Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential

The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare provide...

Full description

Saved in:
Bibliographic Details
Published inVisual computing for industry, biomedicine and art Vol. 6; no. 1; pp. 9 - 10
Main Authors Lyu, Qing, Tan, Josh, Zapadka, Michael E., Ponnatapura, Janardhana, Niu, Chuang, Myers, Kyle J., Wang, Ge, Whitlow, Christopher T.
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 18.05.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.
AbstractList The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.
The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.
Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we investigate the feasibility of using ChatGPT in experiments on translating radiology reports into plain language for patients and healthcare providers so that they are educated for improved healthcare. Radiology reports from 62 low-dose chest computed tomography lung cancer screening scans and 76 brain magnetic resonance imaging metastases screening scans were collected in the first half of February for this study. According to the evaluation by radiologists, ChatGPT can successfully translate radiology reports into plain language with an average score of 4.27 in the five-point system with 0.08 places of information missing and 0.07 places of misinformation. In terms of the suggestions provided by ChatGPT, they are generally relevant such as keeping following-up with doctors and closely monitoring any symptoms, and for about 37% of 138 cases in total ChatGPT offers specific suggestions based on findings in the report. ChatGPT also presents some randomness in its responses with occasionally over-simplified or neglected information, which can be mitigated using a more detailed prompt. Furthermore, ChatGPT results are compared with a newly released large model GPT-4, showing that GPT-4 can significantly improve the quality of translated reports. Our results show that it is feasible to utilize large language models in clinical education, and further efforts are needed to address limitations and maximize their potential.
ArticleNumber 9
Author Tan, Josh
Wang, Ge
Zapadka, Michael E.
Ponnatapura, Janardhana
Myers, Kyle J.
Lyu, Qing
Niu, Chuang
Whitlow, Christopher T.
Author_xml – sequence: 1
  givenname: Qing
  orcidid: 0000-0002-9824-0170
  surname: Lyu
  fullname: Lyu, Qing
  organization: Department of Radiology, Wake Forest University School of Medicine
– sequence: 2
  givenname: Josh
  surname: Tan
  fullname: Tan, Josh
  organization: Department of Radiology, Wake Forest University School of Medicine
– sequence: 3
  givenname: Michael E.
  surname: Zapadka
  fullname: Zapadka, Michael E.
  organization: Department of Radiology, Wake Forest University School of Medicine
– sequence: 4
  givenname: Janardhana
  surname: Ponnatapura
  fullname: Ponnatapura, Janardhana
  organization: Department of Radiology, Wake Forest University School of Medicine
– sequence: 5
  givenname: Chuang
  surname: Niu
  fullname: Niu, Chuang
  organization: Biomedical Imaging Center, Rensselaer Polytechnic Institute
– sequence: 6
  givenname: Kyle J.
  surname: Myers
  fullname: Myers, Kyle J.
  email: drkylejmyers@gmail.com
  organization: Puente Solutions LLC
– sequence: 7
  givenname: Ge
  surname: Wang
  fullname: Wang, Ge
  email: wangg6@rpi.edu
  organization: Biomedical Imaging Center, Rensselaer Polytechnic Institute
– sequence: 8
  givenname: Christopher T.
  surname: Whitlow
  fullname: Whitlow, Christopher T.
  email: cwhitlow@wakehealth.edu
  organization: Department of Radiology, Wake Forest University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37198498$$D View this record in MEDLINE/PubMed
BookMark eNp9kkFvFCEUxyemxtbaL-DBkHjx4CgwMAxejNlobdJED-uZMAwzS8PCCIymZ7-4b7trbXvoiQf8_v_34L3n1VGIwVbVS4LfEdK17zOjTNIa06bGmDRtzZ9UJ5RTVjPG6NGd-Lg6y_kKY0w5Fkx2z6rjRhDZQXhS_VknHbLXxYUJJT246ON0jZKdYyoZuVAimr12AXkdpkVPFi15x642upx_XyMdBgRrzdBvVzZoTnE7F-StTgGwD-CUF1_yW-Td1hXIEwNsdqo5FhuK0_5F9XTUPtuzw3pa_fjyeb36Wl9-O79YfbqsDWek1L0ZG4s5aySBgHMujG1lb1tujOVjY8bRYibN2BlpB9M2ojea6hF0lJhBNKfVxd53iPpKzcltdbpWUTt1cxDTpHQqzniriGWMCEaotJrpYejHcTBCN30vCG8JBa-Pe6956beQDV6StL9nev8muI2a4i9FMJGUtS04vDk4pPhzsbmorcvGevhnG5esaEegg0IICejrB-hVXFKAvwJK4oZLITugXt0t6baWf80GgO4Bk2LOyY63CMFqN1RqP1QKhkrdDJXiIOoeiMyhjfAs5x-XNntphjxhsul_2Y-o_gI2NePx
CitedBy_id crossref_primary_10_1007_s00402_024_05298_2
crossref_primary_10_1007_s00117_025_01416_2
crossref_primary_10_1200_CCI_24_00126
crossref_primary_10_1016_j_apjo_2024_100085
crossref_primary_10_1016_j_ejrad_2024_111627
crossref_primary_10_1016_j_msksp_2025_103275
crossref_primary_10_1007_s11604_024_01552_0
crossref_primary_10_1016_j_ejrad_2024_111756
crossref_primary_10_1080_03634523_2024_2398105
crossref_primary_10_1016_j_jacr_2023_07_007
crossref_primary_10_1002_widm_1518
crossref_primary_10_1111_1754_9485_13621
crossref_primary_10_1186_s12903_025_05619_w
crossref_primary_10_1186_s44158_024_00215_w
crossref_primary_10_1016_j_jpi_2023_100338
crossref_primary_10_1111_liv_15891
crossref_primary_10_1016_j_preteyeres_2024_101291
crossref_primary_10_1016_j_crad_2023_08_006
crossref_primary_10_31637_epsir_2025_513
crossref_primary_10_1016_j_jacr_2023_12_015
crossref_primary_10_1055_s_0044_1789618
crossref_primary_10_1007_s43681_023_00335_z
crossref_primary_10_1016_j_pec_2023_107940
crossref_primary_10_1177_00472816241260043
crossref_primary_10_1016_j_nlp_2023_100048
crossref_primary_10_1016_j_jacr_2024_05_009
crossref_primary_10_1089_aipo_2024_0027
crossref_primary_10_1007_s43681_024_00568_6
crossref_primary_10_3174_ajnr_A8332
crossref_primary_10_1016_j_jcjo_2024_08_010
crossref_primary_10_1007_s10462_024_10849_5
crossref_primary_10_1007_s40336_023_00597_x
crossref_primary_10_1016_j_neunet_2025_107362
crossref_primary_10_1056_AIp2400889
crossref_primary_10_2196_55388
crossref_primary_10_1088_1361_6560_ad387d
crossref_primary_10_1148_radiol_232714
crossref_primary_10_3390_digital5020010
crossref_primary_10_1177_02601060241244563
crossref_primary_10_3348_jksr_2024_0066
crossref_primary_10_3390_diagnostics14131442
crossref_primary_10_1186_s12911_024_02757_z
crossref_primary_10_3390_informatics12010009
crossref_primary_10_7759_cureus_40135
crossref_primary_10_1002_wcms_1725
crossref_primary_10_1111_epi_17907
crossref_primary_10_1109_ACCESS_2024_3437374
crossref_primary_10_1093_jamia_ocae223
crossref_primary_10_1007_s11604_025_01764_y
crossref_primary_10_4103_TPSY_TPSY_19_24
crossref_primary_10_3390_cancers16132311
crossref_primary_10_1080_02691728_2024_2379271
crossref_primary_10_1007_s00256_024_04599_2
crossref_primary_10_1038_s41598_023_41512_8
crossref_primary_10_3389_fopht_2024_1387190
crossref_primary_10_1007_s11912_025_01649_3
crossref_primary_10_1021_acs_jcim_3c01429
crossref_primary_10_1055_s_0044_1788589
crossref_primary_10_2196_22769
crossref_primary_10_1016_j_cmi_2023_11_002
crossref_primary_10_3174_ajnr_A8550
crossref_primary_10_1038_s41598_024_63824_z
crossref_primary_10_3897_folmed_66_e135584
crossref_primary_10_58600_eurjther2225
crossref_primary_10_1200_CCI_24_00166
crossref_primary_10_1111_jebm_70004
crossref_primary_10_3390_jpm14090923
crossref_primary_10_1111_imj_16607
crossref_primary_10_1186_s43019_024_00218_5
crossref_primary_10_1136_tc_2024_058813
crossref_primary_10_1186_s42492_024_00171_w
crossref_primary_10_1007_s00261_024_04619_8
crossref_primary_10_2196_59050
crossref_primary_10_1016_j_clinimag_2024_110101
crossref_primary_10_1016_j_soncn_2023_151433
crossref_primary_10_1016_j_chb_2024_108404
crossref_primary_10_1016_j_ajhg_2024_08_010
crossref_primary_10_1007_s00270_023_03563_2
crossref_primary_10_2196_57257
crossref_primary_10_1044_2024_PERSP_23_00167
crossref_primary_10_1007_s00117_023_01187_8
crossref_primary_10_1016_j_jocmr_2024_101035
crossref_primary_10_2196_54704
crossref_primary_10_3389_fmed_2024_1477898
crossref_primary_10_3390_robotics12040097
crossref_primary_10_1589_jpts_36_234
crossref_primary_10_1016_j_clinimag_2023_109993
crossref_primary_10_1016_j_rcl_2024_01_004
crossref_primary_10_3390_diagnostics14212393
crossref_primary_10_1007_s00330_024_11148_x
crossref_primary_10_3390_cancers17050882
crossref_primary_10_1038_s41746_024_01336_w
crossref_primary_10_1097_MS9_0000000000002716
crossref_primary_10_24289_ijsser_1609741
crossref_primary_10_1007_s00261_024_04708_8
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_1007_s11280_024_01297_w
crossref_primary_10_1186_s12911_024_02459_6
crossref_primary_10_1186_s12911_024_02709_7
crossref_primary_10_1007_s11547_024_01915_7
crossref_primary_10_1007_s44206_024_00158_3
crossref_primary_10_1136_bmjhci_2023_100857
crossref_primary_10_2196_52113
crossref_primary_10_59653_jimat_v1i01_161
crossref_primary_10_2217_fmai_2023_0011
crossref_primary_10_1016_j_inffus_2024_102888
crossref_primary_10_1016_j_iswa_2023_200308
crossref_primary_10_1186_s13244_023_01560_0
crossref_primary_10_1016_j_acra_2023_11_002
crossref_primary_10_1016_j_jaip_2023_05_042
crossref_primary_10_1016_j_jacr_2024_03_004
crossref_primary_10_1016_j_jbi_2024_104649
crossref_primary_10_1016_j_ceh_2024_12_006
crossref_primary_10_3389_frai_2023_1223909
crossref_primary_10_1186_s12911_024_02445_y
crossref_primary_10_1038_s41746_025_01468_7
crossref_primary_10_1136_bmjopen_2023_082344
crossref_primary_10_1016_j_jcjo_2024_11_003
crossref_primary_10_2196_57238
crossref_primary_10_1093_bjrai_ubae019
crossref_primary_10_1055_a_2264_5631
crossref_primary_10_1148_radiol_240597
crossref_primary_10_3389_fimmu_2024_1478163
crossref_primary_10_4103_crst_crst_193_23
crossref_primary_10_3390_nano13132003
crossref_primary_10_1109_ACCESS_2024_3428918
crossref_primary_10_3390_su151712983
crossref_primary_10_1093_jamia_ocae312
crossref_primary_10_1016_j_crbiot_2023_100164
crossref_primary_10_1016_j_ijom_2024_04_002
crossref_primary_10_3174_ajnr_A8077
Cites_doi 10.1016/S2589-7500(23)00019-5
10.1371/journal.pdig.0000198
10.1016/S2589-7500(23)00021-3
10.1148/radiol.223312
10.1101/2023.02.02.23285399
10.1145/3539813.3545143
10.1001/jama.2023.1044
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7SC
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s42492-023-00136-5
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest One Community College
ProQuest Central Korea
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef

MEDLINE - Academic

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Engineering
EISSN 2524-4442
EndPage 10
ExternalDocumentID oai_doaj_org_article_1e44174129ea4addbffdc7a3bb715612
PMC10192466
37198498
10_1186_s42492_023_00136_5
Genre Journal Article
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ACACY
ACULB
ADBBV
AFGXO
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BCNDV
BENPR
C24
C6C
CCPQU
EBS
GROUPED_DOAJ
M~E
PGMZT
PIMPY
PROAC
RPM
RSV
SOJ
AAYXX
CITATION
PHGZM
PHGZT
NPM
7SC
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-bcf3e054391f3e5557ce69be65cce5f3cffe049cf8c9edc637bca2afbcf21cd73
IEDL.DBID DOA
ISSN 2524-4442
2096-496X
IngestDate Wed Aug 27 01:20:36 EDT 2025
Thu Aug 21 18:36:58 EDT 2025
Fri Jul 11 01:26:06 EDT 2025
Mon Jun 30 06:11:40 EDT 2025
Wed Feb 19 02:02:35 EST 2025
Tue Jul 01 02:27:04 EDT 2025
Thu Apr 24 23:11:44 EDT 2025
Fri Feb 21 02:44:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Large language model
Patient education
ChatGPT
Radiology report
Artificial intelligence
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-bcf3e054391f3e5557ce69be65cce5f3cffe049cf8c9edc637bca2afbcf21cd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9824-0170
OpenAccessLink https://doaj.org/article/1e44174129ea4addbffdc7a3bb715612
PMID 37198498
PQID 2890359798
PQPubID 4402876
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_1e44174129ea4addbffdc7a3bb715612
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10192466
proquest_miscellaneous_2815247779
proquest_journals_2890359798
pubmed_primary_37198498
crossref_primary_10_1186_s42492_023_00136_5
crossref_citationtrail_10_1186_s42492_023_00136_5
springer_journals_10_1186_s42492_023_00136_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-18
PublicationDateYYYYMMDD 2023-05-18
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-18
  day: 18
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Germany
PublicationTitle Visual computing for industry, biomedicine and art
PublicationTitleAbbrev Vis. Comput. Ind. Biomed. Art
PublicationTitleAlternate Vis Comput Ind Biomed Art
PublicationYear 2023
Publisher Springer Nature Singapore
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: SpringerOpen
References Rao A, Kim J, Kamineni M, Pang M, Lie W, Succi MD (2023) Evaluating ChatGPT as an adjunct for radiologic decision-making. medRxiv, 2023-02. https://doi.org/10.1101/2023.02.02.23285399
Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P et al. (2022) Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155
Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J et al. (2022) ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. arXiv preprint arXiv:2212.14882
Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C et al. (2023) Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit Health 2(2):0000198. https://doi.org/10.1371/journal.pdig.0000198
PromptPerfect: elevate your prompts to perfection. https://promptperfect.jina.ai/. Accessed 20 Feb 2023
Wang S, Scells H, Koopman B, Zuccon G (2023) Can ChatGPT write a good Boolean query for systematic review literature search? arXiv preprint arXiv:2302.03495. https://doi.org/10.1145/3539813.3545143
Patel SB, Lam K (2023) ChatGPT: the future of discharge summaries? Lancet Digit Health 5(3):E107–E108. https://doi.org/10.1016/S2589-7500(23)00021-3
Yang ZL, Dai ZH, Yang YM, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: Generalized autoregressive pretraining for language understanding. In: Proceedings of the 33rd international conference on neural information processing systems, Curran Associates Inc., Vancouver, 8 December 2019
Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training
Liebrenz M, Schleifer R, Buadze A, Bhugra D, Smith A (2023) Generating scholarly content with ChatGPT: ethical challenges for medical publishing. Lancet Digit Health 5(3):E105–E106. https://doi.org/10.1016/S2589-7500(23)00019-5
Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, 2-7 June 2019
ChatGPT sets record for fastest-growing user base-analyst note. https://www.marketscreener.com/news/latest/ChatGPT-sets-record-for-fastestgrowing-user-base-analyst-note--42873811/. Accessed 20 Feb 2023
ChatGPT reaches 100 million users two months after launch. https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-usersopen-ai-fastest-growing-app. Accessed 20 Feb 2023
Biswas S (2023) ChatGPT and the future of medical writing. Radiology 307(2):e223312. https://doi.org/10.1148/radiol.223312
GPT-4. https://openai.com/research/gpt-4. Accessed 14 Mar 2023
Sarraju A, Bruemmer D, Van Iterson E, Cho L, Rodriguez F, Laffin L (2023) Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. JAMA 329(10):842–844. https://doi.org/10.1001/jama.2023.1044
OpenAI: GPT-4 technique report (2023) https://cdn.openai.com/papers/gpt-4.pdf. Accessed 14 Mar 2023
136_CR7
136_CR6
136_CR9
136_CR8
136_CR3
136_CR2
136_CR5
136_CR4
136_CR16
136_CR15
136_CR1
136_CR14
136_CR13
136_CR12
136_CR11
136_CR10
136_CR17
References_xml – reference: Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language understanding by generative pre-training
– reference: Sarraju A, Bruemmer D, Van Iterson E, Cho L, Rodriguez F, Laffin L (2023) Appropriateness of cardiovascular disease prevention recommendations obtained from a popular online chat-based artificial intelligence model. JAMA 329(10):842–844. https://doi.org/10.1001/jama.2023.1044
– reference: Wang S, Scells H, Koopman B, Zuccon G (2023) Can ChatGPT write a good Boolean query for systematic review literature search? arXiv preprint arXiv:2302.03495. https://doi.org/10.1145/3539813.3545143
– reference: ChatGPT sets record for fastest-growing user base-analyst note. https://www.marketscreener.com/news/latest/ChatGPT-sets-record-for-fastestgrowing-user-base-analyst-note--42873811/. Accessed 20 Feb 2023
– reference: Liebrenz M, Schleifer R, Buadze A, Bhugra D, Smith A (2023) Generating scholarly content with ChatGPT: ethical challenges for medical publishing. Lancet Digit Health 5(3):E105–E106. https://doi.org/10.1016/S2589-7500(23)00019-5
– reference: Rao A, Kim J, Kamineni M, Pang M, Lie W, Succi MD (2023) Evaluating ChatGPT as an adjunct for radiologic decision-making. medRxiv, 2023-02. https://doi.org/10.1101/2023.02.02.23285399
– reference: GPT-4. https://openai.com/research/gpt-4. Accessed 14 Mar 2023
– reference: Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C et al. (2023) Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit Health 2(2):0000198. https://doi.org/10.1371/journal.pdig.0000198
– reference: Devlin J, Chang MW, Lee K, Toutanova K (2019) BERT: Pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (Long and Short Papers), Association for Computational Linguistics, Minneapolis, 2-7 June 2019
– reference: ChatGPT reaches 100 million users two months after launch. https://www.theguardian.com/technology/2023/feb/02/chatgpt-100-million-usersopen-ai-fastest-growing-app. Accessed 20 Feb 2023
– reference: Jeblick K, Schachtner B, Dexl J, Mittermeier A, Stüber AT, Topalis J et al. (2022) ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. arXiv preprint arXiv:2212.14882
– reference: Yang ZL, Dai ZH, Yang YM, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: Generalized autoregressive pretraining for language understanding. In: Proceedings of the 33rd international conference on neural information processing systems, Curran Associates Inc., Vancouver, 8 December 2019
– reference: Ouyang L, Wu J, Jiang X, Almeida D, Wainwright CL, Mishkin P et al. (2022) Training language models to follow instructions with human feedback. arXiv preprint arXiv:2203.02155
– reference: Biswas S (2023) ChatGPT and the future of medical writing. Radiology 307(2):e223312. https://doi.org/10.1148/radiol.223312
– reference: OpenAI: GPT-4 technique report (2023) https://cdn.openai.com/papers/gpt-4.pdf. Accessed 14 Mar 2023
– reference: PromptPerfect: elevate your prompts to perfection. https://promptperfect.jina.ai/. Accessed 20 Feb 2023
– reference: Patel SB, Lam K (2023) ChatGPT: the future of discharge summaries? Lancet Digit Health 5(3):E107–E108. https://doi.org/10.1016/S2589-7500(23)00021-3
– ident: 136_CR17
– ident: 136_CR9
  doi: 10.1016/S2589-7500(23)00019-5
– ident: 136_CR15
– ident: 136_CR16
– ident: 136_CR2
– ident: 136_CR3
– ident: 136_CR1
– ident: 136_CR5
– ident: 136_CR4
– ident: 136_CR8
  doi: 10.1371/journal.pdig.0000198
– ident: 136_CR6
– ident: 136_CR10
  doi: 10.1016/S2589-7500(23)00021-3
– ident: 136_CR11
  doi: 10.1148/radiol.223312
– ident: 136_CR13
  doi: 10.1101/2023.02.02.23285399
– ident: 136_CR7
  doi: 10.1145/3539813.3545143
– ident: 136_CR12
– ident: 136_CR14
  doi: 10.1001/jama.2023.1044
SSID ssj0002507498
ssib054953444
ssib046007038
ssib046561513
Score 2.6124415
Snippet The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study, we...
Abstract The large language model called ChatGPT has drawn extensively attention because of its human-like expression and reasoning abilities. In this study,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9
SubjectTerms Artificial intelligence
CAE) and Design
Chatbots
ChatGPT
Computed tomography
Computer Graphics
Computer Imaging
Computer Science
Computer-Aided Engineering (CAD
Feasibility studies
Health care
Image Processing and Computer Vision
Language
Large language model
Large language models
Magnetic resonance imaging
Media Design
Medical screening
Original
Original Article
Patient education
Pattern Recognition and Graphics
Radiology
Radiology report
Translating
Vision
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege4EHxDcZAxmJN2ptafwVXhCbNiYkpglt0t4i27G7SiUpbfoX7B_nznE6yseeWjV2dfHd-X6-O98R8l4BjNAyOGbK3MIBxRdM82CYt9gP7qCuDxzed_52Jk8v-dcrcZUcbquUVjnsiXGjrluHPvJ9DIgVgH5L_Wnxk2HXKIyuphYa98kObMFaj8jO4fHZ-feNlwUMvOKlHm7LaLm_4lgjj4GpYrFeGRNbFikW7v8X2vw7afKPyGk0SCePyaOEJOnnnvVPyD3fPCUPf6sv-IzcREuE2W7NlC5N3V9NoSlOQGdN19LF3MwaOrgtKebBT-nRtem-nF9Q09QUPhmn6K-lQO6PRUdTp4npR_in1XrercZ0jvekeuffOM5atB3mIZn5c3J5cnxxdMpS1wXmBM87Zl0oPAC5oszhixBCOS9L66VwzotQuBA8HCtc0K6E1ZCFss5MTIB5k9zVqnhBRk3b-FeEllg4SdpaWS-4mkirhS2CsMILZbRyGcmHla9cohI7Y8yreDTRsuq5VQG3qsitSmTkw2bOoi_IcefoQ2ToZiQW044_tMtplXSzyj32YeOAfLzhsN_bEGqnTGFBXrF5aEb2BnGokoavqlt5zMi7zWPQTQy4mMa3axwD6IgrpcqMvOylZ0NJofJSc5ytt-Rqi9TtJ83sOtb_zhGWcykzMh5E8Jau_6_F7t2v8Zo8mEStECzXe2TULdf-DQCuzr5NWvULfYksWg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQw0IJy4cL7ESjISNxYi3r9DDdYUSokEIdW6i2yHXu7UppddbNfwI8z4zxgoSBxSpTMRCPPTGbseRHy2oAbYXUKzJXcwwYlCmZlcix6nAd3VNdHAeudv3zVJ2fy87k6H9rkYC3Mr_F7bvXbrcSWdgwsC8vtxZi6SW4pLgyOaVjoxXSeAqbcyNKOdTHXou7Zntyi_zq_8s_0yN9ipNn0HN8jdwafkb7vmXyf3IjtA3J3nMdAB_V8SL5nw4PJbe2SXrm6r0ShQ1iArtpuTTeNW7V0PKWkmPa-pIsL1336dkpdW1O4MknxeJYCzZebjg6DJZbv4EvbXdNtZ7TBsqj-rG-WsTbrDtOOXPOInB1_PF2csGHIAgtK8o75kEQEv02UHG6UUiZEXfqoVQhRJRFSirCLCMmGEpZEC-ODm7sEeHMeaiMek4N23canhJbYJ0n72viopJlrb5UXSXkVlXHWhILwcfmrMFCJgzCaKu9ErK56llXAsiqzrFIFeTPhbPr-G_-E_oBcnSCxd3Z-ACJVDapY8Yhj1yQ4OtFJ-L37lOpgnPAgnjgrtCCHo0xUg0JvK4zHCth8lbYgr6bXoIoYX3FtXO8QBpwhaYwpC_KkF6GJEmF4aSVi2z3h2iN1_027usjtvjl64VLrgsxGOfxJ19_X4tn_gT8nt-dZVRTj9pAcdFe7-AL8rc6_zIr2A5ajJWI
  priority: 102
  providerName: Springer Nature
Title Translating radiology reports into plain language using ChatGPT and GPT-4 with prompt learning: results, limitations, and potential
URI https://link.springer.com/article/10.1186/s42492-023-00136-5
https://www.ncbi.nlm.nih.gov/pubmed/37198498
https://www.proquest.com/docview/2890359798
https://www.proquest.com/docview/2815247779
https://pubmed.ncbi.nlm.nih.gov/PMC10192466
https://doaj.org/article/1e44174129ea4addbffdc7a3bb715612
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXOCAeBMoKyNxY6028TPc6KqlQqKqUCv1FtmOvV1pm111s7-AP86Mkyy7PC9ckiixrdF4JjNjj78h5J0GN8Ko6JktcwcBSuDMiGhZcFgP7rCuDz2ed_5ypk4vxecrebVV6gtzwjp44I5xB3nAIlkCzFKwApTRxVh7bbmDwbCyI_59weZtBVP4DwbDrkVphlMyRh2sBGLjMTBRLOGUMbljiRJg_--8zF-TJX_aMU2G6OQRedh7kPRjR_ljcic0T8iDLVzBp-RbskCY5dZM6a2tuyMptN8foLOmXdDl3M4aOixXUsx_n9LJtW0_nV9Q29QU7kxQXKelQO7NsqV9hYnpBxhptZ63qzGd4_mobtFvnHotFy3mH9n5M3J5cnwxOWV9tQXmpchb5nzkARw4XubwIKXUPqjSBSW9DzJyH2OAcMJH40vghuLaeVvYCP2K3NeaPyd7zaIJLwktETBJuVq7IIUulDPS8SidDFJbo31G8oHzle-pxIoY8yqFJEZV3WxVMFtVmq1KZuT9ps-yA-L4a-sjnNBNSwTRTi9AtKpetKp_iVZG9gdxqHrNXlW4McshCitNRt5uPoNO4kaLbcJijW3AKxJa6zIjLzrp2VDCdV4agb3NjlztkLr7pZldJ9zvHN1xoVRGxoMI_qDrz7x49T948ZrcL5LuSJabfbLX3q7DG3DHWjci946Oz86_jsjdSSHwqiajpI3fAQX5N0s
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZG9wB7QNwJDDASPFFrTeJbkBBiY6NjWzWhTtqbZztOV6lLSpsK8cz_4Tfik0tHuextT6kSOzrNOT7ns88NoVfCwwjJM0t0Ehq_QXExkTTTxBnoB9dL056FfOejAe-f0M-n7HQN_WxzYSCsstWJlaJOCwtn5FvgEIs9-k3k--lXAl2jwLvattCoxeLAff_mt2zzd_sfPX9fR9He7nCnT5quAsQyGpbE2Cx2HqjESeh_MMaEdTwxjjNrHctim2XOw2abSZu41PJYGKsjnfl5UWhTEfv33kDrNOa9qIPWt3cHx1-WpzoeUAiayDY7R_KtOYWafMSbRlLVRyNsxQJWjQL-hW7_DtL8w1NbGcC9O-h2g1zxh1rU7qI1l99DG7_VM7yPflSWD6Lr8hGe6bROhcGNXwKP87LA04ke57g9JsUQdz_CO-e6_HQ8xDpPsb8SiuF8GHtyL6YlbjpbjN76N80Xk3LexRPIy6oPG7vVrGlRQtyTnjxAJ9fCj4eokxe5e4xwAoWauEmFcYyKiBvJTJwxwxwTWgoboLD98so2VEInjomqtkKSq5pbynNLVdxSLEBvlnOmdQGQK0dvA0OXI6F4d3WjmI1UowtU6KDvG_VIy2nq7YvJstQKHRu_PqBZaYA2W3FQjUaZq0v5D9DL5WOvC8DBo3NXLGCMR2NUCJEE6FEtPUtKYhEmksJsuSJXK6SuPsnH51W98RC2AZTzAHVbEbyk6__f4snVf-MFutkfHh2qw_3BwVN0K6pWCCOh3ESdcrZwzzzYK83zZoVhdHbdi_oXArJs1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFQlx4PwIFjAQn1mqT-BUkDrBlaSlUPbRSb67t2NuVlmS1mxXizA_xiYydZNFCQeLQU6LYjkaeGc-M54XQCwFqhOTeEl2kBgwUlxNJvSbOhH5wO2W5Y0O-8-dDvndCP56y0w30o8-FidHuvUuyzWkIVZqqZntW-pbFJd9e0FDojoC8IbHoGOnDKg_ct69gtC3e7O8Chl9m2ej98XCPdH0FiGU0bYixPnegquRFCi-MMWEdL4zjzFrHfG69d6A4Wy9t4UrLc2GszrSHdVlqS5HDf6-gq2AZpcHcG_Lh6lYHFApBC9ln51wI6poEjI0CLtJu_wzS_M1TGwXg6Ba60Wmu-G1LarfRhqvuoJt9VwjcHRJ30fco_kKIXTXGc122-TC4c07gSdXUeDbVkwr3d6U4BN-P8fBcNx-OjrGuSgxPQnG4JMYA85dZg7v2FuPX8KfFctosBngakrPaG8dBXDWrAw6Bo-6hk0tByX20WdWVe4hwEao1cVMK4xgVGTeSmdwzwxwTWgqboLTffmU7KEM7jqmK9pDkqkWZApSpiDLFEvRqtWbWVgH55-x3AaurmaGCd_xQz8eqOxBU6kLzNwrqltMUhIzxvrRC5waYJHQsTdBWTxOqO1YWKniFczABC5mg56thOBCCl0dXrl6GOaCSUSFEkaAHLQmtIMlFWkgaVss14loDdX2kmpzHouNpsAUo5wka9HT4C66_78Wj_5v-DF072h2pT_uHB4_R9SxyDSOp3EKbzXzpnoAC2JinkecwOrtsJv8J8S1uUQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translating+radiology+reports+into+plain+language+using+ChatGPT+and+GPT-4+with+prompt+learning%3A+results%2C+limitations%2C+and+potential&rft.jtitle=Visual+computing+for+industry%2C+biomedicine+and+art&rft.au=Lyu%2C+Qing&rft.au=Tan%2C+Josh&rft.au=Zapadka%2C+Michael+E.&rft.au=Ponnatapura%2C+Janardhana&rft.date=2023-05-18&rft.issn=2524-4442&rft.eissn=2524-4442&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1186%2Fs42492-023-00136-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s42492_023_00136_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2524-4442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2524-4442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2524-4442&client=summon