Screening and staging of chronic obstructive pulmonary disease with deep learning based on chest X-ray images and clinical parameters

Background Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients. Methods In this multicenter...

Full description

Saved in:
Bibliographic Details
Published inBMC pulmonary medicine Vol. 24; no. 1; pp. 153 - 10
Main Authors Zou, XiaoLing, Ren, Yong, Yang, HaiLing, Zou, ManMan, Meng, Ping, Zhang, LiYi, Gong, MingJuan, Ding, WenWen, Han, LanQing, Zhang, TianTuo
Format Journal Article
LanguageEnglish
Published London BioMed Central 26.03.2024
BMC
Subjects
Online AccessGet full text
ISSN1471-2466
1471-2466
DOI10.1186/s12890-024-02945-7

Cover

Abstract Background Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients. Methods In this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads. Results The Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively. Conclusion The present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.
AbstractList Abstract Background Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients. Methods In this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads. Results The Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively. Conclusion The present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.
Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients.BACKGROUNDChronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients.In this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads.METHODSIn this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads.The Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively.RESULTSThe Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively.The present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.CONCLUSIONThe present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.
Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients. In this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads. The Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively. The present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.
Background Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients. Methods In this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads. Results The Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively. Conclusion The present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.
BackgroundChronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and simple option for early detection and severity evaluation of COPD could benefit practitioners and patients.MethodsIn this multicenter retrospective study, frontal chest X-ray (CXR) images and related clinical information of 1055 participants were collected and processed. Different deep learning algorithms and transfer learning models were trained to classify COPD based on clinical data and CXR images from 666 subjects, and validated in internal test set based on 284 participants. External test including 105 participants was also performed to verify the generalization ability of the learning algorithms in diagnosing COPD. Meanwhile, the model was further used to evaluate disease severity of COPD by predicting different grads.ResultsThe Ensemble model showed an AUC of 0.969 in distinguishing COPD by simultaneously extracting fusion features of clinical parameters and CXR images in internal test, better than models that used clinical parameters (AUC = 0.963) or images (AUC = 0.946) only. For the external test set, the AUC slightly declined to 0.934 in predicting COPD based on clinical parameters and CXR images. When applying the Ensemble model to determine disease severity of COPD, the AUC reached 0.894 for three-classification and 0.852 for five-classification respectively.ConclusionThe present study used DL algorithms to screen COPD and predict disease severity based on CXR imaging and clinical parameters. The models showed good performance and the approach might be an effective case-finding tool with low radiation dose for COPD diagnosis and staging.
ArticleNumber 153
Author Zhang, TianTuo
Ding, WenWen
Zhang, LiYi
Gong, MingJuan
Yang, HaiLing
Han, LanQing
Zou, ManMan
Ren, Yong
Zou, XiaoLing
Meng, Ping
Author_xml – sequence: 1
  givenname: XiaoLing
  surname: Zou
  fullname: Zou, XiaoLing
  organization: Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University
– sequence: 2
  givenname: Yong
  surname: Ren
  fullname: Ren, Yong
  organization: Scientific research project department, Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Shensi lab, Shenzhen Institute for Advanced Study, UESTC
– sequence: 3
  givenname: HaiLing
  surname: Yang
  fullname: Yang, HaiLing
  organization: Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University
– sequence: 4
  givenname: ManMan
  surname: Zou
  fullname: Zou, ManMan
  organization: Department of Pulmonary and Critical Care Medicine, Dongguan People’s Hospital
– sequence: 5
  givenname: Ping
  surname: Meng
  fullname: Meng, Ping
  organization: Department of Pulmonary and Critical Care Medicine, the Six Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital
– sequence: 6
  givenname: LiYi
  surname: Zhang
  fullname: Zhang, LiYi
  organization: Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University
– sequence: 7
  givenname: MingJuan
  surname: Gong
  fullname: Gong, MingJuan
  organization: Department of Internal Medicine, Huazhou Hospital of Traditional Chinese Medicine
– sequence: 8
  givenname: WenWen
  surname: Ding
  fullname: Ding, WenWen
  organization: Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University
– sequence: 9
  givenname: LanQing
  surname: Han
  fullname: Han, LanQing
  email: hanlance@tsinghua-gd.org
  organization: Center for artificial intelligence in medicine, Research Institute of Tsinghua, Pearl River Delta
– sequence: 10
  givenname: TianTuo
  surname: Zhang
  fullname: Zhang, TianTuo
  email: zhtituli@163.com
  organization: Department of Pulmonary and Critical Care Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38532368$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_YA_wAFZ4sIl4K_YyQmhio9KlTgAEjdrYk-yXmXtxU6K-gP433h3S2l76MEaa_zemzfjOa2OQgxYVS8ZfctYq95lxtuO1pTLcjrZ1PpJdcKkZjWXSh3duR9XpzmvKWW6bcSz6liUwIVqT6o_32xCDD6MBIIjeYZxd48DsasUg7ck9nlOi539FZLtMm1igHRNnM8IGclvP6-IQ9ySCSHtdfqSdySGooB5Jj_rBNfEb2DEvK9hJ190YSJbSLDBGVN-Xj0dYMr44iaeVT8-ffx-_qW-_Pr54vzDZW0byebatswpqTSXTjAYNBeUDh0TvdLSMcd7p7WWFCjtqWt5R6GTA7NCYmMl7ZQ4qy4Oui7C2mxTcZWuTQRv9omYRgNp9nZCMyjZdig1hx5lI2gLlgqmgHWDEFI0Rev9QWu79Bt0FsOcYLonev8l-JUZ45VhxYlUfOfmzY1Cir-WMiuz8dniNEHAuGRTuhNSMsZpgb5-AF3HJYUyq4ISulUNkztLr-5auvXy77sLgB8ANsWcEw63EEbNbqfMYadM2Smz3ymjC6l9QLJ-htnHXVt-epwqDtRc6oQR03_bj7D-AiN14LA
CitedBy_id crossref_primary_10_1016_j_ijmedinf_2025_105812
crossref_primary_10_1186_s13195_024_01663_w
Cites_doi 10.1007/s00330-009-1320-y
10.1186/s41747-018-0064-3
10.1016/S2589-7500(21)00146-1
10.1164/rccm.202208-1508LE
10.1088/1361-6560/ab857d
10.1164/rccm.201807-1351SO
10.1164/rccm.201705-0860OC
10.1002/mp.14673
10.1055/s-0030-1254068
10.1164/rccm.202204-0671PP
10.2214/AJR.11.6533
10.1164/rccm.201701-0218PP
10.1097/RTI.0b013e3181b41b53
10.1038/s41533-017-0062-6
10.1183/16000617.0031-2021
10.1136/bmj.h3021
10.1183/09031936.00095607
10.1164/rccm.201804-0621CI
10.1056/NEJMra1814259
10.1080/17476348.2018.1419868
10.1016/j.cmpb.2022.106947
10.1164/rccm.201703-0451PP
10.1007/s00330-022-08632-7
10.1148/radiol.2481071451
10.1186/s12889-024-17686-9
10.1016/j.eswa.2020.113909
10.1016/S0140-6736(18)30841-9
10.1148/radiol.2018172294
10.7150/ijms.58191
10.1371/journal.pone.0059526
10.1016/S2589-7500(20)30064-9
10.1038/s41591-018-0316-z
10.1186/s12890-020-1062-9
10.1097/RTI.0000000000000500
10.1259/bjr.20210637
10.1109/TPAMI.2019.2918284
10.1007/s11517-022-02611-2
10.1513/AnnalsATS.201808-529MG
10.1148/radiol.2019190450
10.1378/chest.14-2535
10.1097/RTI.0000000000000440
10.1097/RLI.0000000000000147
10.1148/radiol.2015141769
10.1159/000454956
10.1097/MCP.0000000000000459
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: 2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TO
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12890-024-02945-7
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1471-2466
EndPage 10
ExternalDocumentID oai_doaj_org_article_f6489e472abe45308ac0316a19f33435
PMC10964626
38532368
10_1186_s12890_024_02945_7
Genre Multicenter Study
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Key Technology R&D Program
  grantid: 2018YFC1311900
– fundername: Shenzhen Science and Technology Program
  grantid: No. JCYJ20220530145001002
GroupedDBID ---
0R~
23N
2WC
53G
5GY
5VS
6J9
6PF
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABUWG
ACGFO
ACGFS
ACIHN
ACPRK
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
E3Z
EBD
EBLON
EBS
EMB
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7XB
8FK
AZQEC
COVID
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c541t-c81d646724d31af72300f913b674d1d2bd77740a00b0d8290a94f1c34e5c40963
IEDL.DBID M48
ISSN 1471-2466
IngestDate Wed Aug 27 00:59:56 EDT 2025
Thu Aug 21 18:35:39 EDT 2025
Fri Sep 05 10:46:39 EDT 2025
Fri Jul 25 10:02:54 EDT 2025
Wed Feb 19 02:03:45 EST 2025
Thu Apr 24 23:07:15 EDT 2025
Tue Jul 01 02:40:35 EDT 2025
Sat Sep 06 07:21:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning models
Clinical parameters
Pulmonary function test
Chest X-ray
COPD screening
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c81d646724d31af72300f913b674d1d2bd77740a00b0d8290a94f1c34e5c40963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12890-024-02945-7
PMID 38532368
PQID 3037865145
PQPubID 44785
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f6489e472abe45308ac0316a19f33435
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10964626
proquest_miscellaneous_3003441120
proquest_journals_3037865145
pubmed_primary_38532368
crossref_primary_10_1186_s12890_024_02945_7
crossref_citationtrail_10_1186_s12890_024_02945_7
springer_journals_10_1186_s12890_024_02945_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-26
PublicationDateYYYYMMDD 2024-03-26
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC pulmonary medicine
PublicationTitleAbbrev BMC Pulm Med
PublicationTitleAlternate BMC Pulm Med
PublicationYear 2024
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References A Rajkomar (2945_CR33) 2019; 380
L Zhang (2945_CR20) 2022; 95
M Paoletti (2945_CR21) 2015; 276
J Park (2945_CR18) 2019; 199
G González (2945_CR36) 2018; 197
TB Chandra (2945_CR40) 2022; 60
N Al Wachami (2945_CR5) 2024; 24
A Westcott (2945_CR47) 2019; 293
MR Miller (2945_CR13) 2015; 351
2945_CR17
R Perez-Padilla (2945_CR9) 2018; 12
K Hellbach (2945_CR32) 2015; 50
B Lamprecht (2945_CR10) 2015; 148
A Esteva (2945_CR49) 2019; 25
FJ Larke (2945_CR23) 2011; 197
DA Lynch (2945_CR16) 2018; 288
E Andreeva (2945_CR48) 2017; 27
J Sun (2945_CR11) 2022; 32
FA Mettler Jr (2945_CR22) 2008; 248
AM den Harder (2945_CR25) 2018; 2
S Singla (2945_CR27) 2021; 48
AM Fischer (2945_CR12) 2020; 35
N Das (2945_CR34) 2018; 24
TB Chandra (2945_CR41) 2022; 222
WW Labaki (2945_CR15) 2017; 196
GR Washko (2945_CR30) 2010; 31
C Wang (2945_CR6) 2018; 391
D Castillo-Saldana (2945_CR19) 2020; 35
M Topalovic (2945_CR35) 2017; 93
JT Bakker (2945_CR1) 2021; 30
FG Meinel (2945_CR31) 2013; 8
JG Goldin (2945_CR28) 2009; 24
M Confalonieri (2945_CR2) 2023; 207
CF Vogelmeier (2945_CR14) 2017; 195
2945_CR39
2945_CR38
Y Feng (2945_CR44) 2021; 18
E Cavigli (2945_CR26) 2009; 19
K Matsumura (2945_CR46) 2020; 20
K Willer (2945_CR24) 2021; 3
G Huang (2945_CR37) 2022; 44
TB Chandra (2945_CR42) 2021; 165
M Miniati (2945_CR29) 2008; 31
C Xu (2945_CR45) 2020; 65
2945_CR3
WW Labaki (2945_CR8) 2018; 15
LYW Tang (2945_CR7) 2020; 2
N Diab (2945_CR43) 2018; 198
2945_CR4
References_xml – volume: 19
  start-page: 1686
  year: 2009
  ident: 2945_CR26
  publication-title: Eur Radiol
  doi: 10.1007/s00330-009-1320-y
– volume: 2
  start-page: 30
  year: 2018
  ident: 2945_CR25
  publication-title: Eur Radiol Exp
  doi: 10.1186/s41747-018-0064-3
– volume: 3
  start-page: e733
  year: 2021
  ident: 2945_CR24
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00146-1
– volume: 207
  start-page: 366
  issue: 3
  year: 2023
  ident: 2945_CR2
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.202208-1508LE
– volume: 65
  start-page: 145011
  year: 2020
  ident: 2945_CR45
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/ab857d
– volume: 199
  start-page: 286
  year: 2019
  ident: 2945_CR18
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201807-1351SO
– volume: 197
  start-page: 193
  year: 2018
  ident: 2945_CR36
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201705-0860OC
– volume: 48
  start-page: 1168
  year: 2021
  ident: 2945_CR27
  publication-title: Med Phys
  doi: 10.1002/mp.14673
– volume: 31
  start-page: 276
  year: 2010
  ident: 2945_CR30
  publication-title: Semin Respir Crit Care Med
  doi: 10.1055/s-0030-1254068
– ident: 2945_CR3
  doi: 10.1164/rccm.202204-0671PP
– volume: 197
  start-page: 1165
  year: 2011
  ident: 2945_CR23
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.11.6533
– volume: 195
  start-page: 557
  year: 2017
  ident: 2945_CR14
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201701-0218PP
– volume: 24
  start-page: 163
  year: 2009
  ident: 2945_CR28
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0b013e3181b41b53
– volume: 27
  start-page: 62
  year: 2017
  ident: 2945_CR48
  publication-title: NPJ Prim Care Respir Med
  doi: 10.1038/s41533-017-0062-6
– volume: 30
  start-page: 210031
  year: 2021
  ident: 2945_CR1
  publication-title: Eur Respir Rev
  doi: 10.1183/16000617.0031-2021
– volume: 351
  start-page: h3021
  year: 2015
  ident: 2945_CR13
  publication-title: BMJ
  doi: 10.1136/bmj.h3021
– volume: 31
  start-page: 509
  year: 2008
  ident: 2945_CR29
  publication-title: Eur Respir J
  doi: 10.1183/09031936.00095607
– volume: 198
  start-page: 1130
  year: 2018
  ident: 2945_CR43
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201804-0621CI
– volume: 380
  start-page: 1347
  year: 2019
  ident: 2945_CR33
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 12
  start-page: 83
  year: 2018
  ident: 2945_CR9
  publication-title: Expert Rev Respir Med
  doi: 10.1080/17476348.2018.1419868
– volume: 222
  start-page: 106947
  year: 2022
  ident: 2945_CR41
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106947
– volume: 196
  start-page: 1372
  year: 2017
  ident: 2945_CR15
  publication-title: Am J Respir Crit Care Med
  doi: 10.1164/rccm.201703-0451PP
– volume: 32
  start-page: 5319
  year: 2022
  ident: 2945_CR11
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-08632-7
– volume: 248
  start-page: 254
  year: 2008
  ident: 2945_CR22
  publication-title: Radiology
  doi: 10.1148/radiol.2481071451
– ident: 2945_CR38
– ident: 2945_CR4
– volume: 24
  start-page: 297
  issue: 1
  year: 2024
  ident: 2945_CR5
  publication-title: BMC Public Health
  doi: 10.1186/s12889-024-17686-9
– volume: 165
  start-page: 113909
  year: 2021
  ident: 2945_CR42
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113909
– volume: 391
  start-page: 1706
  year: 2018
  ident: 2945_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)30841-9
– volume: 288
  start-page: 859
  year: 2018
  ident: 2945_CR16
  publication-title: Radiology
  doi: 10.1148/radiol.2018172294
– volume: 18
  start-page: 2871
  year: 2021
  ident: 2945_CR44
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.58191
– volume: 8
  start-page: e59526
  year: 2013
  ident: 2945_CR31
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0059526
– volume: 2
  start-page: e259
  year: 2020
  ident: 2945_CR7
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30064-9
– ident: 2945_CR17
  doi: 10.1164/rccm.201807-1351SO
– volume: 25
  start-page: 24
  year: 2019
  ident: 2945_CR49
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0316-z
– volume: 20
  start-page: 29
  issue: 1
  year: 2020
  ident: 2945_CR46
  publication-title: BMC Pulm Med
  doi: 10.1186/s12890-020-1062-9
– volume: 35
  start-page: S28
  year: 2020
  ident: 2945_CR12
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000500
– volume: 95
  start-page: 20210637
  issue: 1133
  year: 2022
  ident: 2945_CR20
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20210637
– ident: 2945_CR39
– volume: 44
  start-page: 8704
  issue: 12
  year: 2022
  ident: 2945_CR37
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2019.2918284
– volume: 60
  start-page: 2549
  issue: 9
  year: 2022
  ident: 2945_CR40
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-022-02611-2
– volume: 15
  start-page: S243
  year: 2018
  ident: 2945_CR8
  publication-title: Ann Am Thorac Soc
  doi: 10.1513/AnnalsATS.201808-529MG
– volume: 293
  start-page: 676
  year: 2019
  ident: 2945_CR47
  publication-title: Radiology
  doi: 10.1148/radiol.2019190450
– volume: 148
  start-page: 971
  year: 2015
  ident: 2945_CR10
  publication-title: Chest
  doi: 10.1378/chest.14-2535
– volume: 35
  start-page: 246
  year: 2020
  ident: 2945_CR19
  publication-title: J Thorac Imaging
  doi: 10.1097/RTI.0000000000000440
– volume: 50
  start-page: 430
  year: 2015
  ident: 2945_CR32
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000147
– volume: 276
  start-page: 571
  year: 2015
  ident: 2945_CR21
  publication-title: Radiology
  doi: 10.1148/radiol.2015141769
– volume: 93
  start-page: 170
  year: 2017
  ident: 2945_CR35
  publication-title: Respiration
  doi: 10.1159/000454956
– volume: 24
  start-page: 117
  year: 2018
  ident: 2945_CR34
  publication-title: Curr Opin Pulm Med
  doi: 10.1097/MCP.0000000000000459
SSID ssj0017853
Score 2.390459
Snippet Background Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more...
Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive and...
BackgroundChronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more sensitive...
Abstract Background Chronic obstructive pulmonary disease (COPD) is underdiagnosed with the current gold standard measure pulmonary function test (PFT). A more...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Algorithms
Automation
Chest
Chest X-ray
Chronic obstructive pulmonary disease
Classification
Clinical parameters
COPD screening
Critical Care Medicine
Deep Learning
Deep learning models
Developing countries
Emphysema
Hospitals
Humans
Intensive
Internal Medicine
LDCs
Learning algorithms
Lung diseases
Medicine
Medicine & Public Health
Pneumology/Respiratory System
Pulmonary Disease, Chronic Obstructive
Pulmonary function test
Radiation
Respiratory function
Retrospective Studies
Sensitivity analysis
Spirometry
Thoracic surgery
Thorax
Tomography
Transfer learning
Tuberculosis
X-Rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4k2gICNxA6t27PhxBERVIZULVNqb5SdUarOrbovUH9D_3bHjLCzPC4dcYluxxt94ZjL2Nwi9zGoQPmpDQjaGiIEmoj13JPM-eq69CJVt__CjPDgSHxbD4odSX-VM2EQPPAluL0uhTRKqdz6JgVPtAuBQOmYy52Dry-5LDZ2DqZY_UGCF5isyWu6tWcmnEbBH8BgxELVlhipb_-9czF9PSv6ULq1WaP8Out3cR_xmmvZddCON99DNw5Ygv4-uPoVykAbGYjdGDK5fKUKElxmHiQUXL32jjP2W8OriBFDozi5xy9Pg8lsWx5RWuJWT-IKLnYt4OeJaWgsvyJm7xMensA-t6zfmu5W4sIifltM16wfoaP_953cHpFVaIGEQ7JwE8FolbJm9iJy5rCAuodkw7qUSkcXeRwVuInWUehpL6tUZkVngIg0BAkTJH6KdcTmmxwi70HuedARFV8JANJeFS4y5yINWvhcdYrPgbWg05KUaxomt4YiWdlosC4tl62JZ1aFXmzGriYTjr73flvXc9CwE2vUFwMo2WNl_wapDuzMabNPqtQVzr7QEFxOaX2yaQR9LksWNaXlR-hQSRfBiaYceTeDZzIQDKnsudYf0Fqy2prrdMh5_rZzfDKQsIPjs0OsZgd_n9WdZPPkfsniKbvVVdTjp5S7aAZSmZ-CKnfvnVeuuAfE6Lfc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ba9UwGA86QXwR71anRPBNw5omTdInUXEMYb7o4LyFXOdga4-nm7A_wP_bL2nacbzsoS9tQpN893zJ70PodZQtt151xMWuI7ytA1GWGRJZ4y1TlruMtn_4RRwc8c-rdlU23MZyrHLWiVlR-8GlPfI9ULVSCTDv7bv1D5KqRqXsaimhcRPdytBlwM9ytQRcqfA8my_KKLE30pRVI2CV4Ol4S-SWMcqY_f9yNP8-L_lH0jTbov176G5xIvH7ier30Y3QP0C3D0ua_CH69dWl4zTQF5veY3AAUykiPETsJixcPNgCHPsz4PXFKUzObC5xydbgtDmLfQhrXIpKHONk7TweepwLbOEV2ZhLfHIG2mjM_5hvWOKEJX6WztiMj9DR_qdvHw9IqbdAXMvpOXHguwpQnA33jJooITqpY0eZFZJ76hvrJTiLtalrW_uUgDUdj9QxHloHYaJgj9FOP_ThKcLGNZYF5UHcJe8gpovcBEqNZ05J2_AK0XnhtStg5KkmxqnOQYkSeiKWBmLpTCwtK_Rm6bOeoDiubf0h0XNpmWC084thc6yLVOoouOoCl42xgbesVsaBkhOGdpExcCQrtDtzgy6yPeorTqzQq-UzSGVKtZg-DBepTYJSBF-2rtCTiXmWkTDgyoYJVSG1xVZbQ93-0p98z8jfFFaZQwhaobczB16N6_9r8ez6aTxHd5osFIw0YhftAP-FF-BqnduXWZ5-A0EvJoM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA5aQXwR765WieCbBjeXTbKPWixFqC9aOG8hVy20u4eeVugP8H87yWZXj1bBh33ZJGzIzGRm9ku-QehlUp1wQffEp74nomsj0Y5bkjgLjmsnfGHbP_woD47Eh1W3qjQ5-S7Mr_g91fLNhmYkjIAngacXHVHX0Y2OclmAWbm3IAYK_M58KebKcVuOp_DzXxVU_nk28jeAtPid_Tvodg0Y8dtJwnfRtTjcQzcPKyR-H33_5PPRGRiL7RAwBHu57BAeE_YT7y0eXSWJ_Rbx-uIE9M6eXeKKzOD8IxaHGNe4FpD4grNnC3gccCmmhVfkzF7i41PYeTblG_NtSpx5w0_zeZrNA3S0__7z3gGptRWI7wQ9Jx7iVAmbJBOBU5sUZCJt6il3UolAA3NBQWDY2rZ1bchgq-1Fop6L2HlICSV_iHaGcYiPEbaeOR51ANNWoof8LQkbKbWBe60cEw2i88IbX4nHc_2LE1MSEC3NJCwDwjJFWEY16NUyZj3Rbvyz97ssz6VnpswuL0CTTLVAk6TQfRSKWRdFx1ttPWxo0tI-cQ5BY4N2Z20w1Y43Bhy80hKCSmh-sTSDBWZYxQ5xvMh9Mm0ixK1tgx5NyrPMhINWMi51g_SWWm1NdbtlOP5aWL4prLKAdLNBr2cN_Dmvv6_Fk__r_hTdYsVIOGFyF-2APsZnEGadu-fFvn4AepkfbQ
  priority: 102
  providerName: Springer Nature
Title Screening and staging of chronic obstructive pulmonary disease with deep learning based on chest X-ray images and clinical parameters
URI https://link.springer.com/article/10.1186/s12890-024-02945-7
https://www.ncbi.nlm.nih.gov/pubmed/38532368
https://www.proquest.com/docview/3037865145
https://www.proquest.com/docview/3003441120
https://pubmed.ncbi.nlm.nih.gov/PMC10964626
https://doaj.org/article/f6489e472abe45308ac0316a19f33435
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2kRAviDuBURmJNzDEsWM7DwjRatOE1AkNKlW8RL5lm9Qlpd0Q_QH8b46dpFOhIB5aqbWTWPa5fMfH-Q5CLyuZc-NUQWxVFITnqSfKME0qljnDlOE2su2PT8TxhH-c5tMd1Jc76iZwuTW0C_WkJovZmx_fVu9B4d9FhVfi7ZKGbBkBbwOfgudE7qJ98EwiBGNjfpNVkCqyUlIwyCTjQvQv0Wy9x4ajinz-20Don2cpf0uoRj91dBfd6QAm_tBKxD204-v76Na4S6E_QD8_23DUBq7FunYYwGEoU4SbCtuWJxc3piOV_e7x_HoGcqoXK9xlcnDYuMXO-znuCk6c4eAJHW5qHItv4SlZ6BW-uARLtYzP6N--xIFn_DKcv1k-RJOjwy-jY9LVYiA25_SKWMC1Aoxqxh2jupIQuaRVQZkRkjvqMuMkAMlUp6lJXUjO6oJX1DLucwshpGCP0F7d1P4JwtpmhnnlwBRIXkC8V3HtKdWOWSVNxhNE-4kvbUdUHuplzMoYsChRtotVwmKVcbFKmaBX62vmLU3HP3sPw3quewaK7fhHszgrO40tK8FV4bnMtPE8Z6nSFgyg0LSoGAOQmaCDXhrKXmxLAARSCQCh0Pxi3QwaG9IwuvbNdegTaBYB56YJetwKz3okDCQ0Y0IlSG2I1cZQN1vqi_PICk5hljmEpwl63Uvgzbj-PhdP_2Ocz9DtLGoGI5k4QHsghP45YLErM0C7cioHaH94ePLpFH6NxGgQ9zUGUfXg-3T49RfwlDLr
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8CBYwEJ7CaxE7sHBCi0GpLuysErdRb8CulUpssuy1ofwB_h9_I2Em2Wh699ZBL4iSO5_M3Mxl7BuB5JTKurSyoqYqC8ix2VGqmaMVSq5nU3IRs-6NxPtznHw6ygxX41e-F8csqe04MRG0b4_-RryPVCpmjes_eTL5RXzXKR1f7EhotLHbc_Ae6bLPX2-9Rvi_SdGtz792QdlUFqMl4ckoNWmg50kPKLUtUJdAGj6siYToX3CY21VagSRSrONax9WFGVfAqMYy7zKAzlDN87hVY5X5H6wBWNzbHHz8t4hYCtV-_NUfm67PEx_Eo6kE8Cp5RsaT-QpWAf5m2f6_Q_CNMG7Tf1k240Zmt5G2Ls1uw4urbcHXUBebvwM_Pxi_gwXuJqi1Bk9MXPyJNRUybfZc0uktV-92RydkxDqeazkkXHyL-dzCxzk1IV8bikHj9aklTk1DSixzQqZqToxPkv1l4R7-nk_js5Sd-Vc_sLuxfiizuwaBuavcAiDKpZk5aJBjBC_QiK65ckijLjBQ65REk_cCXpkt_7qtwHJfBDZJ52QqrRGGVQViliODl4p5Jm_zjwtYbXp6Llj5xdzjRTA_LjgfKKueycFykSjuesVgqg7Saq6SoGENMRbDWo6Hs2GRWnmM_gmeLy8gDPrijatec-TY-eSNaz3EE91vwLHrCEJUpy2UEcglWS11dvlIffQ25xhMcZY5ObwSvegSe9-v_Y_Hw4s94CteGe6Pdcnd7vPMIrqdhgjCa5mswQCy6x2joneon3ewi8OWyJ_RvdlJijA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA5aofgi3h2tGsE3DZ1MMknmUatLvbQIWti3kGsttDPL7lboD_B_e5K56GoVfNiXTcKGnHNyvuyXfAeh51HW3HrVEBebhvC6DERZZkhklbdMWe6y2v7Bodg_4u_n9fyXV_z5tvtISfZvGpJKU7veXfjYh7gSuyua-DEC-QU-Da-JvIqu8ZT6El0r9iYeQUI2Gp_KXDpuIx1l1f7LoOafNyZ_o01zNprdRDcGGIlf9Xa_ha6E9jbaPhiI8jvo-2eXLtTAWGxajwECpmJEuIvY9Wq4uLODdOy3gBfnp-CNZnmBB74Gp79nsQ9hgYeyEsc45TuPuxbnElt4TpbmAp-cwX60yr8xvrHESU38LN2yWd1FR7O3X_b2yVBxgbia0zVxgF4FbJ0V94yaKOF8UsaGMisk99RX1kuAi6UpS1v6RMGahkfqGA-1g-UX7B7aars2PEDYuMqyoDwEvOQNnOoiN4FS45lT0la8QHRceO0GOfJUFeNU52OJEro3lgZj6WwsLQv0Yhqz6MU4_tn7dbLn1DMJaecvuuWxHuJSR8FVE7isjA28ZqUyDrY5YWgTGQMoWaCd0Rv0EN0rDWlfKgFQE5qfTc0Ql4lsMW3ozlOfJKYIaLYs0P3eeaaZMPDKiglVILXhVhtT3WxpT75m7W8Kq8zhEFqgl6MH_pzX39fi4f91f4q2P72Z6Y_vDj88QterHC-MVGIHbYFrhseAw9b2SQ61H93zKqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+and+staging+of+chronic+obstructive+pulmonary+disease+with+deep+learning+based+on+chest+X-ray+images+and+clinical+parameters&rft.jtitle=BMC+pulmonary+medicine&rft.au=Zou%2C+XiaoLing&rft.au=Ren%2C+Yong&rft.au=Yang%2C+HaiLing&rft.au=Zou%2C+ManMan&rft.date=2024-03-26&rft.issn=1471-2466&rft.eissn=1471-2466&rft.volume=24&rft.issue=1&rft.spage=153&rft_id=info:doi/10.1186%2Fs12890-024-02945-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2466&client=summon