Voluntary Movement Controlled by the Surface EMG Signal for Tissue-Engineered Skeletal Muscle on a Gripping Tool

We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of a lost extremity. A tissue-engineered skeletal muscle was fabricated with two anchorage points from a primary rat myoblast cultured in a col...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering. Part A Vol. 19; no. 15-16; pp. 1695 - 1703
Main Authors Kabumoto, Ken-ichiro, Hoshino, Takayuki, Akiyama, Yoshitake, Morishima, Keisuke
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of a lost extremity. A tissue-engineered skeletal muscle was fabricated with two anchorage points from a primary rat myoblast cultured in a collagen Matrigel mixed gel. Differentiation to the skeletal muscle was confirmed in the tissue-engineered skeletal muscle, and the contraction force increased with increasing frequency of electric stimulation. Then, the tissue-engineered skeletal muscle was assembled into a gripper-type microhand. The tissue-engineered skeletal muscle of the microhand was stimulated electrically, which was then followed by the voluntary movement of the subject's hand. The signal of the surface electromyogram from a subject was processed to mimic the firing spikes of a neuromuscular junction to control the contraction of the tissue-engineered skeletal muscle. The tele-operation of the microhand was demonstrated by optical microscope observations.
AbstractList We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of a lost extremity. A tissue-engineered skeletal muscle was fabricated with two anchorage points from a primary rat myoblast cultured in a collagen Matrigel mixed gel. Differentiation to the skeletal muscle was confirmed in the tissue-engineered skeletal muscle, and the contraction force increased with increasing frequency of electric stimulation. Then, the tissue-engineered skeletal muscle was assembled into a gripper-type microhand. The tissue-engineered skeletal muscle of the microhand was stimulated electrically, which was then followed by the voluntary movement of the subject's hand. The signal of the surface electromyogram from a subject was processed to mimic the firing spikes of a neuromuscular junction to control the contraction of the tissue-engineered skeletal muscle. The tele-operation of the microhand was demonstrated by optical microscope observations.We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of a lost extremity. A tissue-engineered skeletal muscle was fabricated with two anchorage points from a primary rat myoblast cultured in a collagen Matrigel mixed gel. Differentiation to the skeletal muscle was confirmed in the tissue-engineered skeletal muscle, and the contraction force increased with increasing frequency of electric stimulation. Then, the tissue-engineered skeletal muscle was assembled into a gripper-type microhand. The tissue-engineered skeletal muscle of the microhand was stimulated electrically, which was then followed by the voluntary movement of the subject's hand. The signal of the surface electromyogram from a subject was processed to mimic the firing spikes of a neuromuscular junction to control the contraction of the tissue-engineered skeletal muscle. The tele-operation of the microhand was demonstrated by optical microscope observations.
We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of a lost extremity. A tissue-engineered skeletal muscle was fabricated with two anchorage points from a primary rat myoblast cultured in a collagen Matrigel mixed gel. Differentiation to the skeletal muscle was confirmed in the tissue-engineered skeletal muscle, and the contraction force increased with increasing frequency of electric stimulation. Then, the tissue-engineered skeletal muscle was assembled into a gripper-type microhand. The tissue-engineered skeletal muscle of the microhand was stimulated electrically, which was then followed by the voluntary movement of the subject's hand. The signal of the surface electromyogram from a subject was processed to mimic the firing spikes of a neuromuscular junction to control the contraction of the tissue-engineered skeletal muscle. The tele-operation of the microhand was demonstrated by optical microscope observations.
Author Hoshino, Takayuki
Morishima, Keisuke
Akiyama, Yoshitake
Kabumoto, Ken-ichiro
Author_xml – sequence: 1
  givenname: Ken-ichiro
  surname: Kabumoto
  fullname: Kabumoto, Ken-ichiro
  organization: 1Department of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
– sequence: 2
  givenname: Takayuki
  surname: Hoshino
  fullname: Hoshino, Takayuki
  organization: 2Department of Mechanical Engineering, Osaka University, Osaka, Japan
– sequence: 3
  givenname: Yoshitake
  surname: Akiyama
  fullname: Akiyama, Yoshitake
  organization: 2Department of Mechanical Engineering, Osaka University, Osaka, Japan
– sequence: 4
  givenname: Keisuke
  surname: Morishima
  fullname: Morishima, Keisuke
  organization: 2Department of Mechanical Engineering, Osaka University, Osaka, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23444880$$D View this record in MEDLINE/PubMed
BookMark eNqNkctq3DAUhkVJaG59gG6KoJtuPJUseSxvCmWYTgMZsphJ6U7I8vFEqUZyJTmQt6_cJEObVRbiCM53bv9_ho6cd4DQe0pmlIjmcwI3S6BmJaHljPCSvkGntGF1wVj18-jw5_QEncV4R8iczOv6LTopGedcCHKKhh_eji6p8IDX_h724BJeeJeCtxY63D7gdAt4M4ZeacDL9QpvzM4pi3sf8NbEOEKxdDvjAELmN7_AQsrp9Ri1BewdVngVzDAYt8Nb7-0FOu6VjfDuKZ6jm2_L7eJ7cXW9ulx8vSp0xWkqtGig6RvR8XlLlO5KThXUrCorovq60tC0LaeCioazuQammlKzzLdKdG1VtewcfXnsO4ztHjqdDwvKyiGYfT5WemXk_xlnbuXO30tWE0I5yQ0-PTUI_vcIMcm9iRqsVQ78GCVldVaRibrJ6McX6J0fQ1bpL5XFpoyVmfrw70aHVZ7NyAB9BHTwMQboDwglcjJcZsPzU3IyXE6G55r6RY02SSUzWaiMfU3lNEE5Zw20ENIrZv4BTYDGDQ
CitedBy_id crossref_primary_10_1002_anbr_202300018
crossref_primary_10_1039_C3LC50989C
crossref_primary_10_1126_scirobotics_aba8212
crossref_primary_10_1039_D0CS00120A
crossref_primary_10_1039_C6SM01055E
crossref_primary_10_1016_j_eng_2018_07_005
crossref_primary_10_1126_scirobotics_aat4440
crossref_primary_10_1299_jbse_22_00269
crossref_primary_10_3390_mi14081643
crossref_primary_10_1021_acsnano_8b08230
crossref_primary_10_3390_mi13101725
crossref_primary_10_1002_admt_202200505
crossref_primary_10_1126_scirobotics_abe7577
crossref_primary_10_3390_mi12040379
crossref_primary_10_1080_01691864_2019_1567382
crossref_primary_10_3390_mi10070487
crossref_primary_10_1088_1758_5090_ad4ba1
crossref_primary_10_34133_2021_9820505
crossref_primary_10_1002_smll_201400384
crossref_primary_10_1126_scirobotics_adr5512
crossref_primary_10_1089_soro_2023_0121
crossref_primary_10_1039_C6LC00681G
crossref_primary_10_1002_admt_202301183
crossref_primary_10_1299_jbse_24_00017
crossref_primary_10_1002_adma_201807747
crossref_primary_10_34133_cbsystems_0106
crossref_primary_10_1007_s42242_021_00135_6
crossref_primary_10_1016_j_jbiosc_2024_03_005
Cites_doi 10.1007/BF00199465
10.1109/TNSRE.2007.911817
10.1016/j.biomaterials.2006.04.012
10.1016/j.biomaterials.2008.11.014
10.1016/j.jelekin.2004.04.004
10.1089/107632703764664738
10.1109/TNB.2009.2035282
10.1089/107632701753213192
10.1007/978-3-540-27833-7_11
10.1016/j.jss.2006.05.041
10.1016/j.biomaterials.2011.01.062
10.1299/jbse.5.236
10.1299/jbse.5.245
10.1039/c2lc40479f
10.1152/japplphysiol.00273.2004
10.1038/nm1394
10.1096/fasebj.11.8.9240969
10.1038/35042582
10.1002/bit.22318
10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2
10.1007/BF02623542
10.1016/j.biomaterials.2008.11.015
10.1016/S0021-9290(98)00082-7
10.1152/ajpcell.2001.280.2.C288
10.1016/j.neunet.2009.09.003
10.1111/j.1582-4934.2004.tb00466.x
10.1096/fasebj.5.13.1916108
10.1089/ten.tea.2012.0181
10.1089/ten.2007.0003
10.1007/s10237-011-0325-z
10.1113/jphysiol.1969.sp008916
10.1089/107632703322495637
10.1016/S0963-6897(97)00067-5
10.1152/ajpcell.00595.2001
10.1007/BF02623630
10.1007/BF00431022
ContentType Journal Article
Copyright 2013, Mary Ann Liebert, Inc.
(©) Copyright 2013, Mary Ann Liebert, Inc.
Copyright 2013, Mary Ann Liebert, Inc. 2013
Copyright_xml – notice: 2013, Mary Ann Liebert, Inc.
– notice: (©) Copyright 2013, Mary Ann Liebert, Inc.
– notice: Copyright 2013, Mary Ann Liebert, Inc. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7T5
7TK
7TM
7TO
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1089/ten.tea.2012.0421
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest Central Student


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-335X
EndPage 1703
ExternalDocumentID PMC3700140
3007960521
23444880
10_1089_ten_tea_2012_0421
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29Q
3V.
4.4
53G
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
ABBKN
ABUWG
ACGFO
ACGOD
ACPRK
AENEX
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
HCIFZ
HMCUK
IHR
LK8
M0L
M1P
M2P
M7P
MV1
NQHIM
O9-
PQQKQ
PROAC
PSQYO
RML
RNS
UE5
UKHRP
AAYXX
BNQNF
CAG
CITATION
COF
IAO
IER
IGS
ITC
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QP
7T5
7TK
7TM
7TO
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
SCNPE
7X8
5PM
ID FETCH-LOGICAL-c541t-c89e9f98d46b0acd241ae735250af75ce9bb418189436ce3a92c3f98ba8db55b3
IEDL.DBID 7X7
ISSN 1937-3341
1937-335X
IngestDate Thu Aug 21 13:18:13 EDT 2025
Thu Jul 10 18:00:54 EDT 2025
Wed Aug 13 08:47:56 EDT 2025
Mon Jul 21 06:04:50 EDT 2025
Tue Jul 01 00:49:22 EDT 2025
Thu Apr 24 23:02:53 EDT 2025
Fri Sep 27 01:18:58 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-16
Language English
License https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c89e9f98d46b0acd241ae735250af75ce9bb418189436ce3a92c3f98ba8db55b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1089/ten.tea.2012.0421
PMID 23444880
PQID 1372341332
PQPubID 40309
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3700140
proquest_miscellaneous_1373443879
proquest_journals_1372341332
pubmed_primary_23444880
crossref_primary_10_1089_ten_tea_2012_0421
crossref_citationtrail_10_1089_ten_tea_2012_0421
maryannliebert_primary_10_1089_ten_tea_2012_0421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New Rochelle
– name: 140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA
PublicationTitle Tissue engineering. Part A
PublicationTitleAlternate Tissue Eng Part A
PublicationYear 2013
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References Cavanagh, Komi (B36) 1979; 42
Okuno, Akazawa, Yoshida (B5) 1999; 9
Koike, Kawato (B2) 1995; 73
Lam, Huang, Birla, Takayama (B14) 2009; 30
Okano, Matsuda (B8) 1998; 7
Bach, Beier, Stern-Staeter, Horch (B15) 2004; 8
Rezakhaniha, Agianniotis, Schrauwen, Griffa, Sage, Bouten, van de Vosse, Unser, Stergiopulos (B30) 2012; 11
Hosseini, Ahadian, Ostrovidov, Camci-Unal, Chen, Kaji, Ramalingam, Khademhosseini (B25) 2012; 18
Miller, Stubblefield, Lipschutz, Lock, Kuiken (B6) 2008; 16
Breuls, Mol, Petterson, Oomens, Baaijens, Bouten (B9) 2003; 9
Ahadian, Ramón-Azcón, Ostrovidov, Camci-Unal, Hosseini, Kaji, Ino, Shiku, Khademhosseini, Matsue (B29) 2012; 12
Valero-Cuevas, Zajac, Burgar (B35) 1998; 31
Kosnik, Faulkner, Dennis (B22) 2001; 7
Lam, Sim, Zhu, Takayama (B24) 2006; 27
Li, Baum (B37) 2004; 14
Dennis, Kosnik (B11) 2000; 36
Choi, Hirose, Sakurai, Iijima, Koike (B3) 2009; 22
Bian, Bursac (B18) 2009; 30
Dennis, Kosnik, Gilbert, Faulkner (B12) 2001; 280
Eschenhagen, Fink, Remmers, Scholz, Wattchow, Weil, Zimmermann, Dohmen, Schäfer, Bishopric, Wakatsuki, Elson (B20) 1997; 11
Yokoi, Arieta, Katoh, Yu, Watanabe, Maruishi, Iida, Pfeifer, Steels, Kuniyoshi (B4) 2004; 3139
Huang, Dennis, Larkin, Baar (B13) 2005; 98
Koga, Komuro, Yamato, Sueyoshi, Kojima, Okano, Yanai (B32) 2007; 137
Akiyama, Terada, Hashimoto, Hoshino, Furukawa, Morishima (B27) 2010; 5
Vandenburgh, Karlisch, Farr (B7) 1988; 24
Close (B34) 1969; 204
Horiguchi, Imagawa, Hoshino, Akiyama, Morishima (B23) 2009; 8
Wessberg, Stambaugh, Kralik, Beck, Laubach, Chapin, Kim, Biggs, Srinivasan, Nicolelis (B1) 2000; 408
Vandenburgh, Swasdison, Karlisch (B10) 1991; 5
Vandenburgh, Karlisch (B33) 1989; 25
Powell, Smiley, Mills, Vandenburgh (B17) 2002; 283
Hsohino, Morishima (B28) 2010; 5
Fujita, Shimizu, Nagamori (B31) 2009; 103
Neumann, Hauschka, Sanders (B19) 2003; 9
Dhawan, Lytle, Dow, Huang, Brown (B26) 2007; 13
Zimmermann, Melnychenko, Wasmeier, Didié, Naito, Nixdorff, Hess, Budinsky, Brune, Michaelis, Dhein, Schwoerer, Ehmke, Eschenhagen (B21) 2006; 12
Hinds, Bian, Dennis, Bursac (B16) 2011; 32
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
Okuno R. (B5) 1999; 9
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B17
B18
B19
B1
B2
B3
B4
B6
B7
B8
B9
10937836 - In Vitro Cell Dev Biol Anim. 2000 May;36(5):327-35
2753848 - In Vitro Cell Dev Biol. 1989 Jul;25(7):607-16
20142148 - IEEE Trans Nanobioscience. 2009 Dec;8(4):349-55
11208523 - Am J Physiol Cell Physiol. 2001 Feb;280(2):C288-95
21744269 - Biomech Model Mechanobiol. 2012 Mar;11(3-4):461-73
11099043 - Nature. 2000 Nov 16;408(6810):361-5
527577 - Eur J Appl Physiol Occup Physiol. 1979 Nov;42(3):159-63
1916108 - FASEB J. 1991 Oct;5(13):2860-7
16582915 - Nat Med. 2006 Apr;12(4):452-8
18303805 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):46-50
5824642 - J Physiol. 1969 Oct;204(2):331-46
19793637 - Neural Netw. 2009 Nov;22(9):1214-23
9796669 - J Biomech. 1998 Aug;31(8):693-703
19070360 - Biomaterials. 2009 Mar;30(7):1401-12
16650470 - Biomaterials. 2006 Aug;27(24):4340-7
21324402 - Biomaterials. 2011 May;32(14):3575-83
12372817 - Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65
19350625 - Biotechnol Bioeng. 2009 Aug 1;103(5):1034-41
17822360 - Tissue Eng. 2007 Nov;13(11):2813-21
15491839 - J Electromyogr Kinesiol. 2004 Dec;14(6):647-52
22963391 - Tissue Eng Part A. 2012 Dec;18(23-24):2453-65
9489765 - Cell Transplant. 1998 Jan-Feb;7(1):71-82
15601570 - J Cell Mol Med. 2004 Oct-Dec;8(4):413-22
12740089 - Tissue Eng. 2003 Apr;9(2):269-81
9240969 - FASEB J. 1997 Jul;11(8):683-94
22847280 - Lab Chip. 2012 Sep 21;12(18):3491-503
17084412 - J Surg Res. 2007 Jan;137(1):30-7
7578470 - Biol Cybern. 1995 Sep;73(4):291-300
14633383 - Tissue Eng. 2003 Oct;9(5):995-1003
19064284 - Biomaterials. 2009 Feb;30(6):1150-5
11694191 - Tissue Eng. 2001 Oct;7(5):573-84
3350785 - In Vitro Cell Dev Biol. 1988 Mar;24(3):166-74
15475606 - J Appl Physiol (1985). 2005 Feb;98(2):706-13
10612560 - Front Med Biol Eng. 1999;9(3):199-210
References_xml – volume: 12
  start-page: 3491
  year: 2012
  ident: B29
  article-title: Interdigitated array of Pt electrodes for electrical stimulation and engineering of aligned muscle tissue
  publication-title: Lab Chip
– volume: 30
  start-page: 1401
  year: 2009
  ident: B18
  article-title: Engineered skeletal muscle tissue networks with controllable architecture
  publication-title: Biomaterials
– volume: 9
  start-page: 269
  year: 2003
  ident: B9
  article-title: Monitoring local cell viability in engineered tissues: a fast, quantitative, and nondestructive approach
  publication-title: Tissue Eng
– volume: 25
  start-page: 607
  year: 1989
  ident: B33
  article-title: Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator
  publication-title: In Vitro Cell Dev Biol
– volume: 408
  start-page: 361
  year: 2000
  ident: B1
  article-title: Real-time prediction of hand trajectory by ensembles of cortical neurons in primates
  publication-title: Nature
– volume: 3139
  start-page: 146
  year: 2004
  ident: B4
  article-title: Mutual adaptation in a prosthetics application
  publication-title: Embodied Artificial Intelligence
– volume: 24
  start-page: 166
  year: 1988
  ident: B7
  article-title: Maintenance of highly contractile tissue-cultured avian skeletal myotubes in collagen gel
  publication-title: In Vitro Cell Dev Biol
– volume: 32
  start-page: 3575
  year: 2011
  ident: B16
  article-title: The role of extracellular matrix composition in structure and function of bioengineered skeletal muscle
  publication-title: Biomaterials
– volume: 7
  start-page: 71
  year: 1998
  ident: B8
  article-title: Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues
  publication-title: Cell Transplant
– volume: 98
  start-page: 706
  year: 2005
  ident: B13
  article-title: Rapid formation of functional muscle in vitro using fibrin gels
  publication-title: J Appl Physiol
– volume: 8
  start-page: 349
  year: 2009
  ident: B23
  article-title: Fabrication and evaluation of reconstructed cardiac tissue and its application to bio-actuated microdevices
  publication-title: IEEE Trans Nanobiosci
– volume: 42
  start-page: 159
  year: 1979
  ident: B36
  article-title: Electromechanical delay in human skeletal muscle under concentric and eccentric contractions
  publication-title: Eur J Appl Physiol Occup Physiology
– volume: 36
  start-page: 327
  year: 2000
  ident: B11
  article-title: Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro
  publication-title: In Vitro Cell Dev Biol Anim
– volume: 9
  start-page: 995
  year: 2003
  ident: B19
  article-title: Tissue engineering of skeletal muscle using polymer fiber arrays
  publication-title: Tissue Eng
– volume: 137
  start-page: 30
  year: 2007
  ident: B32
  article-title: Recovery course of full-thickness skin defects with exposed bone: an evaluation by a quantitative examination of new blood vessels
  publication-title: J Surg Res
– volume: 283
  start-page: C1557
  year: 2002
  ident: B17
  article-title: Mechanical stimulation improves tissue-engineered human skeletal muscle
  publication-title: Am J Physiol Cell Physiol
– volume: 73
  start-page: 291
  year: 1995
  ident: B2
  article-title: Estimation of dynamic joint torques and trajectory formation from surface electromyography signals using a neural network model
  publication-title: Biol Cybern
– volume: 11
  start-page: 461
  year: 2012
  ident: B30
  article-title: Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy
  publication-title: Biomech Model Mechanobiol
– volume: 12
  start-page: 452
  year: 2006
  ident: B21
  article-title: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts
  publication-title: Nat Med
– volume: 9
  start-page: 199
  year: 1999
  ident: B5
  article-title: Biomimetic myoelectric hand with voluntary control of finger angle and compliance
  publication-title: Front Med Biol Eng
– volume: 5
  start-page: 2860
  year: 1991
  ident: B10
  article-title: Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro
  publication-title: FASEB J
– volume: 18
  start-page: 2453
  year: 2012
  ident: B25
  article-title: Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate
  publication-title: Tissue Eng Part A
– volume: 103
  start-page: 1034
  year: 2009
  ident: B31
  article-title: Novel method for fabrication of skeletal muscle construct from the C2C12 myoblast cell line using serum-free medium AIM-V
  publication-title: Biotechnol Bioeng
– volume: 27
  start-page: 4340
  year: 2006
  ident: B24
  article-title: The effect of continuous wavy micropatterns on silicone substrates on the alignment of skeletal muscle myoblasts and myotubes
  publication-title: Biomaterials
– volume: 30
  start-page: 1150
  year: 2009
  ident: B14
  article-title: Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs
  publication-title: Biomaterials
– volume: 11
  start-page: 683
  year: 1997
  ident: B20
  article-title: Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system
  publication-title: FASEB J
– volume: 16
  start-page: 46
  year: 2008
  ident: B6
  article-title: Improved myoelectric prosthesis control using targeted reinnervation surgery: a case series
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 14
  start-page: 647
  year: 2004
  ident: B37
  article-title: Electromechanical delay estimated by using electromyography during cycling at different pedaling frequencies
  publication-title: J Electromyogr Kinesiol
– volume: 13
  start-page: 2813
  year: 2007
  ident: B26
  article-title: Neurotization improves contractile forces of tissue-engineered skeletal muscle
  publication-title: Tissue Eng
– volume: 7
  start-page: 573
  year: 2001
  ident: B22
  article-title: Functional development of engineered skeletal muscle from adult and neonatal rats
  publication-title: Tissue Eng
– volume: 8
  start-page: 413
  year: 2004
  ident: B15
  article-title: Skeletal muscle tissue engineering
  publication-title: J Cell Mol Med
– volume: 204
  start-page: 331
  year: 1969
  ident: B34
  article-title: Dynamic properties of fast and slow skeletal muscles of the rat after nerve cross-union
  publication-title: J Physiol (Lond)
– volume: 31
  start-page: 693
  year: 1998
  ident: B35
  article-title: Large index-fingertip forces are produced by subject-independent patterns of muscle excitation
  publication-title: J Biomech
– volume: 5
  start-page: 245
  year: 2010
  ident: B28
  article-title: Muscle-powered cantilever for microtweezers with an artificial micro skeleton and rat primary myotubes
  publication-title: J Biomech Sci Eng
– volume: 22
  start-page: 1214
  year: 2009
  ident: B3
  article-title: Prediction of arm trajectory from the neural activities of the primary motor cortex with modular connectionist architecture
  publication-title: Neural Netw
– volume: 280
  start-page: C288
  year: 2001
  ident: B12
  article-title: Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines
  publication-title: Am J Physiol Cell Physiol
– volume: 5
  start-page: 236
  year: 2010
  ident: B27
  article-title: Rod-shaped tissue engineered skeletal muscle with artificial anchors to utilize as a bio-actuator
  publication-title: J Biomech Sci Eng
– ident: B2
  doi: 10.1007/BF00199465
– ident: B6
  doi: 10.1109/TNSRE.2007.911817
– volume: 9
  start-page: 199
  year: 1999
  ident: B5
  publication-title: Front Med Biol Eng
– ident: B24
  doi: 10.1016/j.biomaterials.2006.04.012
– ident: B14
  doi: 10.1016/j.biomaterials.2008.11.014
– ident: B37
  doi: 10.1016/j.jelekin.2004.04.004
– ident: B9
  doi: 10.1089/107632703764664738
– ident: B23
  doi: 10.1109/TNB.2009.2035282
– ident: B22
  doi: 10.1089/107632701753213192
– ident: B4
  doi: 10.1007/978-3-540-27833-7_11
– ident: B32
  doi: 10.1016/j.jss.2006.05.041
– ident: B16
  doi: 10.1016/j.biomaterials.2011.01.062
– ident: B27
  doi: 10.1299/jbse.5.236
– ident: B28
  doi: 10.1299/jbse.5.245
– ident: B29
  doi: 10.1039/c2lc40479f
– ident: B13
  doi: 10.1152/japplphysiol.00273.2004
– ident: B21
  doi: 10.1038/nm1394
– ident: B20
  doi: 10.1096/fasebj.11.8.9240969
– ident: B1
  doi: 10.1038/35042582
– ident: B31
  doi: 10.1002/bit.22318
– ident: B11
  doi: 10.1290/1071-2690(2000)036<0327:EAICPO>2.0.CO;2
– ident: B7
  doi: 10.1007/BF02623542
– ident: B18
  doi: 10.1016/j.biomaterials.2008.11.015
– ident: B35
  doi: 10.1016/S0021-9290(98)00082-7
– ident: B12
  doi: 10.1152/ajpcell.2001.280.2.C288
– ident: B3
  doi: 10.1016/j.neunet.2009.09.003
– ident: B15
  doi: 10.1111/j.1582-4934.2004.tb00466.x
– ident: B10
  doi: 10.1096/fasebj.5.13.1916108
– ident: B25
  doi: 10.1089/ten.tea.2012.0181
– ident: B26
  doi: 10.1089/ten.2007.0003
– ident: B30
  doi: 10.1007/s10237-011-0325-z
– ident: B34
  doi: 10.1113/jphysiol.1969.sp008916
– ident: B19
  doi: 10.1089/107632703322495637
– ident: B8
  doi: 10.1016/S0963-6897(97)00067-5
– ident: B17
  doi: 10.1152/ajpcell.00595.2001
– ident: B33
  doi: 10.1007/BF02623630
– ident: B36
  doi: 10.1007/BF00431022
– reference: 12372817 - Am J Physiol Cell Physiol. 2002 Nov;283(5):C1557-65
– reference: 22847280 - Lab Chip. 2012 Sep 21;12(18):3491-503
– reference: 22963391 - Tissue Eng Part A. 2012 Dec;18(23-24):2453-65
– reference: 12740089 - Tissue Eng. 2003 Apr;9(2):269-81
– reference: 19064284 - Biomaterials. 2009 Feb;30(6):1150-5
– reference: 21324402 - Biomaterials. 2011 May;32(14):3575-83
– reference: 19350625 - Biotechnol Bioeng. 2009 Aug 1;103(5):1034-41
– reference: 18303805 - IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):46-50
– reference: 17084412 - J Surg Res. 2007 Jan;137(1):30-7
– reference: 17822360 - Tissue Eng. 2007 Nov;13(11):2813-21
– reference: 10612560 - Front Med Biol Eng. 1999;9(3):199-210
– reference: 9240969 - FASEB J. 1997 Jul;11(8):683-94
– reference: 9489765 - Cell Transplant. 1998 Jan-Feb;7(1):71-82
– reference: 10937836 - In Vitro Cell Dev Biol Anim. 2000 May;36(5):327-35
– reference: 527577 - Eur J Appl Physiol Occup Physiol. 1979 Nov;42(3):159-63
– reference: 11208523 - Am J Physiol Cell Physiol. 2001 Feb;280(2):C288-95
– reference: 20142148 - IEEE Trans Nanobioscience. 2009 Dec;8(4):349-55
– reference: 1916108 - FASEB J. 1991 Oct;5(13):2860-7
– reference: 5824642 - J Physiol. 1969 Oct;204(2):331-46
– reference: 19793637 - Neural Netw. 2009 Nov;22(9):1214-23
– reference: 15491839 - J Electromyogr Kinesiol. 2004 Dec;14(6):647-52
– reference: 19070360 - Biomaterials. 2009 Mar;30(7):1401-12
– reference: 14633383 - Tissue Eng. 2003 Oct;9(5):995-1003
– reference: 15475606 - J Appl Physiol (1985). 2005 Feb;98(2):706-13
– reference: 7578470 - Biol Cybern. 1995 Sep;73(4):291-300
– reference: 9796669 - J Biomech. 1998 Aug;31(8):693-703
– reference: 11694191 - Tissue Eng. 2001 Oct;7(5):573-84
– reference: 15601570 - J Cell Mol Med. 2004 Oct-Dec;8(4):413-22
– reference: 16650470 - Biomaterials. 2006 Aug;27(24):4340-7
– reference: 21744269 - Biomech Model Mechanobiol. 2012 Mar;11(3-4):461-73
– reference: 3350785 - In Vitro Cell Dev Biol. 1988 Mar;24(3):166-74
– reference: 16582915 - Nat Med. 2006 Apr;12(4):452-8
– reference: 11099043 - Nature. 2000 Nov 16;408(6810):361-5
– reference: 2753848 - In Vitro Cell Dev Biol. 1989 Jul;25(7):607-16
SSID ssj0060677
Score 2.2527726
Snippet We have developed a living prosthesis consisting of a living muscle-powered device, which is controlled by neuronal signals to recover some of the functions of...
SourceID pubmedcentral
proquest
pubmed
crossref
maryannliebert
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1695
SubjectTerms Animals
Cells, Cultured
Electromyography - methods
Electrophysiology
Motor ability
Muscle, Skeletal - metabolism
Muscle, Skeletal - physiology
Muscular system
Myoblasts - cytology
Myoblasts - metabolism
Original
Original Articles
Rats
Rats, Wistar
Signal transduction
Skeletal system
Surface tension
Tissue Engineering - methods
Title Voluntary Movement Controlled by the Surface EMG Signal for Tissue-Engineered Skeletal Muscle on a Gripping Tool
URI https://www.liebertpub.com/doi/abs/10.1089/ten.tea.2012.0421
https://www.ncbi.nlm.nih.gov/pubmed/23444880
https://www.proquest.com/docview/1372341332
https://www.proquest.com/docview/1373443879
https://pubmed.ncbi.nlm.nih.gov/PMC3700140
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BewEJVJ5dKJWROCGlTeK8fEJQbVshbYXYLdpb5FdK1ZWz7GYP_HtmnEe7CFUccvI4Tjxj-7Nn_A3Ah4xzqXlYBUJa3KCoKg1kZKIgM1XBDUUe-1uuk4vs_DL5Ok_n3YHbugur7OdEP1GbWtMZ-XHE85hmXB5_Wv4KKGsUeVe7FBoPYZeoyyikK58PG66M2NFarzIOJKzcezULcYyA9Ah7kWK74iM03GhrXXpC18akcwgDKbz5X-jz7yDKO6vS6R487eAk-9zq_xk8sO45PL5DMvgClj_QulyDTbFJ7dnBG3bSBqgvrGHqN0MMyKabVSW1ZePJGZteX9FLEc6ymddL0L8Q5ac3uFAhYmeTzRqbZLVjkp2tPM_DFZvV9eIlXJ6OZyfnQZdnIdBpEjWBLoQVlShMkqlQaoOLurQ58aSGsspTbYVSCSIBomrPtOVSxJqjvJKFUWmq-CvYcbWz-8Cqiuh1hLG4y0y4yguZhkpwhFkR7tpzMYKw7-VSdyTklAtjUXpneCFKVAw-siTFlKSYEXwcqixbBo77hMNt1f1PlYNeuWU3ftflrbWN4P1QjCOP3CnS2XrjZXiS8IL-6nVrC0NrWDmhqXEE-ZaVDALE6r1d4q5_enZvnnvOozf3f9ZbeBT7xBwUingAO81qY98hPGrUoR8Dh7D7ZXzx7fsfqzISFw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7QGQQHxTGGAkeEHKlsT58gNCMLp1bKkQ7aa9BdtxxkSVlDYV2j_F38idk5QVoYmXPeTJZzvNfbp3_h3Aq4hzqblbOEIaPKCoInSkl3tOlBcJz6ny2N5yTYfR4Cj4dBKerMGv7i4MlVV2NtEa6rzS9B_5tsdjnywu999NfzjUNYqyq10LjUYsDsz5Tzyyzd_uf0T-vvb93f54Z-C0XQUcHQZe7ehEGFGIJA8i5UqdowuTJiZUUFcWcaiNUCpAv0fA5JE2XApfc6RXMslVGCqO616DDRx00RBsfOgPP3_pbH9EeGxNHhtVF1-3y6MmYhtD4C3kG1WT-VuoKt6KJ7xFF9VkWWLgSQXV_4p3_y7bvOAHd-_A7TaAZe8bibsLa6a8BzcvwBreh-kxynNZ41YsrSweec12mpL4icmZOmcYdbLRYlZIbVg_3WOjs1NaFANoNraS4HQLIv3oO7pGPCOwdDHHLVlVMsn2ZhZZ4pSNq2ryAI6uhAcPYb2sSvMYWFEQoI_IDZ5rA67iRIauEhwDO88oHoseuN1XznQLe07dNyaZTb8nIkPG4CMzYkxGjOnBm-WUaYP5cRmxu8q6_5my2TE3ay3GPPsj3z14uRxGXacEjixNtbA0PAh4Qr_qUSMLy91wckDGuAfxipQsCQhHfHWkPPtm8cR5bFGWnlz-Wi_g-mCcHmaH-8ODp3DDt21BqBByE9br2cI8w-CsVs9bjWDw9aqV8DdvtE9m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiGQqHgTKLBIcEFyY3v92kOFUNu0paRCSopyM7vrdamI7JA4Qv1r_XWdWT9oEKq49JCTZ3edzDsz-w3Au4hzqbmbO0IaTFBUHjrSyzwnyvKEZ9R5bG-5Do-jg5Pg8yScrMFFexeG2ipbm2gNdVZq-o-87_HYJ4vL_X7etEV83R18nP1yaIIUVVrbcRq1iByZ89-Yvi22D3eR1-99f7A33jlwmgkDjg4Dr3J0IozIRZIFkXKlztCdSRMTQqgr8zjURigVoA8kkPJIGy6FrznSK5lkKgwVx31vwW1c4ZGOxZMu2YsIma2uaKMS44u3FdVE9DEY3kIOUl-Zv4VK4634xPt0ZU0WBYag1Fr9r8j37wbOKx5x8AA2mlCWfapl7yGsmeIR3LsCcPgYZt9QsosKj2LD0iKTV2ynbo6fmoypc4bxJxst57nUhu0N99no7JQ2xVCaja1MOO2GSD_6iU4SswU2XC7wSFYWTLL9ucWYOGXjspw-gZMb4cBTWC_KwjwHlucE7SMygxluwFWcyNBVgmOI5xnFY9EDt_2VU90AoNMcjmlqC_GJSJEx-JEpMSYlxvTgQ7dkVqN_XEfsrrLuf5ZstsxNG9uxSP9Ieg_edo9R66mUIwtTLi0NDwKe0Ld6VstCdxouDsgs9yBekZKOgBDFV58UZz8ssjiPLd7Si-tf6w3cQdVLvxweH72Eu76dD0IdkZuwXs2X5hVGaZV6bdWBwfeb1r9LL7BSNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Voluntary+Movement+Controlled+by+the+Surface+EMG+Signal+for+Tissue-Engineered+Skeletal+Muscle+on+a+Gripping+Tool&rft.jtitle=Tissue+engineering.+Part+A&rft.au=Kabumoto%2C+Ken-ichiro&rft.au=Hoshino%2C+Takayuki&rft.au=Akiyama%2C+Yoshitake&rft.au=Morishima%2C+Keisuke&rft.date=2013-08-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=1937-3341&rft.eissn=1937-335X&rft.volume=19&rft.issue=15-16&rft.spage=1695&rft_id=info:doi/10.1089%2Ften.tea.2012.0421&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3007960521
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3341&client=summon