZpU2MiondwsxLaRKxRkPkky0q1bTU0Op7jvFLIDG3Gg1gWa8ut7vXau1nqG2EOqx-HvS-3-Cu5SLeCUJIWM3YlENb24MKf5cQy5ydtmA9ypAXGfZY06wGDijFX39AF3GdQr1rLbUFqLDUKlXd1u67eXfJVeg2wMmxZwT2FuEYLkdJrkfJlmHSe6GSXY1JB6EjCu7a6vbcv7xaL-P5lonLCD9b_uR1F8iNuIw
CitedBy_id crossref_primary_10_1021_acs_nanolett_4c04376
crossref_primary_10_1002_adfm_202425522
crossref_primary_10_1016_j_watres_2024_122960
crossref_primary_10_1002_smll_202409560
crossref_primary_10_1039_D4TA07260J
crossref_primary_10_1016_j_jwpe_2025_107383
crossref_primary_10_1016_j_seppur_2025_131742
crossref_primary_10_1002_adfm_202423509
crossref_primary_10_1016_j_jclepro_2025_144762
crossref_primary_10_1016_j_apcatb_2024_124988
crossref_primary_10_1038_s41467_025_56246_6
crossref_primary_10_1016_j_apcatb_2025_125218
crossref_primary_10_1016_j_cclet_2025_110898
crossref_primary_10_1016_j_cej_2024_156524
crossref_primary_10_1016_j_seppur_2024_129298
crossref_primary_10_1021_acsestengg_5c00035
crossref_primary_10_1016_j_cej_2024_156407
crossref_primary_10_1016_j_apcatb_2024_124424
crossref_primary_10_1016_j_apcatb_2025_125056
crossref_primary_10_1016_j_watres_2025_123173
crossref_primary_10_1038_s41467_025_57560_9
crossref_primary_10_1021_acs_est_4c11311
crossref_primary_10_1016_j_apcatb_2025_125283
crossref_primary_10_1021_acs_est_4c10073
crossref_primary_10_1016_j_efmat_2025_02_004
crossref_primary_10_1039_D4CP03149K
crossref_primary_10_1016_j_seppur_2025_131570
crossref_primary_10_1016_j_jclepro_2025_144934
crossref_primary_10_1021_acsami_4c21167
crossref_primary_10_1016_j_jhazmat_2025_137862
crossref_primary_10_1002_adsu_202400634
crossref_primary_10_1002_advs_202413731
crossref_primary_10_1016_j_eesus_2025_02_004
crossref_primary_10_1038_s41467_024_55622_y
crossref_primary_10_1021_acs_inorgchem_4c04369
crossref_primary_10_1021_acscatal_4c05569
crossref_primary_10_1016_j_watres_2025_123460
Cites_doi 10.1021/acs.est.1c00020
10.1038/s44221-023-00098-1
10.1021/acs.est.2c01968
10.1038/s41565-020-0652-2
10.1021/acsestengg.1c00007
10.1038/s41467-020-20071-w
10.1021/acs.est.2c01759
10.1021/jacs.8b05992
10.1038/s41598-019-52013-y
10.1073/pnas.2220608120
10.1016/j.apcatb.2023.122368
10.1073/pnas.2311585120
10.1021/acs.est.3c05153
10.1038/s41565-018-0216-x
10.1016/j.jhazmat.2020.124082
10.1002/adma.202209552
10.1063/1.2841941
10.1002/adfm.202203001
10.1021/acs.est.2c01913
10.1016/j.nanoen.2019.104409
10.1021/acs.est.1c05862
10.1002/adma.201901666
10.1021/acs.est.7b05563
10.1021/acs.nanolett.1c04815
10.1021/acs.est.0c01065
10.1038/s41467-024-45106-4
10.1021/acs.est.1c04600
10.1021/jacs.2c01194
10.1016/j.apcatb.2015.03.049
10.1073/pnas.2219923120
10.1021/acs.est.2c00706
10.1038/s41467-020-15591-4
10.1038/s41467-021-23388-2
10.1038/s41467-022-30560-9
10.1021/acs.est.9b05856
10.1006/jcph.1995.1039
10.1002/anie.202308091
10.1038/s41467-024-46739-1
10.1002/anie.202310934
10.1021/acs.est.1c02042
10.1103/PhysRevLett.77.3865
10.1021/acs.est.9b03648
10.1038/s41467-021-25811-0
10.1016/j.watres.2023.120678
10.1073/pnas.1819382116
10.1038/s41563-023-01560-x
10.1103/PhysRevB.54.11169
10.1073/pnas.2317394121
10.1038/s41467-024-46175-1
10.1021/ja9621760
10.1021/acs.est.1c05374
10.1016/j.jhazmat.2021.126152
10.1103/PhysRevB.94.205134
10.1021/acs.est.1c03758
10.1063/1.463940
10.1002/anie.202200755
10.1038/s41467-020-14287-z
10.1002/anie.202304754
10.1039/C7TA05936A
10.1002/anie.202113498
10.1021/acscatal.1c02031
10.1016/j.cej.2020.127097
10.1021/jacs.3c00537
10.1038/s41467-022-31807-1
10.1021/acscatal.5b01223
10.1038/s41563-019-0571-5
10.1002/anie.202313298
10.1016/j.jhazmat.2023.132538
10.1038/s41467-024-45481-y
10.1021/jacs.5b05619
10.1021/acs.est.8b00959
10.1038/s41467-023-38677-1
10.1016/j.apcatb.2022.121593
10.1002/advs.202304088
10.1021/acs.est.0c02192
10.1016/j.watres.2023.119957
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-49605-2
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_1d42ec8c34c44b32a6feeb07cbadeb67
PMC11192908
38906879
10_1038_s41467_024_49605_2
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52192681; U21A20160; 51821006; 12275271
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52192681
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 51821006
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U21A20160
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 12275271
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-d0e2bf1c40eff6c8eb9b4657dcec8a45c0b55466fb001486d967a778f01d39b63
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:25 EDT 2025
Thu Aug 21 18:33:36 EDT 2025
Mon Jul 21 12:07:01 EDT 2025
Wed Aug 13 07:01:32 EDT 2025
Thu Apr 03 07:05:46 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 02:11:14 EDT 2025
Fri Feb 21 02:37:38 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-d0e2bf1c40eff6c8eb9b4657dcec8a45c0b55466fb001486d967a778f01d39b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-5982-5837
0000-0001-9280-0045
0000-0002-2539-8305
0000-0003-3645-7662
0000-0002-7225-1445
0000-0002-3378-6594
0009-0002-8129-0654
0000-0002-3080-5518
0000-0002-6572-2931
0009-0003-1658-3714
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49605-2
PMID 38906879
PQID 3070857455
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1d42ec8c34c44b32a6feeb07cbadeb67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11192908
proquest_miscellaneous_3071085764
proquest_journals_3070857455
pubmed_primary_38906879
crossref_primary_10_1038_s41467_024_49605_2
crossref_citationtrail_10_1038_s41467_024_49605_2
springer_journals_10_1038_s41467_024_49605_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-22
PublicationDateYYYYMMDD 2024-06-22
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR30) 2020; 11
Peng (CR50) 2021; 55
Xin (CR14) 2023; 10
Wang (CR52) 2021; 417
Zhang, Hedtke, Zhou, Elimelech, Kim (CR19) 2021; 1
Liang (CR66) 2022; 32
Gong (CR55) 2023; 62
Zhong (CR63) 2022; 22
Martyna, Klein, Tuckerman (CR70) 1992; 97
Jung (CR31) 2020; 19
Gu (CR35) 2023; 120
Zhao (CR49) 2023; 236
Wan (CR29) 2021; 12
Yue (CR68) 2015; 137
Kresse, Furthmüller (CR73) 1996; 54
Jiang (CR9) 2022; 56
Yun, Lee, Kim, Park, Lee (CR41) 2018; 52
Yao (CR44) 2022; 56
Ren (CR39) 2023; 22
Gao, Chen, Zhu, Li, Hu (CR60) 2020; 54
Weng (CR13) 2023; 62
Miao (CR51) 2021; 11
Plimpton (CR72) 1995; 117
Kumar (CR28) 2023; 145
Li (CR4) 2019; 9
Wu, Yang, Wang, Wang (CR17) 2023; 120
Liu (CR43) 2020; 11
Jorgensen, Maxwell, Tirado-Rives (CR71) 1996; 118
Thomas, Dionysiou, Pillai (CR7) 2021; 404
Huang (CR56) 2021; 55
Zhang, Zheng, Tratnyek (CR2) 2023; 1
Wei (CR38) 2022; 56
Li, Shan, Pan (CR47) 2018; 52
Yan (CR54) 2023; 57
Sheppard, Terrell, Henkelman (CR76) 2008; 128
Meng (CR21) 2022; 13
Wordsworth (CR37) 2022; 61
Liu (CR10) 2024; 15
Li (CR8) 2023; 62
Yu (CR34) 2019; 31
Yang (CR58) 2022; 315
Wu, Li, Zu, Lai, Wang (CR65) 2023; 246
Song (CR46) 2023; 35
Liang (CR5) 2024; 121
Zhang (CR69) 2015; 5
Wu (CR18) 2021; 55
Zhao (CR64) 2022; 56
Grommet, Feller, Klajn (CR22) 2020; 15
Yu (CR67) 2024; 15
Zhao (CR53) 2017; 5
Huang, Zhang (CR57) 2019; 53
Wang (CR61) 2024; 15
Perdew, Burke, Ernzerhof (CR74) 1996; 77
Shao (CR48) 2021; 55
Qian, Gao, Pan (CR20) 2020; 54
Chen (CR33) 2022; 144
Sheng (CR27) 2015; 176
Entwistle (CR75) 2016; 94
Hodges, Cates, Kim (CR1) 2018; 13
Wang, Lin, He, Wu, Yang (CR16) 2024; 461
Zeng (CR36) 2020; 69
Peydayesh, Mezzenga (CR3) 2021; 12
Zhang (CR62) 2020; 54
Liu (CR24) 2022; 61
Wang (CR59) 2021; 404
Hu (CR32) 2023; 62
Song (CR45) 2023; 325
Yang (CR11) 2021; 55
Liu (CR15) 2023; 14
Yang, Qian, Yu, Pan (CR23) 2019; 116
Zhang (CR6) 2022; 13
Zhao (CR42) 2020; 11
Zhang (CR25) 2024; 15
Ren (CR12) 2022; 56
Li (CR26) 2018; 140
Guo (CR40) 2023; 120
BC Hodges (49605_CR1) 2018; 13
S Zhang (49605_CR19) 2021; 1
J Song (49605_CR46) 2023; 35
X Wang (49605_CR30) 2020; 11
B Wang (49605_CR61) 2024; 15
WL Jorgensen (49605_CR71) 1996; 118
Z Zeng (49605_CR36) 2020; 69
F Wang (49605_CR59) 2021; 404
P Kumar (49605_CR28) 2023; 145
Z Yang (49605_CR23) 2019; 116
Y Zhao (49605_CR53) 2017; 5
W Ren (49605_CR12) 2022; 56
C Meng (49605_CR21) 2022; 13
J Song (49605_CR45) 2023; 325
E Jung (49605_CR31) 2020; 19
Z Liang (49605_CR5) 2024; 121
J Qian (49605_CR20) 2020; 54
X Sheng (49605_CR27) 2015; 176
Y-J Zhang (49605_CR6) 2022; 13
S Zhang (49605_CR62) 2020; 54
X Li (49605_CR26) 2018; 140
C Liu (49605_CR24) 2022; 61
Y Yan (49605_CR54) 2023; 57
LL Zhang (49605_CR69) 2015; 5
Y Zhong (49605_CR63) 2022; 22
F Li (49605_CR8) 2023; 62
Y Yang (49605_CR58) 2022; 315
Q-Y Wu (49605_CR17) 2023; 120
Z Weng (49605_CR13) 2023; 62
L Wu (49605_CR18) 2021; 55
J Miao (49605_CR51) 2021; 11
D Sheppard (49605_CR76) 2008; 128
Q Yue (49605_CR68) 2015; 137
Z-Y Guo (49605_CR40) 2023; 120
Q Ren (49605_CR39) 2023; 22
G Kresse (49605_CR73) 1996; 54
S Zhang (49605_CR2) 2023; 1
M Peydayesh (49605_CR3) 2021; 12
X Zhang (49605_CR25) 2024; 15
X Liang (49605_CR66) 2022; 32
P Yu (49605_CR34) 2019; 31
W Wan (49605_CR29) 2021; 12
J Hu (49605_CR32) 2023; 62
AB Grommet (49605_CR22) 2020; 15
E-T Yun (49605_CR41) 2018; 52
H-Z Liu (49605_CR10) 2024; 15
S Xin (49605_CR14) 2023; 10
M Huang (49605_CR56) 2021; 55
KZ Huang (49605_CR57) 2019; 53
JP Perdew (49605_CR74) 1996; 77
J Jiang (49605_CR9) 2022; 56
Y Wang (49605_CR16) 2024; 461
Y Yao (49605_CR44) 2022; 56
Z Yang (49605_CR11) 2021; 55
S Plimpton (49605_CR72) 1995; 117
J Wordsworth (49605_CR37) 2022; 61
GJ Martyna (49605_CR70) 1992; 97
T Liu (49605_CR15) 2023; 14
Y Wei (49605_CR38) 2022; 56
C-H Gu (49605_CR35) 2023; 120
J Peng (49605_CR50) 2021; 55
L Wang (49605_CR52) 2021; 417
B Wu (49605_CR65) 2023; 246
Z Yu (49605_CR67) 2024; 15
Y Zhao (49605_CR64) 2022; 56
MT Entwistle (49605_CR75) 2016; 94
N Thomas (49605_CR7) 2021; 404
H Li (49605_CR47) 2018; 52
P Shao (49605_CR48) 2021; 55
C Liu (49605_CR43) 2020; 11
F Gong (49605_CR55) 2023; 62
Y Gao (49605_CR60) 2020; 54
Y Zhao (49605_CR49) 2023; 236
S Chen (49605_CR33) 2022; 144
Y Zhao (49605_CR42) 2020; 11
J Li (49605_CR4) 2019; 9
References_xml – volume: 55
  start-page: 9189
  year: 2021
  end-page: 9198
  ident: CR50
  article-title: Insights into the electron-transfer mechanism of permanganate activation by graphite for enhanced oxidation of sulfamethoxazole
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c00020
– volume: 1
  start-page: 666
  year: 2023
  end-page: 681
  ident: CR2
  article-title: Advanced redox processes for sustainable water treatment
  publication-title: Nat. Water
  doi: 10.1038/s44221-023-00098-1
– volume: 56
  start-page: 8984
  year: 2022
  end-page: 8992
  ident: CR38
  article-title: Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(III) formation and preferential electron transfer during degradation of phenols
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01968
– volume: 15
  start-page: 256
  year: 2020
  end-page: 271
  ident: CR22
  article-title: Chemical reactivity under nanoconfinement
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0652-2
– volume: 1
  start-page: 706
  year: 2021
  end-page: 724
  ident: CR19
  article-title: Environmental applications of engineered materials with nanoconfinement
  publication-title: ACS EST Eng.
  doi: 10.1021/acsestengg.1c00007
– volume: 11
  year: 2020
  ident: CR42
  article-title: Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20071-w
– volume: 56
  start-page: 10710
  year: 2022
  end-page: 10720
  ident: CR64
  article-title: Selective degradation of electron-rich organic pollutants induced by CuO@Biochar: the key role of outer-sphere interaction and singlet oxygen
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01759
– volume: 140
  start-page: 12469
  year: 2018
  end-page: 12475
  ident: CR26
  article-title: Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 9
  year: 2019
  ident: CR4
  article-title: Mesoporous bimetallic Fe/Co as highly active heterogeneous Fenton catalyst for the degradation of tetracycline hydrochlorides
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52013-y
– volume: 120
  year: 2023
  ident: CR40
  article-title: Crystallinity engineering for overcoming the activity–stability tradeoff of spinel oxide in Fenton-like catalysis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2220608120
– volume: 325
  year: 2023
  ident: CR45
  article-title: Unsaturated single-atom CoN sites for improved fenton-like reaction towards high-valent metal species
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2023.122368
– volume: 120
  year: 2023
  ident: CR35
  article-title: Slow-release synthesis of Cu single-atom catalysts with the optimized geometric structure and density of state distribution for Fenton-like catalysis
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2311585120
– volume: 57
  start-page: 12153
  year: 2023
  end-page: 12179
  ident: CR54
  article-title: Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c05153
– volume: 13
  start-page: 642
  year: 2018
  end-page: 650
  ident: CR1
  article-title: Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0216-x
– volume: 404
  year: 2021
  ident: CR7
  article-title: Heterogeneous Fenton catalysts: a review of recent advances
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124082
– volume: 35
  year: 2023
  ident: CR46
  article-title: Asymmetrically coordinated CoB N moieties for selective generation of high-valence Co-Oxo species via coupled electron–proton transfer in fenton-like reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209552
– volume: 128
  start-page: 134106
  year: 2008
  ident: CR76
  article-title: Optimization methods for finding minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2841941
– volume: 32
  year: 2022
  ident: CR66
  article-title: Coordination number dependent catalytic activity of single-atom cobalt catalysts for fenton-like reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202203001
– volume: 56
  start-page: 5611
  year: 2022
  end-page: 5619
  ident: CR9
  article-title: Nitrogen vacancy-modulated peroxymonosulfate nonradical activation for organic contaminant removal via high-valent cobalt-oxo species
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01913
– volume: 69
  year: 2020
  ident: CR36
  article-title: Single-atom platinum confined by the interlayer nanospace of carbon nitride for efficient photocatalytic hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104409
– volume: 55
  start-page: 14494
  year: 2021
  end-page: 14514
  ident: CR11
  article-title: Toward selective oxidation of contaminants in aqueous systems
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05862
– volume: 31
  year: 2019
  ident: CR34
  article-title: Co nanoislands rooted on Co–N–C nanosheets as efficient oxygen electrocatalyst for Zn–Air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901666
– volume: 52
  start-page: 2197
  year: 2018
  end-page: 2205
  ident: CR47
  article-title: Fe(III)-doped g-C N mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05563
– volume: 22
  start-page: 2554
  year: 2022
  end-page: 2560
  ident: CR63
  article-title: Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C–C coupling toward CO eletroreduction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04815
– volume: 54
  start-page: 8509
  year: 2020
  end-page: 8526
  ident: CR20
  article-title: Nanoconfinement-mediated water treatment: from fundamental to application
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01065
– volume: 15
  year: 2024
  ident: CR25
  article-title: Nanoconfinement-triggered oligomerization pathway for efficient removal of phenolic pollutants via a Fenton-like reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45106-4
– volume: 55
  start-page: 15400
  year: 2021
  end-page: 15411
  ident: CR18
  article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O ) in the Fe–Co LDH/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04600
– volume: 144
  start-page: 14505
  year: 2022
  end-page: 14516
  ident: CR33
  article-title: Identification of the highly active Co–N coordination motif for selective oxygen reduction to hydrogen peroxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01194
– volume: 176
  start-page: 212
  year: 2015
  end-page: 224
  ident: CR27
  article-title: N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O to H O
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.03.049
– volume: 120
  year: 2023
  ident: CR17
  article-title: Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt–oxo species formation
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2219923120
– volume: 56
  start-page: 8833
  year: 2022
  end-page: 8843
  ident: CR44
  article-title: Rational regulation of Co–N–C coordination for high-efficiency generation of O toward nearly 100% selective degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00706
– volume: 11
  year: 2020
  ident: CR43
  article-title: An open source and reduce expenditure ROS generation strategy for chemodynamic/photodynamic synergistic therapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15591-4
– volume: 12
  year: 2021
  ident: CR3
  article-title: Protein nanofibrils for next generation sustainable water purification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23388-2
– volume: 13
  year: 2022
  ident: CR6
  article-title: Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30560-9
– volume: 54
  start-page: 1232
  year: 2020
  end-page: 1241
  ident: CR60
  article-title: New insights into the generation of singlet oxygen in the metal-free peroxymonosulfate activation process: important role of electron-deficient carbon atoms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05856
– volume: 117
  start-page: 1
  year: 1995
  end-page: 19
  ident: CR72
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 62
  year: 2023
  ident: CR55
  article-title: Universal sub-nanoreactor strategy for synthesis of yolk-shell MoS supported single atom electrocatalysts toward robust hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202308091
– volume: 15
  year: 2024
  ident: CR10
  article-title: Tailoring d-band center of high-valent metal-oxo species for pollutant removal via complete polymerization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46739-1
– volume: 62
  year: 2023
  ident: CR13
  article-title: Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100 % selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310934
– volume: 55
  start-page: 16078
  year: 2021
  end-page: 16087
  ident: CR48
  article-title: Revisiting the graphitized nanodiamond-mediated activation of peroxymonosulfate: singlet oxygenation versus electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02042
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR74
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 53
  start-page: 12610
  year: 2019
  end-page: 12620
  ident: CR57
  article-title: Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO ) and the development of galvanic oxidation processes (GOPs)
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03648
– volume: 12
  year: 2021
  ident: CR29
  article-title: Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25811-0
– volume: 246
  start-page: 120678
  year: 2023
  ident: CR65
  article-title: Polar electric field-modulated peroxymonosulfate selective activation for removal of organic contaminants via non-radical electron transfer process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120678
– volume: 116
  start-page: 6659
  year: 2019
  end-page: 6664
  ident: CR23
  article-title: Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1819382116
– volume: 22
  start-page: 999
  year: 2023
  end-page: 1006
  ident: CR39
  article-title: Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01560-x
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR73
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 121
  year: 2024
  ident: CR5
  article-title: Effective green treatment of sewage sludge from Fenton reactions: utilizing MoS for sustainable resource recovery
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2317394121
– volume: 15
  year: 2024
  ident: CR61
  article-title: Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46175-1
– volume: 118
  start-page: 11225
  year: 1996
  end-page: 11236
  ident: CR71
  article-title: Development and testing of the OPLS All-atom force field on conformational energetics and properties of organic liquids
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– volume: 56
  start-page: 78
  year: 2022
  end-page: 97
  ident: CR12
  article-title: Origins of electron-transfer regime in persulfate-based nonradical oxidation processes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05374
– volume: 417
  year: 2021
  ident: CR52
  article-title: Effective activation of peroxymonosulfate with natural manganese-containing minerals through a nonradical pathway and the application for the removal of bisphenols
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126152
– volume: 94
  year: 2016
  ident: CR75
  article-title: Local density approximations from finite systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.205134
– volume: 55
  start-page: 15361
  year: 2021
  end-page: 15370
  ident: CR56
  article-title: In situ-formed phenoxyl radical on the CuO surface triggers efficient persulfate activation for phenol degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03758
– volume: 97
  start-page: 2635
  year: 1992
  end-page: 2643
  ident: CR70
  article-title: Nosé–Hoover chains: the canonical ensemble via continuous dynamics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463940
– volume: 61
  year: 2022
  ident: CR37
  article-title: The influence of nanoconfinement on electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200755
– volume: 11
  year: 2020
  ident: CR30
  article-title: Insight into dynamic and steady-state active sites for nitrogen activation to ammonia by cobalt-based catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14287-z
– volume: 62
  year: 2023
  ident: CR32
  article-title: Uncovering dynamic edge-sites in atomic Co−N−C electrocatalyst for selective hydrogen peroxide production
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202304754
– volume: 5
  start-page: 19672
  year: 2017
  end-page: 19679
  ident: CR53
  article-title: Fe C@nitrogen doped CNT arrays aligned on nitrogen functionalized carbon nanofibers as highly efficient catalysts for the oxygen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05936A
– volume: 61
  year: 2022
  ident: CR24
  article-title: Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C−C coupling
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113498
– volume: 11
  start-page: 9569
  year: 2021
  end-page: 9577
  ident: CR51
  article-title: Spin-state-dependent peroxymonosulfate activation of single-atom M–N moieties via a radical-free pathway
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02031
– volume: 404
  year: 2021
  ident: CR59
  article-title: Insights into the transformations of Mn species for peroxymonosulfate activation by tuning the Mn O shapes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127097
– volume: 145
  start-page: 8052
  year: 2023
  end-page: 8063
  ident: CR28
  article-title: High-density cobalt single-atom catalysts for enhanced oxygen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00537
– volume: 13
  year: 2022
  ident: CR21
  article-title: Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31807-1
– volume: 5
  start-page: 6563
  year: 2015
  end-page: 6572
  ident: CR69
  article-title: Co-N-C catalyst for C-C coupling reactions: on the catalytic performance and active sites
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01223
– volume: 19
  start-page: 436
  year: 2020
  end-page: 442
  ident: CR31
  article-title: Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H O production
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 62
  year: 2023
  ident: CR8
  article-title: Efficient removal of antibiotic resistance genes through 4f-2p-3d gradient orbital coupling mediated Fenton-like redox processes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202313298
– volume: 461
  start-page: 132538
  year: 2024
  ident: CR16
  article-title: Singlet oxygen: properties, generation, detection, and environmental applications
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.132538
– volume: 15
  year: 2024
  ident: CR67
  article-title: Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45481-y
– volume: 137
  start-page: 13282
  year: 2015
  end-page: 13289
  ident: CR68
  article-title: An interface coassembly in biliquid phase: toward core–shell magnetic mesoporous silica microspheres with tunable pore size
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05619
– volume: 52
  start-page: 7032
  year: 2018
  end-page: 7042
  ident: CR41
  article-title: Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00959
– volume: 14
  year: 2023
  ident: CR15
  article-title: Water decontamination via nonradical process by nanoconfined Fenton-like catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38677-1
– volume: 315
  year: 2022
  ident: CR58
  article-title: Crystallinity and valence states of manganese oxides in Fenton-like polymerization of phenolic pollutants for carbon recycling against degradation
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121593
– volume: 10
  year: 2023
  ident: CR14
  article-title: Electron delocalization realizes speedy fenton-like catalysis over a high-loading and low-valence zinc single-atom catalyst
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202304088
– volume: 54
  start-page: 10868
  year: 2020
  end-page: 10875
  ident: CR62
  article-title: Mechanism of heterogeneous fenton reaction kinetics enhancement under nanoscale spatial confinement
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02192
– volume: 236
  year: 2023
  ident: CR49
  article-title: Selective activation of peroxymonosulfate govern by B-site metal in delafossite for efficient pollutants degradation: pivotal role of d orbital electronic configuration
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119957
– volume: 120
  year: 2023
  ident: 49605_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2311585120
– volume: 1
  start-page: 706
  year: 2021
  ident: 49605_CR19
  publication-title: ACS EST Eng.
  doi: 10.1021/acsestengg.1c00007
– volume: 13
  start-page: 642
  year: 2018
  ident: 49605_CR1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0216-x
– volume: 11
  start-page: 9569
  year: 2021
  ident: 49605_CR51
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02031
– volume: 12
  year: 2021
  ident: 49605_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23388-2
– volume: 120
  year: 2023
  ident: 49605_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2219923120
– volume: 32
  year: 2022
  ident: 49605_CR66
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202203001
– volume: 13
  year: 2022
  ident: 49605_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30560-9
– volume: 22
  start-page: 2554
  year: 2022
  ident: 49605_CR63
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04815
– volume: 9
  year: 2019
  ident: 49605_CR4
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-52013-y
– volume: 1
  start-page: 666
  year: 2023
  ident: 49605_CR2
  publication-title: Nat. Water
  doi: 10.1038/s44221-023-00098-1
– volume: 315
  year: 2022
  ident: 49605_CR58
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2022.121593
– volume: 15
  year: 2024
  ident: 49605_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46739-1
– volume: 14
  year: 2023
  ident: 49605_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38677-1
– volume: 117
  start-page: 1
  year: 1995
  ident: 49605_CR72
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 325
  year: 2023
  ident: 49605_CR45
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2023.122368
– volume: 69
  year: 2020
  ident: 49605_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104409
– volume: 57
  start-page: 12153
  year: 2023
  ident: 49605_CR54
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c05153
– volume: 13
  year: 2022
  ident: 49605_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-31807-1
– volume: 236
  year: 2023
  ident: 49605_CR49
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.119957
– volume: 62
  year: 2023
  ident: 49605_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202313298
– volume: 61
  year: 2022
  ident: 49605_CR37
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200755
– volume: 55
  start-page: 15361
  year: 2021
  ident: 49605_CR56
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c03758
– volume: 11
  year: 2020
  ident: 49605_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15591-4
– volume: 121
  year: 2024
  ident: 49605_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2317394121
– volume: 94
  year: 2016
  ident: 49605_CR75
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.205134
– volume: 176
  start-page: 212
  year: 2015
  ident: 49605_CR27
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2015.03.049
– volume: 5
  start-page: 19672
  year: 2017
  ident: 49605_CR53
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA05936A
– volume: 31
  year: 2019
  ident: 49605_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901666
– volume: 35
  year: 2023
  ident: 49605_CR46
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209552
– volume: 417
  year: 2021
  ident: 49605_CR52
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126152
– volume: 128
  start-page: 134106
  year: 2008
  ident: 49605_CR76
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2841941
– volume: 15
  start-page: 256
  year: 2020
  ident: 49605_CR22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0652-2
– volume: 54
  start-page: 1232
  year: 2020
  ident: 49605_CR60
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05856
– volume: 54
  start-page: 10868
  year: 2020
  ident: 49605_CR62
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c02192
– volume: 56
  start-page: 5611
  year: 2022
  ident: 49605_CR9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01913
– volume: 11
  year: 2020
  ident: 49605_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20071-w
– volume: 77
  start-page: 3865
  year: 1996
  ident: 49605_CR74
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 404
  year: 2021
  ident: 49605_CR7
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124082
– volume: 140
  start-page: 12469
  year: 2018
  ident: 49605_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05992
– volume: 246
  start-page: 120678
  year: 2023
  ident: 49605_CR65
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120678
– volume: 62
  year: 2023
  ident: 49605_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310934
– volume: 15
  year: 2024
  ident: 49605_CR67
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45481-y
– volume: 53
  start-page: 12610
  year: 2019
  ident: 49605_CR57
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b03648
– volume: 56
  start-page: 8833
  year: 2022
  ident: 49605_CR44
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00706
– volume: 461
  start-page: 132538
  year: 2024
  ident: 49605_CR16
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.132538
– volume: 5
  start-page: 6563
  year: 2015
  ident: 49605_CR69
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01223
– volume: 54
  start-page: 11169
  year: 1996
  ident: 49605_CR73
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 56
  start-page: 78
  year: 2022
  ident: 49605_CR12
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05374
– volume: 145
  start-page: 8052
  year: 2023
  ident: 49605_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c00537
– volume: 55
  start-page: 16078
  year: 2021
  ident: 49605_CR48
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c02042
– volume: 120
  year: 2023
  ident: 49605_CR40
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2220608120
– volume: 11
  year: 2020
  ident: 49605_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14287-z
– volume: 116
  start-page: 6659
  year: 2019
  ident: 49605_CR23
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1819382116
– volume: 54
  start-page: 8509
  year: 2020
  ident: 49605_CR20
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c01065
– volume: 144
  start-page: 14505
  year: 2022
  ident: 49605_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01194
– volume: 15
  year: 2024
  ident: 49605_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46175-1
– volume: 97
  start-page: 2635
  year: 1992
  ident: 49605_CR70
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.463940
– volume: 137
  start-page: 13282
  year: 2015
  ident: 49605_CR68
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05619
– volume: 56
  start-page: 8984
  year: 2022
  ident: 49605_CR38
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01968
– volume: 55
  start-page: 15400
  year: 2021
  ident: 49605_CR18
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04600
– volume: 118
  start-page: 11225
  year: 1996
  ident: 49605_CR71
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9621760
– volume: 62
  year: 2023
  ident: 49605_CR55
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202308091
– volume: 56
  start-page: 10710
  year: 2022
  ident: 49605_CR64
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c01759
– volume: 404
  year: 2021
  ident: 49605_CR59
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127097
– volume: 61
  year: 2022
  ident: 49605_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202113498
– volume: 62
  year: 2023
  ident: 49605_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202304754
– volume: 55
  start-page: 9189
  year: 2021
  ident: 49605_CR50
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c00020
– volume: 15
  year: 2024
  ident: 49605_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45106-4
– volume: 22
  start-page: 999
  year: 2023
  ident: 49605_CR39
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01560-x
– volume: 52
  start-page: 2197
  year: 2018
  ident: 49605_CR47
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05563
– volume: 12
  year: 2021
  ident: 49605_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25811-0
– volume: 19
  start-page: 436
  year: 2020
  ident: 49605_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0571-5
– volume: 55
  start-page: 14494
  year: 2021
  ident: 49605_CR11
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05862
– volume: 10
  year: 2023
  ident: 49605_CR14
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202304088
– volume: 52
  start-page: 7032
  year: 2018
  ident: 49605_CR41
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00959
SSID ssj0000391844
Score 2.6570656
Snippet The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to...
Abstract The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5314
SubjectTerms 119/118
140/133
140/146
147/137
147/143
639/638/169/896
639/638/77/885
639/638/77/887
Active sites
Catalysis
Catalysts
Chlorophenol
Cobalt
Decontamination
Degradation
Electron transfer
Electronic structure
Humanities and Social Sciences
Mass transfer
multidisciplinary
Oxidants
Oxidation
Oxidizing agents
p-Chlorophenol
Performance enhancement
Phenolic compounds
Phenols
Pollutants
Reaction kinetics
Regulatory mechanisms (biology)
Science
Science (multidisciplinary)
Silica
Single atom catalysts
Singlet oxygen
Water pollution
Water purification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QJCQuCMZXYZuCxA2qpambpEdAmyYkODFptyifouLRN7E3wcQ_j532Pfb4vHDpoU0rN3bin-3YZuwZRBdVVLnOEi9ooEDdC5FqIZOIvTBOC0oUfvtOnZzCm7Pu7FqrLzoTNpUHnibusIkgUzChhQDgW-lUTskLHbyLyauSR44675oxVfbgtkfTBeYsGdGawwsoewIRA4jau1puaaJSsP93KPPXw5I_RUyLIjq-w27PCJK_nCi_y26kcZfdnHpKXt1j33C_XKKRmxE-kuePIxsR4vGR-giUoAynLsRf3BVfkZ4qR7b4MHJyGiwSRyP8E8-ptBZeDB8TLw4eqlvCEd_yYe2E4MuvQ0S2cJTcxZzMeZ-dHh-9f31Szx0W6tBBs6qjSNLnJoBIOatgku89qE7jzwbjoAvC0yk2lQlbgVGxV9ppbbJoYtt71T5gO0h-esS4h9aEABS37CE04JJDuxu5nRN-p3EVa9azbcNcfpy6YCxsCYO3xk4cssghWzhkZcWeb945n4pv_HX0K2LiZiQVzi43UJzsLE72X-JUsb21CNh5NV9Y2hdNp6HrKvZ08xjXIQVX3JiWl2UMJXJoBRV7OEnMhhIEhUIZ3VfMbMnSFqnbT8bhQ6n1jaoIAawwFXuxFrsfdP15Lh7_j7l4wm5JWi9C1VLusZ3V58u0jxBs5Q_KavsO-64xnw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gCIkL4pvCQEHiBtXS1k3SEwLENCHBiUnvVuUTKh7t2HsTTPzz2OnH9PjYpYcmrZzYTn6xHZux5-CNl17GPJb4wAMK5I0QIRdlEL4R2ihBF4U_fJRHx_B-Va8mg9tmCquc18S0UPvBkY38gGRT1wrq-tXJ95yqRpF3dSqhcZVdo9RlFNKlVmqxsVD2cw0w3ZURlT7YQFoZiCRA7F7n5c5-lNL2_wtr_h0y-YffNG1Hh7fYzQlH8tcj42-zK6G_w66PlSXP77JfuGoOeNSNCCLJ_seRmQj0eE_VBJJrhlMt4h_mnG9pt0qBW7zrOZkO1oHjUfwbjyEVGF53XwNPZh7KXsIR5fJuNkXw4WfnkTkc5Xc9Xem8x44P3316e5RPdRZyV0Oxzb0IpY2FAxFilE4H21iQtcLBOm2gdsJSLJuMhLBAS99IZZTSURS-aqys7rM9JD88ZNxCpZ0D8l424AowweDpG3keA_6nMBkr5tlu3ZSEnGphrNvkDK90O3KoRQ61iUNtmbEXyzcnYwqOS3u_ISYuPSl9dnoxnH5uJ21sCw8ljs1V4ABsVRoZQ7BCOWt8sFJlbH8WgXbS6U17IYEZe7Y0ozaSi8X0YThLfeg6h5KQsQejxCyUIDQUUqsmY3pHlnZI3W3puy8p4zduSAhjhc7Yy1nsLuj6_1w8unwYj9mNkjRByLws99ne9vQsPEGItbVPkx79BrlfJ0g
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_LiuBF_La6SgRvWkzbaZIe9eGyCHpyYW8hn1p89i27b9HFf96Z9EOeroKXHtq0TDozyS_zydhzCDbIIFOZarzgAQXKTohYijqK0AltlaBE4fcf5NExvDtpT_ZYPefC5KD9XNIyL9NzdNirc8gqTd8CBN1ticvuNSrdTlK9kqvFrkIVzzXAlB8jGn3Fqzt7UC7VfxW-_DNM8jdfad6CDm-xmxN25K9Ham-zvTjcYdfHbpKXd9kPXCk3eLxNCBzJ5seRgQju-EAdBLI7hlP_4W_2km9ph8rBWrwfOJkL1pHj8fsrTzE3FV73XyLPph2qWMIR2fJ-Nj_wzfc-IEM4yux6SuO8x44P335cHZVTb4XSt1BtyyBi7VLlQcSUpNfRdQ5kq3CyXltovXAUvyYToSrQMnRSWaV0ElVoOieb-2wfyY8PGXfQaO-BPJYd-ApstHjiRj6niN-pbMGq-W8bPxUep_4Xa5Md4I02I4cMcshkDpm6YC-Wd07Hshv_HP2GmLiMpJLZ-cbm7JOZRMhUAWqcm2_AA7imtjLF6ITyzobopCrYwSwCZtLjc0Mrom4VtG3Bni2PUQPJrWKHuLnIYyiFQ0ko2INRYhZKEA4KqVVXML0jSzuk7j4Z-s-5yjduQghdhS7Yy1nsftH193_x6P-GP2Y3atIMIcu6PmD727OL-ARh1tY9zXr1ExliJRA
  priority: 102
  providerName: Springer Nature
Title Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization
URI https://link.springer.com/article/10.1038/s41467-024-49605-2
https://www.ncbi.nlm.nih.gov/pubmed/38906879
https://www.proquest.com/docview/3070857455
https://www.proquest.com/docview/3071085764
https://pubmed.ncbi.nlm.nih.gov/PMC11192908
https://doaj.org/article/1d42ec8c34c44b32a6feeb07cbadeb67
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfGJiReEN8ERmUk3iDgJI7tPCDUVStTpU0IqNS3yHbsURFS6Dqxin-eOycpKhQkXhIpcRLHd-f7nc93R8gzXulKVMLHPoUDGCg8LhhzMUsdqwqmtGQYKHx6Jk6mfDLLZ3ukL3fUDeDFTtMO60lNl_XLq2_rNyDwr9uQcfXqggdxx-9wAOR5DFPyAWgmiYJ62sH9MDNnBRg06GhOGU9i0N1ZF0ez-zVbuiqk9N-FQ__cTvmbTzWoqvEtcrPDmHTYMsVtsueaO-R6W3VyfZf8gBl1AWawB4CJa4MUCA0gkDZYaSC4bSjWKf6u13SFmixs6qLzhuKyQu0omOlfqHeh-HA9_-xoWALCzCYUEDCd98sUdHE1r4BwFHi77sI975Hp-Pjj6CTuajDENufJKq6YS41PLGfOe2GVM4XhIpfws1ZpnltmcJ-b8Ii-uBJVIaSWUnmWVFlhRHaf7EP33UNCDc-UtRw9mwW3CddOg2UO_OAdvCfREUn60S5tl6Ac62TUZXCUZ6psKVQChcpAoTKNyPPNM1_b9Bz_bH2ERNy0xNTa4cJieV52klomFU_h32zGLecmS7XwzhkmrdGVM0JG5LBngbJn1xJnTpVLnucRebq5DZKK7hfduMVlaIOhHlLwiDxoOWbTE4CNTChZRERt8dJWV7fvNPNPIRs4KCuAuExF5EXPdr_69fexePRfI_eY3EhRMJiI0_SQ7K-Wl-4JoLGVGZBrcibhqMZvB-RgOJx8mMD56Pjs3Xu4OhKjQVjnGARR_Am1hzbV
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFEdx7GdA0K8qi19nFppb8avwIplt3S3Kiv-E7-RGSfZann01ksOiRM5nm_G8_DMEPJMBBtkkE3ecLiAgSLymrGYMx5ZqJm2imGi8N6-HByKj8NquEZ-9bkweKyyl4lJUIepRx_5JmJTV0pU1euj7zl2jcLoat9Co4XFTlycgsk2e7X9Huj7nPOtDwfvBnnXVSD3lSjmeWCRu6bwgsWmkV5HVzshKxV89NqKyjOHJ7dkg_qE0DLUUlmldMOKUNZOlvDdS-QybLwMOUoN1dKng9XWtRBdbg4r9eZMJEmESyDAVqhyvrL_pTYB_9Jt_z6i-UecNm1_WzfI9U5vpW9aoN0ka3Fyi1xpO1kubpOfIKWnYFo3oLSiv5ECeECxpBPsXpBCQRR7H5_aBZ3j7pgOitHRhKKrYhwpmP7faBNTQ-Px6Gukya2E1VIoaNV01Ls-6PTHKAAYKPDLuEshvUMOL4QCd8k6TD_eJ9SJUnsvMFpaC18IGy1Y-4CxJsJ3CpuRol9t47ui59h7Y2xS8L3UpqWQAQqZRCHDM_Ji-c5RW_Lj3NFvkYjLkViuO92YHn82HfebIggO_-ZL4YVwJbeyidEx5Z0N0UmVkY0eAqaTITNzhviMPF0-Bu7HkI6dxOlJGoPpI0qKjNxrEbOcCaiiTGpVZ0SvYGllqqtPJqMvqcI4bICgNjOdkZc97M7m9f-1eHD-bzwhVwcHe7tmd3t_5yG5xpErmMw53yDr8-OT-AjUu7l7nHiKkk8XzcS_AfgEZLk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4llSChgJThCt4zi2c0AIKKuWQsWBSnsLjh-wYtm03a3Kin_Gr2PGSbZaHr31kkPiRI7nm_G8PEPIE-GMk06GNHC4gIEi0pIxnzLumSuZNorhQeEP-3LnQLwbFaM18qs_C4Nplb1MjILaNRZ95APEpi6UKIpB6NIiPm4PXx4epdhBCiOtfTuNFiJ7fnEK5tvsxe420Pop58O3n97spF2HgdQWIpunjnleh8wK5kOQVvu6rIUslLPeaiMKy2rM4pIBdQuhpSulMkrpwDKXl7XM4buXyGWVFxnymBqppX8HK69rIbpzOizXg5mIUgmXQ4DdUKR8ZS-MLQP-pef-na75R8w2boXDG-R6p8PSVy3obpI1P71FrrRdLRe3yU-Q2A2Y2QEUWPQ9UgASKJl0ip0MYliIYh_kU7Ogc9wpY9IYHU8pui0mnpp5850GH5sbT8bfPI0uJqycQkHDpuPeDUKbH2MHwKDAO5PuOOkdcnAhFLhL1mH6_h6htci1tQIjp6WwmTDegOUPeAsevpOZhGT9ale2K4COfTgmVQzE57pqKVQBhapIoYon5NnyncO2_Me5o18jEZcjsXR3vNEcf6k6SVBlTnD4N5sLK0SdcyOD9zVTtjbO11IlZKuHQNXJk1l1hv6EPF4-BkmA4R0z9c1JHINHSZQUCdloEbOcCailTGpVJkSvYGllqqtPpuOvsdo4bIagQjOdkOc97M7m9f-12Dz_Nx6Rq8C-1fvd_b375BpHpmAy5XyLrM-PT_wD0PTm9cPIUpR8vmge_g19KGjv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoconfinement+steers+nonradical+pathway+transition+in+single+atom+fenton-like+catalysis+for+improving+oxidant+utilization&rft.jtitle=Nature+communications&rft.au=Meng%2C+Yan&rft.au=Liu%2C+Yu-Qin&rft.au=Wang%2C+Chao&rft.au=Si%2C+Yang&rft.date=2024-06-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-49605-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_49605_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon