Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions

Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 28; no. 24; pp. 6211 - 6219
Main Authors Alvarez, Ruben P, Biggs, Arter, Chen, Gang, Pine, Daniel S, Grillon, Christian
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 11.06.2008
Society for Neuroscience
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.
AbstractList Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.
Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.
Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT−) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT−. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT− significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.
Author Alvarez, Ruben P
Grillon, Christian
Pine, Daniel S
Biggs, Arter
Chen, Gang
Author_xml – sequence: 1
  fullname: Alvarez, Ruben P
– sequence: 2
  fullname: Biggs, Arter
– sequence: 3
  fullname: Chen, Gang
– sequence: 4
  fullname: Pine, Daniel S
– sequence: 5
  fullname: Grillon, Christian
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18550763$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFv1BlBasMfsXOIIRUjVqmqKISULG0bmxnxshxgp0w9N_jaEp5bGBl2fd8R8f3nKCj0AeL0BnBS1JR9vLd-4vbDzcf11dLQrkocb2kGNeP0CJPVyXlmByhBaYSl4JLfoxOUvqCMZaYyCfomNRVhaVgC_R53YfRfh8n8MWlhVjku3Gj64ML28KFYjN1ENKr_B5Hp8GXGzcMvYZuyAQEU5x3d1sDHmZyjK6ZZjg9RY9b8Mk-uz9P0e3lxaf1pry-eXu1Pr8udcXJWDamwY0GLWlLuG7MylKLgTHCW8Y4cG5YTRopqQZmiBRNxbSARmpjbAtMslP05uA7TE1njbY5A3g1RNdBvFM9OPXnJLid2vbfFOWyEnyVDZ7fG8T-62TTqDqXtPUegu2npCQRksn_EFIsaylWdRae_R7pIcvPpWeBOAh07FOKtv0lwWpuVz20q-Z2Fa7V3G4GX_8FajfCvO_8Nef_jb844Du33e1dtCp14H2OSdR-v6dZxpWghLAfEy28JA
CitedBy_id crossref_primary_10_1093_sleep_zsy188
crossref_primary_10_3390_bs13060479
crossref_primary_10_1016_j_ijpsycho_2014_10_016
crossref_primary_10_1016_j_neubiorev_2019_05_020
crossref_primary_10_3389_fpsyt_2023_1239697
crossref_primary_10_1017_S0033291719001387
crossref_primary_10_1111_j_1528_1167_2008_01883_x
crossref_primary_10_1016_j_biopsycho_2017_07_023
crossref_primary_10_1080_15427560_2014_942865
crossref_primary_10_3389_fnins_2018_00337
crossref_primary_10_1016_j_npep_2014_09_004
crossref_primary_10_1002_hbm_22837
crossref_primary_10_3389_fnmol_2018_00037
crossref_primary_10_1111_gbb_12181
crossref_primary_10_1371_journal_pone_0079025
crossref_primary_10_1007_s12035_018_1463_4
crossref_primary_10_1038_s41386_024_01825_2
crossref_primary_10_1016_j_nlm_2018_03_012
crossref_primary_10_1523_ENEURO_0163_20_2020
crossref_primary_10_1016_j_neubiorev_2019_09_020
crossref_primary_10_1002_hbm_22940
crossref_primary_10_1093_scan_nsu140
crossref_primary_10_31887_DCNS_2010_12_4_raupperle
crossref_primary_10_1016_j_neuroscience_2018_01_037
crossref_primary_10_1002_da_22156
crossref_primary_10_1038_nn_4111
crossref_primary_10_1002_brb3_1973
crossref_primary_10_1111_cpsp_12003
crossref_primary_10_1016_j_neuropsychologia_2010_11_018
crossref_primary_10_1038_s41398_022_01791_7
crossref_primary_10_1111_nmo_12710
crossref_primary_10_1093_scan_nsu018
crossref_primary_10_1016_j_bpsgos_2024_100419
crossref_primary_10_1038_s41531_023_00547_4
crossref_primary_10_1016_j_neubiorev_2022_104988
crossref_primary_10_1371_journal_pone_0095279
crossref_primary_10_1038_nn_3262
crossref_primary_10_3758_s13428_013_0322_5
crossref_primary_10_1515_REVNEURO_2010_21_1_1
crossref_primary_10_3389_fnbeh_2014_00329
crossref_primary_10_3389_fpsyg_2019_02140
crossref_primary_10_1016_j_pain_2011_07_014
crossref_primary_10_1016_j_jneumeth_2010_11_005
crossref_primary_10_1038_s41467_020_19167_0
crossref_primary_10_1080_02699931_2016_1237349
crossref_primary_10_1016_j_brat_2009_06_011
crossref_primary_10_1016_j_bbr_2022_114258
crossref_primary_10_1016_j_neulet_2016_11_014
crossref_primary_10_1111_j_1365_2842_2009_01947_x
crossref_primary_10_1586_ern_11_189
crossref_primary_10_1152_jn_00611_2013
crossref_primary_10_1038_s41598_017_08184_7
crossref_primary_10_3389_fnins_2015_00375
crossref_primary_10_1016_j_bbr_2024_115119
crossref_primary_10_3389_fnsys_2015_00101
crossref_primary_10_1016_j_jpsychires_2012_04_015
crossref_primary_10_1080_02699931_2018_1507998
crossref_primary_10_1016_j_bpsc_2016_08_005
crossref_primary_10_1016_j_brainres_2009_11_064
crossref_primary_10_1002_hbm_24779
crossref_primary_10_1016_j_neuroscience_2018_10_042
crossref_primary_10_1007_s00221_021_06248_9
crossref_primary_10_1016_j_biopsych_2008_12_028
crossref_primary_10_3389_fpsyt_2019_00117
crossref_primary_10_3758_s13415_018_00670_3
crossref_primary_10_1371_journal_pone_0032413
crossref_primary_10_1016_j_biopsycho_2021_108167
crossref_primary_10_1016_j_ijpsycho_2015_06_009
crossref_primary_10_1016_j_cortex_2014_09_014
crossref_primary_10_1016_j_ynstr_2024_100677
crossref_primary_10_1111_ejn_12057
crossref_primary_10_31857_S0044467724020028
crossref_primary_10_1016_j_neuroscience_2009_11_004
crossref_primary_10_1016_j_neuropsychologia_2010_07_030
crossref_primary_10_1038_s41386_019_0445_1
crossref_primary_10_3389_fpsyg_2022_944838
crossref_primary_10_1016_j_cobeha_2020_06_011
crossref_primary_10_1093_ijnp_pyy078
crossref_primary_10_1016_j_neuroimage_2012_06_008
crossref_primary_10_1026_1616_3443_a000658
crossref_primary_10_1016_j_pneurobio_2015_12_006
crossref_primary_10_3390_brainsci11020276
crossref_primary_10_1016_j_ijpsycho_2010_01_012
crossref_primary_10_1016_j_yfrne_2016_04_001
crossref_primary_10_1002_glia_23975
crossref_primary_10_1002_hbm_23113
crossref_primary_10_1016_j_jocn_2025_111151
crossref_primary_10_1186_s12915_017_0463_6
crossref_primary_10_1016_j_neuroscience_2011_11_064
crossref_primary_10_1016_j_neuroimage_2013_03_001
crossref_primary_10_1111_adb_12835
crossref_primary_10_1177_0003065111427724
crossref_primary_10_1007_s00429_019_01887_9
crossref_primary_10_1038_npp_2009_83
crossref_primary_10_1016_j_ijpsycho_2018_01_002
crossref_primary_10_1176_foc_9_3_foc311
crossref_primary_10_1016_j_bbr_2014_06_002
crossref_primary_10_1016_j_ijpsycho_2015_05_005
crossref_primary_10_1016_j_yebeh_2019_106831
crossref_primary_10_1002_hbm_22253
crossref_primary_10_1016_j_yfrne_2017_06_001
crossref_primary_10_1073_pnas_1318954111
crossref_primary_10_1080_13554794_2022_2160262
crossref_primary_10_1002_hipo_22359
crossref_primary_10_1038_s41598_017_18183_3
crossref_primary_10_1002_da_22518
crossref_primary_10_1038_npp_2014_179
crossref_primary_10_1152_jn_00318_2018
crossref_primary_10_1159_000381574
crossref_primary_10_1089_cyber_2008_0343
crossref_primary_10_1016_j_neuron_2016_09_039
crossref_primary_10_1111_j_1460_9568_2009_06624_x
crossref_primary_10_1194_jlr_M038075
crossref_primary_10_1002_advs_202406269
crossref_primary_10_3758_s13415_018_00666_z
crossref_primary_10_1176_appi_ajp_20240536
crossref_primary_10_3390_brainsci11111539
crossref_primary_10_1016_j_brat_2016_12_010
crossref_primary_10_1002_hipo_22019
crossref_primary_10_1016_j_neuroimage_2010_11_057
crossref_primary_10_3905_jwm_2013_16_3_122
crossref_primary_10_1016_j_nlm_2013_11_014
crossref_primary_10_1101_lm_053781_123
crossref_primary_10_1016_j_cortex_2019_08_020
crossref_primary_10_1002_hbm_21224
crossref_primary_10_1016_j_neuroscience_2013_12_014
crossref_primary_10_1093_scan_nsx028
crossref_primary_10_1027_0044_3409_a000012
crossref_primary_10_1038_s41467_024_52733_4
crossref_primary_10_1016_j_neuroscience_2016_10_017
crossref_primary_10_5127_pr_045015
crossref_primary_10_1186_2045_5380_2_3
crossref_primary_10_1016_j_bbr_2019_112419
crossref_primary_10_1016_j_biopsych_2019_04_012
crossref_primary_10_1017_S0033291711000948
crossref_primary_10_1038_s41380_018_0267_2
crossref_primary_10_5127_jep_026511
crossref_primary_10_1007_s13295_013_0047_z
crossref_primary_10_1038_npp_2015_214
crossref_primary_10_3390_diseases9040077
crossref_primary_10_3758_s13415_011_0021_6
crossref_primary_10_1523_JNEUROSCI_2083_15_2015
crossref_primary_10_1016_j_pbb_2011_01_009
crossref_primary_10_1016_j_biopsycho_2013_01_011
crossref_primary_10_1038_s41380_020_00964_4
crossref_primary_10_1093_cercor_bhy162
crossref_primary_10_1016_j_nlm_2015_03_001
crossref_primary_10_1177_155005941104200108
crossref_primary_10_1016_j_neuroscience_2016_11_033
crossref_primary_10_3390_biomedicines10040845
crossref_primary_10_1111_nyas_12280
crossref_primary_10_1016_j_biopsych_2012_07_026
crossref_primary_10_1016_j_brainres_2019_06_003
crossref_primary_10_1016_j_cpr_2021_102095
crossref_primary_10_1038_s41598_019_53683_4
crossref_primary_10_1093_scan_nsu080
crossref_primary_10_1155_2011_813749
crossref_primary_10_1016_j_bbr_2014_01_016
crossref_primary_10_1007_s10608_020_10166_5
crossref_primary_10_1016_j_nlm_2024_107991
crossref_primary_10_1016_j_neuroimage_2009_03_034
crossref_primary_10_1073_pnas_1714691115
crossref_primary_10_1016_j_neuroscience_2012_03_040
crossref_primary_10_1162_jocn_a_00468
crossref_primary_10_1016_j_bbi_2024_10_027
crossref_primary_10_1371_journal_pone_0070969
crossref_primary_10_1016_j_neubiorev_2021_12_025
crossref_primary_10_1038_s41598_020_73139_4
crossref_primary_10_1080_13854040903369433
crossref_primary_10_1007_s11055_024_01723_6
crossref_primary_10_1016_j_neubiorev_2021_12_022
crossref_primary_10_7554_eLife_60190
crossref_primary_10_1038_nrn3677
crossref_primary_10_1038_s41598_025_94790_9
crossref_primary_10_1016_j_nlm_2021_107415
crossref_primary_10_1016_j_neubiorev_2015_10_009
crossref_primary_10_1002_da_20633
crossref_primary_10_1101_lm_1746710
crossref_primary_10_1007_s11682_017_9772_1
crossref_primary_10_1016_j_bbr_2013_10_041
crossref_primary_10_3758_s13428_023_02241_y
crossref_primary_10_1016_j_biopsych_2016_07_003
crossref_primary_10_7202_1040038ar
crossref_primary_10_1007_s00702_011_0757_8
crossref_primary_10_1038_tp_2015_84
crossref_primary_10_1016_j_brs_2022_06_006
crossref_primary_10_3389_fnbeh_2015_00334
crossref_primary_10_1111_ejn_12210
crossref_primary_10_1016_j_pbb_2010_11_022
crossref_primary_10_1016_j_neuroimage_2013_05_025
crossref_primary_10_1038_s41598_020_66606_5
crossref_primary_10_1002_wcs_1664
crossref_primary_10_1016_j_biopsycho_2014_04_001
crossref_primary_10_1038_nrn3492
crossref_primary_10_1093_scan_nst096
crossref_primary_10_1016_j_biopsycho_2012_04_004
crossref_primary_10_1016_j_pscychresns_2011_05_007
crossref_primary_10_1080_02699931_2012_656581
crossref_primary_10_1176_foc_9_3_foc369
crossref_primary_10_1016_j_bbr_2022_114154
crossref_primary_10_1016_j_neuropsychologia_2011_02_031
crossref_primary_10_1080_15427560_2015_1065263
crossref_primary_10_3389_fnhum_2015_00660
crossref_primary_10_1007_s00429_011_0326_9
crossref_primary_10_1038_npp_2015_255
crossref_primary_10_3389_fnins_2019_00366
crossref_primary_10_1016_j_nlm_2018_05_015
crossref_primary_10_1016_j_yhbeh_2017_06_011
crossref_primary_10_1162_jocn_2009_21347
crossref_primary_10_1093_scan_nsw110
crossref_primary_10_1016_j_isci_2024_109099
crossref_primary_10_3389_fnhum_2014_00323
crossref_primary_10_1016_j_juro_2009_01_025
crossref_primary_10_1038_s41398_017_0074_6
crossref_primary_10_1111_j_1469_7610_2009_02112_x
crossref_primary_10_1159_000359955
crossref_primary_10_3390_ijms23063398
crossref_primary_10_1002_jnr_23709
crossref_primary_10_1038_nn_3296
crossref_primary_10_1016_j_biopsych_2020_09_008
crossref_primary_10_1038_tp_2015_95
ContentType Journal Article
Copyright Copyright © 2008 Society for Neuroscience 0270-6474/08/286211-09$15.00/0 2008
Copyright_xml – notice: Copyright © 2008 Society for Neuroscience 0270-6474/08/286211-09$15.00/0 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.1246-08.2008
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 6219
ExternalDocumentID PMC2475649
18550763
10_1523_JNEUROSCI_1246_08_2008
www28_24_6211
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
  grantid: Z99 MH999999
GroupedDBID -
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RPM
TFN
UQL
WH7
WOQ
X
X7M
XJT
ZA5
---
-DZ
-~X
.55
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c541t-bdb0bcac72f14cbd9e2e0a3314f334a44d381b772ca3d176b53c6ab7cddefa373
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 14:08:07 EDT 2025
Fri Jul 11 15:59:25 EDT 2025
Fri Jul 11 11:48:53 EDT 2025
Fri May 30 11:01:33 EDT 2025
Tue Jul 01 02:58:55 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Tue Nov 10 19:50:55 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-bdb0bcac72f14cbd9e2e0a3314f334a44d381b772ca3d176b53c6ab7cddefa373
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/28/24/6211.full.pdf
PMID 18550763
PQID 20787698
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2475649
proquest_miscellaneous_71673749
proquest_miscellaneous_20787698
pubmed_primary_18550763
crossref_primary_10_1523_JNEUROSCI_1246_08_2008
crossref_citationtrail_10_1523_JNEUROSCI_1246_08_2008
highwire_smallpub1_www28_24_6211
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-11
PublicationDateYYYYMMDD 2008-06-11
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2008
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
SSID ssj0007017
Score 2.4109364
Snippet Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6211
SubjectTerms Adult
Amygdala - blood supply
Amygdala - physiology
Cerebral Cortex - blood supply
Cerebral Cortex - physiology
Conditioning, Psychological - physiology
Fear
Female
Galvanic Skin Response
Hippocampus - blood supply
Hippocampus - physiology
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Male
Models, Biological
Neural Pathways - blood supply
Neural Pathways - physiology
Oxygen - blood
Psychophysics
Time Factors
Title Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions
URI http://www.jneurosci.org/cgi/content/abstract/28/24/6211
https://www.ncbi.nlm.nih.gov/pubmed/18550763
https://www.proquest.com/docview/20787698
https://www.proquest.com/docview/71673749
https://pubmed.ncbi.nlm.nih.gov/PMC2475649
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZguHBBwLCU1QfELZ3EdmyHW1VNKcNQBLRibpGdOEOlNq26UIZfz7OzFhUNcImaffm-vvf8_BaEXoXCD9MAyMut_42pzPcimVGPcgnqGHSgzmxy8ocRH07Y2UV40ZoxtdklG91Nfh7MK_kfVGEb4GqzZP8B2fqisAF-A76wBIRh-VcYu9JSP1wGyMAW5IH1dFp5WG0RK-uhdzFv_cXKOa294XS5BPUFQqCoEdCbX12maqbsuXXzq3XbZG2Sx5zZ2iqA2bBl9l2tClf05602eZM0Vvvee6tWHHC_TAl5q0q9aWXztPCtFjnvpUe2ckdIGzZVistCahEB41FWtN7pmlKqEjeNE7TFLpEtehHWEqKclBc01Wp0UNiHrujE2cjGPH7pv-uCqcI9X7oA2Ua9VVP6o4_xYHJ-Ho9PL8Y30S0CwworF99_aqrLC991aK5focwoh_ucHL7LvjFTFZg-NFj5Pea2ZcSM76I7JYy4V1DpHrph8vvouJerzWJ-hV9jFw_sJlqO0deGXdiyC7fZhac5Ltj1Bh_iFgZu4YpbeI9bD9BkcDruD72yDYeXhCzYeDrVvk5UIkgWsESnkSHGV5QGLKOUKcZSsPo0fM5E0TQQXIc04UqLBDRnpqigD9FRvsjNY4RVwDU1QplISmZoprmRQqR-YAiRWkYdFFbfM07KGvW2VcostmNVwCGucYgtDrEvXR_VDjqpz1sWVVquPQNXcMXruZrNAJ0g3u12BPaz2FKwg15WMMYgc-1EmsrNYruGC4Ca45H88xEisP2fGLzQowL25rFcBUFOO0jsEaI-wNZ739-TT7-5uu-EiZCz6Mm1z_UU3W7-ms_Q0Wa1Nc_Bdt7oF47wvwCcBcS3
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Fear+Conditioning+in+Humans%3A+Cortical-Hippocampal+and+Amygdala+Contributions&rft.jtitle=The+Journal+of+neuroscience&rft.au=Alvarez%2C+Ruben+P&rft.au=Biggs%2C+Arter&rft.au=Chen%2C+Gang&rft.au=Pine%2C+Daniel+S&rft.date=2008-06-11&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=28&rft.issue=24&rft.spage=6211&rft.epage=6219&rft_id=info:doi/10.1523%2FJNEUROSCI.1246-08.2008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon