In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules
Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the acc...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5132 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.
The authors report a strategy to achieve high S/N ratio signal readout in single molecule sensing by incorporating the inertial forces as a new channel for independently controlling the translocation parameters with high precision. |
---|---|
AbstractList | Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. Abstract Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. The authors report a strategy to achieve high S/N ratio signal readout in single molecule sensing by incorporating the inertial forces as a new channel for independently controlling the translocation parameters with high precision. Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device. Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by an uncontrollable translocation speed, resulting in non-uniform conductance signals with low conformational sensitivity, which hinders the accurate discrimination of the molecules. Here, we show the use of inertial-kinetic translocation induced by spinning an in-tube micro-pyramidal silicon nanopore fabricated using photovoltaic electrochemical etch-stop technique for biomolecular sensing. By adjusting the kinetic properties of a funnel-shaped centrifugal force field while maintaining a counter-balanced state of electrophoretic and electroosmotic effect in the nanopore, we achieved regulated translocation of proteins and obtained stable signals of long and adjustable dwell times and high conformational sensitivity. Moreover, we demonstrated instantaneous sensing and discrimination of molecular conformations and longitudinal monitoring of molecular reactions and conformation changes by wirelessly measuring characteristic features in current blockade readouts using the in-tube nanopore device.The authors report a strategy to achieve high S/N ratio signal readout in single molecule sensing by incorporating the inertial forces as a new channel for independently controlling the translocation parameters with high precision. |
ArticleNumber | 5132 |
Author | Yuan, Wu Ho, Ho-Pui Yang, Jianxin Pan, Tianle Xie, Zhenming |
Author_xml | – sequence: 1 givenname: Jianxin surname: Yang fullname: Yang, Jianxin organization: Department of Biomedical Engineering, The Chinese University of Hong Kong – sequence: 2 givenname: Tianle surname: Pan fullname: Pan, Tianle organization: Department of Biomedical Engineering, The Chinese University of Hong Kong – sequence: 3 givenname: Zhenming surname: Xie fullname: Xie, Zhenming organization: Department of Biomedical Engineering, The Chinese University of Hong Kong – sequence: 4 givenname: Wu orcidid: 0000-0001-9405-519X surname: Yuan fullname: Yuan, Wu email: wyuan@cuhk.edu.hk organization: Department of Biomedical Engineering, The Chinese University of Hong Kong – sequence: 5 givenname: Ho-Pui surname: Ho fullname: Ho, Ho-Pui email: aaron.ho@cuhk.edu.hk organization: Department of Biomedical Engineering, The Chinese University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38879544$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MJM4sYNytfMwMqYxo-XNHGjC1eEYS5Pngw8Ycak_17em1rbLsrmEjjn3AP3PEcnMUVA6CUlbynh8l0RVHQ9JkxgITtOcPsEnTEiKKY94yd39qfoopQdqYsrKoV4hk65lL1qhThDPzYRz8sAzeRtTnh_nc3kRxOa4oO3KTbRxLRPGRqXcuMj5NmbgH_V3extUyAWH7dNcs2hhqqTAtglQHmBnjoTClzc1HP0_dPHb5df8NXXz5vLD1fYtoLOeABuHdCxbQ0deDe0TA6Mk1GNzqixc4MQknM1cEqt62WrWG8HJVpmnRVCMX6ONqvumMxO77OfTL7WyXh9PEh5q001bQNoJonrKWVSKRB0tEZYooRSxIFRRLqq9X7V2i_DBKOFOGcT7onev4n-p96mP5pSKgkjfVV4c6OQ0-8FyqwnXyyEYCKkpWhOOtm3fe1Zoa8fQHdpybH-1RElVB2XqKhXdy3devk3wgpgK6DOr5QM7hZCiT5ERa9R0TUq-hgV3VaSfECyfjazT4dn-fA4la_UUvvELeT_th9h_QVKu9K9 |
CitedBy_id | crossref_primary_10_1002_adma_202400018 crossref_primary_10_1002_smtd_202401321 crossref_primary_10_1021_acs_jpcb_4c08692 crossref_primary_10_1016_j_matdes_2025_113764 |
Cites_doi | 10.1021/nn5025829 10.1002/smll.202205680 10.3390/s19081886 10.1016/j.solmat.2008.06.009 10.1038/nnano.2015.219 10.1038/srep07448 10.1038/s41467-023-38627-x 10.1021/nl100861c 10.1021/acs.chemmater.5b04406 10.1038/s41467-018-05751-y 10.1038/s41467-019-10147-7 10.1021/nl204273h 10.1088/0957-4484/20/18/185101 10.1038/s41467-019-13242-x 10.1038/s41598-017-08290-6 10.1021/nn501969r 10.1038/s41467-019-12639-y 10.1038/s41467-023-37098-4 10.1016/j.plrev.2012.05.010 10.1088/1361-6528/aaa523 10.1038/nnano.2011.12 10.1021/nn405331t 10.1021/acsnano.9b09353 10.1038/nmeth.1932 10.1038/ncomms14243 10.1038/nnano.2011.129 10.1038/s41467-020-20409-4 10.1021/acs.accounts.9b00103 10.1038/ncomms12787 10.1021/acssensors.7b00576 10.1021/nn4004567 10.1038/s41565-022-01116-1 10.1021/acsnano.8b06805 10.1021/acsnano.8b00734 10.1021/acs.langmuir.0c01189 10.1021/acsnano.2c07240 10.1021/acsnano.8b00961 10.1038/s41467-018-02905-w 10.1373/clinchem.2014.223016 10.1038/nphys344 10.1038/s41565-021-00958-5 10.1021/acsnano.0c06981 10.1038/s41467-021-21101-x 10.1063/1.2767206 10.1021/nn4012434 10.1038/s41565-019-0549-0 10.1038/nnano.2013.221 10.1038/s41467-018-06534-1 10.1038/s41578-020-0229-6 10.1021/jp111244v 10.1126/science.abl4381 10.1038/s41565-019-0514-y 10.1002/smll.200600268 10.1038/nnano.2016.50 10.1038/s41565-022-01169-2 10.3390/bioengineering9010038 10.1038/nnano.2016.267 10.1002/adma.201704680 10.1038/s41598-018-28136-z 10.1038/s41467-019-09476-4 10.1021/nl402052v 10.1038/s41565-023-01412-4 10.1109/84.557528 10.1038/ncomms3619 10.1063/1.5134076 10.1063/5.0002044 10.1109/SENSOR.1991.148821 10.1007/978-0-387-76921-9 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-48630-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_280f7112899e41dca4c094990fea908f PMC11180207 38879544 10_1038_s41467_024_48630_5 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-be3cfe1d55a1b36b528b230d9dfa9d6fb448339b311cf785927cb9452cfc44923 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:10 EDT 2025 Thu Aug 21 18:33:46 EDT 2025 Fri Jul 11 00:42:42 EDT 2025 Wed Aug 13 09:12:20 EDT 2025 Mon Jul 21 06:01:48 EDT 2025 Tue Jul 01 02:11:13 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-be3cfe1d55a1b36b528b230d9dfa9d6fb448339b311cf785927cb9452cfc44923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9405-519X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-48630-5 |
PMID | 38879544 |
PQID | 3068493914 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_280f7112899e41dca4c094990fea908f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11180207 proquest_miscellaneous_3068757990 proquest_journals_3068493914 pubmed_primary_38879544 crossref_primary_10_1038_s41467_024_48630_5 crossref_citationtrail_10_1038_s41467_024_48630_5 springer_journals_10_1038_s41467_024_48630_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-15 |
PublicationDateYYYYMMDD | 2024-06-15 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Jorgensen (CR63) 2022; 9 Venkatesan, Bashir (CR12) 2011; 6 Feng (CR31) 2015; 10 Zeng, Wen, Solomon, Zhang, Zhang (CR40) 2019; 14 Keyser (CR50) 2006; 2 Wang (CR3) 2022; 17 Xing, Dorey, Jayasinghe, Howorka (CR2) 2022; 17 Wang (CR35) 2017; 8 Cai, Sze, Ivanov, Edel (CR14) 2019; 10 Wen, Zhang, Zhang (CR68) 2017; 2 Schmid, Stömmer, Dietz, Dekker (CR9) 2021; 16 Wang (CR32) 2023; 14 Chinappi, Yamaji, Kawano, Cecconi (CR23) 2020; 14 Karawdeniya, Bandara, Nichols, Chevalier, Dwyer (CR28) 2018; 9 Ho, Liu, Han, Bai, Choi (CR65) 2019; 52 Tang (CR42) 2021; 12 Hu (CR47) 2018; 12 Akahori (CR18) 2017; 7 Nelson, Li, Timp (CR20) 2014; 8 Yusko (CR1) 2017; 12 Krishnan (CR26) 2016; 7 Strandman, Backlund (CR57) 1997; 6 Lee (CR43) 2014; 4 Park, Peng, Ling (CR36) 2007; 3 Huang (CR13) 2019; 10 Chen, Liu (CR38) 2019; 19 Peng, Ling (CR49) 2009; 20 Yusko (CR44) 2011; 6 Di Fiori (CR52) 2013; 8 Rosenstein, Wanunu, Merchant, Drndic, Shepard (CR10) 2012; 9 Fragasso, Schmid, Dekker (CR15) 2020; 14 Piella, Bastus, Puntes (CR67) 2016; 28 Xue (CR4) 2020; 5 Galenkamp, Soskine, Hermans, Wloka, Maglia (CR6) 2018; 9 Liu, Zhou, Wang, Fang, Zhang (CR39) 2023; 19 Kowalczyk, Wells, Aksimentiev, Dekker (CR51) 2012; 12 Shankla, Aksimentiev (CR33) 2019; 14 Firnkes, Pedone, Knezevic, Doblinger, Rant (CR59) 2010; 10 Hyun, Kaur, Rollings, Xiao, Li (CR19) 2013; 7 CR58 Shasha (CR8) 2014; 8 Yamazaki, Hu, Zhao, Wanunu (CR29) 2018; 12 Chen, Wang, Deng, Liu (CR37) 2018; 29 Yao, Wen, Pham, Zhang (CR41) 2020; 36 Lu (CR48) 2013; 13 Diederichs (CR22) 2019; 10 Fologea, Ledden, McNabb, Li (CR64) 2007; 91 Bell, Keyser (CR54) 2016; 11 Lee (CR11) 2018; 30 Zhang (CR46) 2018; 12 Li (CR55) 2013; 7 Green (CR56) 2008; 92 Gilboa, Zrehen, Girsault, Meller (CR27) 2018; 8 Wanunu (CR21) 2012; 9 Birkholz (CR25) 2018; 9 Xia (CR30) 2022; 16 CR62 Brinkerhoff, Kang, Liu, Aksimentiev, Dekker (CR16) 2021; 374 CR61 CR60 Chuah (CR5) 2019; 10 Hoogerheide, Lu, Golovchenko (CR45) 2014; 8 Wang, Sensale, Pan, Senapati, Chang (CR53) 2021; 12 Leitao (CR17) 2023; 18 Schneider (CR34) 2013; 4 Holden, Hendrickson, Lyon, White (CR66) 2011; 115 Bayley (CR7) 2015; 61 Jeong (CR24) 2023; 14 S Krishnan (48630_CR26) 2016; 7 48630_CR58 T Diederichs (48630_CR22) 2019; 10 M Firnkes (48630_CR59) 2010; 10 J Feng (48630_CR31) 2015; 10 Q Chen (48630_CR38) 2019; 19 S Zeng (48630_CR40) 2019; 14 DP Hoogerheide (48630_CR45) 2014; 8 M Wanunu (48630_CR21) 2012; 9 EC Yusko (48630_CR1) 2017; 12 M Shankla (48630_CR33) 2019; 14 SR Park (48630_CR36) 2007; 3 JK Rosenstein (48630_CR10) 2012; 9 C Hyun (48630_CR19) 2013; 7 Y Yao (48630_CR41) 2020; 36 C Strandman (48630_CR57) 1997; 6 C Shasha (48630_CR8) 2014; 8 48630_CR62 48630_CR61 48630_CR60 D Fologea (48630_CR64) 2007; 91 EM Nelson (48630_CR20) 2014; 8 H Brinkerhoff (48630_CR16) 2021; 374 N Di Fiori (48630_CR52) 2013; 8 S Schmid (48630_CR9) 2021; 16 C Wen (48630_CR68) 2017; 2 A Fragasso (48630_CR15) 2020; 14 B Lu (48630_CR48) 2013; 13 BM Venkatesan (48630_CR12) 2011; 6 R Akahori (48630_CR18) 2017; 7 M Jorgensen (48630_CR63) 2022; 9 C Wang (48630_CR35) 2017; 8 M Chinappi (48630_CR23) 2020; 14 J-A Huang (48630_CR13) 2019; 10 K-B Jeong (48630_CR24) 2023; 14 O Birkholz (48630_CR25) 2018; 9 H Liu (48630_CR39) 2023; 19 EC Yusko (48630_CR44) 2011; 6 M-H Lee (48630_CR43) 2014; 4 W Li (48630_CR55) 2013; 7 L Xue (48630_CR4) 2020; 5 NS Galenkamp (48630_CR6) 2018; 9 H Peng (48630_CR49) 2009; 20 Y Wang (48630_CR3) 2022; 17 GF Schneider (48630_CR34) 2013; 4 DA Holden (48630_CR66) 2011; 115 SM Leitao (48630_CR17) 2023; 18 MA Green (48630_CR56) 2008; 92 J Piella (48630_CR67) 2016; 28 NA Bell (48630_CR54) 2016; 11 L Tang (48630_CR42) 2021; 12 Q Chen (48630_CR37) 2018; 29 K Lee (48630_CR11) 2018; 30 T Gilboa (48630_CR27) 2018; 8 UF Keyser (48630_CR50) 2006; 2 Y Xing (48630_CR2) 2022; 17 R Hu (48630_CR47) 2018; 12 M Zhang (48630_CR46) 2018; 12 SW Kowalczyk (48630_CR51) 2012; 12 H Bayley (48630_CR7) 2015; 61 C Wang (48630_CR53) 2021; 12 Z Xia (48630_CR30) 2022; 16 H Yamazaki (48630_CR29) 2018; 12 LWC Ho (48630_CR65) 2019; 52 K Chuah (48630_CR5) 2019; 10 BI Karawdeniya (48630_CR28) 2018; 9 S Cai (48630_CR14) 2019; 10 F Wang (48630_CR32) 2023; 14 |
References_xml | – volume: 8 start-page: 7384 year: 2014 end-page: 7391 ident: CR45 article-title: Pressure–voltage trap for DNA near a solid-state nanopore publication-title: ACS Nano doi: 10.1021/nn5025829 – volume: 19 start-page: 2205680 year: 2023 ident: CR39 article-title: Solid‐State Nanopore Array: Manufacturing and Applications publication-title: Small doi: 10.1002/smll.202205680 – volume: 19 start-page: 1886 year: 2019 ident: CR38 article-title: Fabrication and applications of solid-state nanopores publication-title: Sensors doi: 10.3390/s19081886 – volume: 92 start-page: 1305 year: 2008 end-page: 1310 ident: CR56 article-title: Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.06.009 – volume: 10 start-page: 1070 year: 2015 end-page: 1076 ident: CR31 article-title: Identification of single nucleotides in MoS2 nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.219 – volume: 4 year: 2014 ident: CR43 article-title: A low-noise solid-state nanopore platform based on a highly insulating substrate publication-title: Sci. Rep. doi: 10.1038/srep07448 – volume: 14 year: 2023 ident: CR32 article-title: MoS2 nanopore identifies single amino acids with sub-1 Dalton resolution publication-title: Nat. Commun. doi: 10.1038/s41467-023-38627-x – volume: 10 start-page: 2162 year: 2010 end-page: 2167 ident: CR59 article-title: Electrically facilitated translocations of proteins through silicon nitride nanopores: conjoint and competitive action of diffusion, electrophoresis, and electroosmosis publication-title: Nano Lett. doi: 10.1021/nl100861c – volume: 28 start-page: 1066 year: 2016 end-page: 1075 ident: CR67 article-title: Size-Controlled Synthesis of Sub-10-nanometer Citrate-Stabilized Gold Nanoparticles and Related Optical Properties publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04406 – volume: 9 year: 2018 ident: CR28 article-title: Surveying silicon nitride nanopores for glycomics and heparin quality assurance publication-title: Nat. Commun. doi: 10.1038/s41467-018-05751-y – volume: 10 year: 2019 ident: CR5 article-title: Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples publication-title: Nat. Commun. doi: 10.1038/s41467-019-10147-7 – volume: 12 start-page: 1038 year: 2012 end-page: 1044 ident: CR51 article-title: Slowing down DNA translocation through a nanopore in lithium chloride publication-title: Nano Lett. doi: 10.1021/nl204273h – volume: 20 start-page: 185101 year: 2009 ident: CR49 article-title: Reverse DNA translocation through a solid-state nanopore by magnetic tweezers publication-title: Nanotechnology doi: 10.1088/0957-4484/20/18/185101 – ident: CR61 – volume: 10 year: 2019 ident: CR13 article-title: SERS discrimination of single DNA bases in single oligonucleotides by electro-plasmonic trapping publication-title: Nat. Commun. doi: 10.1038/s41467-019-13242-x – ident: CR58 – volume: 7 year: 2017 ident: CR18 article-title: Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion publication-title: Sci. Rep. doi: 10.1038/s41598-017-08290-6 – volume: 8 start-page: 6425 year: 2014 end-page: 6430 ident: CR8 article-title: Nanopore-based conformational analysis of a viral RNA drug target publication-title: ACS Nano doi: 10.1021/nn501969r – volume: 10 year: 2019 ident: CR22 article-title: Synthetic protein-conductive membrane nanopores built with DNA publication-title: Nat. Commun. doi: 10.1038/s41467-019-12639-y – volume: 14 year: 2023 ident: CR24 article-title: Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore publication-title: Nat. Commun. doi: 10.1038/s41467-023-37098-4 – volume: 9 start-page: 125 year: 2012 end-page: 158 ident: CR21 article-title: Nanopores: A journey towards DNA sequencing publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2012.05.010 – volume: 29 start-page: 085301 year: 2018 ident: CR37 article-title: Fabrication of nanopores and nanoslits with feature sizes down to 5 nm by wet etching method publication-title: Nanotechnology doi: 10.1088/1361-6528/aaa523 – volume: 6 start-page: 253 year: 2011 end-page: 260 ident: CR44 article-title: Controlling protein translocation through nanopores with bio-inspired fluid walls publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.12 – volume: 8 start-page: 5484 year: 2014 end-page: 5493 ident: CR20 article-title: Direct, concurrent measurements of the forces and currents affecting DNA in a nanopore with comparable topography publication-title: ACS Nano doi: 10.1021/nn405331t – volume: 14 start-page: 1338 year: 2020 end-page: 1349 ident: CR15 article-title: Comparing current noise in biological and solid-state nanopores publication-title: ACS Nano doi: 10.1021/acsnano.9b09353 – volume: 9 start-page: 487 year: 2012 end-page: 492 ident: CR10 article-title: Integrated nanopore sensing platform with sub-microsecond temporal resolution publication-title: Nat. Methods doi: 10.1038/nmeth.1932 – volume: 8 year: 2017 ident: CR35 article-title: Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules publication-title: Nat. Commun. doi: 10.1038/ncomms14243 – volume: 6 start-page: 615 year: 2011 end-page: 624 ident: CR12 article-title: Nanopore sensors for nucleic acid analysis publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.129 – volume: 12 year: 2021 ident: CR53 article-title: Slowing down DNA translocation through solid-state nanopores by edge-field leakage publication-title: Nat. Commun. doi: 10.1038/s41467-020-20409-4 – ident: CR60 – volume: 52 start-page: 1519 year: 2019 end-page: 1530 ident: CR65 article-title: Nano–cell interactions of non-cationic bionanomaterials publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00103 – volume: 7 year: 2016 ident: CR26 article-title: Molecular transport through large-diameter DNA nanopores publication-title: Nat. Commun. doi: 10.1038/ncomms12787 – volume: 2 start-page: 1523 year: 2017 end-page: 1530 ident: CR68 article-title: Physical model for rapid and accurate determination of nanopore size via conductance measurement publication-title: ACS Sens. doi: 10.1021/acssensors.7b00576 – volume: 7 start-page: 4129 year: 2013 end-page: 4134 ident: CR55 article-title: Single protein molecule detection by glass nanopores publication-title: ACS Nano doi: 10.1021/nn4004567 – volume: 17 start-page: 708 year: 2022 end-page: 713 ident: CR2 article-title: Highly shape-and size-tunable membrane nanopores made with DNA publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01116-1 – volume: 12 start-page: 12472 year: 2018 end-page: 12481 ident: CR29 article-title: Photothermally assisted thinning of silicon nitride membranes for ultrathin asymmetric nanopores publication-title: ACS Nano doi: 10.1021/acsnano.8b06805 – volume: 12 start-page: 4494 year: 2018 end-page: 4502 ident: CR47 article-title: Differential enzyme flexibility probed using solid-state nanopores publication-title: ACS Nano doi: 10.1021/acsnano.8b00734 – volume: 36 start-page: 8874 year: 2020 end-page: 8882 ident: CR41 article-title: On induced surface charge in solid-state nanopores publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01189 – volume: 16 start-page: 18648 year: 2022 end-page: 18657 ident: CR30 article-title: Silicon Nitride Nanopores Formed by Simple Chemical Etching: DNA Translocations and TEM Imaging publication-title: ACS Nano doi: 10.1021/acsnano.2c07240 – volume: 12 start-page: 4574 year: 2018 end-page: 4582 ident: CR46 article-title: Thermophoresis-controlled size-dependent DNA translocation through an array of nanopores publication-title: ACS Nano doi: 10.1021/acsnano.8b00961 – volume: 9 year: 2018 ident: CR25 article-title: Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials publication-title: Nat. Commun. doi: 10.1038/s41467-018-02905-w – volume: 61 start-page: 25 year: 2015 end-page: 31 ident: CR7 article-title: Nanopore sequencing: from imagination to reality publication-title: Clin. Chem. doi: 10.1373/clinchem.2014.223016 – volume: 2 start-page: 473 year: 2006 end-page: 477 ident: CR50 article-title: Direct force measurements on DNA in a solid-state nanopore publication-title: Nat. Phys. doi: 10.1038/nphys344 – volume: 16 start-page: 1244 year: 2021 end-page: 1250 ident: CR9 article-title: Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00958-5 – volume: 14 start-page: 15816 year: 2020 end-page: 15828 ident: CR23 article-title: Analytical model for particle capture in nanopores elucidates competition among electrophoresis, electroosmosis, and dielectrophoresis publication-title: ACS Nano doi: 10.1021/acsnano.0c06981 – volume: 12 year: 2021 ident: CR42 article-title: Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations publication-title: Nat. Commun. doi: 10.1038/s41467-021-21101-x – volume: 91 start-page: 053901 year: 2007 ident: CR64 article-title: Electrical characterization of protein molecules by a solid-state nanopore publication-title: Appl. Phys. Lett. doi: 10.1063/1.2767206 – volume: 7 start-page: 5892 year: 2013 end-page: 5900 ident: CR19 article-title: Threading immobilized DNA molecules through a solid-state nanopore at> 100 μs per base rate publication-title: ACS Nano doi: 10.1021/nn4012434 – volume: 14 start-page: 1056 year: 2019 end-page: 1062 ident: CR40 article-title: Rectification of protein translocation in truncated pyramidal nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0549-0 – volume: 8 start-page: 946 year: 2013 end-page: 951 ident: CR52 article-title: Optoelectronic control of surface charge and translocation dynamics in solid-state nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.221 – volume: 9 year: 2018 ident: CR6 article-title: Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores publication-title: Nat. Commun. doi: 10.1038/s41467-018-06534-1 – volume: 5 start-page: 931 year: 2020 end-page: 951 ident: CR4 article-title: Solid-state nanopore sensors publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0229-6 – volume: 115 start-page: 2999 year: 2011 end-page: 3004 ident: CR66 article-title: Resistive pulse analysis of microgel deformation during nanopore translocation publication-title: J. Phys. Chem. C. doi: 10.1021/jp111244v – volume: 374 start-page: 1509 year: 2021 end-page: 1513 ident: CR16 article-title: Multiple rereads of single proteins at single–amino acid resolution using nanopores publication-title: Science doi: 10.1126/science.abl4381 – volume: 14 start-page: 858 year: 2019 end-page: 865 ident: CR33 article-title: Step-defect guided delivery of DNA to a graphene nanopore publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0514-y – volume: 3 start-page: 116 year: 2007 end-page: 119 ident: CR36 article-title: Fabrication of nanopores in silicon chips using feedback chemical etching publication-title: Small doi: 10.1002/smll.200600268 – volume: 11 start-page: 645 year: 2016 end-page: 651 ident: CR54 article-title: Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.50 – volume: 17 start-page: 976 year: 2022 end-page: 983 ident: CR3 article-title: Identification of nucleoside monophosphates and their epigenetic modifications using an engineered nanopore publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01169-2 – volume: 9 start-page: 38 year: 2022 ident: CR63 article-title: Alginate hydrogel microtubes for salivary gland cell organization and cavitation publication-title: Bioengineering doi: 10.3390/bioengineering9010038 – volume: 12 start-page: 360 year: 2017 end-page: 367 ident: CR1 article-title: Real-time shape approximation and fingerprinting of single proteins using a nanopore publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.267 – volume: 30 year: 2018 ident: CR11 article-title: Recent progress in solid‐state nanopores publication-title: Adv. Mater. doi: 10.1002/adma.201704680 – volume: 8 year: 2018 ident: CR27 article-title: Optically-monitored nanopore fabrication using a focused laser beam publication-title: Sci. Rep. doi: 10.1038/s41598-018-28136-z – volume: 10 year: 2019 ident: CR14 article-title: Small molecule electro-optical binding assay using nanopores publication-title: Nat. Commun. doi: 10.1038/s41467-019-09476-4 – volume: 13 start-page: 3048 year: 2013 end-page: 3052 ident: CR48 article-title: Pressure-controlled motion of single polymers through solid-state nanopores publication-title: Nano Lett. doi: 10.1021/nl402052v – volume: 18 start-page: 1 year: 2023 end-page: 7 ident: CR17 article-title: Spatially multiplexed single-molecule translocations through a nanopore at controlled speeds publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01412-4 – ident: CR62 – volume: 6 start-page: 35 year: 1997 end-page: 40 ident: CR57 article-title: Bulk silicon holding structures for mounting of optical fibers in V-grooves publication-title: J. Microelectromechanical Syst. doi: 10.1109/84.557528 – volume: 4 year: 2013 ident: CR34 article-title: Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation publication-title: Nat. Commun. doi: 10.1038/ncomms3619 – volume: 12 year: 2021 ident: 48630_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21101-x – volume: 4 year: 2013 ident: 48630_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms3619 – volume: 12 start-page: 360 year: 2017 ident: 48630_CR1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.267 – volume: 10 year: 2019 ident: 48630_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10147-7 – volume: 13 start-page: 3048 year: 2013 ident: 48630_CR48 publication-title: Nano Lett. doi: 10.1021/nl402052v – volume: 6 start-page: 253 year: 2011 ident: 48630_CR44 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.12 – ident: 48630_CR61 doi: 10.1063/1.5134076 – volume: 6 start-page: 35 year: 1997 ident: 48630_CR57 publication-title: J. Microelectromechanical Syst. doi: 10.1109/84.557528 – volume: 8 start-page: 6425 year: 2014 ident: 48630_CR8 publication-title: ACS Nano doi: 10.1021/nn501969r – volume: 5 start-page: 931 year: 2020 ident: 48630_CR4 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0229-6 – volume: 61 start-page: 25 year: 2015 ident: 48630_CR7 publication-title: Clin. Chem. doi: 10.1373/clinchem.2014.223016 – volume: 9 start-page: 38 year: 2022 ident: 48630_CR63 publication-title: Bioengineering doi: 10.3390/bioengineering9010038 – volume: 10 year: 2019 ident: 48630_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12639-y – volume: 28 start-page: 1066 year: 2016 ident: 48630_CR67 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04406 – volume: 12 start-page: 4574 year: 2018 ident: 48630_CR46 publication-title: ACS Nano doi: 10.1021/acsnano.8b00961 – volume: 7 year: 2017 ident: 48630_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-017-08290-6 – volume: 374 start-page: 1509 year: 2021 ident: 48630_CR16 publication-title: Science doi: 10.1126/science.abl4381 – volume: 14 start-page: 1338 year: 2020 ident: 48630_CR15 publication-title: ACS Nano doi: 10.1021/acsnano.9b09353 – volume: 92 start-page: 1305 year: 2008 ident: 48630_CR56 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2008.06.009 – volume: 14 start-page: 15816 year: 2020 ident: 48630_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.0c06981 – volume: 6 start-page: 615 year: 2011 ident: 48630_CR12 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.129 – volume: 8 start-page: 946 year: 2013 ident: 48630_CR52 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.221 – volume: 8 start-page: 7384 year: 2014 ident: 48630_CR45 publication-title: ACS Nano doi: 10.1021/nn5025829 – volume: 7 start-page: 4129 year: 2013 ident: 48630_CR55 publication-title: ACS Nano doi: 10.1021/nn4004567 – volume: 10 start-page: 2162 year: 2010 ident: 48630_CR59 publication-title: Nano Lett. doi: 10.1021/nl100861c – volume: 10 year: 2019 ident: 48630_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13242-x – volume: 9 start-page: 125 year: 2012 ident: 48630_CR21 publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2012.05.010 – volume: 10 year: 2019 ident: 48630_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09476-4 – volume: 16 start-page: 18648 year: 2022 ident: 48630_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.2c07240 – volume: 9 year: 2018 ident: 48630_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02905-w – ident: 48630_CR62 doi: 10.1063/5.0002044 – volume: 29 start-page: 085301 year: 2018 ident: 48630_CR37 publication-title: Nanotechnology doi: 10.1088/1361-6528/aaa523 – volume: 115 start-page: 2999 year: 2011 ident: 48630_CR66 publication-title: J. Phys. Chem. C. doi: 10.1021/jp111244v – volume: 14 start-page: 1056 year: 2019 ident: 48630_CR40 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0549-0 – volume: 36 start-page: 8874 year: 2020 ident: 48630_CR41 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01189 – volume: 14 year: 2023 ident: 48630_CR32 publication-title: Nat. Commun. doi: 10.1038/s41467-023-38627-x – volume: 12 start-page: 1038 year: 2012 ident: 48630_CR51 publication-title: Nano Lett. doi: 10.1021/nl204273h – volume: 11 start-page: 645 year: 2016 ident: 48630_CR54 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.50 – volume: 17 start-page: 708 year: 2022 ident: 48630_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01116-1 – volume: 3 start-page: 116 year: 2007 ident: 48630_CR36 publication-title: Small doi: 10.1002/smll.200600268 – volume: 7 year: 2016 ident: 48630_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms12787 – volume: 30 year: 2018 ident: 48630_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201704680 – volume: 14 start-page: 858 year: 2019 ident: 48630_CR33 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0514-y – volume: 7 start-page: 5892 year: 2013 ident: 48630_CR19 publication-title: ACS Nano doi: 10.1021/nn4012434 – volume: 8 year: 2018 ident: 48630_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-018-28136-z – volume: 4 year: 2014 ident: 48630_CR43 publication-title: Sci. Rep. doi: 10.1038/srep07448 – ident: 48630_CR58 doi: 10.1109/SENSOR.1991.148821 – volume: 12 year: 2021 ident: 48630_CR53 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20409-4 – volume: 17 start-page: 976 year: 2022 ident: 48630_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01169-2 – volume: 8 start-page: 5484 year: 2014 ident: 48630_CR20 publication-title: ACS Nano doi: 10.1021/nn405331t – volume: 14 year: 2023 ident: 48630_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37098-4 – volume: 12 start-page: 12472 year: 2018 ident: 48630_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.8b06805 – volume: 9 start-page: 487 year: 2012 ident: 48630_CR10 publication-title: Nat. Methods doi: 10.1038/nmeth.1932 – volume: 19 start-page: 1886 year: 2019 ident: 48630_CR38 publication-title: Sensors doi: 10.3390/s19081886 – volume: 8 year: 2017 ident: 48630_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms14243 – ident: 48630_CR60 doi: 10.1007/978-0-387-76921-9 – volume: 52 start-page: 1519 year: 2019 ident: 48630_CR65 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00103 – volume: 16 start-page: 1244 year: 2021 ident: 48630_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00958-5 – volume: 9 year: 2018 ident: 48630_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06534-1 – volume: 10 start-page: 1070 year: 2015 ident: 48630_CR31 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.219 – volume: 12 start-page: 4494 year: 2018 ident: 48630_CR47 publication-title: ACS Nano doi: 10.1021/acsnano.8b00734 – volume: 20 start-page: 185101 year: 2009 ident: 48630_CR49 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/18/185101 – volume: 2 start-page: 473 year: 2006 ident: 48630_CR50 publication-title: Nat. Phys. doi: 10.1038/nphys344 – volume: 2 start-page: 1523 year: 2017 ident: 48630_CR68 publication-title: ACS Sens. doi: 10.1021/acssensors.7b00576 – volume: 9 year: 2018 ident: 48630_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05751-y – volume: 18 start-page: 1 year: 2023 ident: 48630_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01412-4 – volume: 19 start-page: 2205680 year: 2023 ident: 48630_CR39 publication-title: Small doi: 10.1002/smll.202205680 – volume: 91 start-page: 053901 year: 2007 ident: 48630_CR64 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2767206 |
SSID | ssj0000391844 |
Score | 2.4862792 |
Snippet | Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is limited by... Abstract Electrokinetic force has been the major choice for driving the translocation of molecules through a nanopore. However, the use of this approach is... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5132 |
SubjectTerms | 631/57 639/925/927/1058 9/10 Centrifugal force Conformation Dwell time Electrochemistry Humanities and Social Sciences Inertial sensing devices multidisciplinary Photovoltaics Plasma etching Pore size Proteins Science Science (multidisciplinary) Sensitivity Signal to noise ratio Silicon Silicon wafers Translocation |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxQxDI5QpUpcEG8GShUkbhB1ZpJMkmNbtSpIcKJSOUV5wopttursHvrvcZLZpcvzwmmiyUOWYzu24nxG6DXveZReRmKHOBAweI5Y-EVMjAy84zYMBb74w8fh7Jy9v-AXt0p95ZywCg9cGXfQyzYKcAogLgis884w12ZAlTYGo1oZs_WFM-9WMFVsMFUQurDplUxL5cHIik2AI4kwOdCW8K2TqAD2_87L_DVZ8qcb03IQnd5H9yYPEh9Wyh-gOyE9RLu1puTNI_T5XSLLlQ34Mqfakauba3M58zBhnM1h1xNOJi3A6Q4Y3FWcn_6Bjs_JN2jBgnjMCe3pC15EnL9zWKcW0A3jY3R-evLp-IxM9ROI46xbEhuoi6HznJvO0sHyXlqIOLzy0Sg_RAuhGaXK0q5zUUiueuGsYrx30bEM3PYE7aRFCs8QFrEVIUgbocHAPholhbeDh3EGIrjYoG7NS-0mcPFc42KuyyU3lbryXwP_deG_5g16s5lzVaE1_jr6KG_RZmSGxS4_QFj0JCz6X8LSoL31ButJV0cNQZNkCgSGNejVphu0LF-dmBQWqzpGcAErNehplYcNJVTmgu0MZsstSdkidbsnzb4WJO-uAPC1okFv10L1g64_8-L5_-DFC3S3z9qQ6zDxPbSzvF6Fl-BgLe1-0aXvsjUgTQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLRXk1UFCQuIHVOLZj54QAdSlIcKJSOVl-lhVbZ9nsHvrvGTvZVMujp1h-yRnPjMf2-BuEXvGaB-lkwKYJDQaFZ7GBLKxDYGAdV77J8MVfvjanZ-zzOT8fD9z60a1yqxOzonadTWfkx2DaStbSlrC3y184RY1Kt6tjCI3b6A6BlSa5dMnZx-mMJaGfS8bGtzIVlcc9y5oBFibMZEMrzHfWowzb_y9b82-XyT_uTfNyNLuP9kc7snw3TPwBuuXjA3R3iCx59RB9_xTxemN8eZkc7vDyaqUv5w4a9PMFzH0so44dmN6-BKO1TA8AQdIX-CekoMOyT27t8aLsQpm-C-hnCKPr-0fobHby7cMpHqMoYMsZWWPjqQ2eOM41MbQxvJYG9h2udUG3rgkGNmiUtoYSYoOQvK2FNS3jtQ2WJfi2x2gvdtEfolKESngvTYAEAy2pWymcaRzU07CPCwUiW1oqO0KMp0gXC5WvuqlUA_0V0F9l-iteoNdTm-UAsHFj7fdpiqaaCRw7Z3SrCzXKmqplFQTYkbCV9Iw4q5mtEgZPFbxuKwnDPNpOsBoltlfX_FWgl1MxyFq6QNHRd5uhjuACeirQk4EfppFQmcK2M2gtdzhlZ6i7JXH-I-N5kwzDV4kCvdky1fW4_k-Lpzf_xjN0r058nuIs8SO0t15t_HMwoNbmRZaS34klGGM priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqOUZWpCRuIFFEtuxc1wQVVkJLlCpnCzbscuqW6fa7B767xk7D7TQVuopUTy2RuMZeyYef4PQO15yLxvpial8RWDBs8TAJ6K9Z-Ad565K8MXfvlcnp2x-xs92UDnehUlJ-wnSMi3TY3bYx44lk4YdhTBZ0ZzwB2gvQrWDbu_NZvMf8-nPSsQ8l4wNN2RyKm_ovLULJbD-mzzM_xMl_zktTZvQ8T56PHiPeNbze4B2XHiCHvb1JK-fol9fA1lvjMOXMc2OXF2v9OWigQ7dYgkzHnDQoQWH22FwVXG89gf2vSQX8AYD4i4ms4dz3Hocn0sYpy-e67pn6PT4y8_PJ2SonUAsZ8WaGEetd0XDuS4MrQwvpYFoo6kbr-um8gbCMkprQ4vCeiF5XQprasZL6y2LoG3P0W5og3uJsPC5cE4aDy8M1kZdS9GYqgE6DdGbz1AxylLZAVg81rdYqnTATaXq5a9A_irJX_EMvZ_6XPWwGndSf4pTNFFGSOz0oV2dq0FFVClzL8B7hADSsaKxmtk8Iu_k3uk6l8Dm0TjBarDTTkHAJFkNCsMy9HZqBguLxyY6uHbT0wguYKQMvej1YeKEylisnUFvuaUpW6xut4TF74TiXSTwvVxk6MOoVH_5ul0Wr-5HfogelVHvY7UlfoR216uNew1u1Nq8GezmD2fzF4Q priority: 102 providerName: Springer Nature |
Title | In-tube micro-pyramidal silicon nanopore for inertial-kinetic sensing of single molecules |
URI | https://link.springer.com/article/10.1038/s41467-024-48630-5 https://www.ncbi.nlm.nih.gov/pubmed/38879544 https://www.proquest.com/docview/3068493914 https://www.proquest.com/docview/3068757990 https://pubmed.ncbi.nlm.nih.gov/PMC11180207 https://doaj.org/article/280f7112899e41dca4c094990fea908f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjCpIvIEhie3YeUCoq1ZGpU0IqFSeotixR0XmbE0r0f-es5MUFQriJbHss3W63Nl3sX0_hF6whBlRCoNlalIME57CEqpwYQwF7zjSqU9ffH6Rnk3pZMZme6iHO-oE2OwM7Rye1HRRvf5xs34HBv-2vTIu3jTUmzusNpiKlESY7aNDWJm4QzQ479x9PzOTDAIat9GcRDTGQEC6ezS7h9laq3xK_11-6J_HKX_bU_VL1fguutP5mOGwVYp7aE_b--hWizq5foC-frB4uZI6vHKH8fD1elFczUvo0Mwr0Asb2sLWIBEdgkMbusuBMAtU-DuUYMCwcUfe7WVYm9C9KxinhdjVzUM0HZ9-GZ3hDmEBK0bjJZaaKKPjkrEiliSVLBESYpIyK02RlamRELwRkkkSx8pwwbKEK5lRliijqEvt9ggd2NrqJyjkJuJaC2mgQGEGLTLBS5mWQFdAjGcCFPeyzFWXftyhYFS53wYnIm_ln4P8cy__nAXo5abPdZt845_UJ-4TbShd4mxfUS8u884O80REhoOPCWGmpnGpCqoil58nMrrIIgFsHvcfOO-VMYewStAMlIcG6PmmGezQba4UVterloYzDiMF6HGrDxtOiHCQ7hR6iy1N2WJ1u8XOv_lc37FP0RfxAL3qleoXX3-XxdF_8PkU3U6csjsgJnaMDpaLlX4GHtZSDtA-n3F4ivH7ATocDiefJ_A-Ob34-AlqR-lo4P9dDLx5_QQ1yCY1 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KgSDBCawmsZ04B4R4Lbv0cWqlcnLjV1l16yybXaH9U_xGxk6y1fLoradEydhyxuPxN7H9DUIvWcYs19ximdscg8NTWMIjXFlLAR0nJg_0xfsH-fCIfj1mxxvoV38Wxm-r7H1icNS6Vv4f-Q5AW05LUqb03fQH9lmj_Opqn0KjNYtds_wJIVvzdvQJ-vdVlg0-H34c4i6rAFaMpnMsDVHWpJqxKpUklyzjEnC4LrWtSp1bCQELIaUkaapswVmZFUqWlGXKKurpzKDea-g6BRkf7PHBl9U_Hc-2zintzuYkhO80NHgimAgx5TlJMFub_0KagH9h27-3aP6xThumv8EddLvDrfH71tDuog3j7qEbbSbL5X30beTwfCFNfO43-OHpcladjzUUaMYTsDUXu8rVAPVNDCA59gcOwbNM8BncQYVx47fRu9O4trG_TqCeNm2vaR6goyvR70O06WpnHqO4sElhDJcWbih45arkhZa5BrkK4kYbobTXpVAdpbnPrDERYWmdcNHqX4D-RdC_YBF6vSozbQk9LpX-4LtoJenJuMODenYqurEtMp7YAnArhK6GplpVVCWe8yexpioTDs3c7jtYdB6iERf2HKEXq9cwtv2CTeVMvWhlClZATRF61NrDqiWE-zTxFErzNUtZa-r6Gzf-HvjD00D7lxQRetMb1UW7_q-Lrcs_4zm6OTzc3xN7o4PdJ-hW5m3e53hi22hzPluYpwDe5vJZGDExOrnqIfobaPVVeQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYIEJ7A2DztxDghR2lWXwqpCVConEzt2WbF1ls2u0P41fh3jvKrl0VtPsRzbcsYz45l4PB_AcxYxwwtuiExMQlDhKSKxiuTGULSOA53U6Ys_TpKDY_r-hJ1swa_uLowLq-x0Yq2oi1K5f-RDNG05zeIspEPThkUc7Y3ezH8QhyDlTlo7OI2GRQ71-ie6b9Xr8R6u9YsoGu1_fndAWoQBohgNl0TqWBkdFozloYwTySIu0SYvssLkWZEYic5LHGcyDkNlUs6yKFUyoyxSRlGX2gzHvQLbqfOKBrC9uz85-tT_4XG51zml7U2dIObDitZ6CbdFQnkSB4Rt7IY1aMC_LN2_Azb_OLWtN8PRTbjRWrH-24btbsGWtrfhaoNrub4DX8aWLFdS-2cu3I_M14v8bFpgh2o6Q86zvs1tiYa_9tFk9t31Q9QzM_IdSzigX7mgenvql8Z3zxmO04D46uouHF8Khe_BwJZWPwA_NUGqNZcGCxR1dJ7xtJBJge1y9CKNB2FHS6HaBOcOZ2Mm6oP2mIuG_gLpL2r6C-bBy77PvEnvcWHrXbdEfUuXmruuKBenopV0EfHApGjFoiOraVionKrAZQAKjM6zgOM0d7oFFq2-qMQ5d3vwrH-Nku6Ob3Kry1XTJmUpjuTB_YYf-pnE3IHGU-zNNzhlY6qbb-z0W51NPKyTAAapB686pjqf1_9p8fDiz3gK11A8xYfx5PARXI8cyzvAJ7YDg-VipR-jJbeUT1qR8eHrZUvpbxe5Wws |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In-tube+micro-pyramidal+silicon+nanopore+for+inertial-kinetic+sensing+of+single+molecules&rft.jtitle=Nature+communications&rft.au=Yang%2C+Jianxin&rft.au=Pan%2C+Tianle&rft.au=Xie%2C+Zhenming&rft.au=Yuan%2C+Wu&rft.date=2024-06-15&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5132&rft_id=info:doi/10.1038%2Fs41467-024-48630-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |