HARNet in deep learning approach—a systematic survey

A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the sig...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 8363 - 15
Main Authors Kumar, Neelam Sanjeev, Deepika, G., Goutham, V., Buvaneswari, B., Reddy, R. Vijaya Kumar, Angadi, Sanjeevkumar, Dhanamjayulu, C., Chinthaginjala, Ravikumar, Mohammad, Faruq, Khan, Baseem
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-58074-y

Cover

Loading…
Abstract A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.
AbstractList A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.
A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.
A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.
Abstract A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of this article. We examine the progression from handcrafted feature-based approaches to end-to-end learning, with a particular focus on the significance of large-scale datasets. By classifying research paradigms, such as temporal modelling and spatial features, our proposed taxonomy illuminates the merits and drawbacks of each. We specifically present HARNet, an architecture for Multi-Model Deep Learning that integrates recurrent and convolutional neural networks while utilizing attention mechanisms to improve accuracy and robustness. The VideoMAE v2 method ( https://github.com/OpenGVLab/VideoMAEv2 ) has been utilized as a case study to illustrate practical implementations and obstacles. For researchers and practitioners interested in gaining a comprehensive understanding of the most recent advancements in HAR as they relate to computer vision and deep learning, this survey is an invaluable resource.
ArticleNumber 8363
Author Khan, Baseem
Chinthaginjala, Ravikumar
Deepika, G.
Buvaneswari, B.
Mohammad, Faruq
Angadi, Sanjeevkumar
Kumar, Neelam Sanjeev
Reddy, R. Vijaya Kumar
Goutham, V.
Dhanamjayulu, C.
Author_xml – sequence: 1
  givenname: Neelam Sanjeev
  surname: Kumar
  fullname: Kumar, Neelam Sanjeev
  organization: Department of Computer Science and Engineering, SRM Institute of Science and Technology
– sequence: 2
  givenname: G.
  surname: Deepika
  fullname: Deepika, G.
  organization: Department of Electronics and Communication Engineering, St. Peter’s Engineering College
– sequence: 3
  givenname: V.
  surname: Goutham
  fullname: Goutham, V.
  organization: Department of Computer Science and Engineering, St Mary’s Group of Institutions
– sequence: 4
  givenname: B.
  surname: Buvaneswari
  fullname: Buvaneswari, B.
  organization: Department of Information Technology, Panimalar Engineering College
– sequence: 5
  givenname: R. Vijaya Kumar
  surname: Reddy
  fullname: Reddy, R. Vijaya Kumar
  organization: Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation
– sequence: 6
  givenname: Sanjeevkumar
  surname: Angadi
  fullname: Angadi, Sanjeevkumar
  organization: Department of Computer Science and Engineering, Nutan College of Engineering and Research
– sequence: 7
  givenname: C.
  surname: Dhanamjayulu
  fullname: Dhanamjayulu, C.
  email: dhanamjayulu.c@vit.ac.in
  organization: School of Electrical Engineering, Vellore Institute of Technology
– sequence: 8
  givenname: Ravikumar
  surname: Chinthaginjala
  fullname: Chinthaginjala, Ravikumar
  organization: School of Electronics Engineering, Vellore Institute of Technology
– sequence: 9
  givenname: Faruq
  surname: Mohammad
  fullname: Mohammad, Faruq
  organization: Department of Chemistry, College of Science, King Saud University
– sequence: 10
  givenname: Baseem
  surname: Khan
  fullname: Khan, Baseem
  email: baseemkh@hu.edu.et
  organization: Department of Electrical and Computer Engineering, Hawassa University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38600138$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUtFARLaU_wAJFYsMmcPxIYq9QVVFaqQIJwdpy7JPbXOXawU4qZdeP4Av5kvr2ltJ2UW98ZM_MGfvMa7Lng0dC3lL4SIHLT0nQSskSmCgrCY0olxfkgIGoSsYZ23tQ75OjlNaQV8WUoOoV2eeyBqBcHpD67PjHN5yK3hcOcSwGNNH3flWYcYzB2Mu_139MkZY04cZMvS3SHK9weUNedmZIeHS3H5Jfp19-npyVF9-_np8cX5S2EnQqLYXWdqZj1BpgktVMNJbTzjJWS4Wu4lxyk42Ccq4RrWO5qmWbC4lCAD8k5ztdF8xaj7HfmLjoYHp9exDiSpuYbQ2ohVNU0UZJrIxwUrRKdbUD1lloTaO6rPV5pzXO7QadRT9FMzwSfXzj-0u9CleaUoBaCpEVPtwpxPB7xjTpTZ8sDoPxGOakOfCGKyFVk6Hvn0DXYY4-_9UWVfEKhNwKvnto6d7Lv_lkANsBbAwpRezuIRT0Ngd6lwOdc6Bvc6CXTJJPSLaf8vDC9ln98DyV76gp9_ErjP9tP8O6AeS4xp8
CitedBy_id crossref_primary_10_1038_s41598_024_84864_5
crossref_primary_10_1038_s41598_025_92464_0
crossref_primary_10_3390_a17100434
crossref_primary_10_1016_j_asej_2025_103286
crossref_primary_10_1016_j_rineng_2024_103275
crossref_primary_10_1038_s41598_025_92676_4
crossref_primary_10_1016_j_asej_2024_103136
Cites_doi 10.1109/CVPR.2017.143
10.1109/ICCV.2017.322
10.1109/CVPR.2016.91
10.1109/CVPR.2017.787
10.3390/s19081871
10.1109/ICCV.2015.510
10.1109/CVPR.2017.502
10.3390/s23042182
10.1109/WACV.2017.24
10.1109/ICCV.2019.00630
10.1109/ICRA.2011.5980382
10.1007/978-3-319-46484-8_2
10.1109/TPAMI.2012.59
10.1109/CVPR.2015.7298878
10.1109/CVPR.2014.223
10.1109/CVPR.2018.00685
10.1609/aaai.v30i1.10451
10.1109/CVPR.2016.90
10.1007/s10462-021-10116-x
10.1109/ICCV.2013.441
10.1007/978-3-319-04561-0_2
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-58074-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_4d9191798e5a4d84b99f6d02fc0ba79f
PMC11006844
38600138
10_1038_s41598_024_58074_y
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-c10bcfaf21ca02826247c31fc22689ed53383a04509dd74bd250968bbd28e4403
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:14 EDT 2025
Thu Aug 21 18:34:25 EDT 2025
Thu Sep 04 22:40:06 EDT 2025
Wed Aug 13 05:10:25 EDT 2025
Mon Jul 21 05:55:30 EDT 2025
Tue Jul 01 00:51:47 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Fri Feb 21 02:38:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Human action recognition (HAR)
Deep learning
CNN
Accuracy
Feature-based approaches
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c10bcfaf21ca02826247c31fc22689ed53383a04509dd74bd250968bbd28e4403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-58074-y
PMID 38600138
PQID 3035350484
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_4d9191798e5a4d84b99f6d02fc0ba79f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11006844
proquest_miscellaneous_3037394897
proquest_journals_3035350484
pubmed_primary_38600138
crossref_primary_10_1038_s41598_024_58074_y
crossref_citationtrail_10_1038_s41598_024_58074_y
springer_journals_10_1038_s41598_024_58074_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-10
PublicationDateYYYYMMDD 2024-04-10
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Van Gool, L. Temporal Segment networks: Towards good practices for deep action recognition. In European Conference on Computer Vision (ECCV) 20–36 (2016).
JiSXuWYangMYuK3D convolutional neural networks for human action recognitionIEEE Trans. Pattern Anal. Mach. Intell.201335122123110.1109/TPAMI.2012.5922392705
Zolfaghari, M., Singh, K., Brox, T., & Schiele, B. ECOfusion: Fusing via early or late combination. In European Conference on Computer Vision (ECCV) (2018).
MorshedMGSultanaTAlamALeeY-KHuman action recognition: A taxonomy-based survey, updates, and opportunitiesSensors20232321822023Senso..23.2182M10.3390/s23042182368507789963970
Khorrami, P., Liao, W., Lech, M., Ternovskiy, E., & Lee, Y. J. CombineNet: A deep neural network for human activity recognition. In Proceedings of the European Conference on Computer Vision (ECCV) 3–19 (2019).
Wang, J., Liu, Z., Wu, Y., & Yuan, J. Learning Actionlet ensemble for 3D human action recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1631–1638 (2013).
Zhang, S., Liu, X., & Xiao, J. On geometric features for skeleton-based action recognition using multilayer LSTM networks. In IEEE Winter Conference on Applications of Computer Vision (WACV) 784–791 (2017).
He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016)
WangHKläserASchmidCLiuC-LHuman action recognition: A surveyIEEE Trans. Pattern Anal. Mach. Intell.2013363537556
Wang, L., Xiong, Y., Wang, Z., & Qiao, Y. Towards good practices for very deep two-stream ConvNets. arXiv preprint arXiv:1705.07750 (2017).
Simonyan, K., & Zisserman, A. Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014).
Carreira, J., & Zisserman, A. Quo Vadis, action recognition? A new model and the kinetics dataset. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4724–4733 (2017).
CarreiraJZissermanAQuo Vadis, action recognition? A new model and the kinetics BenchmarkIEEE Trans. Pattern Anal. Mach. Intell.201840821092123
Zhang, Z., & Liu, L. Joint semantic-embedding space for human action recognition and actionlet ensemble. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1758–1763 (2018).
SinghAGautamADubeySRA survey of human action recognition with depth camerasJ. King Saud Univ. Comput. Inf. Sci.2019314537551
Hara, K., Kataoka, H., & Satoh, Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 6546–6555 (2018).
GuptaNGuptaSKPathakRKHuman activity recognition in artificial intelligence framework: A narrative reviewArtif Intell Rev2022554755480810.1007/s10462-021-10116-x350686518763438
Lai, K., Bo, L., Ren, X., & Fox, D. A large-scale hierarchical multi-view RGB-d object dataset. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai 1817–1824 (IEEE, 2011).
Pengfei, Z., et al. View adaptive recurrent neural networks for high performance human action recognition from skeleton data. arXiv:1703.08274v2 (2017).
Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In IEEE International Conference on Computer Vision (ICCV) 4489–4497 (2015).
Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., & Zisserman, A. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017).
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You only look once: Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 779–788 (2016).
Wang, H., & Schmid, C. Action recognition with improved trajectories. In IEEE International Conference on Computer Vision (ICCV) 3551–3558 (2013).
LiWZhangZLiuZAction recognition based on joint trajectory maps with convolutional neural networksIEEE Trans. Image Process.201827313391350
VarolGLaptevISchmidCLong-term temporal convolutions for action recognitionIEEE Trans. Pattern Anal. Mach. Intell.201739815631577
Zhang, Y., Tian, Y., Kong, Y., & Zhong, B. W-TALC: Weakly-supervised temporal activity localization and classification. In European Conference on Computer Vision (ECCV) 498–513 (2016).
Feichtenhofer, C., Pinz, A., & Wildes, R. Spatiotemporal residual networks for video action recognition. In Advances in Neural Information Processing Systems (NeurIPS) 3431–3439 (2016).
ZhangYZhaoQYuHDeep learning for human activity recognition: A reviewSensors201919818732019Senso..19.1871Z
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2625–2634 (2015).
Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., & Shen, L. Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In AAAI Conference on Artificial Intelligence 2396–2402 (2016).
He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. In IEEE International Conference on Computer Vision (ICCV) 2980–2988 (2017).
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Li, F. F. Large-scale video classification with convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1725–1732 (2014).
Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. Realtime multi-person 2D pose estimation using part affinity fields. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7291–7299 (2017).
Simonyan, K., & Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems (NeurIPS) 568–576 (2014).
GarciaLBruguierDA survey on human activity recognition using wearable sensorsIEEE Sensors J.201818728392850
Feichtenhofer, C., Fan, H., Malik, J., & He, K. SlowFast networks for video recognition. In IEEE International Conference on Computer Vision (ICCV) 6201–6210 (2019).
Soomro, K., Zamir, A. R., & Shah, M. UCF101: A dataset of 101 human action classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012).
G Varol (58074_CR36) 2017; 39
58074_CR6
58074_CR4
58074_CR9
58074_CR8
N Gupta (58074_CR5) 2022; 55
58074_CR31
58074_CR32
58074_CR30
58074_CR3
S Ji (58074_CR12) 2013; 35
58074_CR13
Y Zhang (58074_CR27) 2019; 19
58074_CR35
58074_CR2
58074_CR14
58074_CR1
58074_CR11
58074_CR33
58074_CR17
58074_CR18
58074_CR15
MG Morshed (58074_CR37) 2023; 23
58074_CR16
H Wang (58074_CR26) 2013; 36
58074_CR19
J Carreira (58074_CR23) 2018; 40
L Garcia (58074_CR10) 2018; 18
W Li (58074_CR34) 2018; 27
A Singh (58074_CR7) 2019; 31
58074_CR20
58074_CR21
58074_CR24
58074_CR25
58074_CR22
58074_CR28
58074_CR29
References_xml – reference: Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., & Shen, L. Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks. In AAAI Conference on Artificial Intelligence 2396–2402 (2016).
– reference: Simonyan, K., & Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Advances in Neural Information Processing Systems (NeurIPS) 568–576 (2014).
– reference: Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Li, F. F. Large-scale video classification with convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1725–1732 (2014).
– reference: Zolfaghari, M., Singh, K., Brox, T., & Schiele, B. ECOfusion: Fusing via early or late combination. In European Conference on Computer Vision (ECCV) (2018).
– reference: Wang, H., & Schmid, C. Action recognition with improved trajectories. In IEEE International Conference on Computer Vision (ICCV) 3551–3558 (2013).
– reference: Hara, K., Kataoka, H., & Satoh, Y. Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and ImageNet? In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 6546–6555 (2018).
– reference: Kay, W., Carreira, J., Simonyan, K., Zhang, B., Hillier, C., Vijayanarasimhan, S., Viola, F., Green, T., Back, T., Natsev, P., Suleyman, M., & Zisserman, A. The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017).
– reference: Feichtenhofer, C., Fan, H., Malik, J., & He, K. SlowFast networks for video recognition. In IEEE International Conference on Computer Vision (ICCV) 6201–6210 (2019).
– reference: Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. You only look once: Unified, real-time object detection. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 779–788 (2016).
– reference: Wang, J., Liu, Z., Wu, Y., & Yuan, J. Learning Actionlet ensemble for 3D human action recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1631–1638 (2013).
– reference: JiSXuWYangMYuK3D convolutional neural networks for human action recognitionIEEE Trans. Pattern Anal. Mach. Intell.201335122123110.1109/TPAMI.2012.5922392705
– reference: Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S., Saenko, K., & Darrell, T. Long-term recurrent convolutional networks for visual recognition and description. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2625–2634 (2015).
– reference: Khorrami, P., Liao, W., Lech, M., Ternovskiy, E., & Lee, Y. J. CombineNet: A deep neural network for human activity recognition. In Proceedings of the European Conference on Computer Vision (ECCV) 3–19 (2019).
– reference: LiWZhangZLiuZAction recognition based on joint trajectory maps with convolutional neural networksIEEE Trans. Image Process.201827313391350
– reference: ZhangYZhaoQYuHDeep learning for human activity recognition: A reviewSensors201919818732019Senso..19.1871Z
– reference: Lai, K., Bo, L., Ren, X., & Fox, D. A large-scale hierarchical multi-view RGB-d object dataset. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai 1817–1824 (IEEE, 2011).
– reference: WangHKläserASchmidCLiuC-LHuman action recognition: A surveyIEEE Trans. Pattern Anal. Mach. Intell.2013363537556
– reference: Zhang, Y., Tian, Y., Kong, Y., & Zhong, B. W-TALC: Weakly-supervised temporal activity localization and classification. In European Conference on Computer Vision (ECCV) 498–513 (2016).
– reference: Feichtenhofer, C., Pinz, A., & Wildes, R. Spatiotemporal residual networks for video action recognition. In Advances in Neural Information Processing Systems (NeurIPS) 3431–3439 (2016).
– reference: Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. Realtime multi-person 2D pose estimation using part affinity fields. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 7291–7299 (2017).
– reference: CarreiraJZissermanAQuo Vadis, action recognition? A new model and the kinetics BenchmarkIEEE Trans. Pattern Anal. Mach. Intell.201840821092123
– reference: Simonyan, K., & Zisserman, A. Two-stream convolutional networks for action recognition in videos. arXiv preprint arXiv:1406.2199 (2014).
– reference: SinghAGautamADubeySRA survey of human action recognition with depth camerasJ. King Saud Univ. Comput. Inf. Sci.2019314537551
– reference: Carreira, J., & Zisserman, A. Quo Vadis, action recognition? A new model and the kinetics dataset. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4724–4733 (2017).
– reference: GuptaNGuptaSKPathakRKHuman activity recognition in artificial intelligence framework: A narrative reviewArtif Intell Rev2022554755480810.1007/s10462-021-10116-x350686518763438
– reference: MorshedMGSultanaTAlamALeeY-KHuman action recognition: A taxonomy-based survey, updates, and opportunitiesSensors20232321822023Senso..23.2182M10.3390/s23042182368507789963970
– reference: VarolGLaptevISchmidCLong-term temporal convolutions for action recognitionIEEE Trans. Pattern Anal. Mach. Intell.201739815631577
– reference: Zhang, Z., & Liu, L. Joint semantic-embedding space for human action recognition and actionlet ensemble. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 1758–1763 (2018).
– reference: Zhang, S., Liu, X., & Xiao, J. On geometric features for skeleton-based action recognition using multilayer LSTM networks. In IEEE Winter Conference on Applications of Computer Vision (WACV) 784–791 (2017).
– reference: He, K., Gkioxari, G., Dollár, P., & Girshick, R. Mask R-CNN. In IEEE International Conference on Computer Vision (ICCV) 2980–2988 (2017).
– reference: Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., & Van Gool, L. Temporal Segment networks: Towards good practices for deep action recognition. In European Conference on Computer Vision (ECCV) 20–36 (2016).
– reference: Pengfei, Z., et al. View adaptive recurrent neural networks for high performance human action recognition from skeleton data. arXiv:1703.08274v2 (2017).
– reference: Wang, L., Xiong, Y., Wang, Z., & Qiao, Y. Towards good practices for very deep two-stream ConvNets. arXiv preprint arXiv:1705.07750 (2017).
– reference: GarciaLBruguierDA survey on human activity recognition using wearable sensorsIEEE Sensors J.201818728392850
– reference: He, K., Zhang, X., Ren, S., & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 770–778 (2016)
– reference: Soomro, K., Zamir, A. R., & Shah, M. UCF101: A dataset of 101 human action classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012).
– reference: Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In IEEE International Conference on Computer Vision (ICCV) 4489–4497 (2015).
– ident: 58074_CR8
  doi: 10.1109/CVPR.2017.143
– ident: 58074_CR31
– ident: 58074_CR28
  doi: 10.1109/ICCV.2017.322
– ident: 58074_CR35
– ident: 58074_CR15
  doi: 10.1109/CVPR.2016.91
– volume: 39
  start-page: 1563
  issue: 8
  year: 2017
  ident: 58074_CR36
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 58074_CR4
  doi: 10.1109/CVPR.2017.787
– volume: 31
  start-page: 537
  issue: 4
  year: 2019
  ident: 58074_CR7
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– ident: 58074_CR14
– ident: 58074_CR20
– volume: 19
  start-page: 1873
  issue: 8
  year: 2019
  ident: 58074_CR27
  publication-title: Sensors
  doi: 10.3390/s19081871
– ident: 58074_CR18
– ident: 58074_CR16
– volume: 40
  start-page: 2109
  issue: 8
  year: 2018
  ident: 58074_CR23
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 58074_CR21
  doi: 10.1109/ICCV.2015.510
– ident: 58074_CR3
  doi: 10.1109/CVPR.2017.502
– volume: 23
  start-page: 2182
  year: 2023
  ident: 58074_CR37
  publication-title: Sensors
  doi: 10.3390/s23042182
– ident: 58074_CR25
  doi: 10.1109/WACV.2017.24
– ident: 58074_CR17
  doi: 10.1109/ICCV.2019.00630
– ident: 58074_CR30
– ident: 58074_CR19
  doi: 10.1109/ICRA.2011.5980382
– ident: 58074_CR1
  doi: 10.1007/978-3-319-46484-8_2
– ident: 58074_CR6
– ident: 58074_CR22
– volume: 36
  start-page: 537
  issue: 3
  year: 2013
  ident: 58074_CR26
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 58074_CR2
– volume: 35
  start-page: 221
  issue: 1
  year: 2013
  ident: 58074_CR12
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.59
– ident: 58074_CR13
  doi: 10.1109/CVPR.2015.7298878
– ident: 58074_CR11
  doi: 10.1109/CVPR.2014.223
– ident: 58074_CR24
  doi: 10.1109/CVPR.2018.00685
– ident: 58074_CR29
  doi: 10.1609/aaai.v30i1.10451
– ident: 58074_CR9
  doi: 10.1109/CVPR.2016.90
– volume: 27
  start-page: 1339
  issue: 3
  year: 2018
  ident: 58074_CR34
  publication-title: IEEE Trans. Image Process.
– volume: 18
  start-page: 2839
  issue: 7
  year: 2018
  ident: 58074_CR10
  publication-title: IEEE Sensors J.
– volume: 55
  start-page: 4755
  year: 2022
  ident: 58074_CR5
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-021-10116-x
– ident: 58074_CR32
  doi: 10.1109/ICCV.2013.441
– ident: 58074_CR33
  doi: 10.1007/978-3-319-04561-0_2
SSID ssj0000529419
Score 2.4725425
Snippet A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the subject of...
Abstract A comprehensive examination of human action recognition (HAR) methodologies situated at the convergence of deep learning and computer vision is the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8363
SubjectTerms 639/166
639/4077
Accuracy
Automation
CNN
Computer engineering
Computer science
Computer vision
Datasets
Deep learning
Feature-based approaches
Human action recognition (HAR)
Humanities and Social Sciences
Machine learning
multidisciplinary
Neural networks
Research methodology
Science
Science (multidisciplinary)
Sensors
Surveys
Taxonomy
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5CoJBLadq0dZsGF3JrRSxprMcxLQ1LoTmEBHITerkNFCdkdwt764_IL-wvqSR7N9n0denNWDIePo00MxrpG4B96zrH0COh1kWC6JA4Gy1pvAid7YKSMW8NfDoWkzP8eN6e3yn1lc-EDfTAA3AHGHQOKbSKrcWg0GndidCwzjfOSt3l1TfZvDvB1MDqzTRSPd6Sabg6mCZLlW-TMSRtJoAhizVLVAj7f-dl_npY8l7GtBiio0fwcPQg68NB8m3YiP1jeDDUlFw8ATE5PDmOs_qir0OMV_VYFuJzvWQP__H9xta3BM71dH79LS524Ozow-n7CRmLIxDfIp0RTxvnE5qMepvjJsFQek47n_wppWNoc-xpk8PW6BAkusAy0Yty6UFFxIY_hc3-so_Poabcyo4LabWPKGJUPGiWzDqVubq65hXQJVDGj8zhuYDFV1My2FyZAVyTwDUFXLOo4M3qm6uBN-Ovvd9l_Fc9M-d1eZE0wYyaYP6lCRXsLkfPjBNxapKFbnmblims4PWqOU2hnBexfbyclz6Sa1RaVvBsGOyVJFyJksytQK2pwZqo6y39xZdC053J-ITC9OO3S425levPWLz4H1i8hC2WVT2TUja7sDm7nsdXyXuaub0yUX4CW0EVbg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD7oFsEXL_UWrRLBNx2aZE6SmSdppWURXKRY6Nswt7QFya57EfbNH-Ev9Jc4J5nssl76FpIJmZz7nDPzHYA32jSmQIss18YzRIPMaK9ZZivX6MaJ2lNq4NOkGp_jx4vyIibcFnFb5WATO0PtppZy5IfB1Ja8DPKG72ffGHWNoupqbKFxG_aCCRblCPaOTyafzzZZFqpjYS7jaZmMi8NF8Fh0qqxAVhIQDFvveKQOuP9f0ebfmyb_qJx2Dun0AdyLkWR61LP-Idzy7T7c6XtLrvfh_tCvIY3q-wiq8dHZxC_T6zZ13s_S2DHiMh2AxX_9-KnTLbZzuljNv_v1Yzg_PfnyYcxi3wRmS8yXzOaZsYHQRW41LamqAmvL88aGUEtI70paluoQy2XSuRqNKwgDRphwITxixp_AqJ22_hmkOdd1w6taS-ux8l5wJ4vg8fOaGq9LnkA-0E7ZCCpOvS2-qq64zYXq6a0CvVVHb7VO4O3mnVkPqXHj6GNiyWYkwWF3N6bzSxW1S6GTtO6UwpcanUAjZVO5rGhsZnQtmwQOBoaqqKMLtZWoBF5vHgftopKJbv101Y2puUQh6wSe9vzfzISLqqvzJiB2JGNnqrtP2uurDsGbcPoqgeHD7wYh2s7r_7R4fvNvvIC7Bck1IVFmBzBazlf-ZQiZluZV1IvfcGkURQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7ULYIv4t2pVUbwTQczyZlJ8riWlmXBPqiFvoXcphZktuxF2Dd_hL-wv8QkcymrVfBtSE6Yw5fLOclJvgPwRpvGULRYlNr4AtFgYbTXBbG1a3TjBPfxaODjaT07w_l5db4HdHgLky7tJ0rLtEwPt8Per4KhiY_BKBZV5G8ptndgP1K1kwnsT6fzz_PxZCXGrrCU_QsZwsQtjXesUCLrv83D_POi5G_R0mSETh7A_d57zKedvg9hz7eP4G6XT3L7GOrZ9NOpX-eXbe68v8r7lBAX-cAcfv3jp85vyJvz1Wb53W-fwNnJ8ZejWdEnRihsheW6sCUxNiBJS6vjnqmmyC0rGxt8KSG9q-K-UwdnjUjnOBpHI8mLMOFDeETCnsKkXbT-OeQl07xhNdfSeqy9F8xJGkx6yWNmdckyKAeglO1Zw2Pyim8qRa-ZUB24KoCrErhqm8Hbsc1Vx5nxT-kPEf9RMvJdp4LF8kL1_a_QybixlMJXGp1AI2VTO0IbS4zmssngcOg91U_ClQrWuWJVWKIwg9djdZg-MSaiW7_YJBnOJArJM3jWdfaoCRN1CuRmIHaGwY6quzXt5ddE0R2J-GqB4cfvhhFzo9ffsTj4P_EXcI_GQR2pJ8khTNbLjX8ZfKS1edVPil-Tbwxk
  priority: 102
  providerName: Springer Nature
Title HARNet in deep learning approach—a systematic survey
URI https://link.springer.com/article/10.1038/s41598-024-58074-y
https://www.ncbi.nlm.nih.gov/pubmed/38600138
https://www.proquest.com/docview/3035350484
https://www.proquest.com/docview/3037394897
https://pubmed.ncbi.nlm.nih.gov/PMC11006844
https://doaj.org/article/4d9191798e5a4d84b99f6d02fc0ba79f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviDeBsgoSNwgksePHAaHtqtVqpa5QYaW9WX6lVKqyZR9Vc-NH8Av5JdhOstXCwoFTIj9k6_M4M-OJvwF4LVWpcqxxkkllE4wVTpS0Mkk1MaUsDaPWHw2cjslwgkfTYroDXbqjFsDFVtfO55OazC_f3XyrP7oN_6G5Ms7eL5wS8hfFcpwUntslqXdh32km4qX8tDX3G67vnOOMt3dntnc9gLuIkRDA21BVgdF_mxn659-Uv4VUg6Y6uQ_3WhMz7jcy8QB2bPUQ7jRJJ-tHQIb9s7FdxhdVbKy9itu8EedxRy_-8_sPGd8yPMeL1fza1o9hcnL8ZTBM2uwJiS5wtkx0lirt4M4zLb1jRXJMNcpK7Qwuxq0pvHMqnUWXcmMoVib3TDBMuRdmMU7RE9irZpV9BnGGJC0RoZJri4m1DBmeO72fUZ9-naMIsg4ooVtqcZ_h4lKEEDdiosFZOJxFwFnUEbxZ97lqiDX-2frI479u6UmxQ8Fsfi7aPSaw4d775MwWEhuGFeclMWle6lRJyssIDrvVE52gCafCC1S47xiO4NW62u0xHziRlZ2tQhuKOGacRvC0Wez1TDphiYBtiMHGVDdrqouvgcfbs_URht3AbzuJuZ3X37F4_v8jvYCD3Mu656pMD2FvOV_Zl86oWqoe7NIp7cF-vz_6PHLPo-PxpzNXOiCDXjio6IW99As5ryN9
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVgguPMorUMBIcAKrie0k9gGhFlptabtCVSv1ZvxKqYSyyz5AufEj-B38KH4Jdl6r5dFbb1HsJM54Zjz22N8H8FzpQhNmGE6UdpgxzbBWTuHYZLZQheW5C0sDh8NscMLen6anK_CzOwsTtlV2PrF21HZkwhr5pne1KU29vrE34y84sEaF7GpHodGoxb6rvvkp2_T13jvfvy8I2d05fjvALasANilLZtgksTa-GSQxKkw4MsJyQ5PC-ECEC2fTMGlTPtKJhbU505YEhBSu_QV3jMXUv_cKrPkwQ3grWtveGX446ld1Qt6MJaI9nRNTvjn1I2Q4xUYYTgPwDK6WRsCaKOBf0e3fmzT_yNTWA-DuLbjRRq5oq1G127DiynW42nBZVutws-OHQK27uAPZYOto6GbovETWuTFqGSrOUAdk_uv7D4UWWNJoOp98ddVdOLkUid6D1XJUugeAEqrygma5EsaxzDlOrSA-wkjyQPQuaARJJztpWhDzwKXxWdbJdMplI2_p5S1recsqgpf9M-MGwuPC2tuhS_qaAX67vjGanMnWmiWzIsxzBXepYpYzLUSR2ZgUJtYqF0UEG12HytYnTOVCgyN41hd7aw4pGlW60byuk1PBuMgjuN_0f98SyrM6rxwBX9KMpaYul5Tnn2rE8IALmHHmP_yqU6JFu_4vi4cX_8ZTuDY4PjyQB3vD_UdwnQQdDyiY8QasziZz99iHazP9pLURBB8v2yx_AweoUAo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBceJRHAwWCBCewNrGdxD4g1NKuthRWVUWl3ly_UipV2WUfoNz4Efwafg6_BDuv1fLorbcodhJnPDMee-zvA3ghVa4w1RTFUllEqaJISStRpFOTy9ywzPqlgY-jdHhM358kJ2vwsz0L47dVtj6xctRmrP0aed-52oQkTt9oP2-2RRzuDt5OviDPIOUzrS2dRq0iB7b85qZvszf7u66vX2I82Pv0bogahgGkExrPkY4jpV2TcKyln3ykmGaaxLl2QQnj1iR-Aidd1BNxYzKqDPZoKUy5C2YpjYh77zVYz9yoyHqwvrM3OjzqVnh8Do3GvDmpExHWn7nR0p9owxQlHoQGlSujYUUa8K9I9-8Nm39kbavBcHAHbjVRbLhdq91dWLPFBlyveS3LDbjdckWEjeu4B-lw-2hk5-F5ERprJ2HDVnEWtqDmv77_kOESVzqcLaZfbXkfjq9Eog-gV4wLuwlhTGSWkzSTXFuaWsuI4dhFG3HmSd85CSBuZSd0A2jueTUuRJVYJ0zU8hZO3qKStygDeNU9M6nhPC6tveO7pKvpobirG-PpmWgsW1DD_ZyXM5tIahhVnOepiXCuIyUzngew1XaoaPzDTCy1OYDnXbGzbJ-ukYUdL6o6GeGU8SyAh3X_dy0hLK1yzAGwFc1YaepqSXH-uUIP9xiBKaPuw69bJVq26_-yeHT5bzyDG84cxYf90cFjuIm9intAzGgLevPpwj5xkdtcPW1MJITTq7bK37udVDY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HARNet+in+deep+learning+approach%E2%80%94a+systematic+survey&rft.jtitle=Scientific+reports&rft.au=Kumar%2C+Neelam+Sanjeev&rft.au=Deepika%2C+G.&rft.au=Goutham%2C+V.&rft.au=Buvaneswari%2C+B.&rft.date=2024-04-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-58074-y&rft_id=info%3Apmid%2F38600138&rft.externalDocID=PMC11006844
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon