Novel theory and potential applications of central diastolic pressure decay time constant

Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As such, it is related to arterial stiffness, which has considerable pathophysiological releva...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 5913 - 9
Main Authors Bikia, Vasiliki, Segers, Patrick, Rovas, Georgios, Anagnostopoulos, Sokratis, Stergiopulos, Nikolaos
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-56137-8

Cover

Abstract Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant τ with the product T MBP cPP , given by heart period ( T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( cPP ). The relationship was derived by performing linear fitting on an in silico population of n 1  = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n 2  = 2263) from the large Asklepios study. The resulted expression was found to be τ = k ′ T MBP cPP , with k ′ = 0.7 (R 2  = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k ′ is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
AbstractList Abstract Central aortic diastolic pressure decay time constant ( $${\uptau }$$ τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( $$R$$ R ) times total arterial compliance ( $$C$$ C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant $${\uptau }$$ τ with the product $$T\frac{MBP}{{cPP}}$$ T MBP cPP , given by heart period ( $$T$$ T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( $$cPP$$ cPP ). The relationship was derived by performing linear fitting on an in silico population of n1 = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n2 = 2263) from the large Asklepios study. The resulted expression was found to be $${\uptau } = k^{\prime}T\frac{MBP}{{cPP}},$$ τ = k ′ T MBP cPP , with $$k^{\prime} = 0.7$$ k ′ = 0.7 (R2 = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference $${\uptau }$$ τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient $$k^{\prime}$$ k ′ is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between $${\uptau }$$ τ and central blood pressure features. In addition, it may allow for the evaluation of $${\uptau }$$ τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the $$cPP$$ cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
Central aortic diastolic pressure decay time constant (τ) is according to the two-element Windkessel model equal to the product of total peripheral resistance (R) times total arterial compliance (C). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant τ with the product TMBPcPP, given by heart period (T) times the ratio of mean blood pressure (MBP) to central pulse pressure (cPP). The relationship was derived by performing linear fitting on an in silico population of n1 = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n2 = 2263) from the large Asklepios study. The resulted expression was found to be τ=k′TMBPcPP, with k′=0.7 (R2 = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k′ is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
Central aortic diastolic pressure decay time constant ( $${\uptau }$$ τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( $$R$$ R ) times total arterial compliance ( $$C$$ C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant $${\uptau }$$ τ with the product $$T\frac{MBP}{{cPP}}$$ T MBP cPP , given by heart period ( $$T$$ T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( $$cPP$$ cPP ). The relationship was derived by performing linear fitting on an in silico population of n 1  = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n 2  = 2263) from the large Asklepios study. The resulted expression was found to be $${\uptau } = k^{\prime}T\frac{MBP}{{cPP}},$$ τ = k ′ T MBP cPP , with $$k^{\prime} = 0.7$$ k ′ = 0.7 (R 2  = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference $${\uptau }$$ τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient $$k^{\prime}$$ k ′ is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between $${\uptau }$$ τ and central blood pressure features. In addition, it may allow for the evaluation of $${\uptau }$$ τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the $$cPP$$ cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
Central aortic diastolic pressure decay time constant ( ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( ) times total arterial compliance ( ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant with the product , given by heart period ( ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( ). The relationship was derived by performing linear fitting on an in silico population of n  = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n  = 2263) from the large Asklepios study. The resulted expression was found to be with (R  = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between and central blood pressure features. In addition, it may allow for the evaluation of without the need for acquiring the entire central blood pressure wave, especially when an approximation of the is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
Central aortic diastolic pressure decay time constant ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\uptau }$$\end{document} τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} R ) times total arterial compliance ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\uptau }$$\end{document} τ with the product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\frac{MBP}{{cPP}}$$\end{document} T MBP cPP , given by heart period ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document} T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cPP$$\end{document} cPP ). The relationship was derived by performing linear fitting on an in silico population of n 1  = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n 2  = 2263) from the large Asklepios study. The resulted expression was found to be \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\uptau } = k^{\prime}T\frac{MBP}{{cPP}},$$\end{document} τ = k ′ T MBP cPP , with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\prime} = 0.7$$\end{document} k ′ = 0.7 (R 2  = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\uptau }$$\end{document} τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k^{\prime}$$\end{document} k ′ is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\uptau }$$\end{document} τ and central blood pressure features. In addition, it may allow for the evaluation of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\uptau }$$\end{document} τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cPP$$\end{document} cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant τ with the product T MBP cPP , given by heart period ( T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( cPP ). The relationship was derived by performing linear fitting on an in silico population of n1 = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n2 = 2263) from the large Asklepios study. The resulted expression was found to be τ = k ' T MBP cPP , with k ' = 0.7 (R2 = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k ' is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant τ with the product T MBP cPP , given by heart period ( T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( cPP ). The relationship was derived by performing linear fitting on an in silico population of n1 = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n2 = 2263) from the large Asklepios study. The resulted expression was found to be τ = k ' T MBP cPP , with k ' = 0.7 (R2 = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k ' is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral resistance ( R ) times total arterial compliance ( C ). As such, it is related to arterial stiffness, which has considerable pathophysiological relevance in the assessment of vascular health. This study aimed to investigate the relationship of the constant τ with the product T MBP cPP , given by heart period ( T ) times the ratio of mean blood pressure (MBP) to central pulse pressure ( cPP ). The relationship was derived by performing linear fitting on an in silico population of n 1  = 3818 virtual subjects, and was subsequently evaluated on in vivo data (n 2  = 2263) from the large Asklepios study. The resulted expression was found to be τ = k ′ T MBP cPP , with k ′ = 0.7 (R 2  = 0.9). The evaluation of the equation on the in vivo human data reported high agreement between the estimated and reference τ values, with a correlation coefficient equal to 0.94 and a normalized RMSE equal to 5.5%. Moreover, the analysis provided evidence that the coefficient k ′ is age- and gender-independent. The proposed formula provides novel theoretical insights in the relationship between τ and central blood pressure features. In addition, it may allow for the evaluation of τ without the need for acquiring the entire central blood pressure wave, especially when an approximation of the cPP is feasible. This study adds to the current literature by contributing to the accessibility of an additional biomarker, such as the central diastolic pressure decay time constant, for the improved assessment of vascular ageing.
ArticleNumber 5913
Author Anagnostopoulos, Sokratis
Bikia, Vasiliki
Stergiopulos, Nikolaos
Rovas, Georgios
Segers, Patrick
Author_xml – sequence: 1
  givenname: Vasiliki
  surname: Bikia
  fullname: Bikia, Vasiliki
  email: vickybikia@gmail.com
  organization: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology
– sequence: 2
  givenname: Patrick
  surname: Segers
  fullname: Segers, Patrick
  organization: IBiTech, University of Ghent
– sequence: 3
  givenname: Georgios
  surname: Rovas
  fullname: Rovas, Georgios
  organization: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology
– sequence: 4
  givenname: Sokratis
  surname: Anagnostopoulos
  fullname: Anagnostopoulos, Sokratis
  organization: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology
– sequence: 5
  givenname: Nikolaos
  surname: Stergiopulos
  fullname: Stergiopulos, Nikolaos
  organization: Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38467721$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1UREvpH-CAInHhErDHTmKfEKr4qFTBBQ6cLMeZbL3K2sH2Vtp_j3ezlLaH-mJr_LyvZzzzkpz44JGQ14y-Z5TLD0mwRsmagqiblvGuls_IGVDR1MABTu6dT8lFSmtaVgNKMPWCnHIp2q4DdkZ-fw-3OFX5BkPcVcYP1Rwy-uzMVJl5npw12QWfqjBWtsRjiQ_OpBzKVTVHTGkbsRrQml2V3QYrW-hsfH5Fno9mSnhx3M_Jry-ff15-q69_fL26_HRd20awXPcDlsxayaRBaejQdkB7y1EqJnjLRuyBtkKgGUFxRIEdKtsY3naSMsU7fk6uFt8hmLWeo9uYuNPBOH0IhLjSJmZnJ9SM0o6rFsH2IKClsueAoqcKePlT2xevj4vXvO03OBwLfmD68Ma7G70Kt8VZgWQNLw7vjg4x_NliynrjksVpMh7DNmlQpVuNAgYFffsIXYdt9OWv9lRTCKB76s39lO5y-dfCAsAC2BhSijjeIYzq_ajoZVR0GRV9GBUti0g-ElmXD50uZbnpaSlfpKm841cY_6f9hOov97rR2Q
CitedBy_id crossref_primary_10_1161_CIRCHEARTFAILURE_124_012016
Cites_doi 10.1007/BF02368245
10.1161/HYPERTENSIONAHA.106.085480
10.1016/j.amjhyper.2004.10.025
10.1161/01.HYP.0000166723.07809.7e
10.1152/ajpheart.00037.2009
10.1016/S0140-6736(86)90837-8
10.1161/01.res.3.6.623
10.1038/hr.2016.41
10.1016/S0140-6736(05)77948-4
10.1152/ajpheart.1998.274.2.H500
10.1038/s41598-020-72147-8
10.1007/BF02322413
10.1152/ajpheart.1995.268.4.H1540
10.1007/978-1-4419-6363-5
10.1097/HJH.0000000000001436
10.1161/01.RES.35.1.56
10.1016/j.amjhyper.2005.04.005
10.1152/japplphysiol.00117.2019
10.3389/fbioe.2021.649866
10.1038/s41598-023-37622-y
10.1152/jappl.1956.8.5.483
10.1152/ajpheart.00218.2019
10.1161/01.HYP.33.3.800
10.1002/ccd.20217
10.1097/01.hjh.0000573952.91074.62
10.1097/HJR.0b013e328012c380
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-56137-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 9
ExternalDocumentID oai_doaj_org_article_1007396e2cb242608b32e4b0923103cb
PMC10928153
38467721
10_1038_s41598_024_56137_8
Genre Journal Article
GrantInformation_xml – fundername: Innosuisse
  grantid: 56211.1 IP-LS
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-bde0006818ae8a0d6720bc3e8914361feb20644eaf293ee4e7e9c5a3678019373
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 00:18:00 EDT 2025
Thu Aug 21 18:35:02 EDT 2025
Thu Sep 04 20:43:27 EDT 2025
Wed Aug 13 08:42:27 EDT 2025
Thu Apr 03 07:03:38 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 00:51:34 EDT 2025
Fri Feb 21 02:38:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Windkessel effect
Central blood pressure
Vascular age
Arterial pulse wave
Asklepios study
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-bde0006818ae8a0d6720bc3e8914361feb20644eaf293ee4e7e9c5a3678019373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/1007396e2cb242608b32e4b0923103cb
PMID 38467721
PQID 2955123202
PQPubID 2041939
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_1007396e2cb242608b32e4b0923103cb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10928153
proquest_miscellaneous_2956159212
proquest_journals_2955123202
pubmed_primary_38467721
crossref_primary_10_1038_s41598_024_56137_8
crossref_citationtrail_10_1038_s41598_024_56137_8
springer_journals_10_1038_s41598_024_56137_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-11
PublicationDateYYYYMMDD 2024-03-11
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Razminia (CR23) 2004; 63
Verbeke, Segers, Heireman, Vanholder, Verdonck, Van Bortel (CR15) 2005; 46
Tagawa, Takahashi, Yokota, Sato, Maeda (CR26) 2019; 127
Kroeker, Wood (CR1) 1956; 8
Bourgeois, Gilbert, Donald, Wood (CR8) 1974; 35
Rietzschel (CR12) 2007; 14
Gauer (CR21) 1960; 1960
Bikia, Rovas, Anagnostopoulos, Stergiopulos (CR28) 2023; 13
de Simone, Roman, Koren, Mensah, Ganau, Devereux (CR17) 1999; 33
Kroeker, Wood (CR2) 1955; 3
Izzo, Anwar, Elsayed, Osmond, Gavish (CR6) 2019; 37
Stergiopulos, Meister, Westerhof (CR9) 1995; 268
Chemla, Nitenberg (CR24) 2005; 18
Reymond, Merenda, Perren, Rüfenacht, Stergiopulos (CR11) 2009; 297
Stergiopulos, Meister, Westerhof (CR16) 1994; 22
Bland, Altman (CR19) 1986; 1
Bikia, Rovas, Pagoulatou, Stergiopulos (CR10) 2021; 9
Westerhof, Stergiopulos, Noble (CR3) 2010
Hashimoto, Ito (CR7) 2017; 35
Chemla (CR18) 1998; 274
Segers (CR14) 2007; 49
Nichols, O’Rourke, Vlachopoulos (CR4) 2011
Wezler, Böger (CR20) 1939; 41
Bikia (CR27) 2020; 10
Papaioannou (CR25) 2016; 39
Chemla, Hébert, Zamani, Coimult, Lecarpentier (CR22) 1999; 354
Segers (CR13) 2005; 18
Charlton (CR5) 2019; 317
N Westerhof (56137_CR3) 2010
D Chemla (56137_CR18) 1998; 274
EJ Kroeker (56137_CR1) 1956; 8
E-R Rietzschel (56137_CR12) 2007; 14
J Izzo (56137_CR6) 2019; 37
M Razminia (56137_CR23) 2004; 63
MJ Bourgeois (56137_CR8) 1974; 35
PH Charlton (56137_CR5) 2019; 317
P Segers (56137_CR14) 2007; 49
O Gauer (56137_CR21) 1960; 1960
P Reymond (56137_CR11) 2009; 297
V Bikia (56137_CR28) 2023; 13
WW Nichols (56137_CR4) 2011
N Stergiopulos (56137_CR16) 1994; 22
J Hashimoto (56137_CR7) 2017; 35
D Chemla (56137_CR22) 1999; 354
V Bikia (56137_CR27) 2020; 10
V Bikia (56137_CR10) 2021; 9
N Stergiopulos (56137_CR9) 1995; 268
D Chemla (56137_CR24) 2005; 18
TG Papaioannou (56137_CR25) 2016; 39
P Segers (56137_CR13) 2005; 18
G de Simone (56137_CR17) 1999; 33
EJ Kroeker (56137_CR2) 1955; 3
K Wezler (56137_CR20) 1939; 41
JM Bland (56137_CR19) 1986; 1
F Verbeke (56137_CR15) 2005; 46
K Tagawa (56137_CR26) 2019; 127
References_xml – volume: 22
  start-page: 392
  issue: 4
  year: 1994
  end-page: 397
  ident: CR16
  article-title: Simple and accurate way for estimating total and segmental arterial compliance: The pulse pressure method
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02368245
– volume: 49
  start-page: 1248
  issue: 6
  year: 2007
  end-page: 1255
  ident: CR14
  article-title: Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.106.085480
– volume: 18
  start-page: 891
  issue: 6
  year: 2005
  end-page: 891
  ident: CR24
  article-title: A call for improving mean aortic pressure estimation
  publication-title: Am. J. Hypertens.
  doi: 10.1016/j.amjhyper.2004.10.025
– volume: 46
  start-page: 244
  issue: 1
  year: 2005
  end-page: 248
  ident: CR15
  article-title: Noninvasive assessment of local pulse pressure: Importance of brachial-to-radial pressure amplification
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000166723.07809.7e
– volume: 297
  start-page: H208
  issue: 1
  year: 2009
  end-page: 222
  ident: CR11
  article-title: Validation of a one-dimensional model of the systemic arterial tree
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00037.2009
– volume: 1
  start-page: 307
  issue: 8476
  year: 1986
  end-page: 310
  ident: CR19
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 3
  start-page: 623
  issue: 6
  year: 1955
  end-page: 632
  ident: CR2
  article-title: Comparison of simultaneously recorded central and peripheral arterial pressure pulses during rest, exercise and tilted position in man
  publication-title: Circ. Res.
  doi: 10.1161/01.res.3.6.623
– volume: 39
  start-page: 640
  issue: 9
  year: 2016
  end-page: 647
  ident: CR25
  article-title: Mean arterial pressure values calculated using seven different methods and their associations with target organ deterioration in a single-center study of 1878 individuals
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2016.41
– volume: 354
  start-page: 596
  issue: 9178
  year: 1999
  ident: CR22
  article-title: Estimation of mean aortic pressure
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(05)77948-4
– volume: 274
  start-page: H500
  issue: 2
  year: 1998
  end-page: H505
  ident: CR18
  article-title: Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1998.274.2.H500
– volume: 10
  start-page: 15015
  issue: 1
  year: 2020
  ident: CR27
  article-title: Noninvasive estimation of aortic hemodynamics and cardiac contractility using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72147-8
– volume: 41
  start-page: 292
  issue: 1
  year: 1939
  end-page: 606
  ident: CR20
  article-title: Die dynamik des arteriellen systems: Der arterielle Blutdruck und seine Komponenten
  publication-title: Ergebnisse Physiol. Exp. Pharmakol.
  doi: 10.1007/BF02322413
– volume: 268
  start-page: H1540
  issue: 4
  year: 1995
  end-page: H1548
  ident: CR9
  article-title: Evaluation of methods for estimation of total arterial compliance
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1995.268.4.H1540
– year: 2010
  ident: CR3
  publication-title: Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education
  doi: 10.1007/978-1-4419-6363-5
– volume: 35
  start-page: 2034
  issue: 10
  year: 2017
  end-page: 2043
  ident: CR7
  article-title: Central diastolic pressure decay mediates the relationship between aortic stiffness and myocardial viability: Potential implications for aortosclerosis-induced myocardial ischemia
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000001436
– volume: 1960
  start-page: 125
  year: 1960
  ident: CR21
  article-title: Kreislauf des Blutes
  publication-title: Lehrbuch Physiol. Menschen
– volume: 35
  start-page: 56
  issue: 1
  year: 1974
  end-page: 66
  ident: CR8
  article-title: Characteristics of aortic diastolic pressure decay with application to the continuous monitoring of changes in peripheral vascular resistance
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.35.1.56
– volume: 18
  start-page: 1168
  issue: 9
  year: 2005
  end-page: 1173
  ident: CR13
  article-title: Carotid tonometry versus synthesized aorta pressure waves for the estimation of central systolic blood pressure and augmentation index
  publication-title: Am. J. Hypertens.
  doi: 10.1016/j.amjhyper.2005.04.005
– volume: 127
  start-page: 737
  issue: 3
  year: 2019
  end-page: 744
  ident: CR26
  article-title: Aortic diastolic pressure decay modulates relation between worsened aortic stiffness and myocardial oxygen supply/demand balance after resistance exercise
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00117.2019
– volume: 9
  start-page: 649866
  year: 2021
  ident: CR10
  article-title: Determination of aortic characteristic impedance and total arterial compliance from regional pulse wave velocities using machine learning: An in-silico study
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.649866
– volume: 13
  start-page: 10775
  issue: 1
  year: 2023
  ident: CR28
  article-title: On the similarity between aortic and carotid pressure diastolic decay: A mathematical modelling study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37622-y
– volume: 8
  start-page: 483
  issue: 5
  year: 1956
  end-page: 494
  ident: CR1
  article-title: Beat-to-beat alterations in relationship of simultaneously recorded central and peripheral arterial pressure pulses during Valsalva Maneuver and prolonged expiration in man
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1956.8.5.483
– volume: 317
  start-page: H1062
  issue: 5
  year: 2019
  end-page: H1085
  ident: CR5
  article-title: Modeling arterial pulse waves in healthy aging: A database for in silico evaluation of hemodynamics and pulse wave indexes
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00218.2019
– volume: 33
  start-page: 800
  issue: 3
  year: 1999
  end-page: 805
  ident: CR17
  article-title: Stroke volume/pulse pressure ratio and cardiovascular risk in arterial hypertension
  publication-title: Hypertension
  doi: 10.1161/01.HYP.33.3.800
– volume: 63
  start-page: 419
  issue: 4
  year: 2004
  end-page: 425
  ident: CR23
  article-title: Validation of a new formula for mean arterial pressure calculation: The new formula is superior to the standard formula
  publication-title: Cathet. Cardio. Intervent.
  doi: 10.1002/ccd.20217
– year: 2011
  ident: CR4
  publication-title: McDonald’s Blood Flow in Arteries
– volume: 37
  start-page: e317
  year: 2019
  ident: CR6
  article-title: Implications of diastolic pressure-decay differences in the radial and carotid arteries
  publication-title: J. Hypertens.
  doi: 10.1097/01.hjh.0000573952.91074.62
– volume: 14
  start-page: 179
  issue: 2
  year: 2007
  end-page: 191
  ident: CR12
  article-title: Rationale, design, methods and baseline characteristics of the Asklepios Study
  publication-title: Eur. J. Cardiovasc. Prev. Rehabil.
  doi: 10.1097/HJR.0b013e328012c380
– volume: 1960
  start-page: 125
  year: 1960
  ident: 56137_CR21
  publication-title: Lehrbuch Physiol. Menschen
– volume: 22
  start-page: 392
  issue: 4
  year: 1994
  ident: 56137_CR16
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02368245
– volume: 39
  start-page: 640
  issue: 9
  year: 2016
  ident: 56137_CR25
  publication-title: Hypertens. Res.
  doi: 10.1038/hr.2016.41
– volume: 46
  start-page: 244
  issue: 1
  year: 2005
  ident: 56137_CR15
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000166723.07809.7e
– volume: 297
  start-page: H208
  issue: 1
  year: 2009
  ident: 56137_CR11
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00037.2009
– volume: 49
  start-page: 1248
  issue: 6
  year: 2007
  ident: 56137_CR14
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.106.085480
– volume: 127
  start-page: 737
  issue: 3
  year: 2019
  ident: 56137_CR26
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00117.2019
– volume: 35
  start-page: 2034
  issue: 10
  year: 2017
  ident: 56137_CR7
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0000000000001436
– volume: 10
  start-page: 15015
  issue: 1
  year: 2020
  ident: 56137_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72147-8
– volume: 274
  start-page: H500
  issue: 2
  year: 1998
  ident: 56137_CR18
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1998.274.2.H500
– volume: 8
  start-page: 483
  issue: 5
  year: 1956
  ident: 56137_CR1
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1956.8.5.483
– volume: 13
  start-page: 10775
  issue: 1
  year: 2023
  ident: 56137_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-37622-y
– volume-title: Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education
  year: 2010
  ident: 56137_CR3
  doi: 10.1007/978-1-4419-6363-5
– volume: 37
  start-page: e317
  year: 2019
  ident: 56137_CR6
  publication-title: J. Hypertens.
  doi: 10.1097/01.hjh.0000573952.91074.62
– volume: 1
  start-page: 307
  issue: 8476
  year: 1986
  ident: 56137_CR19
  publication-title: Lancet
  doi: 10.1016/S0140-6736(86)90837-8
– volume: 317
  start-page: H1062
  issue: 5
  year: 2019
  ident: 56137_CR5
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00218.2019
– volume: 9
  start-page: 649866
  year: 2021
  ident: 56137_CR10
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.649866
– volume: 63
  start-page: 419
  issue: 4
  year: 2004
  ident: 56137_CR23
  publication-title: Cathet. Cardio. Intervent.
  doi: 10.1002/ccd.20217
– volume-title: McDonald’s Blood Flow in Arteries
  year: 2011
  ident: 56137_CR4
– volume: 33
  start-page: 800
  issue: 3
  year: 1999
  ident: 56137_CR17
  publication-title: Hypertension
  doi: 10.1161/01.HYP.33.3.800
– volume: 3
  start-page: 623
  issue: 6
  year: 1955
  ident: 56137_CR2
  publication-title: Circ. Res.
  doi: 10.1161/01.res.3.6.623
– volume: 18
  start-page: 891
  issue: 6
  year: 2005
  ident: 56137_CR24
  publication-title: Am. J. Hypertens.
  doi: 10.1016/j.amjhyper.2004.10.025
– volume: 18
  start-page: 1168
  issue: 9
  year: 2005
  ident: 56137_CR13
  publication-title: Am. J. Hypertens.
  doi: 10.1016/j.amjhyper.2005.04.005
– volume: 354
  start-page: 596
  issue: 9178
  year: 1999
  ident: 56137_CR22
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(05)77948-4
– volume: 35
  start-page: 56
  issue: 1
  year: 1974
  ident: 56137_CR8
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.35.1.56
– volume: 41
  start-page: 292
  issue: 1
  year: 1939
  ident: 56137_CR20
  publication-title: Ergebnisse Physiol. Exp. Pharmakol.
  doi: 10.1007/BF02322413
– volume: 268
  start-page: H1540
  issue: 4
  year: 1995
  ident: 56137_CR9
  publication-title: Am. J. Physiol.-Heart Circ. Physiol.
  doi: 10.1152/ajpheart.1995.268.4.H1540
– volume: 14
  start-page: 179
  issue: 2
  year: 2007
  ident: 56137_CR12
  publication-title: Eur. J. Cardiovasc. Prev. Rehabil.
  doi: 10.1097/HJR.0b013e328012c380
SSID ssj0000529419
Score 2.424177
Snippet Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral...
Central aortic diastolic pressure decay time constant ( $${\uptau }$$ τ ) is according to the two-element Windkessel model equal to the product of total...
Central aortic diastolic pressure decay time constant ( ) is according to the two-element Windkessel model equal to the product of total peripheral resistance...
Central aortic diastolic pressure decay time constant (τ) is according to the two-element Windkessel model equal to the product of total peripheral resistance...
Central aortic diastolic pressure decay time constant ( τ ) is according to the two-element Windkessel model equal to the product of total peripheral...
Central aortic diastolic pressure decay time constant ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}...
Abstract Central aortic diastolic pressure decay time constant ( $${\uptau }$$ τ ) is according to the two-element Windkessel model equal to the product of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5913
SubjectTerms 639/166/985
692/53/2421
Aging
Aorta
Aorta - physiology
Arterial Pressure
Arterial pulse wave
Arteries - physiology
Asklepios study
Blood pressure
Blood Pressure - physiology
Central blood pressure
Correlation coefficient
Decay
Humanities and Social Sciences
Humans
multidisciplinary
Science
Science (multidisciplinary)
Vascular age
Vascular Resistance
Vascular Stiffness
Windkessel effect
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxUxFA5SKLgRra_RKhHc6dDJY26SpZaWItiVhboKSeYMCmWmtHOF--89J5l7vdfnxu0kYQ4nJ_m-cF6MvXZSdrYJuhYi6lr3Rte2DX2tIOjUgTQWKBv54_ni7EJ_uGwvt1p9UUxYKQ9cFHcksi9pATJFQpPGRiVBxyYTE5Ui3b6Na7YeU6Wqt3RauDlLplH26BaRirLJpK6JM-PVvINEuWD_71jmr8GSP3lMMxCd3mf3ZgbJ3xXJH7A7MByw_dJTcvWQfT4fv8EVzwmKKx6Gjl-PE4UE4ZptbzUfez7_jKONIAfEIZ7DYpc3wDtIYcWp8zxPhUJOj9jF6cmn47N67p9Qp1aLqY4dEBohJAewoekWRjYxKbAOSdJC9PioRkKiIfSI-QAaDLjUBoX4hcRPGfWY7Q3jAE8ZN1TZrDVd50zSSRl8tbXW9SBUF3CzY8XEWpc-zcXFqcfFlc9ObmV90b9H_fusf28r9maz5rqU1vjr7Pe0RZuZVBY7f0Bj8bOx-H8ZS8UO1xvs57N666VD1iipj3zFXm2G8ZSR6yQMMC7zHKR-DnG-Yk-KPWwkUUTh8CFdMbtjKTui7o4MX7_kSt4CJbOIORV7uzaqH3L9WRfP_ocunrO7kk4DxSaKQ7Y33SzhBRKsKb7MZ-k76QAd6Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96h-CL-G31lAi-abk2STfpk3hyxyG4iHhwPoU0mXrC0a67XWH_e2fSbM_1416blE4nk_x-yUxmGHtVCxFM4VRelo3KVatVbirX5hKc8gGENkC3kT_OZ6dn6sN5dZ4O3FYprHK7JsaFOvSezsgPRY3YLqja99vFj5yqRpF3NZXQuMn2cQk2aOf7R8fzT5-nUxbyY6myTrdlCmkOV4hYdKtMqJy4My7RO4gUE_f_i23-HTT5h-c0AtLJXXYnMUn-bhz6e-wGdPfZrbG25OYB-zrvf8IljxcVN9x1gS_6gUKD8J3fvda8b3n6GEdbQS6ITTyGx66XwAN4t-FUgZ77kUoOD9nZyfGX96d5qqOQ-0qVQ94EIFRCaHZgXBFmWhSNl2BqJEuzssXNNRITBa5F7AdQoKH2lZOIY0gApZaP2F7Xd_CEcU0ZziodQq298lLj7q0ydQulDA4HvclYudWl9SnJONW6uLTR2S2NHfVvUf826t-ajL2e3lmMKTau7X1EQzT1pPTY8UG__GbTbIuJmGU9A-EboiCFaaQA1RSRzUqPYh5sB9imObuyVxaWsZdTM842cqG4Dvp17IMUsEZjy9jj0R4mSSRROdxQZ8zsWMqOqLst3feLmNG7RMkMYk_G3myN6kqu_-vi6fW_8YzdFmTnFH1YHrC9YbmG50ihhuZFmie_AEntGFc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_MOwRfxPlZnSOCb1psk_QmebyKY1xwLzqYTyFNTlUY7dg64f73nqQfenUO9tok9HBy0t8vPV8Arw3nQRdO5mVZy1w2Sua6ck0u0EkfkCuNMRv50_Hy6ESuT6vTHeBTLkwK2k8lLdNneooOe3dJQBOTwbjMI-WlL-sd2NUEf3wBu6vV-vN6_rMSfVeyNGOGTCH0NYu3UCgV67-OYf4bKPmXtzSB0OEDuD-yR7Ya5N2DHWwfwt2hn-TmEXw97n7iGUvJiRvm2sDOuz6GA9GaPz3VrGvY-DJG9kH8j4ZYCokllbCA3m1Y7DrP_EAf-8dwcvjxy4ejfOydkPtKln1eB4xIRHDsULsiLBUvai9QGyJIy7KhCzWREYmuIbxHlKjQ-MoJwi4ifUKJJ7BouxafAVOxqlmlQjDKSy8U3dgqbRosRXC00XUG5aRL68fC4rG_xZlNDm6h7aB_S_q3Sf9WZ_BmXnM-lNW4cfb7uEXzzFgSOz3oLr7Z0URS8WVhlsh9HWlHoWvBUdZFYrDCk5j70wbb8ZxeWm6IMfLYQz6DV_MwnbDoNnEtdldpDtE-QxifwdPBHmZJRKRvdInOQG9Zypao2yPtj--pindJkmnCmwzeTkb1W67_6-L57aa_gHs82n2MQCz3YdFfXOFLolF9fTCem1_AbxZG
  priority: 102
  providerName: Springer Nature
Title Novel theory and potential applications of central diastolic pressure decay time constant
URI https://link.springer.com/article/10.1038/s41598-024-56137-8
https://www.ncbi.nlm.nih.gov/pubmed/38467721
https://www.proquest.com/docview/2955123202
https://www.proquest.com/docview/2956159212
https://pubmed.ncbi.nlm.nih.gov/PMC10928153
https://doaj.org/article/1007396e2cb242608b32e4b0923103cb
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7th0B7QfwmMCoj8QaBxHZi5wGhrto0VVqFgErlKXKcy0CqktG1iP73nJ2kUOh4qhTb6sn3Od_n2HcH8DLjvNSRkWEcFzKUlZKhTkwVCjTSlsiVRheNfDFJz6dyPEtme9CXO-om8Hrn1s7Vk5ou5m9-fl-_pwX_rg0Z12-viYRcoBiXoZPD9Nbdh0NiptRtxi46ud_m-uaZjLMudmb30CO4LRwnKx5vUZXP6L9Lhv57m_KvI1XPVGd34U4nMdmwxcQ92MP6Ptxqi06uH8CXSfMD58xHMK6ZqUt21SzdnSEa8-dxNmsq1v0ZIxCRSKQm5u_NrhbISrRmzVxpemZbjbl8CNOz08-j87ArsBDaRMbLsCjR0RVxtkFtojJVPCqsQJ2RikrjinbdpFgkmopEAaJEhZlNjCCCI2UolHgEB3VT4xNgyqU-S1RZZspKKxRt6xKdVRiL0hAaigDifi5z22Ufd0Uw5rk_BRc6b12Rkyty74pcB_BqM-aqzb3x394nzkWbni5vtn_QLC7zbhn6DM0iS5HbwmmTSBeCoywiL3OFJTOPewfnPRZznpGs5K7QfAAvNs20DN3ZiqmxWfk-pA0zEgIBPG7xsLGkx1MAegspW6Zut9TfvvpU3zFZpomUAnjdg-q3XTfPxdMbbXgGR9yh3d1IjI_hYLlY4XOSVctiAPtqpgZwOByOP43p9-R08uEjPR2lo4H_VDHwq-kXTHIgBw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4ia2M7GOSBEodWWtiuEWqmcguNMAKlKlu4uaP8Uv5EZJ9myPHrrNXaSyXg88znzAniaSVmayOowjgsd6irVoUlsFSq02pUoU4OcjXwwHo6O9Lvj5HgNfva5MBxW2etEr6jLxvE_8k2ZkW2X3O371eRbyF2j2Lvat9BoxWIPFz_oyDZ9ufuW1veZlDvbh29GYddVIHSJjmdhUSLraDJUFo2NymEqo8IpNBlBh2Fc0VGTzLRGW5ElRNSYYuYSq0irExxSqaLnXoJ1zRmtA1jf2h6__7D8q8N-Mx1nXXZOpMzmlCwkZ7FJHTJWJ5OwYgF9o4B_odu_gzT_8NR6A7hzHa51yFW8bkXtBqxhfRMut70sF7fg47j5jifCJ0YuhK1LMWlmHIpE9_zuJRdNJbqXCZJNwp40JHw47vwURYnOLgR3vBeuha6z23B0IRy-A4O6qfEeiJQrqiVpWWap006ldFpMTFZhrEpLQlYEEPe8zF1X1Jx7a5zk3rmuTN7yPyf-557_uQng-fKeSVvS49zZW7xEy5lcjttfaE4_593u9oWfVTZE6QqGPJEplERdRB49K0dkbvQLnHc6YpqfSXQAT5bDtLvZZWNrbOZ-DkHOjPBFAHdbeVhSohg60gE-ALMiKSukro7UX7_4CuIxUWbI1gXwoheqM7r-z4v753_GY7gyOjzYz_d3x3sP4KpkmefIx3gDBrPTOT4k-DYrHnV7RsCni96mvwBdU1RG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Bi767j9QEhShu1FKIKUamc3PV6TCu1dkgcUP4av47Z9aOER2-9ZtfJZHYe33peAM8TznMVaOmHYSZ9WcTSV5EufIFamhx5rNBWI3-cjHYO5PvD6HANfna1MDatsrOJzlDnlbHvyIc8Id_O7bTvYdGmRexvjd9Mv_l2gpSNtHbjNBoR2cPlD7q-zV_vbtFZv-B8vP353Y7fThjwTSTD2s9ytPaanJZGpYN8FPMgMwJVQjBiFBZ07SSXLVEX5BURJcaYmEgLsvAEjUQs6HuvwHpMXlEOYH1ze7L_qX_DY2NoMkzaSp1AqOGcvKWtaOPSt7id3MOKN3RDA_6FdP9O2Pwjauuc4fgm3GhRLHvbiN0tWMPyNlxt5lou78CXSfUdT5krklwyXeZsWtU2LYme-T1izqqCtT_GSE4Jh9ISc6m5ixmyHI1esvrkDJlpYGx9Fw4uhcP3YFBWJT4AFtvualGc50lspBEx3RwjlRQYilyTwGUehB0vU9M2OLdzNk5TF2gXKm34nxL_U8f_VHnwsn9m2rT3uHD3pj2ifqdtze0-qGZf01bTXRNokYyQm8zCn0BlgqPMAoekhSEyN7oDTlt7MU_PpduDZ_0yaboN3-gSq4XbQ_AzIazhwf1GHnpKhIWRdJn3QK1IygqpqyvlybHrJh4SZYr8ngevOqE6p-v_vHh48d94CtdIPdMPu5O9R3CdW5G3SZDhBgzq2QIfE5KrsyetyjA4umwt_QVGpVhy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+theory+and+potential+applications+of+central+diastolic+pressure+decay+time+constant&rft.jtitle=Scientific+reports&rft.au=Bikia%2C+Vasiliki&rft.au=Segers%2C+Patrick&rft.au=Rovas%2C+Georgios&rft.au=Anagnostopoulos%2C+Sokratis&rft.date=2024-03-11&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=5913&rft_id=info:doi/10.1038%2Fs41598-024-56137-8&rft_id=info%3Apmid%2F38467721&rft.externalDocID=38467721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon