Which method should we use to determine the hip joint center location in individuals with a high amount of soft tissue?

This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtai...

Full description

Saved in:
Bibliographic Details
Published inClinical biomechanics (Bristol) Vol. 115; p. 106254
Main Authors Horsak, Brian, Durstberger, Sebastian, Krondorfer, Philipp, Thajer, Alexandra, Greber-Platzer, Susanne, Kranzl, Andreas
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound. For this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m2, range 26–52 kg/m2) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound. The absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals. Based on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis. •We tested various hip joint center estimation methods' accuracy in obese individuals.•We recommend using regression rather functional methods for this population.•Functional methods demonstrated lower accuracy and overall highest variability.•Hara's regression performed best in all planes with errors <8.2 (SD 7.6 mm).•Do not use pelvic depth in regression methods due to a bias related to soft tissue.
AbstractList This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound. For this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m , range 26-52 kg/m ) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound. The absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals. Based on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis.
This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound. For this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m2, range 26–52 kg/m2) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound. The absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals. Based on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis. •We tested various hip joint center estimation methods' accuracy in obese individuals.•We recommend using regression rather functional methods for this population.•Functional methods demonstrated lower accuracy and overall highest variability.•Hara's regression performed best in all planes with errors <8.2 (SD 7.6 mm).•Do not use pelvic depth in regression methods due to a bias related to soft tissue.
This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound.BACKGROUNDThis study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound.For this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m2, range 26-52 kg/m2) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound.METHODSFor this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m2, range 26-52 kg/m2) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound.The absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals.FINDINGSThe absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals.Based on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis.INTERPRETATIONBased on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis.
AbstractBackgroundThis study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high amounts of soft tissue. We compared position estimates of five regression-based and two functional methods to the hip joint center position obtained through 3D free-hand ultrasound. MethodsFor this purpose, the data of 14 overweight or obese individuals with a mean age of 13.6 (SD 2.1 yrs) and a BMI of 36.5 (SD 7.1 kg/m 2, range 26–52 kg/m 2) who underwent standard clinical 3D gait analysis were used. The data of each participant were processed with five regression-based and two functional methods and compared to the hip joint center identified via 3D free-hand ultrasound. FindingsThe absolute location errors to 3D free-hand ultrasound for each anatomical plane and the Euclidean distances served as outcomes next to their effects on gait variables. The data suggest that regression-based methods are preferable to functional methods in this population, as the latter demonstrated the highest variability in accuracy with large errors for some individuals. InterpretationBased on our findings we recommend using the regression method presented by Hara et al. due to its superior overall accuracy of <9 mm on average in all planes and the lowest impact on kinematic and kinetic output variables. We do not recommend using the Harrington equations (single and multiple) in populations with high amounts of soft tissue as they require pelvic depth as input, which can be massively biased when a lot of soft tissue is present around the pelvis.
ArticleNumber 106254
Author Kranzl, Andreas
Krondorfer, Philipp
Thajer, Alexandra
Durstberger, Sebastian
Greber-Platzer, Susanne
Horsak, Brian
Author_xml – sequence: 1
  givenname: Brian
  surname: Horsak
  fullname: Horsak, Brian
  email: brian.horsak@fhstp.ac.at
  organization: Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten 3100, Austria
– sequence: 2
  givenname: Sebastian
  surname: Durstberger
  fullname: Durstberger, Sebastian
  organization: FH Campus Wien – University of Applied Sciences, Department Health Sciences, Favoritenstrasse 226, 1100 Vienna, Austria
– sequence: 3
  givenname: Philipp
  surname: Krondorfer
  fullname: Krondorfer, Philipp
  organization: Center for Digital Health and Social Innovation, St. Pölten University of Applied Sciences, Campus-Platz 1, St. Pölten 3100, Austria
– sequence: 4
  givenname: Alexandra
  surname: Thajer
  fullname: Thajer, Alexandra
  organization: Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Guertel 18-20, Vienna 1090, Austria
– sequence: 5
  givenname: Susanne
  surname: Greber-Platzer
  fullname: Greber-Platzer, Susanne
  organization: Clinical Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Währinger Guertel 18-20, Vienna 1090, Austria
– sequence: 6
  givenname: Andreas
  surname: Kranzl
  fullname: Kranzl, Andreas
  organization: Orthopaedic Hospital Speising, Laboratory of Gait and Movement Analysis, Speisinger Str. 109, Vienna 1130, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38669918$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhoOsuLOrf0HinTcd89HPG5dl8AsWvFDRu9CenthT22Zs0h3235s6q8iCMBAISZ7zEM57LtjZ5CZk7IUUWylk_qrfwkBTQ25E6LZKqDTe5ypLH7GNLIsqkaqQZ2wjVF4mQmh9zi6874UQqcqKJ-xcl3leVbLcsMPXjqDjI4bOtdx3bhlafkC-eOTB8RYDziNN8dAh72jPe0dT4IBTfOCDgzqQmzitq6Vbapd68PxAoeN15L_HbXRLrHCWe2cDD-T9gldP2WMbSXx2v1-yL2_ffN69T24-vvuwu75JIEtlSJoqxUKVtoBS6cZa1JCLQgvMbZppi2ChxTaFqiwLAY1qhM6z0ipR6xwAKn3JXh69-9n9XNAHM5IHHIZ6Qrd4o0VaVJlOhYzo83t0aUZszX6msZ7vzJ9mRaA6AjA772e0fxEpzBqM6c0_wZg1GHMMJtZePagFCr97F-aahpMMu6MBY7tuCWfjgXACbGlGCKZ1dJLl9QPLShLUww-8Q9-7ZZ5iHkYar4wwn9YRWidIpXF6yvxbFFz_X3DiJ34BVwPeVA
CitedBy_id crossref_primary_10_1016_j_clinbiomech_2024_106426
crossref_primary_10_3390_nu17060971
crossref_primary_10_1097_CORR_0000000000003288
Cites_doi 10.1016/0021-9290(93)90011-3
10.1038/s41598-021-89763-7
10.1016/j.jbiomech.2010.12.009
10.1016/j.gaitpost.2020.10.017
10.1016/j.gaitpost.2010.01.014
10.2165/00007256-199826040-00002
10.1016/j.gaitpost.2011.05.019
10.1016/j.jbiomech.2005.02.008
10.1016/0167-9457(91)90046-Z
10.1016/j.gaitpost.2013.05.019
10.1016/j.gaitpost.2016.09.011
10.1016/S0021-9290(01)00052-5
10.1016/j.neuroimage.2006.01.015
10.1016/j.medengphy.2015.07.001
10.1016/0021-9290(90)90054-7
10.1016/j.gaitpost.2008.09.003
10.1016/S0268-0033(97)00041-7
10.1016/j.jbiomech.2005.10.002
10.1037/0033-2909.86.2.420
10.1016/j.jbiomech.2022.111265
10.1016/j.gaitpost.2009.09.004
10.1016/S0021-9290(00)00093-2
10.1016/j.gaitpost.2017.02.028
10.1007/s10439-015-1522-1
10.1038/srep37707
10.1016/j.gaitpost.2012.03.011
10.1016/S0021-9290(03)00288-4
10.1016/j.gaitpost.2015.07.004
10.1016/j.gaitpost.2014.01.024
10.1016/j.gaitpost.2011.09.105
10.1016/S0021-9290(03)00087-3
10.1016/j.gaitpost.2017.09.029
10.1016/j.clinbiomech.2015.02.005
10.1016/j.jbiomech.2006.02.003
10.1016/j.jbiomech.2019.02.010
10.1016/j.jbiomech.2009.03.037
ContentType Journal Article
Copyright 2024 The Authors
The Authors
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Authors
– notice: The Authors
– notice: Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.clinbiomech.2024.106254
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-1271
EndPage 106254
ExternalDocumentID 38669918
10_1016_j_clinbiomech_2024_106254
S026800332400086X
1_s2_0_S026800332400086X
Genre Journal Article
GrantInformation_xml – fundername: Austrian Science Fund FWF
  grantid: P 30923
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
H~9
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OVD
OZT
P-8
P-9
P2P
PC.
Q38
QZG
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UAP
UPT
WH7
WUQ
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
YCJ
6I.
AAFTH
AAIAV
ABLVK
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c541t-b94e728f7c823bffe3c60730e6f453fecfcded4c98870cb2b03658f20a36ccc93
IEDL.DBID .~1
ISSN 0268-0033
1879-1271
IngestDate Mon Jul 21 11:34:01 EDT 2025
Sat May 31 02:13:22 EDT 2025
Tue Jul 01 02:35:11 EDT 2025
Thu Apr 24 23:05:24 EDT 2025
Sat Jun 01 15:42:35 EDT 2024
Tue Feb 25 19:54:43 EST 2025
Tue Aug 26 16:34:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords HJC
Joint angles
3D free-hand ultrasound
Medical imaging
Joint moments
Gait analysis
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-b94e728f7c823bffe3c60730e6f453fecfcded4c98870cb2b03658f20a36ccc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S026800332400086X
PMID 38669918
PQID 3047953401
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3047953401
pubmed_primary_38669918
crossref_primary_10_1016_j_clinbiomech_2024_106254
crossref_citationtrail_10_1016_j_clinbiomech_2024_106254
elsevier_sciencedirect_doi_10_1016_j_clinbiomech_2024_106254
elsevier_clinicalkeyesjournals_1_s2_0_S026800332400086X
elsevier_clinicalkey_doi_10_1016_j_clinbiomech_2024_106254
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical biomechanics (Bristol)
PublicationTitleAlternate Clin Biomech (Bristol)
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sangeux, Pillet, Skalli (bb0175) 2014; 40
Camomilla, Cereatti, Vannozzi, Cappozzo (bb0040) 2006; 39
Davis, Õunpuu, Tyburski, Gage (bb0050) 1991; 10
Piazza, Erdemir, Okita, Cavanagh (bb0155) 2004; 37
Fiorentino, Atkins, Kutschke, Foreman, Anderson (bb0070) 2016; 50
Delp, Maloney (bb0055) 1993; 26
Harrington, Zavatsky, Lawson, Yuan, Theologis (bb0085) 2007; 40
Sangeux, Peters, Baker (bb0170) 2011; 34
Fiorentino, Kutschke, Atkins, Foreman, Kapron, Anderson (bb0075) 2016; 44
Piazza, Okita, Cavanagh (bb0150) 2001; 34
Stagni, Leardini, Cappozzo, Grazia Benedetti, Cappello (bb0185) 2000; 33
Leboeuf, Barre, Aminian, Sangeux (bb0120) 2023; 111774
Atkinson, Nevill (bb0005) 1998; 26
Bell, Pedersen, Brand (bb0015) 1990; 23
Brendel, Winter, Ermert (bb0035) 2004; 49
Ehrig, Taylor, Duda, Heller (bb0060) 2006; 39
Baker (bb0010) 2013
Horsak, Schwab, Durstberger, Thajer, Greber-Platzer, Kainz, Jonkers, Kranzl (bb0105) 2021; 11
McGinley, Baker, Wolfe, Morris (bb0130) 2009; 29
Peters, Galna, Sangeux, Morris, Baker (bb0140) 2010; 31
Lenaerts, Bartels, Gelaude, Mulier, Spaepen, Van der Perre, Jonkers (bb0125) 2009; 42
Shrout, Fleiss (bb0180) 1979; 2
WHO (bb0190) 2021
Peters, Baker, Sangeux (bb0135) 2010; 31
Carman, Besier, Choisne (bb0045) 2022; 142
Horsak, Pobatschnig, Baca, Greber-Platzer, Kreissl, Nehrer, Wondrasch, Crevenna, Keilani, Kranzl (bb0090) 2017
Peters, Baker, Morris, Sangeux (bb0145) 2012; 36
Hara, McGinley, Briggs, Baker, Sangeux (bb0080) 2016; 6
Ehrig, Heller, Kratzenstein, Duda, Trepczynski, Taylor (bb0065) 2011; 44
Borhani, McGregor, Bull (bb0030) 2013; 38
Sandau, Heimbürger, Villa, Jensen, Moeslund, Aanæs, Alkjær, Simonsen (bb0160) 2015; 37
Horsak, Schwab, Leboeuf, Kranzl (bb0100) 2020; 83
Benedetti, Catani, Leardini, Pignotti, Giannini (bb0020) 1998; 13
Horsak, Schwab, Clemens, Baca, Greber-Platzer, Kreissl, Kranzl (bb0095) 2018; 59
Wilken, Rodriguez, Brawner, Darter (bb0195) 2012; 35
Yushkevich, Piven, Hazlett, Smith, Ho, Gee, Gerig (bb0200) 2006; 31
Sangeux (bb0165) 2015; 42
Kainz, Carty, Modenese, Boyd, Lloyd (bb0110) 2015; 30
Leboeuf, Reay, Jones, Sangeux (bb0115) 2019; 87
Besier, Sturnieks, Alderson, Lloyd (bb0025) 2003; 36
McGinley (10.1016/j.clinbiomech.2024.106254_bb0130) 2009; 29
Davis (10.1016/j.clinbiomech.2024.106254_bb0050) 1991; 10
Carman (10.1016/j.clinbiomech.2024.106254_bb0045) 2022; 142
Sangeux (10.1016/j.clinbiomech.2024.106254_bb0175) 2014; 40
Atkinson (10.1016/j.clinbiomech.2024.106254_bb0005) 1998; 26
Delp (10.1016/j.clinbiomech.2024.106254_bb0055) 1993; 26
Hara (10.1016/j.clinbiomech.2024.106254_bb0080) 2016; 6
WHO (10.1016/j.clinbiomech.2024.106254_bb0190)
Borhani (10.1016/j.clinbiomech.2024.106254_bb0030) 2013; 38
Leboeuf (10.1016/j.clinbiomech.2024.106254_bb0115) 2019; 87
Shrout (10.1016/j.clinbiomech.2024.106254_bb0180) 1979; 2
Stagni (10.1016/j.clinbiomech.2024.106254_bb0185) 2000; 33
Fiorentino (10.1016/j.clinbiomech.2024.106254_bb0070) 2016; 50
Kainz (10.1016/j.clinbiomech.2024.106254_bb0110) 2015; 30
Yushkevich (10.1016/j.clinbiomech.2024.106254_bb0200) 2006; 31
Piazza (10.1016/j.clinbiomech.2024.106254_bb0150) 2001; 34
Baker (10.1016/j.clinbiomech.2024.106254_bb0010) 2013
Bell (10.1016/j.clinbiomech.2024.106254_bb0015) 1990; 23
Peters (10.1016/j.clinbiomech.2024.106254_bb0135) 2010; 31
Leboeuf (10.1016/j.clinbiomech.2024.106254_bb0120) 2023; 111774
Sandau (10.1016/j.clinbiomech.2024.106254_bb0160) 2015; 37
Brendel (10.1016/j.clinbiomech.2024.106254_bb0035) 2004; 49
Ehrig (10.1016/j.clinbiomech.2024.106254_bb0065) 2011; 44
Horsak (10.1016/j.clinbiomech.2024.106254_bb0100) 2020; 83
Peters (10.1016/j.clinbiomech.2024.106254_bb0145) 2012; 36
Ehrig (10.1016/j.clinbiomech.2024.106254_bb0060) 2006; 39
Piazza (10.1016/j.clinbiomech.2024.106254_bb0155) 2004; 37
Sangeux (10.1016/j.clinbiomech.2024.106254_bb0165) 2015; 42
Horsak (10.1016/j.clinbiomech.2024.106254_bb0095) 2018; 59
Benedetti (10.1016/j.clinbiomech.2024.106254_bb0020) 1998; 13
Besier (10.1016/j.clinbiomech.2024.106254_bb0025) 2003; 36
Peters (10.1016/j.clinbiomech.2024.106254_bb0140) 2010; 31
Sangeux (10.1016/j.clinbiomech.2024.106254_bb0170) 2011; 34
Fiorentino (10.1016/j.clinbiomech.2024.106254_bb0075) 2016; 44
Camomilla (10.1016/j.clinbiomech.2024.106254_bb0040) 2006; 39
Lenaerts (10.1016/j.clinbiomech.2024.106254_bb0125) 2009; 42
Horsak (10.1016/j.clinbiomech.2024.106254_bb0105) 2021; 11
Horsak (10.1016/j.clinbiomech.2024.106254_bb0090) 2017
Wilken (10.1016/j.clinbiomech.2024.106254_bb0195) 2012; 35
Harrington (10.1016/j.clinbiomech.2024.106254_bb0085) 2007; 40
References_xml – volume: 42
  start-page: 1246
  year: 2009
  end-page: 1251
  ident: bb0125
  article-title: Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait
  publication-title: J. Biomech.
– volume: 31
  start-page: 1116
  year: 2006
  end-page: 1128
  ident: bb0200
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
– volume: 39
  start-page: 2798
  year: 2006
  end-page: 2809
  ident: bb0060
  article-title: A survey of formal methods for determining the Centre of rotation of ball joints
  publication-title: J. Biomech.
– volume: 37
  start-page: 349
  year: 2004
  end-page: 356
  ident: bb0155
  article-title: Assessment of the functional method of hip joint center location subject to reduced range of hip motion
  publication-title: J. Biomech.
– volume: 10
  start-page: 575
  year: 1991
  end-page: 587
  ident: bb0050
  article-title: A gait analysis data collection and reduction technique
  publication-title: Hum. Mov. Sci.
– volume: 36
  start-page: 1159
  year: 2003
  end-page: 1168
  ident: bb0025
  article-title: Repeatability of gait data using a functional hip joint Centre and a mean helical knee axis
  publication-title: J. Biomech.
– volume: 50
  start-page: 246
  year: 2016
  end-page: 251
  ident: bb0070
  article-title: In-vivo quantification of dynamic hip joint center errors and soft tissue artifact
  publication-title: Gait Posture
– volume: 26
  start-page: 217
  year: 1998
  end-page: 238
  ident: bb0005
  article-title: Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine
  publication-title: Sports Med.
– volume: 26
  start-page: 485
  year: 1993
  end-page: 499
  ident: bb0055
  article-title: Effects of hip center location on the moment-generating capacity of the muscles
  publication-title: J. Biomech.
– volume: 83
  start-page: 96
  year: 2020
  end-page: 99
  ident: bb0100
  article-title: Reliability of walking and stair climbing kinematics in a young obese population using a standard kinematic and the CGM2 model
  publication-title: Gait Posture
– year: 2013
  ident: bb0010
  article-title: Measuring Walking: A Handbook of Clinical Gait Analysis
– volume: 29
  start-page: 360
  year: 2009
  end-page: 369
  ident: bb0130
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait Posture
– volume: 23
  start-page: 617
  year: 1990
  end-page: 621
  ident: bb0015
  article-title: A comparison of the accuracy of several hip center location prediction methods
  publication-title: J. Biomech.
– volume: 11
  start-page: 10650
  year: 2021
  ident: bb0105
  article-title: 3D free-hand ultrasound to register anatomical landmarks at the pelvis and localize the hip joint center in lean and obese individuals
  publication-title: Sci. Rep.
– volume: 34
  start-page: 967
  year: 2001
  end-page: 973
  ident: bb0150
  article-title: Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation
  publication-title: J. Biomech.
– volume: 35
  start-page: 301
  year: 2012
  end-page: 307
  ident: bb0195
  article-title: Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults
  publication-title: Gait Posture
– volume: 59
  start-page: 65
  year: 2018
  end-page: 70
  ident: bb0095
  article-title: Is the reliability of 3D kinematics of young obese participants dependent on the hip joint center localization method used?
  publication-title: Gait Posture
– volume: 36
  start-page: 282
  year: 2012
  end-page: 286
  ident: bb0145
  article-title: A comparison of hip joint Centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy
  publication-title: Gait Posture
– volume: 6
  start-page: 37707
  year: 2016
  ident: bb0080
  article-title: Predicting the location of the hip joint centres, impact of age group and sex
  publication-title: Sci. Rep.
– volume: 49
  start-page: 872
  year: 2004
  end-page: 873
  ident: bb0035
  article-title: A simple and accurate calibration method for 3D freehand ultrasound
  publication-title: Biomed. Eng.
– volume: 87
  start-page: 167
  year: 2019
  end-page: 171
  ident: bb0115
  article-title: The effect on conventional gait model kinematics and kinetics of hip joint Centre equations in adult healthy gait
  publication-title: J. Biomech.
– volume: 42
  start-page: 402
  year: 2015
  end-page: 405
  ident: bb0165
  article-title: On the implementation of predictive methods to locate the hip joint centres
  publication-title: Gait Posture
– volume: 44
  start-page: 2168
  year: 2016
  end-page: 2180
  ident: bb0075
  article-title: Accuracy of functional and predictive methods to calculate the hip joint center in young non-pathologic asymptomatic adults with dual fluoroscopy as a reference standard
  publication-title: Ann. Biomed. Eng.
– year: 2017
  ident: bb0090
  article-title: Within-assessor reliability and minimal detectable change of gait kinematics in a young obese demographic
  publication-title: Gait Posture
– volume: 39
  start-page: 1096
  year: 2006
  end-page: 1106
  ident: bb0040
  article-title: An optimized protocol for hip joint centre determination using the functional method
  publication-title: J. Biomech.
– volume: 30
  start-page: 319
  year: 2015
  end-page: 329
  ident: bb0110
  article-title: Estimation of the hip joint centre in human motion analysis: a systematic review
  publication-title: Clin. Biomech.
– volume: 31
  start-page: 530
  year: 2010
  end-page: 532
  ident: bb0135
  article-title: Validation of 3-D freehand ultrasound for the determination of the hip joint centre
  publication-title: Gait Posture
– volume: 2
  start-page: 420
  year: 1979
  end-page: 428
  ident: bb0180
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
– volume: 33
  start-page: 1479
  year: 2000
  end-page: 1487
  ident: bb0185
  article-title: Effects of hip joint centre mislocation on gait analysis results
  publication-title: J. Biomech.
– volume: 38
  start-page: 1032
  year: 2013
  end-page: 1037
  ident: bb0030
  article-title: An alternative technical marker set for the pelvis is more repeatable than the standard pelvic marker set
  publication-title: Gait Posture
– volume: 31
  start-page: 1
  year: 2010
  end-page: 8
  ident: bb0140
  article-title: Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review
  publication-title: Gait Posture
– volume: 34
  start-page: 324
  year: 2011
  end-page: 328
  ident: bb0170
  article-title: Hip joint Centre localization: evaluation on normal subjects in the context of gait analysis
  publication-title: Gait Posture
– volume: 40
  start-page: 20
  year: 2014
  end-page: 25
  ident: bb0175
  article-title: Which method of hip joint Centre localisation should be used in gait analysis?
  publication-title: Gait Posture
– volume: 37
  start-page: 948
  year: 2015
  end-page: 955
  ident: bb0160
  article-title: New equations to calculate 3D joint centres in the lower extremities
  publication-title: Med. Eng. Phys.
– volume: 111774
  year: 2023
  ident: bb0120
  article-title: On the accuracy of the conventional gait model: distinction between marker misplacement and soft tissue artefact errors
  publication-title: J. Biomech.
– volume: 13
  start-page: 204
  year: 1998
  end-page: 215
  ident: bb0020
  article-title: Data management in gait analysis for clinical applications
  publication-title: Clin. Biomech.
– volume: 142
  year: 2022
  ident: bb0045
  article-title: Predicting the hip joint centre in children: new regression equations, linear scaling, and statistical shape modelling
  publication-title: J. Biomech.
– volume: 44
  start-page: 1400
  year: 2011
  end-page: 1404
  ident: bb0065
  article-title: The SCoRE residual: a quality index to assess the accuracy of joint estimations
  publication-title: J. Biomech.
– volume: 40
  start-page: 595
  year: 2007
  end-page: 602
  ident: bb0085
  article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging
  publication-title: J. Biomech.
– year: 2021
  ident: bb0190
– volume: 26
  start-page: 485
  issue: 4
  year: 1993
  ident: 10.1016/j.clinbiomech.2024.106254_bb0055
  article-title: Effects of hip center location on the moment-generating capacity of the muscles
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(93)90011-3
– volume: 11
  start-page: 10650
  issue: 1
  year: 2021
  ident: 10.1016/j.clinbiomech.2024.106254_bb0105
  article-title: 3D free-hand ultrasound to register anatomical landmarks at the pelvis and localize the hip joint center in lean and obese individuals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89763-7
– volume: 44
  start-page: 1400
  issue: 7
  year: 2011
  ident: 10.1016/j.clinbiomech.2024.106254_bb0065
  article-title: The SCoRE residual: a quality index to assess the accuracy of joint estimations
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.12.009
– volume: 83
  start-page: 96
  year: 2020
  ident: 10.1016/j.clinbiomech.2024.106254_bb0100
  article-title: Reliability of walking and stair climbing kinematics in a young obese population using a standard kinematic and the CGM2 model
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2020.10.017
– volume: 111774
  year: 2023
  ident: 10.1016/j.clinbiomech.2024.106254_bb0120
  article-title: On the accuracy of the conventional gait model: distinction between marker misplacement and soft tissue artefact errors
  publication-title: J. Biomech.
– volume: 31
  start-page: 530
  issue: 4
  year: 2010
  ident: 10.1016/j.clinbiomech.2024.106254_bb0135
  article-title: Validation of 3-D freehand ultrasound for the determination of the hip joint centre
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2010.01.014
– volume: 26
  start-page: 217
  issue: 4
  year: 1998
  ident: 10.1016/j.clinbiomech.2024.106254_bb0005
  article-title: Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine
  publication-title: Sports Med.
  doi: 10.2165/00007256-199826040-00002
– volume: 34
  start-page: 324
  issue: 3
  year: 2011
  ident: 10.1016/j.clinbiomech.2024.106254_bb0170
  article-title: Hip joint Centre localization: evaluation on normal subjects in the context of gait analysis
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.05.019
– volume: 39
  start-page: 1096
  issue: 6
  year: 2006
  ident: 10.1016/j.clinbiomech.2024.106254_bb0040
  article-title: An optimized protocol for hip joint centre determination using the functional method
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.02.008
– volume: 10
  start-page: 575
  issue: 5
  year: 1991
  ident: 10.1016/j.clinbiomech.2024.106254_bb0050
  article-title: A gait analysis data collection and reduction technique
  publication-title: Hum. Mov. Sci.
  doi: 10.1016/0167-9457(91)90046-Z
– volume: 38
  start-page: 1032
  issue: 4
  year: 2013
  ident: 10.1016/j.clinbiomech.2024.106254_bb0030
  article-title: An alternative technical marker set for the pelvis is more repeatable than the standard pelvic marker set
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.05.019
– volume: 50
  start-page: 246
  year: 2016
  ident: 10.1016/j.clinbiomech.2024.106254_bb0070
  article-title: In-vivo quantification of dynamic hip joint center errors and soft tissue artifact
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.09.011
– volume: 34
  start-page: 967
  issue: 7
  year: 2001
  ident: 10.1016/j.clinbiomech.2024.106254_bb0150
  article-title: Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00052-5
– volume: 31
  start-page: 1116
  issue: 3
  year: 2006
  ident: 10.1016/j.clinbiomech.2024.106254_bb0200
  article-title: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.015
– volume: 37
  start-page: 948
  issue: 10
  year: 2015
  ident: 10.1016/j.clinbiomech.2024.106254_bb0160
  article-title: New equations to calculate 3D joint centres in the lower extremities
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2015.07.001
– volume: 23
  start-page: 617
  issue: 6
  year: 1990
  ident: 10.1016/j.clinbiomech.2024.106254_bb0015
  article-title: A comparison of the accuracy of several hip center location prediction methods
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90054-7
– volume: 29
  start-page: 360
  issue: 3
  year: 2009
  ident: 10.1016/j.clinbiomech.2024.106254_bb0130
  article-title: The reliability of three-dimensional kinematic gait measurements: a systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.09.003
– volume: 13
  start-page: 204
  issue: 3
  year: 1998
  ident: 10.1016/j.clinbiomech.2024.106254_bb0020
  article-title: Data management in gait analysis for clinical applications
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(97)00041-7
– ident: 10.1016/j.clinbiomech.2024.106254_bb0190
– volume: 39
  start-page: 2798
  issue: 15
  year: 2006
  ident: 10.1016/j.clinbiomech.2024.106254_bb0060
  article-title: A survey of formal methods for determining the Centre of rotation of ball joints
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.10.002
– year: 2013
  ident: 10.1016/j.clinbiomech.2024.106254_bb0010
– volume: 2
  start-page: 420
  issue: 86
  year: 1979
  ident: 10.1016/j.clinbiomech.2024.106254_bb0180
  article-title: Intraclass correlations: uses in assessing rater reliability
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.86.2.420
– volume: 142
  year: 2022
  ident: 10.1016/j.clinbiomech.2024.106254_bb0045
  article-title: Predicting the hip joint centre in children: new regression equations, linear scaling, and statistical shape modelling
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2022.111265
– volume: 31
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.clinbiomech.2024.106254_bb0140
  article-title: Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2009.09.004
– volume: 33
  start-page: 1479
  issue: 11
  year: 2000
  ident: 10.1016/j.clinbiomech.2024.106254_bb0185
  article-title: Effects of hip joint centre mislocation on gait analysis results
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(00)00093-2
– year: 2017
  ident: 10.1016/j.clinbiomech.2024.106254_bb0090
  article-title: Within-assessor reliability and minimal detectable change of gait kinematics in a young obese demographic
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.02.028
– volume: 49
  start-page: 872
  issue: 2
  year: 2004
  ident: 10.1016/j.clinbiomech.2024.106254_bb0035
  article-title: A simple and accurate calibration method for 3D freehand ultrasound
  publication-title: Biomed. Eng.
– volume: 44
  start-page: 2168
  issue: 7
  year: 2016
  ident: 10.1016/j.clinbiomech.2024.106254_bb0075
  article-title: Accuracy of functional and predictive methods to calculate the hip joint center in young non-pathologic asymptomatic adults with dual fluoroscopy as a reference standard
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1522-1
– volume: 6
  start-page: 37707
  issue: 1
  year: 2016
  ident: 10.1016/j.clinbiomech.2024.106254_bb0080
  article-title: Predicting the location of the hip joint centres, impact of age group and sex
  publication-title: Sci. Rep.
  doi: 10.1038/srep37707
– volume: 36
  start-page: 282
  issue: 2
  year: 2012
  ident: 10.1016/j.clinbiomech.2024.106254_bb0145
  article-title: A comparison of hip joint Centre localisation techniques with 3-DUS for clinical gait analysis in children with cerebral palsy
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2012.03.011
– volume: 37
  start-page: 349
  issue: 3
  year: 2004
  ident: 10.1016/j.clinbiomech.2024.106254_bb0155
  article-title: Assessment of the functional method of hip joint center location subject to reduced range of hip motion
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00288-4
– volume: 42
  start-page: 402
  issue: 3
  year: 2015
  ident: 10.1016/j.clinbiomech.2024.106254_bb0165
  article-title: On the implementation of predictive methods to locate the hip joint centres
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2015.07.004
– volume: 40
  start-page: 20
  issue: 1
  year: 2014
  ident: 10.1016/j.clinbiomech.2024.106254_bb0175
  article-title: Which method of hip joint Centre localisation should be used in gait analysis?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2014.01.024
– volume: 35
  start-page: 301
  issue: 2
  year: 2012
  ident: 10.1016/j.clinbiomech.2024.106254_bb0195
  article-title: Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2011.09.105
– volume: 36
  start-page: 1159
  issue: 8
  year: 2003
  ident: 10.1016/j.clinbiomech.2024.106254_bb0025
  article-title: Repeatability of gait data using a functional hip joint Centre and a mean helical knee axis
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(03)00087-3
– volume: 59
  start-page: 65
  year: 2018
  ident: 10.1016/j.clinbiomech.2024.106254_bb0095
  article-title: Is the reliability of 3D kinematics of young obese participants dependent on the hip joint center localization method used?
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2017.09.029
– volume: 30
  start-page: 319
  issue: 4
  year: 2015
  ident: 10.1016/j.clinbiomech.2024.106254_bb0110
  article-title: Estimation of the hip joint centre in human motion analysis: a systematic review
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2015.02.005
– volume: 40
  start-page: 595
  issue: 3
  year: 2007
  ident: 10.1016/j.clinbiomech.2024.106254_bb0085
  article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.02.003
– volume: 87
  start-page: 167
  year: 2019
  ident: 10.1016/j.clinbiomech.2024.106254_bb0115
  article-title: The effect on conventional gait model kinematics and kinetics of hip joint Centre equations in adult healthy gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.02.010
– volume: 42
  start-page: 1246
  issue: 9
  year: 2009
  ident: 10.1016/j.clinbiomech.2024.106254_bb0125
  article-title: Subject-specific hip geometry and hip joint centre location affects calculated contact forces at the hip during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2009.03.037
SSID ssj0004257
Score 2.4389722
Snippet This study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young individuals with high...
AbstractBackgroundThis study investigated the most accurate method for estimating the hip joint center position in clinical 3D gait analysis for young...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106254
SubjectTerms 3D free-hand ultrasound
Adolescent
Biomechanical Phenomena
Child
Female
Gait - physiology
Gait analysis
Gait Analysis - methods
Hip Joint - diagnostic imaging
HJC
Humans
Imaging, Three-Dimensional - methods
Joint angles
Joint moments
Male
Medical imaging
Obesity - physiopathology
Physical Medicine and Rehabilitation
Reproducibility of Results
Ultrasonography - methods
Title Which method should we use to determine the hip joint center location in individuals with a high amount of soft tissue?
URI https://www.clinicalkey.com/#!/content/1-s2.0-S026800332400086X
https://www.clinicalkey.es/playcontent/1-s2.0-S026800332400086X
https://dx.doi.org/10.1016/j.clinbiomech.2024.106254
https://www.ncbi.nlm.nih.gov/pubmed/38669918
https://www.proquest.com/docview/3047953401
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KheKLaOvH-VGmIL7FyyWbLxHkKJZTaV-0eG9LdrNLUtrkaHIUX_zbnUk2V0ULB0JesmTYsDM7H7u_mQF4nSkd6jhLPMP1EIXKAi-3tvAKsqW60DqMCj7vOD2LF-fi8zJa7sDxmAvDsEqn-wed3mtrNzJ1qzldVdX0K0UPKbciYxQkOeZLzmAXCUv525-3MA_hqn3Sxx5_vQdHtxgvzj7s09z7e4lA0DjFA-IuG3WXD9rbopOH8MA5kTgf_vMR7Jh6Hw7mNQXQVz_wDfawzv68fB_2Tt3t-QHcfC8rXeLQNBrbkrtb443BdWuwa7BwyBh6KQ2W1QovmqrukPGb5hrZ6jEXseJnTONqkU9yMUeue4z5FbeewMZiS-odu56rHx7D-cnHb8cLzzVe8HQkZp2nMmGSILWJToNQWWuInawKTGxFFFqjrS5MIXRGGsrXKlBkBqPUBn4exlrrLHwCu3VTm2eAlpjuG638NC_YV1FKcdAp8niW-kkQTyAdl1pqV5Wcm2NcyhF-diF_45JkLsmBSxMINqSroTTHNkTvRn7KMfeUtKUkA7INcfIvYtO6fd_KmWwD6cu_ZHMC7zeUf4j3thMfjaInafvznU5em2bdSr41zaKQouQJPB1kcrMYYRrH5P6nz_9v8hdwn98GlOdL2O2u1-YVeWKdOuy32iHcm3_6sjj7BTfCNU0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7ULVRfRFut6_UUxLew2dw2EUGWYtna7r7Y4r4NmckMSbHJ0mQp_nvPSSZbRQsLQl5yOUyYb-Zc5twA3idS-SpKJo7meoiBTDwnNSZzMpKlKlPKDzM-75gvotll8HUZLnfguM-F4bBKy_s7nt5ya_tkZGdztCqK0TeyHmJuRcZRkKSYLx_ALlenCgewOz09my3u0iNtwU_63mGCPTi6C_PiBMQ20711TXgBPSeTILhPTN2nhrbi6OQJPLZ6JE67X30KO7rch4NpSTb09U_8gG1kZ3tkvg97c-tAP4Db73mhcuz6RmOdc4NrvNW4rjU2FWY2OIZuco15scKrqigb5BBOfYMs-BhILPjqM7lq5MNcTJFLH2N6zd0nsDJYE4fHpgX28zO4PPlycTxzbO8FR4XBuHFkEuiJF5uJij1fGqMJUeYGOjJB6ButjMp0FqiEmJSrpCdJEoax8dzUj5RSif8cBmVV6heAhnB3tZJunGasrkgp2e4M0mgcuxMvGkLcT7VQtjA598f4IfoItCvxG0qCURIdSkPwNqSrrjrHNkQfezxFn35KDFOQDNmGePIvYl3brV-Lsag94Yq_lucQPm0o_1jh2w581C89QRyA3Tppqat1LdhxmoQ-GcpDOOzW5GYy_DiKyAKIX_7f4O_g4exifi7OTxdnr-ARv-mCPl_DoLlZ6zekmDXyrd14vwCvQzf-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Which+method+should+we+use+to+determine+the+hip+joint+center+location+in+individuals+with+a+high+amount+of+soft+tissue%3F&rft.jtitle=Clinical+biomechanics+%28Bristol%29&rft.au=Horsak%2C+Brian&rft.au=Durstberger%2C+Sebastian&rft.au=Krondorfer%2C+Philipp&rft.au=Thajer%2C+Alexandra&rft.date=2024-05-01&rft.eissn=1879-1271&rft.volume=115&rft.spage=106254&rft_id=info:doi/10.1016%2Fj.clinbiomech.2024.106254&rft_id=info%3Apmid%2F38669918&rft.externalDocID=38669918
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F02680033%2Fcov200h.gif