Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential
The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare provide...
Saved in:
Published in | Visual computing for industry, biomedicine and art Vol. 6; no. 1; pp. 9 - 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
18.05.2023
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential. |
---|---|
AbstractList | The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential. The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential. Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential. |
ArticleNumber | 9 |
Author | Tan, Josh Wang, Ge Zapadka, Michael E. Ponnatapura, Janardhana Myers, Kyle J. Lyu, Qing Niu, Chuang Whitlow, Christopher T. |
Author_xml | – sequence: 1 givenname: Qing orcidid: 0000-0002-9824-0170 surname: Lyu fullname: Lyu, Qing organization: Department of Radiology, Wake Forest University School of Medicine – sequence: 2 givenname: Josh surname: Tan fullname: Tan, Josh organization: Department of Radiology, Wake Forest University School of Medicine – sequence: 3 givenname: Michael E. surname: Zapadka fullname: Zapadka, Michael E. organization: Department of Radiology, Wake Forest University School of Medicine – sequence: 4 givenname: Janardhana surname: Ponnatapura fullname: Ponnatapura, Janardhana organization: Department of Radiology, Wake Forest University School of Medicine – sequence: 5 givenname: Chuang surname: Niu fullname: Niu, Chuang organization: Biomedical Imaging Center, Rensselaer Polytechnic Institute – sequence: 6 givenname: Kyle J. surname: Myers fullname: Myers, Kyle J. email: drkylejmyers@gmail.com organization: Puente Solutions LLC – sequence: 7 givenname: Ge surname: Wang fullname: Wang, Ge email: wangg6@rpi.edu organization: Biomedical Imaging Center, Rensselaer Polytechnic Institute – sequence: 8 givenname: Christopher T. surname: Whitlow fullname: Whitlow, Christopher T. email: cwhitlow@wakehealth.edu organization: Department of Radiology, Wake Forest University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37198498$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFvFCEUxyemxtbaL-DBkHjx4CgwMAxejNlobdJED-uZMAwzS8PCCIymZ7-4b7trbXvoiQf8_v_34L3n1VGIwVbVS4LfEdK17zOjTNIa06bGmDRtzZ9UJ5RTVjPG6NGd-Lg6y_kKY0w5Fkx2z6rjRhDZQXhS_VknHbLXxYUJJT246ON0jZKdYyoZuVAimr12AXkdpkVPFi15x642upx_XyMdBgRrzdBvVzZoTnE7F-StTgGwD-CUF1_yW-Td1hXIEwNsdqo5FhuK0_5F9XTUPtuzw3pa_fjyeb36Wl9-O79YfbqsDWek1L0ZG4s5aySBgHMujG1lb1tujOVjY8bRYibN2BlpB9M2ojea6hF0lJhBNKfVxd53iPpKzcltdbpWUTt1cxDTpHQqzniriGWMCEaotJrpYejHcTBCN30vCG8JBa-Pe6956beQDV6StL9nev8muI2a4i9FMJGUtS04vDk4pPhzsbmorcvGevhnG5esaEegg0IICejrB-hVXFKAvwJK4oZLITugXt0t6baWf80GgO4Bk2LOyY63CMFqN1RqP1QKhkrdDJXiIOoeiMyhjfAs5x-XNntphjxhsul_2Y-o_gI2NePx |
CitedBy_id | crossref_primary_10_1007_s00402_024_05298_2 crossref_primary_10_1007_s00117_025_01416_2 crossref_primary_10_1200_CCI_24_00126 crossref_primary_10_1016_j_apjo_2024_100085 crossref_primary_10_1016_j_ejrad_2024_111627 crossref_primary_10_1016_j_msksp_2025_103275 crossref_primary_10_1007_s11604_024_01552_0 crossref_primary_10_1016_j_ejrad_2024_111756 crossref_primary_10_1080_03634523_2024_2398105 crossref_primary_10_1016_j_jacr_2023_07_007 crossref_primary_10_1002_widm_1518 crossref_primary_10_1111_1754_9485_13621 crossref_primary_10_1186_s12903_025_05619_w crossref_primary_10_1186_s44158_024_00215_w crossref_primary_10_1016_j_jpi_2023_100338 crossref_primary_10_1111_liv_15891 crossref_primary_10_1016_j_preteyeres_2024_101291 crossref_primary_10_1016_j_crad_2023_08_006 crossref_primary_10_31637_epsir_2025_513 crossref_primary_10_1016_j_jacr_2023_12_015 crossref_primary_10_1055_s_0044_1789618 crossref_primary_10_1007_s43681_023_00335_z crossref_primary_10_1016_j_pec_2023_107940 crossref_primary_10_1177_00472816241260043 crossref_primary_10_1016_j_nlp_2023_100048 crossref_primary_10_1016_j_jacr_2024_05_009 crossref_primary_10_1089_aipo_2024_0027 crossref_primary_10_1007_s43681_024_00568_6 crossref_primary_10_3174_ajnr_A8332 crossref_primary_10_1016_j_jcjo_2024_08_010 crossref_primary_10_1007_s10462_024_10849_5 crossref_primary_10_1007_s40336_023_00597_x crossref_primary_10_1016_j_neunet_2025_107362 crossref_primary_10_1056_AIp2400889 crossref_primary_10_2196_55388 crossref_primary_10_1088_1361_6560_ad387d crossref_primary_10_1148_radiol_232714 crossref_primary_10_3390_digital5020010 crossref_primary_10_1177_02601060241244563 crossref_primary_10_3348_jksr_2024_0066 crossref_primary_10_3390_diagnostics14131442 crossref_primary_10_1186_s12911_024_02757_z crossref_primary_10_3390_informatics12010009 crossref_primary_10_7759_cureus_40135 crossref_primary_10_1002_wcms_1725 crossref_primary_10_1111_epi_17907 crossref_primary_10_1109_ACCESS_2024_3437374 crossref_primary_10_1093_jamia_ocae223 crossref_primary_10_1007_s11604_025_01764_y crossref_primary_10_4103_TPSY_TPSY_19_24 crossref_primary_10_3390_cancers16132311 crossref_primary_10_1080_02691728_2024_2379271 crossref_primary_10_1007_s00256_024_04599_2 crossref_primary_10_1038_s41598_023_41512_8 crossref_primary_10_3389_fopht_2024_1387190 crossref_primary_10_1007_s11912_025_01649_3 crossref_primary_10_1021_acs_jcim_3c01429 crossref_primary_10_1055_s_0044_1788589 crossref_primary_10_2196_22769 crossref_primary_10_1016_j_cmi_2023_11_002 crossref_primary_10_3174_ajnr_A8550 crossref_primary_10_1038_s41598_024_63824_z crossref_primary_10_3897_folmed_66_e135584 crossref_primary_10_58600_eurjther2225 crossref_primary_10_1200_CCI_24_00166 crossref_primary_10_1111_jebm_70004 crossref_primary_10_3390_jpm14090923 crossref_primary_10_1111_imj_16607 crossref_primary_10_1186_s43019_024_00218_5 crossref_primary_10_1136_tc_2024_058813 crossref_primary_10_1186_s42492_024_00171_w crossref_primary_10_1007_s00261_024_04619_8 crossref_primary_10_2196_59050 crossref_primary_10_1016_j_clinimag_2024_110101 crossref_primary_10_1016_j_soncn_2023_151433 crossref_primary_10_1016_j_chb_2024_108404 crossref_primary_10_1016_j_ajhg_2024_08_010 crossref_primary_10_1007_s00270_023_03563_2 crossref_primary_10_2196_57257 crossref_primary_10_1044_2024_PERSP_23_00167 crossref_primary_10_1007_s00117_023_01187_8 crossref_primary_10_1016_j_jocmr_2024_101035 crossref_primary_10_2196_54704 crossref_primary_10_3389_fmed_2024_1477898 crossref_primary_10_3390_robotics12040097 crossref_primary_10_1589_jpts_36_234 crossref_primary_10_1016_j_clinimag_2023_109993 crossref_primary_10_1016_j_rcl_2024_01_004 crossref_primary_10_3390_diagnostics14212393 crossref_primary_10_1007_s00330_024_11148_x crossref_primary_10_3390_cancers17050882 crossref_primary_10_1038_s41746_024_01336_w crossref_primary_10_1097_MS9_0000000000002716 crossref_primary_10_24289_ijsser_1609741 crossref_primary_10_1007_s00261_024_04708_8 crossref_primary_10_1007_s11684_024_1085_3 crossref_primary_10_1007_s11280_024_01297_w crossref_primary_10_1186_s12911_024_02459_6 crossref_primary_10_1186_s12911_024_02709_7 crossref_primary_10_1007_s11547_024_01915_7 crossref_primary_10_1007_s44206_024_00158_3 crossref_primary_10_1136_bmjhci_2023_100857 crossref_primary_10_2196_52113 crossref_primary_10_59653_jimat_v1i01_161 crossref_primary_10_2217_fmai_2023_0011 crossref_primary_10_1016_j_inffus_2024_102888 crossref_primary_10_1016_j_iswa_2023_200308 crossref_primary_10_1186_s13244_023_01560_0 crossref_primary_10_1016_j_acra_2023_11_002 crossref_primary_10_1016_j_jaip_2023_05_042 crossref_primary_10_1016_j_jacr_2024_03_004 crossref_primary_10_1016_j_jbi_2024_104649 crossref_primary_10_1016_j_ceh_2024_12_006 crossref_primary_10_3389_frai_2023_1223909 crossref_primary_10_1186_s12911_024_02445_y crossref_primary_10_1038_s41746_025_01468_7 crossref_primary_10_1136_bmjopen_2023_082344 crossref_primary_10_1016_j_jcjo_2024_11_003 crossref_primary_10_2196_57238 crossref_primary_10_1093_bjrai_ubae019 crossref_primary_10_1055_a_2264_5631 crossref_primary_10_1148_radiol_240597 crossref_primary_10_3389_fimmu_2024_1478163 crossref_primary_10_4103_crst_crst_193_23 crossref_primary_10_3390_nano13132003 crossref_primary_10_1109_ACCESS_2024_3428918 crossref_primary_10_3390_su151712983 crossref_primary_10_1093_jamia_ocae312 crossref_primary_10_1016_j_crbiot_2023_100164 crossref_primary_10_1016_j_ijom_2024_04_002 crossref_primary_10_3174_ajnr_A8077 |
Cites_doi | 10.1016/S2589-7500(23)00019-5 10.1371/journal.pdig.0000198 10.1016/S2589-7500(23)00021-3 10.1148/radiol.223312 10.1101/2023.02.02.23285399 10.1145/3539813.3545143 10.1001/jama.2023.1044 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 7SC 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s42492-023-00136-5 |
DatabaseName | Springer Nature Open Access Journals CrossRef PubMed Computer and Information Systems Abstracts Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China Computer and Information Systems Abstracts Professional ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Engineering |
EISSN | 2524-4442 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_1e44174129ea4addbffdc7a3bb715612 PMC10192466 37198498 10_1186_s42492_023_00136_5 |
Genre | Journal Article |
GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ACACY ACULB ADBBV AFGXO AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AMKLP BCNDV BENPR C24 C6C CCPQU EBS GROUPED_DOAJ M~E PGMZT PIMPY PROAC RPM RSV SOJ AAYXX CITATION PHGZM PHGZT NPM 7SC 8FD ABUWG AZQEC DWQXO JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-bcf3e054391f3e5557ce69be65cce5f3cffe049cf8c9edc637bca2afbcf21cd73 |
IEDL.DBID | DOA |
ISSN | 2524-4442 2096-496X |
IngestDate | Wed Aug 27 01:20:36 EDT 2025 Thu Aug 21 18:36:58 EDT 2025 Fri Jul 11 01:26:06 EDT 2025 Mon Jun 30 06:11:40 EDT 2025 Wed Feb 19 02:02:35 EST 2025 Tue Jul 01 02:27:04 EDT 2025 Thu Apr 24 23:11:44 EDT 2025 Fri Feb 21 02:44:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Large language model Patient education ChatGPT Radiology report Artificial intelligence |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-bcf3e054391f3e5557ce69be65cce5f3cffe049cf8c9edc637bca2afbcf21cd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9824-0170 |
OpenAccessLink | https://doaj.org/article/1e44174129ea4addbffdc7a3bb715612 |
PMID | 37198498 |
PQID | 2890359798 |
PQPubID | 4402876 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1e44174129ea4addbffdc7a3bb715612 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10192466 proquest_miscellaneous_2815247779 proquest_journals_2890359798 pubmed_primary_37198498 crossref_primary_10_1186_s42492_023_00136_5 crossref_citationtrail_10_1186_s42492_023_00136_5 springer_journals_10_1186_s42492_023_00136_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-18 |
PublicationDateYYYYMMDD | 2023-05-18 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Germany |
PublicationTitle | Visual computing for industry, biomedicine and art |
PublicationTitleAbbrev | Vis. Comput. Ind. Biomed. Art |
PublicationTitleAlternate | Vis Comput Ind Biomed Art |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: SpringerOpen |
References | Rao A, Kim J, Kamineni M, Pang M, Lie W, Succi MD (2023) Evaluating ChatGPT as an adjunct for radiologic decision-making. medRxiv, 2023-02. https://doi.org/10.1101/2023.02.02.23285399 Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P et al. (2022) Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J et al. (2022) ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. arXiv preprint arXiv:2212.14882 Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C et al. (2023) Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit Health 2(2):0000198. https://doi.org/10.1371/journal.pdig.0000198 PromptPerfect: elevate your prompts to perfection. https://promptperfect.jina.ai/. Accessed 20 Feb 2023 Wang S, Scells H, Koopman B, Zuccon G (2023) Can ChatGPT write a good Boolean query for systematic review literature search? arXiv preprint arXiv:2302.03495. https://doi.org/10.1145/3539813.3545143 Patel SB, Lam K (2023) ChatGPT: the future of discharge summaries? Lancet Digit Health 5(3):E107–E108. https://doi.org/10.1016/S2589-7500(23)00021-3 Yang ZL, Dai ZH, Yang YM, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: Generalized autoregressive pretraining for language understanding. In: Proceedings of the 33rd international conference on neural information processing systems, Curran Associates Inc., Vancouver, 8 December 2019 Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training Liebrenz M, Schleifer R, Buadze A, Bhugra D, Smith A (2023) Generating scholarly content with ChatGPT: ethical challenges for medical publishing. Lancet Digit Health 5(3):E105–E106. https://doi.org/10.1016/S2589-7500(23)00019-5 Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, 2-7 June 2019 ChatGPT sets record for fastest-growing user base-analyst note. https://www.marketscreener.com/news/latest/ChatGPT-sets-record-for-fastestgrowing-user-base-analyst-note--42873811/. Accessed 20 Feb 2023 ChatGPT reaches 100 million users two months after launch. https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-usersopen-ai-fastest-growing-app. Accessed 20 Feb 2023 Biswas S (2023) ChatGPT and the future of medical writing. Radiology 307(2):e223312. https://doi.org/10.1148/radiol.223312 GPT-4. https://openai.com/research/gpt-4. Accessed 14 Mar 2023 Sarraju A, Bruemmer D, Van Iterson E, Cho L, Rodriguez F, Laffin L (2023) Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. JAMA 329(10):842–844. https://doi.org/10.1001/jama.2023.1044 OpenAI: GPT-4 technique report (2023) https://cdn.openai.com/papers/gpt-4.pdf. Accessed 14 Mar 2023 136_CR7 136_CR6 136_CR9 136_CR8 136_CR3 136_CR2 136_CR5 136_CR4 136_CR16 136_CR15 136_CR1 136_CR14 136_CR13 136_CR12 136_CR11 136_CR10 136_CR17 |
References_xml | – reference: Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training – reference: Sarraju A, Bruemmer D, Van Iterson E, Cho L, Rodriguez F, Laffin L (2023) Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. JAMA 329(10):842–844. https://doi.org/10.1001/jama.2023.1044 – reference: Wang S, Scells H, Koopman B, Zuccon G (2023) Can ChatGPT write a good Boolean query for systematic review literature search? arXiv preprint arXiv:2302.03495. https://doi.org/10.1145/3539813.3545143 – reference: ChatGPT sets record for fastest-growing user base-analyst note. https://www.marketscreener.com/news/latest/ChatGPT-sets-record-for-fastestgrowing-user-base-analyst-note--42873811/. Accessed 20 Feb 2023 – reference: Liebrenz M, Schleifer R, Buadze A, Bhugra D, Smith A (2023) Generating scholarly content with ChatGPT: ethical challenges for medical publishing. Lancet Digit Health 5(3):E105–E106. https://doi.org/10.1016/S2589-7500(23)00019-5 – reference: Rao A, Kim J, Kamineni M, Pang M, Lie W, Succi MD (2023) Evaluating ChatGPT as an adjunct for radiologic decision-making. medRxiv, 2023-02. https://doi.org/10.1101/2023.02.02.23285399 – reference: GPT-4. https://openai.com/research/gpt-4. Accessed 14 Mar 2023 – reference: Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C et al. (2023) Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit Health 2(2):0000198. https://doi.org/10.1371/journal.pdig.0000198 – reference: Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, 2-7 June 2019 – reference: ChatGPT reaches 100 million users two months after launch. https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-usersopen-ai-fastest-growing-app. Accessed 20 Feb 2023 – reference: Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J et al. (2022) ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. arXiv preprint arXiv:2212.14882 – reference: Yang ZL, Dai ZH, Yang YM, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: Generalized autoregressive pretraining for language understanding. In: Proceedings of the 33rd international conference on neural information processing systems, Curran Associates Inc., Vancouver, 8 December 2019 – reference: Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P et al. (2022) Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155 – reference: Biswas S (2023) ChatGPT and the future of medical writing. Radiology 307(2):e223312. https://doi.org/10.1148/radiol.223312 – reference: OpenAI: GPT-4 technique report (2023) https://cdn.openai.com/papers/gpt-4.pdf. Accessed 14 Mar 2023 – reference: PromptPerfect: elevate your prompts to perfection. https://promptperfect.jina.ai/. Accessed 20 Feb 2023 – reference: Patel SB, Lam K (2023) ChatGPT: the future of discharge summaries? Lancet Digit Health 5(3):E107–E108. https://doi.org/10.1016/S2589-7500(23)00021-3 – ident: 136_CR17 – ident: 136_CR9 doi: 10.1016/S2589-7500(23)00019-5 – ident: 136_CR15 – ident: 136_CR16 – ident: 136_CR2 – ident: 136_CR3 – ident: 136_CR1 – ident: 136_CR5 – ident: 136_CR4 – ident: 136_CR8 doi: 10.1371/journal.pdig.0000198 – ident: 136_CR6 – ident: 136_CR10 doi: 10.1016/S2589-7500(23)00021-3 – ident: 136_CR11 doi: 10.1148/radiol.223312 – ident: 136_CR13 doi: 10.1101/2023.02.02.23285399 – ident: 136_CR7 doi: 10.1145/3539813.3545143 – ident: 136_CR12 – ident: 136_CR14 doi: 10.1001/jama.2023.1044 |
SSID | ssj0002507498 ssib054953444 ssib046007038 ssib046561513 |
Score | 2.6124415 |
Snippet | The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we... Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9 |
SubjectTerms | Artificial intelligence CAE) and Design Chatbots ChatGPT Computed tomography Computer Graphics Computer Imaging Computer Science Computer-Aided Engineering (CAD Feasibility studies Health care Image Processing and Computer Vision Language Large language model Large language models Magnetic resonance imaging Media Design Medical screening Original Original Article Patient education Pattern Recognition and Graphics Radiology Radiology report Translating Vision |
SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege4EHxDcZAxmJN2ptafwVXhCbNiYkpglt0t4i27G7SiUpbfoX7B_nznE6yseeWjV2dfHd-X6-O98R8l4BjNAyOGbK3MIBxRdM82CYt9gP7qCuDxzed_52Jk8v-dcrcZUcbquUVjnsiXGjrluHPvJ9DIgVgH5L_Wnxk2HXKIyuphYa98kObMFaj8jO4fHZ-feNlwUMvOKlHm7LaLm_4lgjj4GpYrFeGRNbFikW7v8X2vw7afKPyGk0SCePyaOEJOnnnvVPyD3fPCUPf6sv-IzcREuE2W7NlC5N3V9NoSlOQGdN19LF3MwaOrgtKebBT-nRtem-nF9Q09QUPhmn6K-lQO6PRUdTp4npR_in1XrercZ0jvekeuffOM5atB3mIZn5c3J5cnxxdMpS1wXmBM87Zl0oPAC5oszhixBCOS9L66VwzotQuBA8HCtc0K6E1ZCFss5MTIB5k9zVqnhBRk3b-FeEllg4SdpaWS-4mkirhS2CsMILZbRyGcmHla9cohI7Y8yreDTRsuq5VQG3qsitSmTkw2bOoi_IcefoQ2ToZiQW044_tMtplXSzyj32YeOAfLzhsN_bEGqnTGFBXrF5aEb2BnGokoavqlt5zMi7zWPQTQy4mMa3axwD6IgrpcqMvOylZ0NJofJSc5ytt-Rqi9TtJ83sOtb_zhGWcykzMh5E8Jau_6_F7t2v8Zo8mEStECzXe2TULdf-DQCuzr5NWvULfYksWg priority: 102 providerName: ProQuest – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0IJy4cL7ESjISNxYi3r9DDdYUSokEIdW6i2yHXu7UppddbNfwI8z4zxgoSBxSpTMRCPPTGbseRHy2oAbYXUKzJXcwwYlCmZlcix6nAd3VNdHAeudv3zVJ2fy87k6H9rkYC3Mr_F7bvXbrcSWdgwsC8vtxZi6SW4pLgyOaVjoxXSeAqbcyNKOdTHXou7Zntyi_zq_8s_0yN9ipNn0HN8jdwafkb7vmXyf3IjtA3J3nMdAB_V8SL5nw4PJbe2SXrm6r0ShQ1iArtpuTTeNW7V0PKWkmPa-pIsL1336dkpdW1O4MknxeJYCzZebjg6DJZbv4EvbXdNtZ7TBsqj-rG-WsTbrDtOOXPOInB1_PF2csGHIAgtK8o75kEQEv02UHG6UUiZEXfqoVQhRJRFSirCLCMmGEpZEC-ODm7sEeHMeaiMek4N23canhJbYJ0n72viopJlrb5UXSXkVlXHWhILwcfmrMFCJgzCaKu9ErK56llXAsiqzrFIFeTPhbPr-G_-E_oBcnSCxd3Z-ACJVDapY8Yhj1yQ4OtFJ-L37lOpgnPAgnjgrtCCHo0xUg0JvK4zHCth8lbYgr6bXoIoYX3FtXO8QBpwhaYwpC_KkF6GJEmF4aSVi2z3h2iN1_027usjtvjl64VLrgsxGOfxJ19_X4tn_gT8nt-dZVRTj9pAcdFe7-AL8rc6_zIr2A5ajJWI priority: 102 providerName: Springer Nature |
Title | Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential |
URI | https://link.springer.com/article/10.1186/s42492-023-00136-5 https://www.ncbi.nlm.nih.gov/pubmed/37198498 https://www.proquest.com/docview/2890359798 https://www.proquest.com/docview/2815247779 https://pubmed.ncbi.nlm.nih.gov/PMC10192466 https://doaj.org/article/1e44174129ea4addbffdc7a3bb715612 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBMoKyNxY6028TPc6KqlQqKqUCv1FtmOvV1pm111s7-AP86Mkyy7PC9ckiixrdF4JjNjj78h5J0GN8Ko6JktcwcBSuDMiGhZcFgP7rCuDz2ed_5ypk4vxecrebVV6gtzwjp44I5xB3nAIlkCzFKwApTRxVh7bbmDwbCyI_59weZtBVP4DwbDrkVphlMyRh2sBGLjMTBRLOGUMbljiRJg_--8zF-TJX_aMU2G6OQRedh7kPRjR_ljcic0T8iDLVzBp-RbskCY5dZM6a2tuyMptN8foLOmXdDl3M4aOixXUsx_n9LJtW0_nV9Q29QU7kxQXKelQO7NsqV9hYnpBxhptZ63qzGd4_mobtFvnHotFy3mH9n5M3J5cnwxOWV9tQXmpchb5nzkARw4XubwIKXUPqjSBSW9DzJyH2OAcMJH40vghuLaeVvYCP2K3NeaPyd7zaIJLwktETBJuVq7IIUulDPS8SidDFJbo31G8oHzle-pxIoY8yqFJEZV3WxVMFtVmq1KZuT9ps-yA-L4a-sjnNBNSwTRTi9AtKpetKp_iVZG9gdxqHrNXlW4McshCitNRt5uPoNO4kaLbcJijW3AKxJa6zIjLzrp2VDCdV4agb3NjlztkLr7pZldJ9zvHN1xoVRGxoMI_qDrz7x49T948ZrcL5LuSJabfbLX3q7DG3DHWjci946Oz86_jsjdSSHwqiajpI3fAQX5N0s |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wB7QNwJDDASPFFrTeJbkBBiY6NjWzWhTtqbZztOV6lLSpsK8cz_4Tfik0tHuextT6kSOzrNOT7ns88NoVfCwwjJM0t0Ehq_QXExkTTTxBnoB9dL056FfOejAe-f0M-n7HQN_WxzYSCsstWJlaJOCwtn5FvgEIs9-k3k--lXAl2jwLvattCoxeLAff_mt2zzd_sfPX9fR9He7nCnT5quAsQyGpbE2Cx2HqjESeh_MMaEdTwxjjNrHctim2XOw2abSZu41PJYGKsjnfl5UWhTEfv33kDrNOa9qIPWt3cHx1-WpzoeUAiayDY7R_KtOYWafMSbRlLVRyNsxQJWjQL-hW7_DtL8w1NbGcC9O-h2g1zxh1rU7qI1l99DG7_VM7yPflSWD6Lr8hGe6bROhcGNXwKP87LA04ke57g9JsUQdz_CO-e6_HQ8xDpPsb8SiuF8GHtyL6YlbjpbjN76N80Xk3LexRPIy6oPG7vVrGlRQtyTnjxAJ9fCj4eokxe5e4xwAoWauEmFcYyKiBvJTJwxwxwTWgoboLD98so2VEInjomqtkKSq5pbynNLVdxSLEBvlnOmdQGQK0dvA0OXI6F4d3WjmI1UowtU6KDvG_VIy2nq7YvJstQKHRu_PqBZaYA2W3FQjUaZq0v5D9DL5WOvC8DBo3NXLGCMR2NUCJEE6FEtPUtKYhEmksJsuSJXK6SuPsnH51W98RC2AZTzAHVbEbyk6__f4snVf-MFutkfHh2qw_3BwVN0K6pWCCOh3ESdcrZwzzzYK83zZoVhdHbdi_oXArJs1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFQlx4PwIFjAQn1mqT-BUkDrBlaSlUPbRSb67t2NuVlmS1mxXizA_xiYydZNFCQeLQU6LYjkaeGc-M54XQCwFqhOTeEl2kBgwUlxNJvSbOhH5wO2W5Y0O-8-dDvndCP56y0w30o8-FidHuvUuyzWkIVZqqZntW-pbFJd9e0FDojoC8IbHoGOnDKg_ct69gtC3e7O8Chl9m2ej98XCPdH0FiGU0bYixPnegquRFCi-MMWEdL4zjzFrHfG69d6A4Wy9t4UrLc2GszrSHdVlqS5HDf6-gq2AZpcHcG_Lh6lYHFApBC9ln51wI6poEjI0CLtJu_wzS_M1TGwXg6Ba60Wmu-G1LarfRhqvuoJt9VwjcHRJ30fco_kKIXTXGc122-TC4c07gSdXUeDbVkwr3d6U4BN-P8fBcNx-OjrGuSgxPQnG4JMYA85dZg7v2FuPX8KfFctosBngakrPaG8dBXDWrAw6Bo-6hk0tByX20WdWVe4hwEao1cVMK4xgVGTeSmdwzwxwTWgqboLTffmU7KEM7jqmK9pDkqkWZApSpiDLFEvRqtWbWVgH55-x3AaurmaGCd_xQz8eqOxBU6kLzNwrqltMUhIzxvrRC5waYJHQsTdBWTxOqO1YWKniFczABC5mg56thOBCCl0dXrl6GOaCSUSFEkaAHLQmtIMlFWkgaVss14loDdX2kmpzHouNpsAUo5wka9HT4C66_78Wj_5v-DF072h2pT_uHB4_R9SxyDSOp3EKbzXzpnoAC2JinkecwOrtsJv8J8S1uUQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translating+radiology+reports+into+plain+language+using+ChatGPT+and+GPT-4+with+prompt+learning%3A+results%2C+limitations%2C+and+potential&rft.jtitle=Visual+computing+for+industry%2C+biomedicine+and+art&rft.au=Lyu%2C+Qing&rft.au=Tan%2C+Josh&rft.au=Zapadka%2C+Michael+E.&rft.au=Ponnatapura%2C+Janardhana&rft.date=2023-05-18&rft.issn=2524-4442&rft.eissn=2524-4442&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs42492-023-00136-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s42492_023_00136_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4442&client=summon |