In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules

Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the acc...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5132 - 12
Main Authors Yang, Jianxin, Pan, Tianle, Xie, Zhenming, Yuan, Wu, Ho, Ho-Pui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.06.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. The authors report a strategy to achieve high S/N ratio signal readout in single molecule sensing by incorporating the inertial forces as a new channel for independently controlling the translocation parameters with high precision.
AbstractList Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
Abstract Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. The authors report a strategy to achieve high S/N ratio signal readout in single molecule sensing by incorporating the inertial forces as a new channel for independently controlling the translocation parameters with high precision.
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.The authors report a strategy to achieve high S/N ratio signal readout in single molecule sensing by incorporating the inertial forces as a new channel for independently controlling the translocation parameters with high precision.
ArticleNumber 5132
Author Yuan, Wu
Ho, Ho-Pui
Yang, Jianxin
Pan, Tianle
Xie, Zhenming
Author_xml – sequence: 1
  givenname: Jianxin
  surname: Yang
  fullname: Yang, Jianxin
  organization: Department of Biomedical Engineering, The Chinese University of Hong Kong
– sequence: 2
  givenname: Tianle
  surname: Pan
  fullname: Pan, Tianle
  organization: Department of Biomedical Engineering, The Chinese University of Hong Kong
– sequence: 3
  givenname: Zhenming
  surname: Xie
  fullname: Xie, Zhenming
  organization: Department of Biomedical Engineering, The Chinese University of Hong Kong
– sequence: 4
  givenname: Wu
  orcidid: 0000-0001-9405-519X
  surname: Yuan
  fullname: Yuan, Wu
  email: wyuan@cuhk.edu.hk
  organization: Department of Biomedical Engineering, The Chinese University of Hong Kong
– sequence: 5
  givenname: Ho-Pui
  surname: Ho
  fullname: Ho, Ho-Pui
  email: aaron.ho@cuhk.edu.hk
  organization: Department of Biomedical Engineering, The Chinese University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38879544$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4sYNytfMwMqYxo-XNHGjC1eEYS5Pngw8Ycak_17em1rbLsrmEjjn3AP3PEcnMUVA6CUlbynh8l0RVHQ9JkxgITtOcPsEnTEiKKY94yd39qfoopQdqYsrKoV4hk65lL1qhThDPzYRz8sAzeRtTnh_nc3kRxOa4oO3KTbRxLRPGRqXcuMj5NmbgH_V3extUyAWH7dNcs2hhqqTAtglQHmBnjoTClzc1HP0_dPHb5df8NXXz5vLD1fYtoLOeABuHdCxbQ0deDe0TA6Mk1GNzqixc4MQknM1cEqt62WrWG8HJVpmnRVCMX6ONqvumMxO77OfTL7WyXh9PEh5q001bQNoJonrKWVSKRB0tEZYooRSxIFRRLqq9X7V2i_DBKOFOGcT7onev4n-p96mP5pSKgkjfVV4c6OQ0-8FyqwnXyyEYCKkpWhOOtm3fe1Zoa8fQHdpybH-1RElVB2XqKhXdy3devk3wgpgK6DOr5QM7hZCiT5ERa9R0TUq-hgV3VaSfECyfjazT4dn-fA4la_UUvvELeT_th9h_QVKu9K9
CitedBy_id crossref_primary_10_1002_adma_202400018
crossref_primary_10_1002_smtd_202401321
crossref_primary_10_1021_acs_jpcb_4c08692
crossref_primary_10_1016_j_matdes_2025_113764
Cites_doi 10.1021/nn5025829
10.1002/smll.202205680
10.3390/s19081886
10.1016/j.solmat.2008.06.009
10.1038/nnano.2015.219
10.1038/srep07448
10.1038/s41467-023-38627-x
10.1021/nl100861c
10.1021/acs.chemmater.5b04406
10.1038/s41467-018-05751-y
10.1038/s41467-019-10147-7
10.1021/nl204273h
10.1088/0957-4484/20/18/185101
10.1038/s41467-019-13242-x
10.1038/s41598-017-08290-6
10.1021/nn501969r
10.1038/s41467-019-12639-y
10.1038/s41467-023-37098-4
10.1016/j.plrev.2012.05.010
10.1088/1361-6528/aaa523
10.1038/nnano.2011.12
10.1021/nn405331t
10.1021/acsnano.9b09353
10.1038/nmeth.1932
10.1038/ncomms14243
10.1038/nnano.2011.129
10.1038/s41467-020-20409-4
10.1021/acs.accounts.9b00103
10.1038/ncomms12787
10.1021/acssensors.7b00576
10.1021/nn4004567
10.1038/s41565-022-01116-1
10.1021/acsnano.8b06805
10.1021/acsnano.8b00734
10.1021/acs.langmuir.0c01189
10.1021/acsnano.2c07240
10.1021/acsnano.8b00961
10.1038/s41467-018-02905-w
10.1373/clinchem.2014.223016
10.1038/nphys344
10.1038/s41565-021-00958-5
10.1021/acsnano.0c06981
10.1038/s41467-021-21101-x
10.1063/1.2767206
10.1021/nn4012434
10.1038/s41565-019-0549-0
10.1038/nnano.2013.221
10.1038/s41467-018-06534-1
10.1038/s41578-020-0229-6
10.1021/jp111244v
10.1126/science.abl4381
10.1038/s41565-019-0514-y
10.1002/smll.200600268
10.1038/nnano.2016.50
10.1038/s41565-022-01169-2
10.3390/bioengineering9010038
10.1038/nnano.2016.267
10.1002/adma.201704680
10.1038/s41598-018-28136-z
10.1038/s41467-019-09476-4
10.1021/nl402052v
10.1038/s41565-023-01412-4
10.1109/84.557528
10.1038/ncomms3619
10.1063/1.5134076
10.1063/5.0002044
10.1109/SENSOR.1991.148821
10.1007/978-0-387-76921-9
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-48630-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_280f7112899e41dca4c094990fea908f
PMC11180207
38879544
10_1038_s41467_024_48630_5
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-be3cfe1d55a1b36b528b230d9dfa9d6fb448339b311cf785927cb9452cfc44923
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:10 EDT 2025
Thu Aug 21 18:33:46 EDT 2025
Fri Jul 11 00:42:42 EDT 2025
Wed Aug 13 09:12:20 EDT 2025
Mon Jul 21 06:01:48 EDT 2025
Tue Jul 01 02:11:13 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-be3cfe1d55a1b36b528b230d9dfa9d6fb448339b311cf785927cb9452cfc44923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9405-519X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-48630-5
PMID 38879544
PQID 3068493914
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_280f7112899e41dca4c094990fea908f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11180207
proquest_miscellaneous_3068757990
proquest_journals_3068493914
pubmed_primary_38879544
crossref_primary_10_1038_s41467_024_48630_5
crossref_citationtrail_10_1038_s41467_024_48630_5
springer_journals_10_1038_s41467_024_48630_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-15
PublicationDateYYYYMMDD 2024-06-15
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Jorgensen (CR63) 2022; 9
Venkatesan, Bashir (CR12) 2011; 6
Feng (CR31) 2015; 10
Zeng, Wen, Solomon, Zhang, Zhang (CR40) 2019; 14
Keyser (CR50) 2006; 2
Wang (CR3) 2022; 17
Xing, Dorey, Jayasinghe, Howorka (CR2) 2022; 17
Wang (CR35) 2017; 8
Cai, Sze, Ivanov, Edel (CR14) 2019; 10
Wen, Zhang, Zhang (CR68) 2017; 2
Schmid, Stömmer, Dietz, Dekker (CR9) 2021; 16
Wang (CR32) 2023; 14
Chinappi, Yamaji, Kawano, Cecconi (CR23) 2020; 14
Karawdeniya, Bandara, Nichols, Chevalier, Dwyer (CR28) 2018; 9
Ho, Liu, Han, Bai, Choi (CR65) 2019; 52
Tang (CR42) 2021; 12
Hu (CR47) 2018; 12
Akahori (CR18) 2017; 7
Nelson, Li, Timp (CR20) 2014; 8
Yusko (CR1) 2017; 12
Krishnan (CR26) 2016; 7
Strandman, Backlund (CR57) 1997; 6
Lee (CR43) 2014; 4
Park, Peng, Ling (CR36) 2007; 3
Huang (CR13) 2019; 10
Chen, Liu (CR38) 2019; 19
Peng, Ling (CR49) 2009; 20
Yusko (CR44) 2011; 6
Di Fiori (CR52) 2013; 8
Rosenstein, Wanunu, Merchant, Drndic, Shepard (CR10) 2012; 9
Fragasso, Schmid, Dekker (CR15) 2020; 14
Piella, Bastus, Puntes (CR67) 2016; 28
Xue (CR4) 2020; 5
Galenkamp, Soskine, Hermans, Wloka, Maglia (CR6) 2018; 9
Liu, Zhou, Wang, Fang, Zhang (CR39) 2023; 19
Kowalczyk, Wells, Aksimentiev, Dekker (CR51) 2012; 12
Shankla, Aksimentiev (CR33) 2019; 14
Firnkes, Pedone, Knezevic, Doblinger, Rant (CR59) 2010; 10
Hyun, Kaur, Rollings, Xiao, Li (CR19) 2013; 7
CR58
Shasha (CR8) 2014; 8
Yamazaki, Hu, Zhao, Wanunu (CR29) 2018; 12
Chen, Wang, Deng, Liu (CR37) 2018; 29
Yao, Wen, Pham, Zhang (CR41) 2020; 36
Lu (CR48) 2013; 13
Diederichs (CR22) 2019; 10
Fologea, Ledden, McNabb, Li (CR64) 2007; 91
Bell, Keyser (CR54) 2016; 11
Lee (CR11) 2018; 30
Zhang (CR46) 2018; 12
Li (CR55) 2013; 7
Green (CR56) 2008; 92
Gilboa, Zrehen, Girsault, Meller (CR27) 2018; 8
Wanunu (CR21) 2012; 9
Birkholz (CR25) 2018; 9
Xia (CR30) 2022; 16
CR62
Brinkerhoff, Kang, Liu, Aksimentiev, Dekker (CR16) 2021; 374
CR61
CR60
Chuah (CR5) 2019; 10
Hoogerheide, Lu, Golovchenko (CR45) 2014; 8
Wang, Sensale, Pan, Senapati, Chang (CR53) 2021; 12
Leitao (CR17) 2023; 18
Schneider (CR34) 2013; 4
Holden, Hendrickson, Lyon, White (CR66) 2011; 115
Bayley (CR7) 2015; 61
Jeong (CR24) 2023; 14
S Krishnan (48630_CR26) 2016; 7
48630_CR58
T Diederichs (48630_CR22) 2019; 10
M Firnkes (48630_CR59) 2010; 10
J Feng (48630_CR31) 2015; 10
Q Chen (48630_CR38) 2019; 19
S Zeng (48630_CR40) 2019; 14
DP Hoogerheide (48630_CR45) 2014; 8
M Wanunu (48630_CR21) 2012; 9
EC Yusko (48630_CR1) 2017; 12
M Shankla (48630_CR33) 2019; 14
SR Park (48630_CR36) 2007; 3
JK Rosenstein (48630_CR10) 2012; 9
C Hyun (48630_CR19) 2013; 7
Y Yao (48630_CR41) 2020; 36
C Strandman (48630_CR57) 1997; 6
C Shasha (48630_CR8) 2014; 8
48630_CR62
48630_CR61
48630_CR60
D Fologea (48630_CR64) 2007; 91
EM Nelson (48630_CR20) 2014; 8
H Brinkerhoff (48630_CR16) 2021; 374
N Di Fiori (48630_CR52) 2013; 8
S Schmid (48630_CR9) 2021; 16
C Wen (48630_CR68) 2017; 2
A Fragasso (48630_CR15) 2020; 14
B Lu (48630_CR48) 2013; 13
BM Venkatesan (48630_CR12) 2011; 6
R Akahori (48630_CR18) 2017; 7
M Jorgensen (48630_CR63) 2022; 9
C Wang (48630_CR35) 2017; 8
M Chinappi (48630_CR23) 2020; 14
J-A Huang (48630_CR13) 2019; 10
K-B Jeong (48630_CR24) 2023; 14
O Birkholz (48630_CR25) 2018; 9
H Liu (48630_CR39) 2023; 19
EC Yusko (48630_CR44) 2011; 6
M-H Lee (48630_CR43) 2014; 4
W Li (48630_CR55) 2013; 7
L Xue (48630_CR4) 2020; 5
NS Galenkamp (48630_CR6) 2018; 9
H Peng (48630_CR49) 2009; 20
Y Wang (48630_CR3) 2022; 17
GF Schneider (48630_CR34) 2013; 4
DA Holden (48630_CR66) 2011; 115
SM Leitao (48630_CR17) 2023; 18
MA Green (48630_CR56) 2008; 92
J Piella (48630_CR67) 2016; 28
NA Bell (48630_CR54) 2016; 11
L Tang (48630_CR42) 2021; 12
Q Chen (48630_CR37) 2018; 29
K Lee (48630_CR11) 2018; 30
T Gilboa (48630_CR27) 2018; 8
UF Keyser (48630_CR50) 2006; 2
Y Xing (48630_CR2) 2022; 17
R Hu (48630_CR47) 2018; 12
M Zhang (48630_CR46) 2018; 12
SW Kowalczyk (48630_CR51) 2012; 12
H Bayley (48630_CR7) 2015; 61
C Wang (48630_CR53) 2021; 12
Z Xia (48630_CR30) 2022; 16
H Yamazaki (48630_CR29) 2018; 12
LWC Ho (48630_CR65) 2019; 52
K Chuah (48630_CR5) 2019; 10
BI Karawdeniya (48630_CR28) 2018; 9
S Cai (48630_CR14) 2019; 10
F Wang (48630_CR32) 2023; 14
References_xml – volume: 8
  start-page: 7384
  year: 2014
  end-page: 7391
  ident: CR45
  article-title: Pressure–voltage trap for DNA near a solid-state nanopore
  publication-title: ACS Nano
  doi: 10.1021/nn5025829
– volume: 19
  start-page: 2205680
  year: 2023
  ident: CR39
  article-title: Solid‐State Nanopore Array: Manufacturing and Applications
  publication-title: Small
  doi: 10.1002/smll.202205680
– volume: 19
  start-page: 1886
  year: 2019
  ident: CR38
  article-title: Fabrication and applications of solid-state nanopores
  publication-title: Sensors
  doi: 10.3390/s19081886
– volume: 92
  start-page: 1305
  year: 2008
  end-page: 1310
  ident: CR56
  article-title: Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.06.009
– volume: 10
  start-page: 1070
  year: 2015
  end-page: 1076
  ident: CR31
  article-title: Identification of single nucleotides in MoS2 nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.219
– volume: 4
  year: 2014
  ident: CR43
  article-title: A low-noise solid-state nanopore platform based on a highly insulating substrate
  publication-title: Sci. Rep.
  doi: 10.1038/srep07448
– volume: 14
  year: 2023
  ident: CR32
  article-title: MoS2 nanopore identifies single amino acids with sub-1 Dalton resolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38627-x
– volume: 10
  start-page: 2162
  year: 2010
  end-page: 2167
  ident: CR59
  article-title: Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis
  publication-title: Nano Lett.
  doi: 10.1021/nl100861c
– volume: 28
  start-page: 1066
  year: 2016
  end-page: 1075
  ident: CR67
  article-title: Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04406
– volume: 9
  year: 2018
  ident: CR28
  article-title: Surveying silicon nitride nanopores for glycomics and heparin quality assurance
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05751-y
– volume: 10
  year: 2019
  ident: CR5
  article-title: Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10147-7
– volume: 12
  start-page: 1038
  year: 2012
  end-page: 1044
  ident: CR51
  article-title: Slowing down DNA translocation through a nanopore in lithium chloride
  publication-title: Nano Lett.
  doi: 10.1021/nl204273h
– volume: 20
  start-page: 185101
  year: 2009
  ident: CR49
  article-title: Reverse DNA translocation through a solid-state nanopore by magnetic tweezers
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/18/185101
– ident: CR61
– volume: 10
  year: 2019
  ident: CR13
  article-title: SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13242-x
– ident: CR58
– volume: 7
  year: 2017
  ident: CR18
  article-title: Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08290-6
– volume: 8
  start-page: 6425
  year: 2014
  end-page: 6430
  ident: CR8
  article-title: Nanopore-based conformational analysis of a viral RNA drug target
  publication-title: ACS Nano
  doi: 10.1021/nn501969r
– volume: 10
  year: 2019
  ident: CR22
  article-title: Synthetic protein-conductive membrane nanopores built with DNA
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12639-y
– volume: 14
  year: 2023
  ident: CR24
  article-title: Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37098-4
– volume: 9
  start-page: 125
  year: 2012
  end-page: 158
  ident: CR21
  article-title: Nanopores: A journey towards DNA sequencing
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2012.05.010
– volume: 29
  start-page: 085301
  year: 2018
  ident: CR37
  article-title: Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaa523
– volume: 6
  start-page: 253
  year: 2011
  end-page: 260
  ident: CR44
  article-title: Controlling protein translocation through nanopores with bio-inspired fluid walls
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.12
– volume: 8
  start-page: 5484
  year: 2014
  end-page: 5493
  ident: CR20
  article-title: Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography
  publication-title: ACS Nano
  doi: 10.1021/nn405331t
– volume: 14
  start-page: 1338
  year: 2020
  end-page: 1349
  ident: CR15
  article-title: Comparing current noise in biological and solid-state nanopores
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09353
– volume: 9
  start-page: 487
  year: 2012
  end-page: 492
  ident: CR10
  article-title: Integrated nanopore sensing platform with sub-microsecond temporal resolution
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1932
– volume: 8
  year: 2017
  ident: CR35
  article-title: Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14243
– volume: 6
  start-page: 615
  year: 2011
  end-page: 624
  ident: CR12
  article-title: Nanopore sensors for nucleic acid analysis
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.129
– volume: 12
  year: 2021
  ident: CR53
  article-title: Slowing down DNA translocation through solid-state nanopores by edge-field leakage
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20409-4
– ident: CR60
– volume: 52
  start-page: 1519
  year: 2019
  end-page: 1530
  ident: CR65
  article-title: Nano–cell interactions of non-cationic bionanomaterials
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00103
– volume: 7
  year: 2016
  ident: CR26
  article-title: Molecular transport through large-diameter DNA nanopores
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12787
– volume: 2
  start-page: 1523
  year: 2017
  end-page: 1530
  ident: CR68
  article-title: Physical model for rapid and accurate determination of nanopore size via conductance measurement
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00576
– volume: 7
  start-page: 4129
  year: 2013
  end-page: 4134
  ident: CR55
  article-title: Single protein molecule detection by glass nanopores
  publication-title: ACS Nano
  doi: 10.1021/nn4004567
– volume: 17
  start-page: 708
  year: 2022
  end-page: 713
  ident: CR2
  article-title: Highly shape-and size-tunable membrane nanopores made with DNA
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01116-1
– volume: 12
  start-page: 12472
  year: 2018
  end-page: 12481
  ident: CR29
  article-title: Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06805
– volume: 12
  start-page: 4494
  year: 2018
  end-page: 4502
  ident: CR47
  article-title: Differential enzyme flexibility probed using solid-state nanopores
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00734
– volume: 36
  start-page: 8874
  year: 2020
  end-page: 8882
  ident: CR41
  article-title: On induced surface charge in solid-state nanopores
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c01189
– volume: 16
  start-page: 18648
  year: 2022
  end-page: 18657
  ident: CR30
  article-title: Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07240
– volume: 12
  start-page: 4574
  year: 2018
  end-page: 4582
  ident: CR46
  article-title: Thermophoresis-controlled size-dependent DNA translocation through an array of nanopores
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00961
– volume: 9
  year: 2018
  ident: CR25
  article-title: Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02905-w
– volume: 61
  start-page: 25
  year: 2015
  end-page: 31
  ident: CR7
  article-title: Nanopore sequencing: from imagination to reality
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2014.223016
– volume: 2
  start-page: 473
  year: 2006
  end-page: 477
  ident: CR50
  article-title: Direct force measurements on DNA in a solid-state nanopore
  publication-title: Nat. Phys.
  doi: 10.1038/nphys344
– volume: 16
  start-page: 1244
  year: 2021
  end-page: 1250
  ident: CR9
  article-title: Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00958-5
– volume: 14
  start-page: 15816
  year: 2020
  end-page: 15828
  ident: CR23
  article-title: Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06981
– volume: 12
  year: 2021
  ident: CR42
  article-title: Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21101-x
– volume: 91
  start-page: 053901
  year: 2007
  ident: CR64
  article-title: Electrical characterization of protein molecules by a solid-state nanopore
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2767206
– volume: 7
  start-page: 5892
  year: 2013
  end-page: 5900
  ident: CR19
  article-title: Threading immobilized DNA molecules through a solid-state nanopore at> 100 μs per base rate
  publication-title: ACS Nano
  doi: 10.1021/nn4012434
– volume: 14
  start-page: 1056
  year: 2019
  end-page: 1062
  ident: CR40
  article-title: Rectification of protein translocation in truncated pyramidal nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0549-0
– volume: 8
  start-page: 946
  year: 2013
  end-page: 951
  ident: CR52
  article-title: Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.221
– volume: 9
  year: 2018
  ident: CR6
  article-title: Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06534-1
– volume: 5
  start-page: 931
  year: 2020
  end-page: 951
  ident: CR4
  article-title: Solid-state nanopore sensors
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0229-6
– volume: 115
  start-page: 2999
  year: 2011
  end-page: 3004
  ident: CR66
  article-title: Resistive pulse analysis of microgel deformation during nanopore translocation
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp111244v
– volume: 374
  start-page: 1509
  year: 2021
  end-page: 1513
  ident: CR16
  article-title: Multiple rereads of single proteins at single–amino acid resolution using nanopores
  publication-title: Science
  doi: 10.1126/science.abl4381
– volume: 14
  start-page: 858
  year: 2019
  end-page: 865
  ident: CR33
  article-title: Step-defect guided delivery of DNA to a graphene nanopore
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0514-y
– volume: 3
  start-page: 116
  year: 2007
  end-page: 119
  ident: CR36
  article-title: Fabrication of nanopores in silicon chips using feedback chemical etching
  publication-title: Small
  doi: 10.1002/smll.200600268
– volume: 11
  start-page: 645
  year: 2016
  end-page: 651
  ident: CR54
  article-title: Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.50
– volume: 17
  start-page: 976
  year: 2022
  end-page: 983
  ident: CR3
  article-title: Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01169-2
– volume: 9
  start-page: 38
  year: 2022
  ident: CR63
  article-title: Alginate hydrogel microtubes for salivary gland cell organization and cavitation
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9010038
– volume: 12
  start-page: 360
  year: 2017
  end-page: 367
  ident: CR1
  article-title: Real-time shape approximation and fingerprinting of single proteins using a nanopore
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.267
– volume: 30
  year: 2018
  ident: CR11
  article-title: Recent progress in solid‐state nanopores
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704680
– volume: 8
  year: 2018
  ident: CR27
  article-title: Optically-monitored nanopore fabrication using a focused laser beam
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28136-z
– volume: 10
  year: 2019
  ident: CR14
  article-title: Small molecule electro-optical binding assay using nanopores
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09476-4
– volume: 13
  start-page: 3048
  year: 2013
  end-page: 3052
  ident: CR48
  article-title: Pressure-controlled motion of single polymers through solid-state nanopores
  publication-title: Nano Lett.
  doi: 10.1021/nl402052v
– volume: 18
  start-page: 1
  year: 2023
  end-page: 7
  ident: CR17
  article-title: Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01412-4
– ident: CR62
– volume: 6
  start-page: 35
  year: 1997
  end-page: 40
  ident: CR57
  article-title: Bulk silicon holding structures for mounting of optical fibers in V-grooves
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/84.557528
– volume: 4
  year: 2013
  ident: CR34
  article-title: Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3619
– volume: 12
  year: 2021
  ident: 48630_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21101-x
– volume: 4
  year: 2013
  ident: 48630_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3619
– volume: 12
  start-page: 360
  year: 2017
  ident: 48630_CR1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.267
– volume: 10
  year: 2019
  ident: 48630_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10147-7
– volume: 13
  start-page: 3048
  year: 2013
  ident: 48630_CR48
  publication-title: Nano Lett.
  doi: 10.1021/nl402052v
– volume: 6
  start-page: 253
  year: 2011
  ident: 48630_CR44
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.12
– ident: 48630_CR61
  doi: 10.1063/1.5134076
– volume: 6
  start-page: 35
  year: 1997
  ident: 48630_CR57
  publication-title: J. Microelectromechanical Syst.
  doi: 10.1109/84.557528
– volume: 8
  start-page: 6425
  year: 2014
  ident: 48630_CR8
  publication-title: ACS Nano
  doi: 10.1021/nn501969r
– volume: 5
  start-page: 931
  year: 2020
  ident: 48630_CR4
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0229-6
– volume: 61
  start-page: 25
  year: 2015
  ident: 48630_CR7
  publication-title: Clin. Chem.
  doi: 10.1373/clinchem.2014.223016
– volume: 9
  start-page: 38
  year: 2022
  ident: 48630_CR63
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9010038
– volume: 10
  year: 2019
  ident: 48630_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12639-y
– volume: 28
  start-page: 1066
  year: 2016
  ident: 48630_CR67
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04406
– volume: 12
  start-page: 4574
  year: 2018
  ident: 48630_CR46
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00961
– volume: 7
  year: 2017
  ident: 48630_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08290-6
– volume: 374
  start-page: 1509
  year: 2021
  ident: 48630_CR16
  publication-title: Science
  doi: 10.1126/science.abl4381
– volume: 14
  start-page: 1338
  year: 2020
  ident: 48630_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09353
– volume: 92
  start-page: 1305
  year: 2008
  ident: 48630_CR56
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2008.06.009
– volume: 14
  start-page: 15816
  year: 2020
  ident: 48630_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06981
– volume: 6
  start-page: 615
  year: 2011
  ident: 48630_CR12
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.129
– volume: 8
  start-page: 946
  year: 2013
  ident: 48630_CR52
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.221
– volume: 8
  start-page: 7384
  year: 2014
  ident: 48630_CR45
  publication-title: ACS Nano
  doi: 10.1021/nn5025829
– volume: 7
  start-page: 4129
  year: 2013
  ident: 48630_CR55
  publication-title: ACS Nano
  doi: 10.1021/nn4004567
– volume: 10
  start-page: 2162
  year: 2010
  ident: 48630_CR59
  publication-title: Nano Lett.
  doi: 10.1021/nl100861c
– volume: 10
  year: 2019
  ident: 48630_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13242-x
– volume: 9
  start-page: 125
  year: 2012
  ident: 48630_CR21
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2012.05.010
– volume: 10
  year: 2019
  ident: 48630_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09476-4
– volume: 16
  start-page: 18648
  year: 2022
  ident: 48630_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07240
– volume: 9
  year: 2018
  ident: 48630_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02905-w
– ident: 48630_CR62
  doi: 10.1063/5.0002044
– volume: 29
  start-page: 085301
  year: 2018
  ident: 48630_CR37
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaa523
– volume: 115
  start-page: 2999
  year: 2011
  ident: 48630_CR66
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp111244v
– volume: 14
  start-page: 1056
  year: 2019
  ident: 48630_CR40
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0549-0
– volume: 36
  start-page: 8874
  year: 2020
  ident: 48630_CR41
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c01189
– volume: 14
  year: 2023
  ident: 48630_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38627-x
– volume: 12
  start-page: 1038
  year: 2012
  ident: 48630_CR51
  publication-title: Nano Lett.
  doi: 10.1021/nl204273h
– volume: 11
  start-page: 645
  year: 2016
  ident: 48630_CR54
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.50
– volume: 17
  start-page: 708
  year: 2022
  ident: 48630_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01116-1
– volume: 3
  start-page: 116
  year: 2007
  ident: 48630_CR36
  publication-title: Small
  doi: 10.1002/smll.200600268
– volume: 7
  year: 2016
  ident: 48630_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12787
– volume: 30
  year: 2018
  ident: 48630_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704680
– volume: 14
  start-page: 858
  year: 2019
  ident: 48630_CR33
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0514-y
– volume: 7
  start-page: 5892
  year: 2013
  ident: 48630_CR19
  publication-title: ACS Nano
  doi: 10.1021/nn4012434
– volume: 8
  year: 2018
  ident: 48630_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28136-z
– volume: 4
  year: 2014
  ident: 48630_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/srep07448
– ident: 48630_CR58
  doi: 10.1109/SENSOR.1991.148821
– volume: 12
  year: 2021
  ident: 48630_CR53
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20409-4
– volume: 17
  start-page: 976
  year: 2022
  ident: 48630_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01169-2
– volume: 8
  start-page: 5484
  year: 2014
  ident: 48630_CR20
  publication-title: ACS Nano
  doi: 10.1021/nn405331t
– volume: 14
  year: 2023
  ident: 48630_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37098-4
– volume: 12
  start-page: 12472
  year: 2018
  ident: 48630_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06805
– volume: 9
  start-page: 487
  year: 2012
  ident: 48630_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1932
– volume: 19
  start-page: 1886
  year: 2019
  ident: 48630_CR38
  publication-title: Sensors
  doi: 10.3390/s19081886
– volume: 8
  year: 2017
  ident: 48630_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14243
– ident: 48630_CR60
  doi: 10.1007/978-0-387-76921-9
– volume: 52
  start-page: 1519
  year: 2019
  ident: 48630_CR65
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00103
– volume: 16
  start-page: 1244
  year: 2021
  ident: 48630_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00958-5
– volume: 9
  year: 2018
  ident: 48630_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06534-1
– volume: 10
  start-page: 1070
  year: 2015
  ident: 48630_CR31
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.219
– volume: 12
  start-page: 4494
  year: 2018
  ident: 48630_CR47
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00734
– volume: 20
  start-page: 185101
  year: 2009
  ident: 48630_CR49
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/18/185101
– volume: 2
  start-page: 473
  year: 2006
  ident: 48630_CR50
  publication-title: Nat. Phys.
  doi: 10.1038/nphys344
– volume: 2
  start-page: 1523
  year: 2017
  ident: 48630_CR68
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.7b00576
– volume: 9
  year: 2018
  ident: 48630_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05751-y
– volume: 18
  start-page: 1
  year: 2023
  ident: 48630_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01412-4
– volume: 19
  start-page: 2205680
  year: 2023
  ident: 48630_CR39
  publication-title: Small
  doi: 10.1002/smll.202205680
– volume: 91
  start-page: 053901
  year: 2007
  ident: 48630_CR64
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2767206
SSID ssj0000391844
Score 2.4862792
Snippet Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by...
Abstract Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5132
SubjectTerms 631/57
639/925/927/1058
9/10
Centrifugal force
Conformation
Dwell time
Electrochemistry
Humanities and Social Sciences
Inertial sensing devices
multidisciplinary
Photovoltaics
Plasma etching
Pore size
Proteins
Science
Science (multidisciplinary)
Sensitivity
Signal to noise ratio
Silicon
Silicon wafers
Translocation
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QpUpcEG8GShUkbhB1ZpJMkmNbtSpIcKJSOUV5wopttursHvrvcZLZpcvzwmmiyUOWYzu24nxG6DXveZReRmKHOBAweI5Y-EVMjAy84zYMBb74w8fh7Jy9v-AXt0p95ZywCg9cGXfQyzYKcAogLgis884w12ZAlTYGo1oZs_WFM-9WMFVsMFUQurDplUxL5cHIik2AI4kwOdCW8K2TqAD2_87L_DVZ8qcb03IQnd5H9yYPEh9Wyh-gOyE9RLu1puTNI_T5XSLLlQ34Mqfakauba3M58zBhnM1h1xNOJi3A6Q4Y3FWcn_6Bjs_JN2jBgnjMCe3pC15EnL9zWKcW0A3jY3R-evLp-IxM9ROI46xbEhuoi6HznJvO0sHyXlqIOLzy0Sg_RAuhGaXK0q5zUUiueuGsYrx30bEM3PYE7aRFCs8QFrEVIUgbocHAPholhbeDh3EGIrjYoG7NS-0mcPFc42KuyyU3lbryXwP_deG_5g16s5lzVaE1_jr6KG_RZmSGxS4_QFj0JCz6X8LSoL31ButJV0cNQZNkCgSGNejVphu0LF-dmBQWqzpGcAErNehplYcNJVTmgu0MZsstSdkidbsnzb4WJO-uAPC1okFv10L1g64_8-L5_-DFC3S3z9qQ6zDxPbSzvF6Fl-BgLe1-0aXvsjUgTQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXk1UFCQuIHVOLZj54QAdSlIcKJSOVl-lhVbZ9nsHvrvGTvZVMujp1h-yRnPjMf2-BuEXvGaB-lkwKYJDQaFZ7GBLKxDYGAdV77J8MVfvjanZ-zzOT8fD9z60a1yqxOzonadTWfkx2DaStbSlrC3y184RY1Kt6tjCI3b6A6BlSa5dMnZx-mMJaGfS8bGtzIVlcc9y5oBFibMZEMrzHfWowzb_y9b82-XyT_uTfNyNLuP9kc7snw3TPwBuuXjA3R3iCx59RB9_xTxemN8eZkc7vDyaqUv5w4a9PMFzH0so44dmN6-BKO1TA8AQdIX-CekoMOyT27t8aLsQpm-C-hnCKPr-0fobHby7cMpHqMoYMsZWWPjqQ2eOM41MbQxvJYG9h2udUG3rgkGNmiUtoYSYoOQvK2FNS3jtQ2WJfi2x2gvdtEfolKESngvTYAEAy2pWymcaRzU07CPCwUiW1oqO0KMp0gXC5WvuqlUA_0V0F9l-iteoNdTm-UAsHFj7fdpiqaaCRw7Z3SrCzXKmqplFQTYkbCV9Iw4q5mtEgZPFbxuKwnDPNpOsBoltlfX_FWgl1MxyFq6QNHRd5uhjuACeirQk4EfppFQmcK2M2gtdzhlZ6i7JXH-I-N5kwzDV4kCvdky1fW4_k-Lpzf_xjN0r058nuIs8SO0t15t_HMwoNbmRZaS34klGGM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqOUZWpCRuIFFEtuxc1wQVVkJLlCpnCzbscuqW6fa7B767xk7D7TQVuopUTy2RuMZeyYef4PQO15yLxvpial8RWDBs8TAJ6K9Z-Ad565K8MXfvlcnp2x-xs92UDnehUlJ-wnSMi3TY3bYx44lk4YdhTBZ0ZzwB2gvQrWDbu_NZvMf8-nPSsQ8l4wNN2RyKm_ovLULJbD-mzzM_xMl_zktTZvQ8T56PHiPeNbze4B2XHiCHvb1JK-fol9fA1lvjMOXMc2OXF2v9OWigQ7dYgkzHnDQoQWH22FwVXG89gf2vSQX8AYD4i4ms4dz3Hocn0sYpy-e67pn6PT4y8_PJ2SonUAsZ8WaGEetd0XDuS4MrQwvpYFoo6kbr-um8gbCMkprQ4vCeiF5XQprasZL6y2LoG3P0W5og3uJsPC5cE4aDy8M1kZdS9GYqgE6DdGbz1AxylLZAVg81rdYqnTATaXq5a9A_irJX_EMvZ_6XPWwGndSf4pTNFFGSOz0oV2dq0FFVClzL8B7hADSsaKxmtk8Iu_k3uk6l8Dm0TjBarDTTkHAJFkNCsMy9HZqBguLxyY6uHbT0wguYKQMvej1YeKEylisnUFvuaUpW6xut4TF74TiXSTwvVxk6MOoVH_5ul0Wr-5HfogelVHvY7UlfoR216uNew1u1Nq8GezmD2fzF4Q
  priority: 102
  providerName: Springer Nature
Title In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules
URI https://link.springer.com/article/10.1038/s41467-024-48630-5
https://www.ncbi.nlm.nih.gov/pubmed/38879544
https://www.proquest.com/docview/3068493914
https://www.proquest.com/docview/3068757990
https://pubmed.ncbi.nlm.nih.gov/PMC11180207
https://doaj.org/article/280f7112899e41dca4c094990fea908f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjCpIvIEhie3YeUCoq1ZGpU0IqFSeotixR0XmbE0r0f-es5MUFQriJbHss3W63Nl3sX0_hF6whBlRCoNlalIME57CEqpwYQwF7zjSqU9ffH6Rnk3pZMZme6iHO-oE2OwM7Rye1HRRvf5xs34HBv-2vTIu3jTUmzusNpiKlESY7aNDWJm4QzQ479x9PzOTDAIat9GcRDTGQEC6ezS7h9laq3xK_11-6J_HKX_bU_VL1fguutP5mOGwVYp7aE_b--hWizq5foC-frB4uZI6vHKH8fD1elFczUvo0Mwr0Asb2sLWIBEdgkMbusuBMAtU-DuUYMCwcUfe7WVYm9C9KxinhdjVzUM0HZ9-GZ3hDmEBK0bjJZaaKKPjkrEiliSVLBESYpIyK02RlamRELwRkkkSx8pwwbKEK5lRliijqEvt9ggd2NrqJyjkJuJaC2mgQGEGLTLBS5mWQFdAjGcCFPeyzFWXftyhYFS53wYnIm_ln4P8cy__nAXo5abPdZt845_UJ-4TbShd4mxfUS8u884O80REhoOPCWGmpnGpCqoil58nMrrIIgFsHvcfOO-VMYewStAMlIcG6PmmGezQba4UVterloYzDiMF6HGrDxtOiHCQ7hR6iy1N2WJ1u8XOv_lc37FP0RfxAL3qleoXX3-XxdF_8PkU3U6csjsgJnaMDpaLlX4GHtZSDtA-n3F4ivH7ATocDiefJ_A-Ob34-AlqR-lo4P9dDLx5_QQ1yCY1
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KgSDBCawmsZ04B4R4Lbv0cWqlcnLjV1l16yybXaH9U_xGxk6y1fLoradEydhyxuPxN7H9DUIvWcYs19ximdscg8NTWMIjXFlLAR0nJg_0xfsH-fCIfj1mxxvoV38Wxm-r7H1icNS6Vv4f-Q5AW05LUqb03fQH9lmj_Opqn0KjNYtds_wJIVvzdvQJ-vdVlg0-H34c4i6rAFaMpnMsDVHWpJqxKpUklyzjEnC4LrWtSp1bCQELIaUkaapswVmZFUqWlGXKKurpzKDea-g6BRkf7PHBl9U_Hc-2zintzuYkhO80NHgimAgx5TlJMFub_0KagH9h27-3aP6xThumv8EddLvDrfH71tDuog3j7qEbbSbL5X30beTwfCFNfO43-OHpcladjzUUaMYTsDUXu8rVAPVNDCA59gcOwbNM8BncQYVx47fRu9O4trG_TqCeNm2vaR6goyvR70O06WpnHqO4sElhDJcWbih45arkhZa5BrkK4kYbobTXpVAdpbnPrDERYWmdcNHqX4D-RdC_YBF6vSozbQk9LpX-4LtoJenJuMODenYqurEtMp7YAnArhK6GplpVVCWe8yexpioTDs3c7jtYdB6iERf2HKEXq9cwtv2CTeVMvWhlClZATRF61NrDqiWE-zTxFErzNUtZa-r6Gzf-HvjD00D7lxQRetMb1UW7_q-Lrcs_4zm6OTzc3xN7o4PdJ-hW5m3e53hi22hzPluYpwDe5vJZGDExOrnqIfobaPVVeQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2DztxDghR2lWXwqpCVConEzt2WbF1ls2u0P41fh3jvKrl0VtPsRzbcsYz45l4PB_AcxYxwwtuiExMQlDhKSKxiuTGULSOA53U6Ys_TpKDY_r-hJ1swa_uLowLq-x0Yq2oi1K5f-RDNG05zeIspEPThkUc7Y3ezH8QhyDlTlo7OI2GRQ71-ie6b9Xr8R6u9YsoGu1_fndAWoQBohgNl0TqWBkdFozloYwTySIu0SYvssLkWZEYic5LHGcyDkNlUs6yKFUyoyxSRlGX2gzHvQLbqfOKBrC9uz85-tT_4XG51zml7U2dIObDitZ6CbdFQnkSB4Rt7IY1aMC_LN2_Azb_OLWtN8PRTbjRWrH-24btbsGWtrfhaoNrub4DX8aWLFdS-2cu3I_M14v8bFpgh2o6Q86zvs1tiYa_9tFk9t31Q9QzM_IdSzigX7mgenvql8Z3zxmO04D46uouHF8Khe_BwJZWPwA_NUGqNZcGCxR1dJ7xtJBJge1y9CKNB2FHS6HaBOcOZ2Mm6oP2mIuG_gLpL2r6C-bBy77PvEnvcWHrXbdEfUuXmruuKBenopV0EfHApGjFoiOraVionKrAZQAKjM6zgOM0d7oFFq2-qMQ5d3vwrH-Nku6Ob3Kry1XTJmUpjuTB_YYf-pnE3IHGU-zNNzhlY6qbb-z0W51NPKyTAAapB686pjqf1_9p8fDiz3gK11A8xYfx5PARXI8cyzvAJ7YDg-VipR-jJbeUT1qR8eHrZUvpbxe5Wws
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-tube+micro-pyramidal+silicon+nanopore+for+inertial-kinetic+sensing+of+single+molecules&rft.jtitle=Nature+communications&rft.au=Yang%2C+Jianxin&rft.au=Pan%2C+Tianle&rft.au=Xie%2C+Zhenming&rft.au=Yuan%2C+Wu&rft.date=2024-06-15&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5132&rft_id=info:doi/10.1038%2Fs41467-024-48630-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon