Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions
Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance...
Saved in:
Published in | The Journal of neuroscience Vol. 28; no. 24; pp. 6211 - 6219 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
11.06.2008
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. |
---|---|
AbstractList | Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species.Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT-) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT-. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT- significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that underlie contextual fear conditioning in animals are also preserved in humans. We investigated this issue using functional magnetic resonance imaging and virtual reality contexts. Subjects underwent differential context conditioning in which they were repeatedly exposed to two contexts (CXT+ and CXT−) in semirandom order, with contexts counterbalanced across participants. An unsignaled footshock was consistently paired with the CXT+, and no shock was ever delivered in the CXT−. Evidence for context conditioning was established using skin conductance and anxiety ratings. Consistent with animal models centrally implicating the hippocampus and amygdala in a network supporting context conditioning, CXT+ compared with CXT− significantly activated right anterior hippocampus and bilateral amygdala. In addition, context conditioning was associated with activation in posterior orbitofrontal cortex, medial dorsal thalamus, anterior insula, subgenual anterior cingulate, and parahippocampal, inferior frontal, and parietal cortices. Structural equation modeling was used to assess interactions among the core brain regions mediating context conditioning. The derived model indicated that medial amygdala was the source of key efferent and afferent connections including input from orbitofrontal cortex. These results provide evidence that similar brain mechanisms may underlie contextual fear conditioning across species. |
Author | Alvarez, Ruben P Grillon, Christian Pine, Daniel S Biggs, Arter Chen, Gang |
Author_xml | – sequence: 1 fullname: Alvarez, Ruben P – sequence: 2 fullname: Biggs, Arter – sequence: 3 fullname: Chen, Gang – sequence: 4 fullname: Pine, Daniel S – sequence: 5 fullname: Grillon, Christian |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18550763$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFv1BlBasMfsXOIIRUjVqmqKISULG0bmxnxshxgp0w9N_jaEp5bGBl2fd8R8f3nKCj0AeL0BnBS1JR9vLd-4vbDzcf11dLQrkocb2kGNeP0CJPVyXlmByhBaYSl4JLfoxOUvqCMZaYyCfomNRVhaVgC_R53YfRfh8n8MWlhVjku3Gj64ML28KFYjN1ENKr_B5Hp8GXGzcMvYZuyAQEU5x3d1sDHmZyjK6ZZjg9RY9b8Mk-uz9P0e3lxaf1pry-eXu1Pr8udcXJWDamwY0GLWlLuG7MylKLgTHCW8Y4cG5YTRopqQZmiBRNxbSARmpjbAtMslP05uA7TE1njbY5A3g1RNdBvFM9OPXnJLid2vbfFOWyEnyVDZ7fG8T-62TTqDqXtPUegu2npCQRksn_EFIsaylWdRae_R7pIcvPpWeBOAh07FOKtv0lwWpuVz20q-Z2Fa7V3G4GX_8FajfCvO_8Nef_jb844Du33e1dtCp14H2OSdR-v6dZxpWghLAfEy28JA |
CitedBy_id | crossref_primary_10_1093_sleep_zsy188 crossref_primary_10_3390_bs13060479 crossref_primary_10_1016_j_ijpsycho_2014_10_016 crossref_primary_10_1016_j_neubiorev_2019_05_020 crossref_primary_10_3389_fpsyt_2023_1239697 crossref_primary_10_1017_S0033291719001387 crossref_primary_10_1111_j_1528_1167_2008_01883_x crossref_primary_10_1016_j_biopsycho_2017_07_023 crossref_primary_10_1080_15427560_2014_942865 crossref_primary_10_3389_fnins_2018_00337 crossref_primary_10_1016_j_npep_2014_09_004 crossref_primary_10_1002_hbm_22837 crossref_primary_10_3389_fnmol_2018_00037 crossref_primary_10_1111_gbb_12181 crossref_primary_10_1371_journal_pone_0079025 crossref_primary_10_1007_s12035_018_1463_4 crossref_primary_10_1038_s41386_024_01825_2 crossref_primary_10_1016_j_nlm_2018_03_012 crossref_primary_10_1523_ENEURO_0163_20_2020 crossref_primary_10_1016_j_neubiorev_2019_09_020 crossref_primary_10_1002_hbm_22940 crossref_primary_10_1093_scan_nsu140 crossref_primary_10_31887_DCNS_2010_12_4_raupperle crossref_primary_10_1016_j_neuroscience_2018_01_037 crossref_primary_10_1002_da_22156 crossref_primary_10_1038_nn_4111 crossref_primary_10_1002_brb3_1973 crossref_primary_10_1111_cpsp_12003 crossref_primary_10_1016_j_neuropsychologia_2010_11_018 crossref_primary_10_1038_s41398_022_01791_7 crossref_primary_10_1111_nmo_12710 crossref_primary_10_1093_scan_nsu018 crossref_primary_10_1016_j_bpsgos_2024_100419 crossref_primary_10_1038_s41531_023_00547_4 crossref_primary_10_1016_j_neubiorev_2022_104988 crossref_primary_10_1371_journal_pone_0095279 crossref_primary_10_1038_nn_3262 crossref_primary_10_3758_s13428_013_0322_5 crossref_primary_10_1515_REVNEURO_2010_21_1_1 crossref_primary_10_3389_fnbeh_2014_00329 crossref_primary_10_3389_fpsyg_2019_02140 crossref_primary_10_1016_j_pain_2011_07_014 crossref_primary_10_1016_j_jneumeth_2010_11_005 crossref_primary_10_1038_s41467_020_19167_0 crossref_primary_10_1080_02699931_2016_1237349 crossref_primary_10_1016_j_brat_2009_06_011 crossref_primary_10_1016_j_bbr_2022_114258 crossref_primary_10_1016_j_neulet_2016_11_014 crossref_primary_10_1111_j_1365_2842_2009_01947_x crossref_primary_10_1586_ern_11_189 crossref_primary_10_1152_jn_00611_2013 crossref_primary_10_1038_s41598_017_08184_7 crossref_primary_10_3389_fnins_2015_00375 crossref_primary_10_1016_j_bbr_2024_115119 crossref_primary_10_3389_fnsys_2015_00101 crossref_primary_10_1016_j_jpsychires_2012_04_015 crossref_primary_10_1080_02699931_2018_1507998 crossref_primary_10_1016_j_bpsc_2016_08_005 crossref_primary_10_1016_j_brainres_2009_11_064 crossref_primary_10_1002_hbm_24779 crossref_primary_10_1016_j_neuroscience_2018_10_042 crossref_primary_10_1007_s00221_021_06248_9 crossref_primary_10_1016_j_biopsych_2008_12_028 crossref_primary_10_3389_fpsyt_2019_00117 crossref_primary_10_3758_s13415_018_00670_3 crossref_primary_10_1371_journal_pone_0032413 crossref_primary_10_1016_j_biopsycho_2021_108167 crossref_primary_10_1016_j_ijpsycho_2015_06_009 crossref_primary_10_1016_j_cortex_2014_09_014 crossref_primary_10_1016_j_ynstr_2024_100677 crossref_primary_10_1111_ejn_12057 crossref_primary_10_31857_S0044467724020028 crossref_primary_10_1016_j_neuroscience_2009_11_004 crossref_primary_10_1016_j_neuropsychologia_2010_07_030 crossref_primary_10_1038_s41386_019_0445_1 crossref_primary_10_3389_fpsyg_2022_944838 crossref_primary_10_1016_j_cobeha_2020_06_011 crossref_primary_10_1093_ijnp_pyy078 crossref_primary_10_1016_j_neuroimage_2012_06_008 crossref_primary_10_1026_1616_3443_a000658 crossref_primary_10_1016_j_pneurobio_2015_12_006 crossref_primary_10_3390_brainsci11020276 crossref_primary_10_1016_j_ijpsycho_2010_01_012 crossref_primary_10_1016_j_yfrne_2016_04_001 crossref_primary_10_1002_glia_23975 crossref_primary_10_1002_hbm_23113 crossref_primary_10_1016_j_jocn_2025_111151 crossref_primary_10_1186_s12915_017_0463_6 crossref_primary_10_1016_j_neuroscience_2011_11_064 crossref_primary_10_1016_j_neuroimage_2013_03_001 crossref_primary_10_1111_adb_12835 crossref_primary_10_1177_0003065111427724 crossref_primary_10_1007_s00429_019_01887_9 crossref_primary_10_1038_npp_2009_83 crossref_primary_10_1016_j_ijpsycho_2018_01_002 crossref_primary_10_1176_foc_9_3_foc311 crossref_primary_10_1016_j_bbr_2014_06_002 crossref_primary_10_1016_j_ijpsycho_2015_05_005 crossref_primary_10_1016_j_yebeh_2019_106831 crossref_primary_10_1002_hbm_22253 crossref_primary_10_1016_j_yfrne_2017_06_001 crossref_primary_10_1073_pnas_1318954111 crossref_primary_10_1080_13554794_2022_2160262 crossref_primary_10_1002_hipo_22359 crossref_primary_10_1038_s41598_017_18183_3 crossref_primary_10_1002_da_22518 crossref_primary_10_1038_npp_2014_179 crossref_primary_10_1152_jn_00318_2018 crossref_primary_10_1159_000381574 crossref_primary_10_1089_cyber_2008_0343 crossref_primary_10_1016_j_neuron_2016_09_039 crossref_primary_10_1111_j_1460_9568_2009_06624_x crossref_primary_10_1194_jlr_M038075 crossref_primary_10_1002_advs_202406269 crossref_primary_10_3758_s13415_018_00666_z crossref_primary_10_1176_appi_ajp_20240536 crossref_primary_10_3390_brainsci11111539 crossref_primary_10_1016_j_brat_2016_12_010 crossref_primary_10_1002_hipo_22019 crossref_primary_10_1016_j_neuroimage_2010_11_057 crossref_primary_10_3905_jwm_2013_16_3_122 crossref_primary_10_1016_j_nlm_2013_11_014 crossref_primary_10_1101_lm_053781_123 crossref_primary_10_1016_j_cortex_2019_08_020 crossref_primary_10_1002_hbm_21224 crossref_primary_10_1016_j_neuroscience_2013_12_014 crossref_primary_10_1093_scan_nsx028 crossref_primary_10_1027_0044_3409_a000012 crossref_primary_10_1038_s41467_024_52733_4 crossref_primary_10_1016_j_neuroscience_2016_10_017 crossref_primary_10_5127_pr_045015 crossref_primary_10_1186_2045_5380_2_3 crossref_primary_10_1016_j_bbr_2019_112419 crossref_primary_10_1016_j_biopsych_2019_04_012 crossref_primary_10_1017_S0033291711000948 crossref_primary_10_1038_s41380_018_0267_2 crossref_primary_10_5127_jep_026511 crossref_primary_10_1007_s13295_013_0047_z crossref_primary_10_1038_npp_2015_214 crossref_primary_10_3390_diseases9040077 crossref_primary_10_3758_s13415_011_0021_6 crossref_primary_10_1523_JNEUROSCI_2083_15_2015 crossref_primary_10_1016_j_pbb_2011_01_009 crossref_primary_10_1016_j_biopsycho_2013_01_011 crossref_primary_10_1038_s41380_020_00964_4 crossref_primary_10_1093_cercor_bhy162 crossref_primary_10_1016_j_nlm_2015_03_001 crossref_primary_10_1177_155005941104200108 crossref_primary_10_1016_j_neuroscience_2016_11_033 crossref_primary_10_3390_biomedicines10040845 crossref_primary_10_1111_nyas_12280 crossref_primary_10_1016_j_biopsych_2012_07_026 crossref_primary_10_1016_j_brainres_2019_06_003 crossref_primary_10_1016_j_cpr_2021_102095 crossref_primary_10_1038_s41598_019_53683_4 crossref_primary_10_1093_scan_nsu080 crossref_primary_10_1155_2011_813749 crossref_primary_10_1016_j_bbr_2014_01_016 crossref_primary_10_1007_s10608_020_10166_5 crossref_primary_10_1016_j_nlm_2024_107991 crossref_primary_10_1016_j_neuroimage_2009_03_034 crossref_primary_10_1073_pnas_1714691115 crossref_primary_10_1016_j_neuroscience_2012_03_040 crossref_primary_10_1162_jocn_a_00468 crossref_primary_10_1016_j_bbi_2024_10_027 crossref_primary_10_1371_journal_pone_0070969 crossref_primary_10_1016_j_neubiorev_2021_12_025 crossref_primary_10_1038_s41598_020_73139_4 crossref_primary_10_1080_13854040903369433 crossref_primary_10_1007_s11055_024_01723_6 crossref_primary_10_1016_j_neubiorev_2021_12_022 crossref_primary_10_7554_eLife_60190 crossref_primary_10_1038_nrn3677 crossref_primary_10_1038_s41598_025_94790_9 crossref_primary_10_1016_j_nlm_2021_107415 crossref_primary_10_1016_j_neubiorev_2015_10_009 crossref_primary_10_1002_da_20633 crossref_primary_10_1101_lm_1746710 crossref_primary_10_1007_s11682_017_9772_1 crossref_primary_10_1016_j_bbr_2013_10_041 crossref_primary_10_3758_s13428_023_02241_y crossref_primary_10_1016_j_biopsych_2016_07_003 crossref_primary_10_7202_1040038ar crossref_primary_10_1007_s00702_011_0757_8 crossref_primary_10_1038_tp_2015_84 crossref_primary_10_1016_j_brs_2022_06_006 crossref_primary_10_3389_fnbeh_2015_00334 crossref_primary_10_1111_ejn_12210 crossref_primary_10_1016_j_pbb_2010_11_022 crossref_primary_10_1016_j_neuroimage_2013_05_025 crossref_primary_10_1038_s41598_020_66606_5 crossref_primary_10_1002_wcs_1664 crossref_primary_10_1016_j_biopsycho_2014_04_001 crossref_primary_10_1038_nrn3492 crossref_primary_10_1093_scan_nst096 crossref_primary_10_1016_j_biopsycho_2012_04_004 crossref_primary_10_1016_j_pscychresns_2011_05_007 crossref_primary_10_1080_02699931_2012_656581 crossref_primary_10_1176_foc_9_3_foc369 crossref_primary_10_1016_j_bbr_2022_114154 crossref_primary_10_1016_j_neuropsychologia_2011_02_031 crossref_primary_10_1080_15427560_2015_1065263 crossref_primary_10_3389_fnhum_2015_00660 crossref_primary_10_1007_s00429_011_0326_9 crossref_primary_10_1038_npp_2015_255 crossref_primary_10_3389_fnins_2019_00366 crossref_primary_10_1016_j_nlm_2018_05_015 crossref_primary_10_1016_j_yhbeh_2017_06_011 crossref_primary_10_1162_jocn_2009_21347 crossref_primary_10_1093_scan_nsw110 crossref_primary_10_1016_j_isci_2024_109099 crossref_primary_10_3389_fnhum_2014_00323 crossref_primary_10_1016_j_juro_2009_01_025 crossref_primary_10_1038_s41398_017_0074_6 crossref_primary_10_1111_j_1469_7610_2009_02112_x crossref_primary_10_1159_000359955 crossref_primary_10_3390_ijms23063398 crossref_primary_10_1002_jnr_23709 crossref_primary_10_1038_nn_3296 crossref_primary_10_1016_j_biopsych_2020_09_008 crossref_primary_10_1038_tp_2015_95 |
ContentType | Journal Article |
Copyright | Copyright © 2008 Society for Neuroscience 0270-6474/08/286211-09$15.00/0 2008 |
Copyright_xml | – notice: Copyright © 2008 Society for Neuroscience 0270-6474/08/286211-09$15.00/0 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.1246-08.2008 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 6219 |
ExternalDocumentID | PMC2475649 18550763 10_1523_JNEUROSCI_1246_08_2008 www28_24_6211 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS grantid: Z99 MH999999 |
GroupedDBID | - 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RPM TFN UQL WH7 WOQ X X7M XJT ZA5 --- -DZ -~X .55 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c541t-bdb0bcac72f14cbd9e2e0a3314f334a44d381b772ca3d176b53c6ab7cddefa373 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 14:08:07 EDT 2025 Fri Jul 11 15:59:25 EDT 2025 Fri Jul 11 11:48:53 EDT 2025 Fri May 30 11:01:33 EDT 2025 Tue Jul 01 02:58:55 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Tue Nov 10 19:50:55 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c541t-bdb0bcac72f14cbd9e2e0a3314f334a44d381b772ca3d176b53c6ab7cddefa373 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/28/24/6211.full.pdf |
PMID | 18550763 |
PQID | 20787698 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2475649 proquest_miscellaneous_71673749 proquest_miscellaneous_20787698 pubmed_primary_18550763 crossref_primary_10_1523_JNEUROSCI_1246_08_2008 crossref_citationtrail_10_1523_JNEUROSCI_1246_08_2008 highwire_smallpub1_www28_24_6211 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-11 |
PublicationDateYYYYMMDD | 2008-06-11 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-11 day: 11 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2008 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
SSID | ssj0007017 |
Score | 2.4109364 |
Snippet | Functional imaging studies of cued fear conditioning in humans have mostly confirmed findings in animals, but it is unclear whether the brain mechanisms that... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6211 |
SubjectTerms | Adult Amygdala - blood supply Amygdala - physiology Cerebral Cortex - blood supply Cerebral Cortex - physiology Conditioning, Psychological - physiology Fear Female Galvanic Skin Response Hippocampus - blood supply Hippocampus - physiology Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Male Models, Biological Neural Pathways - blood supply Neural Pathways - physiology Oxygen - blood Psychophysics Time Factors |
Title | Contextual Fear Conditioning in Humans: Cortical-Hippocampal and Amygdala Contributions |
URI | http://www.jneurosci.org/cgi/content/abstract/28/24/6211 https://www.ncbi.nlm.nih.gov/pubmed/18550763 https://www.proquest.com/docview/20787698 https://www.proquest.com/docview/71673749 https://pubmed.ncbi.nlm.nih.gov/PMC2475649 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jj9MwFLZguHBBwLCU1QfELZ3EdmyHW1VNKcNQBLRibpGdOEOlNq26UIZfz7OzFhUNcImaffm-vvf8_BaEXoXCD9MAyMut_42pzPcimVGPcgnqGHSgzmxy8ocRH07Y2UV40ZoxtdklG91Nfh7MK_kfVGEb4GqzZP8B2fqisAF-A76wBIRh-VcYu9JSP1wGyMAW5IH1dFp5WG0RK-uhdzFv_cXKOa294XS5BPUFQqCoEdCbX12maqbsuXXzq3XbZG2Sx5zZ2iqA2bBl9l2tClf05602eZM0Vvvee6tWHHC_TAl5q0q9aWXztPCtFjnvpUe2ckdIGzZVistCahEB41FWtN7pmlKqEjeNE7TFLpEtehHWEqKclBc01Wp0UNiHrujE2cjGPH7pv-uCqcI9X7oA2Ua9VVP6o4_xYHJ-Ho9PL8Y30S0CwworF99_aqrLC991aK5focwoh_ucHL7LvjFTFZg-NFj5Pea2ZcSM76I7JYy4V1DpHrph8vvouJerzWJ-hV9jFw_sJlqO0deGXdiyC7fZhac5Ltj1Bh_iFgZu4YpbeI9bD9BkcDruD72yDYeXhCzYeDrVvk5UIkgWsESnkSHGV5QGLKOUKcZSsPo0fM5E0TQQXIc04UqLBDRnpqigD9FRvsjNY4RVwDU1QplISmZoprmRQqR-YAiRWkYdFFbfM07KGvW2VcostmNVwCGucYgtDrEvXR_VDjqpz1sWVVquPQNXcMXruZrNAJ0g3u12BPaz2FKwg15WMMYgc-1EmsrNYruGC4Ca45H88xEisP2fGLzQowL25rFcBUFOO0jsEaI-wNZ739-TT7-5uu-EiZCz6Mm1z_UU3W7-ms_Q0Wa1Nc_Bdt7oF47wvwCcBcS3 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contextual+Fear+Conditioning+in+Humans%3A+Cortical-Hippocampal+and+Amygdala+Contributions&rft.jtitle=The+Journal+of+neuroscience&rft.au=Alvarez%2C+Ruben+P&rft.au=Biggs%2C+Arter&rft.au=Chen%2C+Gang&rft.au=Pine%2C+Daniel+S&rft.date=2008-06-11&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=28&rft.issue=24&rft.spage=6211&rft.epage=6219&rft_id=info:doi/10.1523%2FJNEUROSCI.1246-08.2008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |