Improved data quality and statistical power of trial-level event-related potentials with Bayesian random-shift Gaussian processes
Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary d...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 8856 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-59579-2 |
Cover
Loading…
Abstract | Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines. |
---|---|
AbstractList | Abstract Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines. Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines.Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines. Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple subjects and trials. This averaging procedure can obscure scientifically relevant variability across subjects and trials, but has been necessary due to the difficulties posed by inference of trial-level ERPs. We introduce the Bayesian Random Phase-Amplitude Gaussian Process (RPAGP) model, for inference of trial-level amplitude, latency, and ERP waveforms. We apply RPAGP to data from a study of ERP responses to emotionally arousing images. The model estimates of trial-specific signals are shown to greatly improve statistical power in detecting significant differences in experimental conditions compared to existing methods. Our results suggest that replacing the observed data with the de-noised RPAGP predictions can potentially improve the sensitivity and accuracy of many of the existing ERP analysis pipelines. |
ArticleNumber | 8856 |
Author | Versace, Francesco Vannucci, Marina Zhao, Yongxiang Pluta, Dustin Hadj-Amar, Beniamino Li, Meng |
Author_xml | – sequence: 1 givenname: Dustin surname: Pluta fullname: Pluta, Dustin organization: Department of Biostatistics and Data Science, Augusta University – sequence: 2 givenname: Beniamino surname: Hadj-Amar fullname: Hadj-Amar, Beniamino organization: Department of Statistics, Rice University – sequence: 3 givenname: Meng surname: Li fullname: Li, Meng organization: Department of Statistics, Rice University – sequence: 4 givenname: Yongxiang surname: Zhao fullname: Zhao, Yongxiang organization: Department of Statistics and Computer Science, University of Michigan – sequence: 5 givenname: Francesco surname: Versace fullname: Versace, Francesco organization: Department of Behavioral Science, MD Anderson Cancer Center – sequence: 6 givenname: Marina surname: Vannucci fullname: Vannucci, Marina email: marina@rice.edu organization: Department of Statistics, Rice University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38632350$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuEzEUHaEiWkp_gAWyxIbNgJ-T8QpBBSVSJTawtvy4kzhyxqntSZUlf46TtNB2US_8POfcc33v6-ZkjCM0zVuCPxLM-k-ZEyH7FlPeCilmsqUvmjOKuWgpo_Tkwf60uch5hesQVHIiXzWnrO8YZQKfNX_m602KW3DI6aLRzaSDLzukR4dy0cXn4q0OaBNvIaE4oJK8Dm2ALQRUp7G0CYIulb-JpR7ra0a3vizRV72D7PWIUhWL6zYv_VDQlZ7y4bZGtZAz5DfNy6GS4OJuPW9-f__26_JHe_3zan755bq1gpPS2hlmdABJa0qyc5QIDNp0g5kNpDMzQoQmwghDqXQUpDXSEWqH3oER0DnHzpv5UddFvVKb5Nc67VTUXh0uYloonWq2ARQ3M2dNB0CM4wNjkuJ9MOyctF2PoWp9PmptJrMGZ2viSYdHoo9fRr9Ui7hVhNSCkY5XhQ93CineTJCLWvtsIQQ9QpyyYpgTynitbIW-fwJdxSmN9a_2KEx4JyiuqHcPLf3zcl_qCuiPAJtizgkGZf2-wnHv0AdFsNo3ljo2lqo-1aGxFK1U-oR6r_4siR1JuYLHBaT_tp9h_QX7QONz |
CitedBy_id | crossref_primary_10_1016_j_resp_2025_104418 |
Cites_doi | 10.1093/cercor/bhj031 10.1016/j.neuroimage.2015.01.062 10.1109/TBME.2009.2037139 10.1037/a0020242 10.1111/1469-8986.3720257 10.1109/TNSRE.2018.2794534 10.1002/hbm.21259 10.1093/scan/nsv143 10.1371/journal.pone.0158991 10.1214/15-STS524 10.1111/psyp.13766 10.1146/annurev-statistics-041715-033523 10.1080/10618600.2017.1336444 10.1016/j.jneumeth.2016.10.008 10.3389/fninf.2018.00059 10.1152/jn.00220.2011 10.1109/10.775409 10.1111/j.1469-8986.2008.00702.x 10.1016/j.ijleo.2016.10.117 10.1007/s00422-003-0433-7 10.1177/0956797610384142 10.1109/TBME.2008.2008166 10.1111/j.1467-9868.2004.B5582.x 10.1007/BF02474247 10.1111/biom.13621 10.1111/psyp.13793 10.1177/096228029600500105 10.1214/17-AOAS1119 10.1093/biomet/74.3.525 10.1016/j.csda.2018.06.010 10.1109/MSP.2008.4408441 10.1016/j.csda.2020.107017 10.1111/desc.12188 10.1111/1467-9868.00283 10.1016/j.neuroimage.2019.116333 10.1111/psyp.13482 10.1016/j.csda.2012.12.001 10.1109/TNSRE.2019.2913142 10.1016/j.patcog.2022.108757 10.1111/j.0006-341X.2004.00191.x 10.1198/016214507000001139 10.1073/pnas.0308538101 10.1016/0013-4694(95)00040-6 10.1523/JNEUROSCI.3109-12.2012 10.1016/j.neuroimage.2013.09.028 10.1016/j.biopsycho.2009.10.007 10.1111/psyp.13044 10.1146/annurev-statistics-031219-041300 10.1111/psyp.13570 10.1109/IJCNN48605.2020.9207100 10.1037/13619-028 10.1007/978-1-4899-4541-9_1 10.1155/2011/156869 10.1007/978-981-13-0908-3 10.1155/2022/6331956 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-59579-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_4b7dcb6ee1bd4f339200eab0dd9c680e PMC11024164 38632350 10_1038_s41598_024_59579_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: R01 DA032581 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-c7032fe9223296d2150eab6fb7f16b7115a15b5b229d2e9cb9d12cf8deb5e6dd3 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:28:56 EDT 2025 Thu Aug 21 18:34:05 EDT 2025 Fri Jul 11 10:19:23 EDT 2025 Sat Aug 23 12:26:40 EDT 2025 Thu Apr 03 07:02:48 EDT 2025 Tue Jul 01 01:01:26 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Fri Feb 21 02:38:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-c7032fe9223296d2150eab6fb7f16b7115a15b5b229d2e9cb9d12cf8deb5e6dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/4b7dcb6ee1bd4f339200eab0dd9c680e |
PMID | 38632350 |
PQID | 3040146520 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b7dcb6ee1bd4f339200eab0dd9c680e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11024164 proquest_miscellaneous_3041234957 proquest_journals_3040146520 pubmed_primary_38632350 crossref_citationtrail_10_1038_s41598_024_59579_2 crossref_primary_10_1038_s41598_024_59579_2 springer_journals_10_1038_s41598_024_59579_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-17 |
PublicationDateYYYYMMDD | 2024-04-17 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Si, Li, Duan, Tao, Li, Cao (CR27) 2020; 206 Bradley (CR37) 2009; 46 Rønn (CR51) 2001; 63 Fu, Heckman (CR49) 2019; 131 Roy (CR61) 2020; 7 Liu, Huang, McGinnis-Deweese, Keil, Ding (CR18) 2012; 32 Williams, Rasmussen (CR58) 2006 CR38 CR34 CR32 Versace, Sambuco, Deweese, Cinciripini (CR45) 2023; 1 Schupp, Kirmse (CR5) 2021; 58 Razzak, Blumenstein, Xu (CR33) 2019; 27 Sturm, Lapuschkin, Samek, Müller (CR29) 2016; 274 CR2 Volpert-Esmond, Merkle, Levsen, Ito, Bartholow (CR24) 2018; 55 Rousseau (CR59) 2016; 3 CR4 Lang, Bradley (CR39) 2010; 84 Toscano, McMurray, Dennhardt, Luck (CR9) 2010; 21 Gervini, Gasser (CR53) 2004; 66 Telesca, Inoue (CR47) 2008; 103 Tucker, Wu, Srivastava (CR54) 2013; 61 Brumback, Lindstrom (CR52) 2004; 60 Roy, Borg, Dunson (CR50) 2021; 22 CR42 Liu, Keil, Ding (CR17) 2012; 33 Jaskowski, Verleger (CR14) 1999; 46 Bagchi, Bathula (CR31) 2022; 129 Lang, Bradley, Cuthbert (CR43) 2005 Luck, Stewart, Simmons, Rhemtulla (CR46) 2021; 58 Truccolo, Knuth, Shah, Bressler, Schroeder, Ding (CR15) 2003; 89 Woody (CR12) 1967; 5 Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (CR60) 2014 Hu, Zhang, Mouraux, Iannetti (CR23) 2015; 111 Yu, Li, Noe, Fischer-Baum, Vannucci (CR11) 2023; 79 Wang, Ombao, Chung (CR28) 2018; 12 Schupp, Cuthbert, Bradley, Cacioppo, Ito, Lang (CR40) 2000; 37 Xu, Stoica, Li, Bressler, Shao, Ding (CR16) 2008; 56 Tuan, Möcks, Köhler, Gasser (CR13) 1987; 74 Ahn, Tucker, Wu, Srivastava (CR56) 2020; 151 Weinberg, Hajcak (CR41) 2010; 10 Hu, Liang, Mouraux, Wise, Hu, Iannetti (CR20) 2011; 106 Noh, Herzmann, Curran, de Sa (CR25) 2014; 84 Miccoli, Delgado, Guerra, Versace, Rodríguez-Ruiz, Fernández-Santaella (CR44) 2016; 11 Versace, Kypriotakis, Basen-Engquist, Schembre (CR36) 2016; 11 Kalcher, Pfurtscheller (CR7) 1995; 94 Stolarova, Keil, Moratti (CR8) 2006; 16 Lu, Herbei, Kurtek (CR48) 2017; 26 Marron, Ramsay, Sangalli, Srivastava (CR55) 2015; 30 Brovelli, Ding, Ledberg, Chen, Nakamura, Bressler (CR57) 2004; 101 Aunon, McGillem, Childers (CR6) 1981; 5 Gasser, Molinari (CR1) 1996; 5 Tang, Li, Sun (CR30) 2017; 130 Dimitriadis, Brindley, Evans, Linden, Singh (CR22) 2018; 12 Jeste, Kirkham, Senturk, Hasenstab, Sugar, Kupelian (CR10) 2015; 18 Blankertz, Tomioka, Lemm, Kawanabe, Muller (CR19) 2007; 25 Gibney, Kypriotakis, Cinciripini, Robinson, Minnix, Versace (CR3) 2020; 57 CR62 Leoni, Strada, Tanelli, Brusa, Proverbio (CR35) 2022; 9 Gramfort, Keriven, Clerc (CR21) 2010; 57 Zheng, Zhu, Heng (CR26) 2018; 26 59579_CR38 J Kalcher (59579_CR7) 1995; 94 CH Yu (59579_CR11) 2023; 79 Y Si (59579_CR27) 2020; 206 JS Marron (59579_CR55) 2015; 30 P Jaskowski (59579_CR14) 1999; 46 PJ Lang (59579_CR39) 2010; 84 A Roy (59579_CR50) 2021; 22 Y Liu (59579_CR18) 2012; 32 E Noh (59579_CR25) 2014; 84 A Gelman (59579_CR60) 2014 59579_CR42 MM Bradley (59579_CR37) 2009; 46 L Xu (59579_CR16) 2008; 56 SS Jeste (59579_CR10) 2015; 18 L Hu (59579_CR23) 2015; 111 Y Lu (59579_CR48) 2017; 26 E Fu (59579_CR49) 2019; 131 CK Williams (59579_CR58) 2006 HT Schupp (59579_CR5) 2021; 58 HI Volpert-Esmond (59579_CR24) 2018; 55 J Rousseau (59579_CR59) 2016; 3 A Gramfort (59579_CR21) 2010; 57 SI Dimitriadis (59579_CR22) 2018; 12 59579_CR2 Y Wang (59579_CR28) 2018; 12 CD Woody (59579_CR12) 1967; 5 59579_CR34 D Gervini (59579_CR53) 2004; 66 59579_CR4 JI Aunon (59579_CR6) 1981; 5 59579_CR32 A Weinberg (59579_CR41) 2010; 10 SJ Luck (59579_CR46) 2021; 58 LC Brumback (59579_CR52) 2004; 60 K Ahn (59579_CR56) 2020; 151 A Brovelli (59579_CR57) 2004; 101 V Roy (59579_CR61) 2020; 7 Z Tang (59579_CR30) 2017; 130 Y Liu (59579_CR17) 2012; 33 J Leoni (59579_CR35) 2022; 9 Q Zheng (59579_CR26) 2018; 26 F Versace (59579_CR45) 2023; 1 59579_CR62 BB Rønn (59579_CR51) 2001; 63 I Razzak (59579_CR33) 2019; 27 W Truccolo (59579_CR15) 2003; 89 KD Gibney (59579_CR3) 2020; 57 L Hu (59579_CR20) 2011; 106 S Bagchi (59579_CR31) 2022; 129 T Gasser (59579_CR1) 1996; 5 F Versace (59579_CR36) 2016; 11 JD Tucker (59579_CR54) 2013; 61 I Sturm (59579_CR29) 2016; 274 PJ Lang (59579_CR43) 2005 HT Schupp (59579_CR40) 2000; 37 M Stolarova (59579_CR8) 2006; 16 D Telesca (59579_CR47) 2008; 103 JC Toscano (59579_CR9) 2010; 21 B Blankertz (59579_CR19) 2007; 25 L Miccoli (59579_CR44) 2016; 11 PD Tuan (59579_CR13) 1987; 74 |
References_xml | – volume: 16 start-page: 876 issue: 6 year: 2006 end-page: 887 ident: CR8 article-title: Modulation of the C1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj031 – volume: 111 start-page: 442 year: 2015 end-page: 453 ident: CR23 article-title: Multiple linear regression to estimate time-frequency electrophysiological responses in single trials publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.062 – volume: 57 start-page: 1051 issue: 5 year: 2010 end-page: 1061 ident: CR21 article-title: Graph-based variability estimation in single-trial event-related neural responses publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2037139 – volume: 10 start-page: 767 issue: 6 year: 2010 ident: CR41 article-title: Beyond good and evil: The time-course of neural activity elicited by specific picture content publication-title: Emotion doi: 10.1037/a0020242 – volume: 37 start-page: 257 issue: 2 year: 2000 end-page: 261 ident: CR40 article-title: Affective picture processing: the late positive potential is modulated by motivational relevance publication-title: Psychophysiology doi: 10.1111/1469-8986.3720257 – ident: CR4 – volume: 26 start-page: 551 issue: 3 year: 2018 end-page: 562 ident: CR26 article-title: Robust support matrix machine for single trial EEG classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2794534 – volume: 33 start-page: 909 issue: 4 year: 2012 end-page: 919 ident: CR17 article-title: Effects of emotional conditioning on early visual processing: Temporal dynamics revealed by ERP single-trial analysis publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21259 – volume: 9 year: 2022 ident: CR35 article-title: Single-trial stimuli classification from detected P300 for augmented Brain-Computer Interface: A deep learning approach publication-title: Mach. Learn. Appl. – volume: 11 start-page: 604 issue: 4 year: 2016 end-page: 611 ident: CR36 article-title: Heterogeneity in brain reactivity to pleasant and food cues: Evidence of sign-tracking in humans publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsv143 – volume: 11 issue: 8 year: 2016 ident: CR44 article-title: Affective pictures and the Open Library of Affective Foods (OLAF): tools to investigate emotions toward food in adults publication-title: PLoS ONE doi: 10.1371/journal.pone.0158991 – volume: 30 start-page: 468 issue: 4 year: 2015 end-page: 484 ident: CR55 article-title: Functional data analysis of amplitude and phase variation publication-title: Stat. Sci. doi: 10.1214/15-STS524 – volume: 58 issue: 4 year: 2021 ident: CR5 article-title: Case-by-case: Emotional stimulus significance and the modulation of the EPN and LPP publication-title: Psychophysiology doi: 10.1111/psyp.13766 – volume: 3 start-page: 211 year: 2016 end-page: 231 ident: CR59 article-title: On the frequentist properties of Bayesian nonparametric methods publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-041715-033523 – volume: 26 start-page: 894 issue: 4 year: 2017 end-page: 904 ident: CR48 article-title: Bayesian registration of functions with a Gaussian process prior publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2017.1336444 – volume: 5 start-page: 323 issue: 4 year: 1981 end-page: 367 ident: CR6 article-title: Signal processing in evoked potential research: Averaging and modeling publication-title: Crit. Rev. Bioeng. – ident: CR42 – volume: 274 start-page: 141 year: 2016 end-page: 145 ident: CR29 article-title: Interpretable deep neural networks for single-trial EEG classification publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.10.008 – volume: 12 start-page: 59 year: 2018 ident: CR22 article-title: A novel, fast, reliable, and data-driven method for simultaneous single-trial mining and amplitude-latency estimation based on proximity graphs and network analysis publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00059 – volume: 106 start-page: 3216 issue: 6 year: 2011 end-page: 3229 ident: CR20 article-title: Taking into account latency, amplitude, and morphology: Improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression publication-title: J. Neurophysiol. doi: 10.1152/jn.00220.2011 – volume: 22 start-page: 250 year: 2021 end-page: 1 ident: CR50 article-title: Bayesian time-aligned factor analysis of paired multivariate time series publication-title: J. Mach. Learn. Res. – volume: 46 start-page: 987 issue: 8 year: 1999 end-page: 993 ident: CR14 article-title: Amplitudes and latencies of single-trial ERP’s estimated by a maximum-likelihood method publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.775409 – volume: 46 start-page: 1 issue: 1 year: 2009 end-page: 11 ident: CR37 article-title: Natural selective attention: Orienting and emotion publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2008.00702.x – volume: 130 start-page: 11 year: 2017 end-page: 18 ident: CR30 article-title: Single-trial EEG classification of motor imagery using deep convolutional neural networks publication-title: Optik doi: 10.1016/j.ijleo.2016.10.117 – ident: CR32 – volume: 89 start-page: 426 issue: 6 year: 2003 end-page: 438 ident: CR15 article-title: Estimation of single-trial multicomponent ERPs: Differentially variable component analysis (dVCA) publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0433-7 – volume: 21 start-page: 1532 issue: 10 year: 2010 end-page: 1540 ident: CR9 article-title: Continuous perception and graded categorization: Electrophysiological evidence for a linear relationship between the acoustic signal and perceptual encoding of speech publication-title: Psychol. Sci. doi: 10.1177/0956797610384142 – volume: 56 start-page: 111 issue: 1 year: 2008 end-page: 121 ident: CR16 article-title: ASEO: A method for the simultaneous estimation of single-trial event-related potentials and ongoing brain activities publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2008166 – year: 2006 ident: CR58 publication-title: Gaussian processes for machine learning – volume: 66 start-page: 959 issue: 4 year: 2004 end-page: 971 ident: CR53 article-title: Self-modelling warping functions publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2004.B5582.x – year: 2005 ident: CR43 publication-title: International affective picture system (IAPS): Affective ratings of pictures and instruction manual – volume: 5 start-page: 539 issue: 6 year: 1967 end-page: 554 ident: CR12 article-title: Characterization of an adaptive filter for the analysis of variable latency neuroelectric signals publication-title: Med. Biol. Eng. doi: 10.1007/BF02474247 – volume: 79 start-page: 629 issue: 2 year: 2023 end-page: 641 ident: CR11 article-title: Bayesian inference for stationary points in Gaussian process regression models for event-related potentials analysis publication-title: Biometrics doi: 10.1111/biom.13621 – volume: 58 issue: 6 year: 2021 ident: CR46 article-title: Standardized measurement error: A universal metric of data quality for averaged event-related potentials publication-title: Psychophysiology doi: 10.1111/psyp.13793 – volume: 5 start-page: 67 issue: 1 year: 1996 end-page: 99 ident: CR1 article-title: The analysis of the EEG publication-title: Stat. Methods Med. Res. doi: 10.1177/096228029600500105 – volume: 12 start-page: 1506 issue: 3 year: 2018 ident: CR28 article-title: Topological data analysis of single-trial electroencephalographic signals publication-title: Ann. Appl. Stat. doi: 10.1214/17-AOAS1119 – volume: 1 start-page: 1 year: 2023 ident: CR45 article-title: Electrophysiological normative responses to emotional, neutral, and cigarette-related images publication-title: Psychophysiology – ident: CR2 – volume: 74 start-page: 525 issue: 3 year: 1987 end-page: 533 ident: CR13 article-title: Variable latencies of noisy signals: Estimation and testing in brain potential data publication-title: Biometrika doi: 10.1093/biomet/74.3.525 – volume: 131 start-page: 159 year: 2019 end-page: 175 ident: CR49 article-title: Model-based curve registration via stochastic approximation EM algorithm publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2018.06.010 – volume: 25 start-page: 41 issue: 1 year: 2007 end-page: 56 ident: CR19 article-title: Optimizing spatial filters for robust EEG single-trial analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 151 year: 2020 ident: CR56 article-title: Regression models using shapes of functions as predictors publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2020.107017 – volume: 18 start-page: 90 issue: 1 year: 2015 end-page: 105 ident: CR10 article-title: Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD publication-title: Dev. Sci. doi: 10.1111/desc.12188 – volume: 63 start-page: 243 issue: 2 year: 2001 end-page: 259 ident: CR51 article-title: Nonparametric maximum likelihood estimation for shifted curves publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00283 – volume: 206 year: 2020 ident: CR27 article-title: Predicting individual decision-making responses based on single-trial EEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116333 – volume: 57 issue: 2 year: 2020 ident: CR3 article-title: Estimating statistical power for event-related potential studies using the late positive potential publication-title: Psychophysiology doi: 10.1111/psyp.13482 – ident: CR38 – year: 2014 ident: CR60 publication-title: Bayesian Data Analysis – volume: 61 start-page: 50 year: 2013 end-page: 66 ident: CR54 article-title: Generative models for functional data using phase and amplitude separation publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2012.12.001 – volume: 27 start-page: 1117 issue: 6 year: 2019 end-page: 1127 ident: CR33 article-title: Multiclass support matrix machines by maximizing the inter-class margin for single trial EEG classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2913142 – volume: 129 year: 2022 ident: CR31 article-title: EEG-ConvTransformer for single-trial EEG-based visual stimulus classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.108757 – ident: CR34 – volume: 60 start-page: 461 issue: 2 year: 2004 end-page: 470 ident: CR52 article-title: Self modeling with flexible, random time transformations publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00191.x – volume: 103 start-page: 328 issue: 481 year: 2008 end-page: 339 ident: CR47 article-title: Bayesian hierarchical curve registration publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000001139 – volume: 101 start-page: 9849 issue: 26 year: 2004 end-page: 9854 ident: CR57 article-title: Beta oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0308538101 – volume: 94 start-page: 381 issue: 5 year: 1995 end-page: 384 ident: CR7 article-title: Discrimination between phase-locked and non-phase-locked event-related EEG activity publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(95)00040-6 – ident: CR62 – volume: 32 start-page: 14563 issue: 42 year: 2012 end-page: 14572 ident: CR18 article-title: Neural substrate of the late positive potential in emotional processing publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3109-12.2012 – volume: 84 start-page: 712 year: 2014 end-page: 723 ident: CR25 article-title: Using single-trial EEG to predict and analyze subsequent memory publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.028 – volume: 84 start-page: 437 issue: 3 year: 2010 end-page: 450 ident: CR39 article-title: Emotion and the motivational brain publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2009.10.007 – volume: 55 issue: 5 year: 2018 ident: CR24 article-title: Using trial-level data and multilevel modeling to investigate within-task change in event-related potentials publication-title: Psychophysiology doi: 10.1111/psyp.13044 – volume: 7 start-page: 387 year: 2020 end-page: 412 ident: CR61 article-title: Convergence diagnostics for markov chain monte carlo publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-031219-041300 – volume: 16 start-page: 876 issue: 6 year: 2006 ident: 59579_CR8 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhj031 – volume: 33 start-page: 909 issue: 4 year: 2012 ident: 59579_CR17 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.21259 – volume: 206 year: 2020 ident: 59579_CR27 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116333 – volume-title: Bayesian Data Analysis year: 2014 ident: 59579_CR60 – volume: 74 start-page: 525 issue: 3 year: 1987 ident: 59579_CR13 publication-title: Biometrika doi: 10.1093/biomet/74.3.525 – volume: 56 start-page: 111 issue: 1 year: 2008 ident: 59579_CR16 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2008166 – ident: 59579_CR38 doi: 10.1111/psyp.13570 – ident: 59579_CR34 doi: 10.1109/IJCNN48605.2020.9207100 – volume: 32 start-page: 14563 issue: 42 year: 2012 ident: 59579_CR18 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3109-12.2012 – volume: 22 start-page: 250 year: 2021 ident: 59579_CR50 publication-title: J. Mach. Learn. Res. – volume: 101 start-page: 9849 issue: 26 year: 2004 ident: 59579_CR57 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0308538101 – volume: 5 start-page: 539 issue: 6 year: 1967 ident: 59579_CR12 publication-title: Med. Biol. Eng. doi: 10.1007/BF02474247 – volume: 5 start-page: 323 issue: 4 year: 1981 ident: 59579_CR6 publication-title: Crit. Rev. Bioeng. – volume: 106 start-page: 3216 issue: 6 year: 2011 ident: 59579_CR20 publication-title: J. Neurophysiol. doi: 10.1152/jn.00220.2011 – volume: 66 start-page: 959 issue: 4 year: 2004 ident: 59579_CR53 publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/j.1467-9868.2004.B5582.x – volume: 3 start-page: 211 year: 2016 ident: 59579_CR59 publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-041715-033523 – volume: 11 start-page: 604 issue: 4 year: 2016 ident: 59579_CR36 publication-title: Soc. Cogn. Affect. Neurosci. doi: 10.1093/scan/nsv143 – volume: 5 start-page: 67 issue: 1 year: 1996 ident: 59579_CR1 publication-title: Stat. Methods Med. Res. doi: 10.1177/096228029600500105 – volume-title: Gaussian processes for machine learning year: 2006 ident: 59579_CR58 – volume: 79 start-page: 629 issue: 2 year: 2023 ident: 59579_CR11 publication-title: Biometrics doi: 10.1111/biom.13621 – ident: 59579_CR2 doi: 10.1037/13619-028 – volume: 55 issue: 5 year: 2018 ident: 59579_CR24 publication-title: Psychophysiology doi: 10.1111/psyp.13044 – ident: 59579_CR4 doi: 10.1007/978-1-4899-4541-9_1 – volume: 57 start-page: 1051 issue: 5 year: 2010 ident: 59579_CR21 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2037139 – volume: 12 start-page: 59 year: 2018 ident: 59579_CR22 publication-title: Front. Neuroinform. doi: 10.3389/fninf.2018.00059 – volume: 12 start-page: 1506 issue: 3 year: 2018 ident: 59579_CR28 publication-title: Ann. Appl. Stat. doi: 10.1214/17-AOAS1119 – volume: 274 start-page: 141 year: 2016 ident: 59579_CR29 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2016.10.008 – ident: 59579_CR42 doi: 10.1155/2011/156869 – volume: 89 start-page: 426 issue: 6 year: 2003 ident: 59579_CR15 publication-title: Biol. Cybern. doi: 10.1007/s00422-003-0433-7 – volume: 26 start-page: 551 issue: 3 year: 2018 ident: 59579_CR26 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2018.2794534 – volume: 58 issue: 6 year: 2021 ident: 59579_CR46 publication-title: Psychophysiology doi: 10.1111/psyp.13793 – volume: 58 issue: 4 year: 2021 ident: 59579_CR5 publication-title: Psychophysiology doi: 10.1111/psyp.13766 – volume: 46 start-page: 987 issue: 8 year: 1999 ident: 59579_CR14 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.775409 – volume: 130 start-page: 11 year: 2017 ident: 59579_CR30 publication-title: Optik doi: 10.1016/j.ijleo.2016.10.117 – volume: 103 start-page: 328 issue: 481 year: 2008 ident: 59579_CR47 publication-title: J. Am. Stat. Assoc. doi: 10.1198/016214507000001139 – ident: 59579_CR62 doi: 10.1007/978-981-13-0908-3 – volume: 10 start-page: 767 issue: 6 year: 2010 ident: 59579_CR41 publication-title: Emotion doi: 10.1037/a0020242 – volume: 84 start-page: 437 issue: 3 year: 2010 ident: 59579_CR39 publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2009.10.007 – volume: 60 start-page: 461 issue: 2 year: 2004 ident: 59579_CR52 publication-title: Biometrics doi: 10.1111/j.0006-341X.2004.00191.x – volume: 129 year: 2022 ident: 59579_CR31 publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2022.108757 – volume: 30 start-page: 468 issue: 4 year: 2015 ident: 59579_CR55 publication-title: Stat. Sci. doi: 10.1214/15-STS524 – volume: 37 start-page: 257 issue: 2 year: 2000 ident: 59579_CR40 publication-title: Psychophysiology doi: 10.1111/1469-8986.3720257 – volume: 7 start-page: 387 year: 2020 ident: 59579_CR61 publication-title: Annu. Rev. Stat. Appl. doi: 10.1146/annurev-statistics-031219-041300 – volume: 9 year: 2022 ident: 59579_CR35 publication-title: Mach. Learn. Appl. – volume: 26 start-page: 894 issue: 4 year: 2017 ident: 59579_CR48 publication-title: J. Comput. Graph. Stat. doi: 10.1080/10618600.2017.1336444 – volume: 61 start-page: 50 year: 2013 ident: 59579_CR54 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2012.12.001 – volume: 63 start-page: 243 issue: 2 year: 2001 ident: 59579_CR51 publication-title: J. R. Stat. Soc. Ser. B (Stat. Methodol.) doi: 10.1111/1467-9868.00283 – volume: 25 start-page: 41 issue: 1 year: 2007 ident: 59579_CR19 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2008.4408441 – volume: 18 start-page: 90 issue: 1 year: 2015 ident: 59579_CR10 publication-title: Dev. Sci. doi: 10.1111/desc.12188 – volume: 46 start-page: 1 issue: 1 year: 2009 ident: 59579_CR37 publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2008.00702.x – volume: 151 year: 2020 ident: 59579_CR56 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2020.107017 – volume-title: International affective picture system (IAPS): Affective ratings of pictures and instruction manual year: 2005 ident: 59579_CR43 – volume: 94 start-page: 381 issue: 5 year: 1995 ident: 59579_CR7 publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(95)00040-6 – volume: 111 start-page: 442 year: 2015 ident: 59579_CR23 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.062 – volume: 131 start-page: 159 year: 2019 ident: 59579_CR49 publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2018.06.010 – volume: 11 issue: 8 year: 2016 ident: 59579_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0158991 – ident: 59579_CR32 doi: 10.1155/2022/6331956 – volume: 1 start-page: 1 year: 2023 ident: 59579_CR45 publication-title: Psychophysiology – volume: 57 issue: 2 year: 2020 ident: 59579_CR3 publication-title: Psychophysiology doi: 10.1111/psyp.13482 – volume: 27 start-page: 1117 issue: 6 year: 2019 ident: 59579_CR33 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2913142 – volume: 21 start-page: 1532 issue: 10 year: 2010 ident: 59579_CR9 publication-title: Psychol. Sci. doi: 10.1177/0956797610384142 – volume: 84 start-page: 712 year: 2014 ident: 59579_CR25 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.028 |
SSID | ssj0000529419 |
Score | 2.421647 |
Snippet | Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over multiple... Abstract Studies of cognitive processes via electroencephalogram (EEG) recordings often analyze group-level event-related potentials (ERPs) averaged over... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8856 |
SubjectTerms | 631/378/2649 639/705/531 Algorithms Bayes Theorem Bayesian analysis Cognitive ability Data Accuracy EEG Electroencephalography Electroencephalography - methods Event-related potentials Evoked Potentials - physiology Fourier transforms Humanities and Social Sciences Humans Latency multidisciplinary Science Science (multidisciplinary) Statistical analysis Statistical inference Statistical power Wakefulness |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t20BRmJG1hNbMeOT4giSoUEJyrtLYozDq1UJaHJHvbIP2fGyaZaHr0mtuRknp7HN4y9qXytXQAQzhOodqas8NY6kYagjAad1UAXxa_fzNm5_rLKV3PAbZjLKrc6MSpq6GqKkR_jtZtwTnKZvu9_CpoaRdnVeYTGXXaPoMuopMuu7BJjoSyWztzcK5Oq4nhAe0U9ZVKLnBJUQu7Yowjb_y9f8--SyT_yptEcnT5iD2c_kn-YCP-Y3QntE3Z_miy5ecp-TcGCAJxKQPnUOrnhVQucWogiOjNu72lGGu8aHod3iCuqIOIR00nEJhfc33cjFRQhl3KK2fKTahOo8ZKjkQNUsMPFZTPyz9V6iE_7qfEgDM_Y-emn7x_PxDxtQdS5zkZRo-zLJjj0F6QzgK5AGipvGm-bzHiLnmOV5T73UjqQwdXeQSbrpoDg82AA1HO213Zt2GdceWOAVIXRTqP-rNDmVVkAZQKkrikSlm3_eVnPUOQ0EeOqjClxVZQTnUqkUxnpVMqEvV329BMQx62rT4iUy0oC0Y4Puusf5SyTpfYWam9CyDzoRqGnmNInpwCuNkUaEna0ZYRyluyhvOHDhL1eXqNMUqKlakO3jmvQIcCrp03Yi4lvlpOowiipctxd7HDUzlF337SXFxH3Gz019LeMTti7LfPdnOv__-Lg9s84ZA8kyQPhV9ojtjder8NLdLRG_ypK02-SECj4 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA_LiuBF_LbuKhG8abT5aNocRFxxXYT15MDeQtOk7sLQjjMdcI77n_te0o6Mjp68tnmQvryPX5q83yPkRe0aZYL3zDgk1eayZK4sDctDkFp5xRuPG8XzL_pspj5fFBcHZGp3NCpwtXdrh_2kZsv56x_fN-_A4d-mkvHqzQqSEBaKCcUKPHViEJJvQGYq0VHPR7ifuL6FUdyMtTP7RXfyU6Tx34c9_7xC-ds5akxPp3fI7RFX0vfJEO6Sg9DdIzdTp8nNfXKdfh4ET_FKKE2llBtad55iSVFkawbxBfZMo31LYzMPNscbRTRyPLFY9ALyi37AC0agPYr_cOlJvQlYiEkh6XkIuKvLq3agn-r1Kj5dpEKEsHpAZqcfv344Y2P3BdYUig-sgVgg2mAAPwijPUCDPNROt65suXYlIMmaF65wQhgvgmmc8Vw0beWDK4L2Xj4kh13fhceESqe1x9ChlVEQT2vIgTUPXurgc9NWGeGTzm0zUpNjh4y5jUfksrJpnSysk43rZEVGXm5lFomY45-jT3AptyORVDs-6Jff7OijVrnSN06HwJ1XrQTkmOMn596bRld5yMjxZAh2MlQrIQpCtilEnpHn29fgo3jwUnehX8cxABBgK1pm5FGym-1MZKWlkAVIVzsWtTPV3Tfd1WXkAQfkBlauVUZeTcb3a15_18WT_6GLI3JLoNcg62V5TA6H5To8BXg2uGfR534C_sk6GQ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqIiQuiDeBgozEDSziR5z4SFeUCglOVOrNiuMJrVQlq2b3sMf-c2acB1ooSFxjj-TY87Jn5hvG3tahMQ5iFC4QqLbUpQhl6UQOoK2JRjaRLopfv9nTM_PlvDg_YGquhUlJ-wnSMqnpOTvsw4CGhorBlBEFRZYEqt07BN1OXL2yq-VdhSJXRrqpPibX1S2kezYoQfXf5l_-mSb5W6w0maCTB-z-5Dvyj-NqH7ID6B6xu2M3yd1jdjM-EEDklPbJx3LJHa-7yKlsKCEyI_ma-qLxvuWpYYe4oqwhnnCcRCpsQfp1v6EkIuRMTu-0_LjeARVbcjRsEZXqcHHZbvjnejukr-ux2ACGJ-zs5NP31amYOiyIpjByIxqUd9WCQx9BORvR_OdQB9uGspU2lOgt1rIIRVDKRQWuCS5K1bRVhFCAjVE_ZYdd38FzxnWwNpJ6sMYZ1Jk12rlaQtQWYu7aKmNy3nPfTPDj1AXjyqcwuK78eE4ez8mnc_IqY-8WmvUIvvHP2cd0lMtMAs5OH_rrH35iJG9CGZtgAWSIptXoHeb0y3mMrrFVDhk7mhnBT9I8eI2aDi1KofKMvVmGUQ4puFJ30G_THHQC8LpZZuzZyDfLSnRltdIFUld7HLW31P2R7vIiYX2jd4Y-ljUZez8z3691_X0vXvzf9JfsniL5IAzL8ogdbq638AqdrU14naTrJ2O6JwY priority: 102 providerName: Springer Nature |
Title | Improved data quality and statistical power of trial-level event-related potentials with Bayesian random-shift Gaussian processes |
URI | https://link.springer.com/article/10.1038/s41598-024-59579-2 https://www.ncbi.nlm.nih.gov/pubmed/38632350 https://www.proquest.com/docview/3040146520 https://www.proquest.com/docview/3041234957 https://pubmed.ncbi.nlm.nih.gov/PMC11024164 https://doaj.org/article/4b7dcb6ee1bd4f339200eab0dd9c680e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZtSqGX0ne2TY0KvbUiu5JWWh1tkzQYEkrbgG9itdKSQFiben3wsf-8M9Lajfu89LILeoAYzUvSzDeEvK1dI03wnhmHoNqF0MxpbVgeglDSy6LxeFA8v1Bnl3I2L-e3Sn1hTFiCB06EO5ZO-8apEArnZSvAnOd5qF3uvWlUlQfUvmDzbh2mEqo3N7IwQ5ZMLqrjFVgqzCbjkpX4NMX4niWKgP2_8zJ_DZb86cU0GqLTR-Th4EHScVr5Y3IndE_I_VRTcvOUfEvXBMFTDP6kKWlyQ-vOU0weirjMMH2J1dHooqWxbAe7wdghGtGcWExvgfnLRY-hRMCfFG9r6aTeBEy5pGDePKjW1dV129MP9XoVW5cp5SCsnpHL05Mv0zM21FlgTSmLnjUg9bwNBjwFbpQHJwAprFqn20I5DT5jXZSudJwbz4NpnPEFb9rKB1cG5b14Tg66RRcOCRVOKY9KQkkjQXPWYO3qInihgs9NW2Wk2NLcNgMIOdbCuLHxMVxUNu2ThX2ycZ8sz8i73ZxlguD46-gJbuVuJMJnxwZgKjswlf0XU2XkaMsIdpDplRWg78CulDzPyJtdN0gjPrHUXVis4xhwBeDQqTPyIvHNbiWiUoKLEmZXexy1t9T9nu76KiJ-g48GnpaSGXm_Zb4f6_ozLV7-D1q8Ig84Sg3iW-ojctB_XYfX4Ij1bkTu6rkekXvj8ezzDP6Tk4uPn6B1qqajKI_wPZfVd9mPON0 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE1hNbMeJDwix0LKl7QqhVuotjWOHVqqSpckK7ZE_xG9kxkm2Wh699ZrYkeMZz8Mz8w0hL3NTSO2sZdogqHYkEmaSRLPQOaGklVFh0VHcn6rJofx8FB-tkV9DLQymVQ4y0QtqWxd4R74JbjfinMQ8fDf7zrBrFEZXhxYaHVvsusUPcNmatzsfgb6vON_eOvgwYX1XAVbEMmpZATzOS6dBL3KtLKi80OVGlSYpI2USsJDyKDax4Vxb7nRhtI14UabWmdgpawV89xpZlwJcmRFZH29Nv3xd3upg3ExGuq_OCUW62YCGxCo2LlmMITHGVzSgbxTwL-v27yTNPyK1XgFu3ya3esuVvu9Y7Q5Zc9Vdcr3rZbm4R3521xPOUkw6pV2x5oLmlaVYtOTxoGH6DLuy0bqkvl0IO8OcJepRpJgvq4H5s7rFFCY4FxRviek4Xzgs9aSgVi2I9ObktGzpp3ze-KezrtTBNffJ4ZVQ4gEZVXXlHhEqjFIWhZOSWoLEzkHL5pGzQjkb6jINSDTseVb04OfYg-Ms80F4kWYdnTKgU-bplPGAvF7OmXXQH5eOHiMplyMRtts_qM-_Zb0UyKRJbGGUc5GxshRgm4b4y6G1ulBp6AKyMTBC1suSJrvg_IC8WL4GKYChnbxy9dyPARMEnN0kIA87vlmuRKRKcBHD7HSFo1aWuvqmOj3xSONgG4KFp2RA3gzMd7Gu_-_F48t_4zm5MTnY38v2dqa7T8hNjmcD0TOTDTJqz-fuKZh5rXnWny1Kjq_6OP8GbchoBQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNEmtmPHB4QoZWkpVByotDcTxw6tVCWh2RXaI3-LX8eMk2y1PHrrNbEjx_O0Z-YbQp4VthTaOxdri6DaKVexVUrHifdcCifS0uFB8dOB3D0UH2bZbIP8GmthMK1y1IlBUbumxDvyCRy7EeckY8mkGtIiPu9MX7ffY-wghZHWsZ1GzyL7fvkDjm_dq70doPVzxqbvvrzdjYcOA3GZiXQel8DvrPIabCTT0oH5S3xhZWVVlUqrwFsq0sxmljHtmNel1S5lZZU7bzMvnePw3UvksuJZijKmZmp1v4MRNJHqoU4n4fmkA1uJ9WxMxBkGx2K2ZgtDy4B_-bl_p2v-EbMNpnB6g1wffFj6pme6m2TD17fIlb6r5fI2-dlfVHhHMf2U9mWbS1rUjmL5UkCGhukt9mejTUVD45D4BLOXaMCTikOBDcxvmzkmM4GEULwvptvF0mPRJwUD60C5d0fH1Zy-LxZdeNr2RQ--u0MOL4QOd8lm3dT-PqHcSulQTUmhBejuAuxtkXrHpXeJrvKIpOOem3KAQcduHCcmhON5bno6GaCTCXQyLCIvVnPaHgTk3NHbSMrVSATwDg-a029m0AdGWOVKK71PrRMVBy81wV9OnNOlzBMfka2REcygVTpzJgMRebp6DfoAgzxF7ZtFGAPOCBx7VUTu9XyzWgnPJWc8g9n5GketLXX9TX18FDDHwUsEX0-KiLwcme9sXf_fiwfn_8YTchWE2HzcO9h_SK4xFA2E0VRbZHN-uvCPwN-b28dBsCj5etGS_BsE-WrV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+data+quality+and+statistical+power+of+trial-level+event-related+potentials+with+Bayesian+random-shift+Gaussian+processes&rft.jtitle=Scientific+reports&rft.au=Dustin+Pluta&rft.au=Beniamino+Hadj-Amar&rft.au=Meng+Li&rft.au=Yongxiang+Zhao&rft.date=2024-04-17&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1038%2Fs41598-024-59579-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4b7dcb6ee1bd4f339200eab0dd9c680e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |