Joint probabilistic modeling of single-cell multi-omic data with totalVI

The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified repr...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 18; no. 3; pp. 272 - 282
Main Authors Gayoso, Adam, Steier, Zoë, Lopez, Romain, Regier, Jeffrey, Nazor, Kristopher L., Streets, Aaron, Yosef, Nir
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.03.2021
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1548-7091
1548-7105
1548-7105
DOI10.1038/s41592-020-01050-x

Cover

Loading…
Abstract The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing. Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells.
AbstractList The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.
The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.
The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells.
The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells.
The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing. Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells.
The paired measurement of RNA and surface proteins in single cells with CITE-seq is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks like dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules, and differential expression testing.
Audience Academic
Author Nazor, Kristopher L.
Steier, Zoë
Streets, Aaron
Lopez, Romain
Regier, Jeffrey
Gayoso, Adam
Yosef, Nir
AuthorAffiliation 5 BioLegend, Inc., San Diego, CA, USA
7 Ragon Institute of MGH, MIT and Harvard
6 Chan Zuckerberg Biohub, San Francisco, CA, USA
3 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
1 Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
2 Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
4 Department of Statistics, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
AuthorAffiliation_xml – name: 5 BioLegend, Inc., San Diego, CA, USA
– name: 7 Ragon Institute of MGH, MIT and Harvard
– name: 2 Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
– name: 3 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
– name: 1 Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
– name: 6 Chan Zuckerberg Biohub, San Francisco, CA, USA
– name: 4 Department of Statistics, University of Michigan, Ann Arbor, Ann Arbor, MI, USA
Author_xml – sequence: 1
  givenname: Adam
  orcidid: 0000-0001-9537-0845
  surname: Gayoso
  fullname: Gayoso, Adam
  organization: Center for Computational Biology, University of California, Berkeley
– sequence: 2
  givenname: Zoë
  orcidid: 0000-0003-1488-7995
  surname: Steier
  fullname: Steier, Zoë
  organization: Department of Bioengineering, University of California, Berkeley
– sequence: 3
  givenname: Romain
  orcidid: 0000-0003-0495-738X
  surname: Lopez
  fullname: Lopez, Romain
  organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
– sequence: 4
  givenname: Jeffrey
  orcidid: 0000-0002-1472-5235
  surname: Regier
  fullname: Regier, Jeffrey
  organization: Department of Statistics, University of Michigan, Ann Arbor
– sequence: 5
  givenname: Kristopher L.
  surname: Nazor
  fullname: Nazor, Kristopher L.
  organization: BioLegend, Inc
– sequence: 6
  givenname: Aaron
  orcidid: 0000-0002-3909-8389
  surname: Streets
  fullname: Streets, Aaron
  email: astreets@berkeley.edu
  organization: Center for Computational Biology, University of California, Berkeley, Department of Bioengineering, University of California, Berkeley, Chan Zuckerberg Biohub
– sequence: 7
  givenname: Nir
  orcidid: 0000-0001-9004-1225
  surname: Yosef
  fullname: Yosef, Nir
  email: niryosef@berkeley.edu
  organization: Center for Computational Biology, University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Chan Zuckerberg Biohub, Ragon Institute of MGH, MIT and Harvard
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33589839$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhi1URK8vwAJFYtNNii-xE2-QqqrQokpsgK01SSanrhz7EDu9vD0OpxdaocqL8eX7_9GMZ5ds-eCRkPeMHjEqmk-xYlLzknJaUkYlLW_fkB0mq6as83HrYU812ya7MV5RKkTF5TuyLYRsdCP0Djn7FqxPxXoKLbTW2ZhsV4yhR2f9qghDEXN0WHboXDHOLtkyjBnpIUFxY9NlkUIC9-t8n7wdwEU8uI975OeX0x8nZ-XF96_nJ8cXZScrlsq20YjQSSVQKWCDajhyBNEj8FqIDqWioGSLTFVQN6BYC0oLoYYsEEMt9sjnje96bkfsO_RpAmfWkx1hujMBrHn-4u2lWYVrU2tZ6Upng8N7gyn8njEmM9q4lAcewxwNrzRlnAspMvrxBXoV5snn8hZKi7pWjX6iVuDQWD-EnLdbTM2xkrJmNRdVpo7-Q-XVY-5n_tjB5vtngg__FvpY4cPfZYBvgG4KMU44PCKMmmVAzGZATB4Q83dAzG0WNS9EnU2QbFiaZd3rUrGRxpzHr3B66sYrqj945M7i
CitedBy_id crossref_primary_10_1016_j_crmeth_2023_100563
crossref_primary_10_1038_s41592_024_02184_y
crossref_primary_10_1093_bib_bbad313
crossref_primary_10_1186_s13059_023_02989_8
crossref_primary_10_1016_j_cels_2024_04_004
crossref_primary_10_1038_s41590_024_01782_4
crossref_primary_10_1093_bib_bbad309
crossref_primary_10_1038_s41581_021_00463_x
crossref_primary_10_1186_s13059_023_02850_y
crossref_primary_10_1038_s41569_022_00805_7
crossref_primary_10_1073_pnas_2205518119
crossref_primary_10_15252_msb_202211017
crossref_primary_10_1038_s41590_023_01584_0
crossref_primary_10_1186_s13059_024_03419_z
crossref_primary_10_1038_s41514_024_00185_x
crossref_primary_10_1038_s42003_025_07872_9
crossref_primary_10_1016_j_cels_2024_08_006
crossref_primary_10_1038_s41587_024_02173_8
crossref_primary_10_3389_fgene_2022_867880
crossref_primary_10_1084_jem_20230896
crossref_primary_10_1093_bib_bbad416
crossref_primary_10_1039_D2LC01096H
crossref_primary_10_1371_journal_pcbi_1012386
crossref_primary_10_3389_fcell_2021_645276
crossref_primary_10_1093_genetics_iyac003
crossref_primary_10_1038_s41467_022_34277_7
crossref_primary_10_3389_fgene_2022_1100016
crossref_primary_10_1093_bib_bbae540
crossref_primary_10_1186_s12885_023_11685_6
crossref_primary_10_1093_bioinformatics_btad005
crossref_primary_10_1016_j_immuni_2023_06_025
crossref_primary_10_1073_pnas_2214414119
crossref_primary_10_3389_fmolb_2023_1184748
crossref_primary_10_1038_s41592_024_02365_9
crossref_primary_10_1038_s41590_023_01490_5
crossref_primary_10_1038_s42256_024_00934_3
crossref_primary_10_1016_j_crmeth_2023_100558
crossref_primary_10_1038_s41592_023_02117_1
crossref_primary_10_1093_bib_bbae095
crossref_primary_10_1038_s41598_023_31126_5
crossref_primary_10_1093_bioinformatics_btad382
crossref_primary_10_1080_01621459_2022_2063130
crossref_primary_10_1038_s41592_022_01709_7
crossref_primary_10_1038_s41467_025_56424_6
crossref_primary_10_1093_nar_gkae442
crossref_primary_10_3389_frai_2024_1424012
crossref_primary_10_1038_s41540_024_00484_9
crossref_primary_10_1103_PhysRevE_110_064405
crossref_primary_10_1038_s41592_023_01909_9
crossref_primary_10_1093_bioinformatics_btac736
crossref_primary_10_1186_s12859_024_05724_7
crossref_primary_10_1186_s13059_024_03322_7
crossref_primary_10_1038_s41587_023_02040_y
crossref_primary_10_3389_fnmol_2022_1033159
crossref_primary_10_1093_bib_bbaf010
crossref_primary_10_1038_s41467_023_36559_0
crossref_primary_10_1093_bioadv_vbae170
crossref_primary_10_1002_advs_202307835
crossref_primary_10_1038_s41467_024_50837_5
crossref_primary_10_1038_s41467_023_37477_x
crossref_primary_10_3389_fimmu_2022_899574
crossref_primary_10_1016_j_jpha_2023_04_003
crossref_primary_10_3390_biology12101313
crossref_primary_10_1186_s13059_023_03129_y
crossref_primary_10_15302_J_QB_022_0318
crossref_primary_10_1093_bioinformatics_btae374
crossref_primary_10_3390_ijms26062447
crossref_primary_10_1016_j_exphem_2024_104167
crossref_primary_10_1038_s41467_024_52317_2
crossref_primary_10_1038_s41467_023_36016_y
crossref_primary_10_1038_s42003_023_05182_6
crossref_primary_10_1360_nso_20220057
crossref_primary_10_1016_j_compbiomed_2024_108485
crossref_primary_10_1093_bib_bbab473
crossref_primary_10_1038_s41467_021_25957_x
crossref_primary_10_15252_msb_202211001
crossref_primary_10_1038_s41467_022_29173_z
crossref_primary_10_1186_s13073_024_01350_3
crossref_primary_10_1042_BST20210135
crossref_primary_10_1093_nar_gkab1147
crossref_primary_10_1186_s13059_022_02667_1
crossref_primary_10_1038_s43588_024_00683_8
crossref_primary_10_1093_bib_bbad523
crossref_primary_10_1371_journal_pcbi_1011044
crossref_primary_10_1093_bib_bbae615
crossref_primary_10_1038_s42256_022_00545_w
crossref_primary_10_1038_s41467_022_35031_9
crossref_primary_10_1038_s41467_023_43019_2
crossref_primary_10_1038_s41467_024_51382_x
crossref_primary_10_1093_nar_gkad157
crossref_primary_10_26599_BDMA_2024_9020034
crossref_primary_10_1360_TB_2024_0416
crossref_primary_10_1038_s41556_024_01358_2
crossref_primary_10_1002_adma_202413603
crossref_primary_10_1093_bib_bbad391
crossref_primary_10_1016_j_biopha_2023_115077
crossref_primary_10_1016_j_gpb_2022_11_011
crossref_primary_10_1038_s41590_021_01073_2
crossref_primary_10_1038_s41467_022_29356_8
crossref_primary_10_1042_BCJ20220572
crossref_primary_10_1038_s42003_022_04216_9
crossref_primary_10_1038_s41467_024_47418_x
crossref_primary_10_1146_annurev_immunol_083122_040929
crossref_primary_10_1371_journal_pcbi_1012679
crossref_primary_10_1016_j_molcel_2021_12_012
crossref_primary_10_1038_s42256_022_00518_z
crossref_primary_10_1186_s13073_024_01330_7
crossref_primary_10_1016_j_xpro_2024_103066
crossref_primary_10_1038_s41592_024_02429_w
crossref_primary_10_3390_cells12151970
crossref_primary_10_1093_pnasnexus_pgac165
crossref_primary_10_1093_bib_bbad265
crossref_primary_10_1126_sciimmunol_add5976
crossref_primary_10_1093_bioadv_vbad171
crossref_primary_10_1126_sciimmunol_adk4893
crossref_primary_10_1093_bioinformatics_btae053
crossref_primary_10_1038_s41556_022_01072_x
crossref_primary_10_1186_s12859_024_05773_y
crossref_primary_10_1089_cmb_2022_0264
crossref_primary_10_1016_j_cell_2021_12_018
crossref_primary_10_1016_j_immuni_2024_11_007
crossref_primary_10_1016_j_clim_2024_110164
crossref_primary_10_1002_advs_202407137
crossref_primary_10_1016_j_crmeth_2024_100900
crossref_primary_10_1093_bioinformatics_btae179
crossref_primary_10_1186_s13059_025_03514_9
crossref_primary_10_1038_s41467_021_25534_2
crossref_primary_10_1038_s41467_024_55204_y
crossref_primary_10_1038_s41467_022_35094_8
crossref_primary_10_1093_nar_gkad1032
crossref_primary_10_1038_s43588_024_00689_2
crossref_primary_10_1038_s41467_024_53971_2
crossref_primary_10_1038_s41576_023_00586_w
crossref_primary_10_1038_s41587_022_01272_8
crossref_primary_10_1021_acs_jcim_4c02114
crossref_primary_10_1016_j_cub_2022_06_040
crossref_primary_10_3389_fmolb_2023_1176856
crossref_primary_10_1186_s13059_021_02556_z
crossref_primary_10_1109_TCBB_2024_3469164
crossref_primary_10_1038_s41586_024_08453_2
crossref_primary_10_1093_bib_bbae492
crossref_primary_10_1111_nyas_14692
crossref_primary_10_1016_j_patter_2023_100899
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1073_pnas_2303647120
crossref_primary_10_1371_journal_pcbi_1011915
crossref_primary_10_1109_TVCG_2022_3209408
crossref_primary_10_1038_s41467_024_52525_w
crossref_primary_10_1093_nar_gkac781
crossref_primary_10_1093_bioadv_vbad073
crossref_primary_10_1016_j_coisb_2021_04_006
crossref_primary_10_1016_j_csbj_2022_09_019
crossref_primary_10_1093_nar_gkae409
crossref_primary_10_1016_j_celrep_2024_114804
crossref_primary_10_1007_s12551_023_01091_4
crossref_primary_10_1016_j_ccell_2023_05_014
crossref_primary_10_1016_j_csbj_2024_12_030
crossref_primary_10_1093_bioinformatics_btad420
crossref_primary_10_1186_s13059_022_02774_z
crossref_primary_10_1093_cei_uxae077
crossref_primary_10_1038_s43588_024_00625_4
crossref_primary_10_1038_s41576_022_00509_1
crossref_primary_10_1161_ATVBAHA_122_318333
crossref_primary_10_1016_j_procs_2023_01_246
crossref_primary_10_3389_fimmu_2021_697412
crossref_primary_10_1016_j_bpj_2024_04_034
crossref_primary_10_1002_eji_202350633
crossref_primary_10_1038_s41592_024_02257_y
crossref_primary_10_1093_bioinformatics_btac220
crossref_primary_10_1158_1078_0432_CCR_23_1957
crossref_primary_10_1186_s13059_024_03338_z
crossref_primary_10_1093_bib_bbad342
crossref_primary_10_1371_journal_pcbi_1011413
crossref_primary_10_1038_s41592_023_01955_3
crossref_primary_10_1038_s41592_023_01994_w
crossref_primary_10_1038_s41592_024_02316_4
crossref_primary_10_1093_bib_bbad216
crossref_primary_10_2139_ssrn_4093295
crossref_primary_10_3389_fgene_2022_977968
crossref_primary_10_1038_s41592_021_01278_1
crossref_primary_10_1093_nar_gkad570
crossref_primary_10_1093_bib_bbae582
crossref_primary_10_1186_s13073_024_01282_y
crossref_primary_10_1093_bioinformatics_btad329
crossref_primary_10_1158_2159_8290_CD_22_1297
crossref_primary_10_3389_fgene_2023_998504
crossref_primary_10_1007_s12551_023_01092_3
crossref_primary_10_1007_s40291_024_00757_3
crossref_primary_10_1016_j_jmb_2024_168610
crossref_primary_10_1016_j_stemcr_2022_11_007
crossref_primary_10_1016_j_immuni_2025_01_002
crossref_primary_10_1016_j_crmeth_2024_100938
crossref_primary_10_1038_s41587_021_01001_7
crossref_primary_10_1002_VIW_20230040
crossref_primary_10_1021_acsnano_2c04337
crossref_primary_10_1093_bib_bbae450
crossref_primary_10_1093_bib_bbad005
crossref_primary_10_3390_ijms221910891
crossref_primary_10_1186_s12859_024_05880_w
crossref_primary_10_1038_s41467_022_30755_0
crossref_primary_10_1016_j_cels_2023_08_004
crossref_primary_10_1093_bioinformatics_btad337
crossref_primary_10_1080_15476286_2022_2027151
crossref_primary_10_1038_s41598_021_88875_4
crossref_primary_10_1016_j_compbiomed_2023_106865
crossref_primary_10_3389_fimmu_2021_712870
crossref_primary_10_1016_j_isci_2022_105123
crossref_primary_10_1038_s41467_022_28431_4
crossref_primary_10_1007_s11831_025_10230_x
crossref_primary_10_1126_sciadv_add8564
crossref_primary_10_1016_j_semcdb_2023_06_005
crossref_primary_10_1038_s41587_021_01206_w
Cites_doi 10.1038/ni.3694
10.1093/bioinformatics/btr260
10.1038/s41467-018-03149-4
10.1084/jem.190.1.75
10.1146/annurev.immunol.15.1.821
10.1093/nar/30.1.207
10.1016/j.cels.2016.04.001
10.1038/ni.2395
10.1038/ni1263
10.1186/s13059-020-1950-6
10.1038/s41592-019-0392-0
10.1038/s41592-020-0905-x
10.1186/s13059-020-1945-3
10.1172/jci.insight.97322
10.1186/s13059-019-1662-y
10.1126/science.aan6828
10.1038/s41592-018-0229-2
10.1080/01621459.2017.1285773
10.1073/pnas.0609692104
10.1002/eji.200838168
10.1038/nmeth.4488
10.1016/0022-1759(90)90256-U
10.1016/j.cell.2016.03.014
10.1080/01621459.1995.10476572
10.1038/s41591-020-0769-8
10.1214/12-AOAS597
10.1371/journal.pcbi.1004224
10.1016/j.immuni.2011.11.016
10.1186/s13073-017-0467-4
10.2147/ITT.S61647
10.1038/s41467-020-14777-0
10.1038/s41570-020-0162-7
10.1016/j.cellimm.2006.04.007
10.1038/s41587-019-0332-7
10.1016/j.cell.2019.05.031
10.1038/nbt.4091
10.3389/fimmu.2017.01578
10.1093/gigascience/giaa151
10.1080/00401706.1994.10485840
10.1101/737601
10.1038/s41467-017-02554-5
10.1038/nmeth.4380
10.1038/s41467-017-02088-w
10.1214/17-BA1090
10.1038/nbt.3973
10.1093/bioinformatics/bts635
10.1111/j.2517-6161.1995.tb02031.x
10.1038/s41467-019-13993-7
10.1109/BigData47090.2019.9006484
10.1101/2020.02.06.937805
10.21105/joss.00861
10.1038/nbt.3711
10.1002/cyto.b.20485
10.4049/jimmunol.160.8.3861
10.1146/annurev-statistics-022513-115657
10.1186/s13059-017-1382-0
10.18547/gcb.2017.vol3.iss1.e46
10.1093/bioinformatics/btaa800
10.1038/s41587-019-0379-5
10.12688/f1000research.16613.2
10.1101/762773
10.1038/nri.2017.76
10.5281/zenodo.2678041
10.1101/791699
10.1101/794289
10.7554/eLife.27041
10.1038/nature21350
10.1038/s41587-019-0113-3
10.1038/ncomms14049
10.5281/zenodo.4330368
10.1093/intimm/dxh009
10.1186/s13059-018-1603-1
10.1089/cmb.2019.0337
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
COPYRIGHT 2021 Nature Publishing Group
The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021
– notice: COPYRIGHT 2021 Nature Publishing Group
– notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QO
7SS
7TK
7U9
7X2
7X7
7XB
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
L6V
LK8
M0K
M0S
M1P
M2P
M7N
M7P
M7S
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
RC3
7X8
5PM
DOI 10.1038/s41592-020-01050-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


Agricultural Science Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1548-7105
EndPage 282
ExternalDocumentID PMC7954949
A655717234
33589839
10_1038_s41592_020_01050_x
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Science Foundation Graduate Research Fellowship
– fundername: NIGMS of the National Institutes of Health grant number R35GM124916
– fundername: Koret-Berkeley-Tel Aviv (KBT) Initiative in Computational Biology; Chan-Zuckerberg Foundation Network grant number 2019-02452.
– fundername: NIH Training Grant 5T32HG000047-19
– fundername: NHGRI NIH HHS
  grantid: K22 HG000047
– fundername: NHGRI NIH HHS
  grantid: T32 HG000047
– fundername: NIAID NIH HHS
  grantid: R24 AI145816
– fundername: NIMH NIH HHS
  grantid: U19 MH114821
– fundername: NIGMS NIH HHS
  grantid: R35 GM124916
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
7X2
7X7
7XC
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AAHBH
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AHBCP
AHMBA
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
BVXVI
CCPQU
CS3
D1I
D1J
D1K
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESX
F5P
FEDTE
FSGXE
FYUFA
FZEXT
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
ITC
K6-
KB.
L6V
LK5
LK8
M0K
M1P
M2P
M7P
M7R
M7S
NNMJJ
O9-
ODYON
P2P
P62
PATMY
PCBAR
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
PMFND
7QL
7QO
7SS
7TK
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c541t-b89eeac563e66a1f682e2ea3dea2733ce560a65be164a78a61ba69336f3e63f73
IEDL.DBID 7X7
ISSN 1548-7091
1548-7105
IngestDate Thu Aug 21 14:03:16 EDT 2025
Thu Jul 10 22:47:30 EDT 2025
Fri Jul 25 08:52:38 EDT 2025
Tue Jun 17 21:42:54 EDT 2025
Tue Jun 10 20:40:31 EDT 2025
Mon Jul 21 05:35:41 EDT 2025
Tue Jul 01 00:44:35 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-b89eeac563e66a1f682e2ea3dea2733ce560a65be164a78a61ba69336f3e63f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally.
A.G. and Z.S. contributed equally. A.G., Z.S., A.S., and N.Y. designed the study. A.G., Z.S, R.L., J.R., and N.Y. conceived of the statistical model. A.G. implemented the totalVI software with input from R.L. K.L.N. designed and produced antibody panels and provided input on the study. Z.S. designed and led experiments with input from A.S. and N.Y. A.G. and Z.S. designed and implemented analysis methods and applied the software to analyze the data with input from A.S. and N.Y. A.S. and N.Y. supervised the work. A.G., Z.S., R.L., J.R., A.S., and N.Y. participated in writing the manuscript.
Author contributions
ORCID 0000-0002-1472-5235
0000-0001-9004-1225
0000-0001-9537-0845
0000-0003-0495-738X
0000-0003-1488-7995
0000-0002-3909-8389
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7954949
PMID 33589839
PQID 2499377689
PQPubID 28015
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7954949
proquest_miscellaneous_2490122353
proquest_journals_2499377689
gale_infotracmisc_A655717234
gale_infotracacademiconefile_A655717234
pubmed_primary_33589839
crossref_primary_10_1038_s41592_020_01050_x
crossref_citationtrail_10_1038_s41592_020_01050_x
springer_journals_10_1038_s41592_020_01050_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Techniques for life scientists and chemists
PublicationTitle Nature methods
PublicationTitleAbbrev Nat Methods
PublicationTitleAlternate Nat Methods
PublicationYear 2021
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Kreslavsky (CR48) 2017; 18
Mimitou (CR58) 2019; 16
Benjamini, Hochberg (CR86) 1995; 57
Lopez, Regier, Cole, Jordan, Yosef (CR15) 2018; 15
CR37
CR36
CR35
Lock, Hoadley, Marron, Nobel (CR50) 2013; 7
CR79
CR33
Stuart (CR34) 2019; 177
CR77
CR31
CR75
CR30
CR74
CR73
CR72
CR71
CR70
Fontenot, Rasmussen, Gavin, Rudensky (CR89) 2005; 6
Sprouse (CR90) 2018; 3
Hünig, Beyersdorf, Kerkau (CR80) 2015; 4
CR2
CR4
CR6
CR5
CR8
Liberzon (CR92) 2011; 27
CR7
CR9
CR49
Edgar, Domrachev, Lash (CR93) 2002; 30
CR45
Zhou, Ye, Wang, Zhang (CR38) 2020; 11
CR87
CR85
CR40
CR84
CR81
Lun (CR76) 2019; 20
Heimberg, Bhatnagar, El-Samad, Thomson (CR55) 2016; 2
Filion, Izaguirre, Garber, Huebsh, Aye (CR82) 1990; 135
Walzer (CR42) 2007; 104
Clark (CR57) 2018; 9
Kotliarov (CR14) 2020; 26
Korem (CR44) 2015; 11
Bezman (CR41) 2012; 13
CR19
Labib, Kelley (CR3) 2020; 4
CR18
Gordon (CR43) 2012; 36
Stubbington, Rozenblatt-Rosen, Regev, Teichmann (CR1) 2017; 358
CR17
CR16
CR59
Loder (CR47) 1999; 190
CR56
Ganin (CR68) 2016; 17
Yang (CR28) 2020; 21
CR54
Gorin, Svensson, Pachter (CR53) 2020; 21
Thomas, Srivastava, Allman (CR46) 2006; 239
CR94
CR91
Haque, Engel, Teichmann, Lönnberg (CR11) 2017; 9
Todorovic (CR10) 2017; 14
Watts (CR78) 1997; 15
Haghverdi, Lun, Morgan, Marioni (CR83) 2018; 36
Praktiknjo (CR13) 2020; 11
Argelaguet (CR51) 2018; 14
CR29
Granja (CR12) 2019; 37
Li (CR32) 2020; 17
CR27
CR26
CR25
CR69
CR24
CR23
CR67
CR22
CR66
CR21
CR65
CR20
CR64
Liu, Beyer, Aebersold (CR52) 2016; 165
CR63
CR61
CR60
Blei, Kucukelbir, McAuliffe (CR62) 2017; 112
Kass, Raftery (CR39) 1995; 90
Roncarolo, Gregori (CR88) 2008; 38
Z Zhou (1050_CR38) 2020; 11
ML Sprouse (1050_CR90) 2018; 3
1050_CR37
1050_CR35
1050_CR79
1050_CR36
1050_CR33
1050_CR77
1050_CR31
1050_CR75
G Gorin (1050_CR53) 2020; 21
1050_CR73
1050_CR30
1050_CR74
Y Kotliarov (1050_CR14) 2020; 26
1050_CR71
1050_CR72
S Yang (1050_CR28) 2020; 21
1050_CR70
Y Liu (1050_CR52) 2016; 165
EP Mimitou (1050_CR58) 2019; 16
F Loder (1050_CR47) 1999; 190
C Watts (1050_CR78) 1997; 15
T Hünig (1050_CR80) 2015; 4
R Argelaguet (1050_CR51) 2018; 14
1050_CR29
1050_CR26
1050_CR27
1050_CR24
1050_CR25
1050_CR69
1050_CR22
1050_CR66
1050_CR23
1050_CR67
1050_CR20
NA Bezman (1050_CR41) 2012; 13
1050_CR64
1050_CR21
Y Korem (1050_CR44) 2015; 11
1050_CR65
1050_CR63
1050_CR60
MJT Stubbington (1050_CR1) 2017; 358
1050_CR61
JM Granja (1050_CR12) 2019; 37
DM Blei (1050_CR62) 2017; 112
R Edgar (1050_CR93) 2002; 30
R Lopez (1050_CR15) 2018; 15
Y Benjamini (1050_CR86) 1995; 57
G Heimberg (1050_CR55) 2016; 2
V Todorovic (1050_CR10) 2017; 14
1050_CR19
SJ Clark (1050_CR57) 2018; 9
1050_CR17
1050_CR18
1050_CR59
1050_CR16
T Stuart (1050_CR34) 2019; 177
RE Kass (1050_CR39) 1995; 90
1050_CR56
ATL Lun (1050_CR76) 2019; 20
1050_CR54
A Liberzon (1050_CR92) 2011; 27
1050_CR94
JD Fontenot (1050_CR89) 2005; 6
1050_CR91
M Labib (1050_CR3) 2020; 4
EF Lock (1050_CR50) 2013; 7
M-G Roncarolo (1050_CR88) 2008; 38
1050_CR2
SD Praktiknjo (1050_CR13) 2020; 11
T Kreslavsky (1050_CR48) 2017; 18
T Walzer (1050_CR42) 2007; 104
1050_CR8
1050_CR9
1050_CR6
L Haghverdi (1050_CR83) 2018; 36
1050_CR7
1050_CR4
LG Filion (1050_CR82) 1990; 135
1050_CR5
1050_CR49
B Li (1050_CR32) 2020; 17
1050_CR45
A Haque (1050_CR11) 2017; 9
1050_CR87
1050_CR40
MD Thomas (1050_CR46) 2006; 239
1050_CR84
1050_CR85
SM Gordon (1050_CR43) 2012; 36
1050_CR81
Y Ganin (1050_CR68) 2016; 17
References_xml – ident: CR45
– ident: CR70
– ident: CR22
– volume: 18
  start-page: 442
  year: 2017
  end-page: 455
  ident: CR48
  article-title: Essential role for the transcription factor Bhlhe41 in regulating the development, self-renewal and BCR repertoire of B-1a cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3694
– ident: CR49
– ident: CR74
– volume: 27
  start-page: 1739
  year: 2011
  end-page: 1740
  ident: CR92
  article-title: Databases and ontologies Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– ident: CR4
– volume: 9
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR57
  article-title: ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03149-4
– ident: CR87
– ident: CR16
– volume: 190
  start-page: 75
  year: 1999
  end-page: 89
  ident: CR47
  article-title: B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.190.1.75
– ident: CR35
– volume: 15
  start-page: 821
  year: 1997
  end-page: 850
  ident: CR78
  article-title: Capture and processing of exogenous antigens for presentation on MHC molecules
  publication-title: Ann. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.821
– ident: CR29
– ident: CR54
– ident: CR61
– ident: CR77
– ident: CR8
– ident: CR84
– ident: CR25
– volume: 30
  start-page: 207
  year: 2002
  end-page: 210
  ident: CR93
  article-title: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 2
  start-page: 239
  year: 2016
  end-page: 250
  ident: CR55
  article-title: Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing
  publication-title: Cell Sys.
  doi: 10.1016/j.cels.2016.04.001
– volume: 13
  start-page: 1000
  year: 2012
  end-page: 1008
  ident: CR41
  article-title: Molecular definition of the identity and activation of natural killer cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2395
– ident: CR21
– ident: CR71
– ident: CR19
– ident: CR67
– ident: CR75
– volume: 6
  start-page: 1142
  year: 2005
  end-page: 1151
  ident: CR89
  article-title: A function for interleukin 2 in Foxp3-expressing regulatory T cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1263
– volume: 21
  year: 2020
  ident: CR28
  article-title: Decontamination of ambient RNA in single-cell RNA-seq with DecontX
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1950-6
– ident: CR9
– ident: CR60
– ident: CR36
– ident: CR85
– volume: 16
  start-page: 409
  year: 2019
  end-page: 412
  ident: CR58
  article-title: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0392-0
– ident: CR5
– volume: 17
  start-page: 793
  year: 2020
  end-page: 798
  ident: CR32
  article-title: Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0905-x
– ident: CR81
– volume: 21
  start-page: 1
  year: 2020
  end-page: 6
  ident: CR53
  article-title: Protein velocity and acceleration from single-cell multiomics experiments
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1945-3
– ident: CR64
– volume: 3
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR90
  article-title: High self-reactivity drives T-bet and potentiates Treg function in tissue-specific autoimmunity
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.97322
– volume: 20
  year: 2019
  ident: CR76
  article-title: EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1662-y
– volume: 358
  start-page: 58
  year: 2017
  end-page: 63
  ident: CR1
  article-title: Single-cell transcriptomics to explore the immune system in health and disease
  publication-title: Science
  doi: 10.1126/science.aan6828
– ident: CR26
– volume: 15
  start-page: 1053
  year: 2018
  end-page: 1058
  ident: CR15
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– ident: CR18
– ident: CR66
– ident: CR91
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: CR62
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– ident: CR72
– volume: 104
  start-page: 3384
  year: 2007
  end-page: 3389
  ident: CR42
  article-title: Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46
  publication-title: PNAS
  doi: 10.1073/pnas.0609692104
– volume: 38
  start-page: 925
  year: 2008
  end-page: 927
  ident: CR88
  article-title: Is FOXP3 a bona fide marker for human regulatory T cells?
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200838168
– ident: CR2
– ident: CR37
– volume: 14
  start-page: 1028
  year: 2017
  end-page: 1029
  ident: CR10
  article-title: Single-cell RNA-seq—now with protein
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4488
– ident: CR30
– volume: 17
  start-page: 2096
  year: 2016
  end-page: 2030
  ident: CR68
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 135
  start-page: 59
  year: 1990
  end-page: 69
  ident: CR82
  article-title: Detection of surface and cytoplasmic CD4 on blood monocytes from normal and HIV-1 infected individuals
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(90)90256-U
– ident: CR33
– volume: 165
  start-page: 535
  year: 2016
  end-page: 550
  ident: CR52
  article-title: On the dependency of cellular protein levels on mRNA abundance
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.014
– volume: 90
  start-page: 773
  year: 1995
  end-page: 795
  ident: CR39
  article-title: Bayes factors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 26
  start-page: 618
  year: 2020
  end-page: 629
  ident: CR14
  article-title: Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0769-8
– volume: 7
  start-page: 523
  year: 2013
  end-page: 542
  ident: CR50
  article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS597
– ident: CR6
– ident: CR79
– volume: 11
  start-page: 1
  year: 2015
  end-page: 27
  ident: CR44
  article-title: Geometry of the gene expression space of individual cells
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004224
– ident: CR56
– ident: CR40
– ident: CR63
– ident: CR27
– ident: CR23
– ident: CR69
– ident: CR94
– volume: 36
  start-page: 55
  year: 2012
  end-page: 67
  ident: CR43
  article-title: The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.016
– ident: CR73
– ident: CR65
– volume: 9
  start-page: 1
  year: 2017
  end-page: 12
  ident: CR11
  article-title: A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0467-4
– volume: 4
  start-page: 111
  year: 2015
  ident: CR80
  article-title: CD28 co-stimulation in T-cell homeostasis: a recent perspective
  publication-title: ImmunoTargets Ther.
  doi: 10.2147/ITT.S61647
– ident: CR17
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: CR38
  article-title: Surface protein imputation from single cell transcriptomes by deep neural networks
  publication-title: Nat. Commun.
– ident: CR31
– volume: 14
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR51
  article-title: Multi‐omics factor analysis—a framework for unsupervised integration of multi‐omics data sets
  publication-title: Mol. Sys. Biol.
– volume: 11
  year: 2020
  ident: CR13
  article-title: Tracing tumorigenesis in a solid tumor model at single-cell resolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14777-0
– volume: 4
  start-page: 143
  year: 2020
  end-page: 158
  ident: CR3
  article-title: Single-cell analysis targeting the proteome
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0162-7
– ident: CR7
– ident: CR59
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: CR86
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J. R. Stat. Soc. B
– volume: 239
  start-page: 92
  year: 2006
  end-page: 102
  ident: CR46
  article-title: Regulation of peripheral B cell maturation
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2006.04.007
– volume: 37
  start-page: 1458
  year: 2019
  end-page: 1465
  ident: CR12
  article-title: Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0332-7
– ident: CR24
– ident: CR20
– volume: 177
  start-page: 1888
  year: 2019
  end-page: 1902
  ident: CR34
  article-title: Comprehensive integration of single-cell data
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– volume: 36
  start-page: 421
  year: 2018
  end-page: 427
  ident: CR83
  article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4091
– ident: 1050_CR67
– volume: 15
  start-page: 821
  year: 1997
  ident: 1050_CR78
  publication-title: Ann. Rev. Immunol.
  doi: 10.1146/annurev.immunol.15.1.821
– volume: 36
  start-page: 55
  year: 2012
  ident: 1050_CR43
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.11.016
– volume: 7
  start-page: 523
  year: 2013
  ident: 1050_CR50
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS597
– volume: 37
  start-page: 1458
  year: 2019
  ident: 1050_CR12
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0332-7
– ident: 1050_CR73
– volume: 21
  year: 2020
  ident: 1050_CR28
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1950-6
– ident: 1050_CR87
  doi: 10.3389/fimmu.2017.01578
– ident: 1050_CR29
  doi: 10.1093/gigascience/giaa151
– ident: 1050_CR21
  doi: 10.1080/00401706.1994.10485840
– ident: 1050_CR59
  doi: 10.1101/737601
– volume: 36
  start-page: 421
  year: 2018
  ident: 1050_CR83
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4091
– volume: 30
  start-page: 207
  year: 2002
  ident: 1050_CR93
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 9
  start-page: 1
  year: 2017
  ident: 1050_CR11
  publication-title: Genome Med.
  doi: 10.1186/s13073-017-0467-4
– ident: 1050_CR18
  doi: 10.1038/s41467-017-02554-5
– volume: 90
  start-page: 773
  year: 1995
  ident: 1050_CR39
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 18
  start-page: 442
  year: 2017
  ident: 1050_CR48
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3694
– volume: 27
  start-page: 1739
  year: 2011
  ident: 1050_CR92
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– ident: 1050_CR24
– volume: 20
  year: 2019
  ident: 1050_CR76
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1662-y
– ident: 1050_CR6
  doi: 10.1038/nmeth.4380
– volume: 14
  start-page: 1
  year: 2018
  ident: 1050_CR51
  publication-title: Mol. Sys. Biol.
– ident: 1050_CR66
– volume: 190
  start-page: 75
  year: 1999
  ident: 1050_CR47
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.190.1.75
– volume: 9
  start-page: 1
  year: 2018
  ident: 1050_CR57
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02088-w
– ident: 1050_CR60
  doi: 10.1214/17-BA1090
– ident: 1050_CR16
– ident: 1050_CR20
– volume: 16
  start-page: 409
  year: 2019
  ident: 1050_CR58
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0392-0
– ident: 1050_CR7
  doi: 10.1038/nbt.3973
– ident: 1050_CR37
– ident: 1050_CR71
  doi: 10.1093/bioinformatics/bts635
– ident: 1050_CR5
– volume: 11
  year: 2020
  ident: 1050_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14777-0
– volume: 57
  start-page: 289
  year: 1995
  ident: 1050_CR86
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 11
  start-page: 1
  year: 2020
  ident: 1050_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– ident: 1050_CR45
  doi: 10.1109/BigData47090.2019.9006484
– ident: 1050_CR84
  doi: 10.1101/2020.02.06.937805
– volume: 3
  start-page: 1
  year: 2018
  ident: 1050_CR90
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.97322
– volume: 358
  start-page: 58
  year: 2017
  ident: 1050_CR1
  publication-title: Science
  doi: 10.1126/science.aan6828
– ident: 1050_CR81
  doi: 10.21105/joss.00861
– ident: 1050_CR4
  doi: 10.1038/nbt.3711
– volume: 239
  start-page: 92
  year: 2006
  ident: 1050_CR46
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2006.04.007
– volume: 135
  start-page: 59
  year: 1990
  ident: 1050_CR82
  publication-title: J. Immunol. Methods
  doi: 10.1016/0022-1759(90)90256-U
– ident: 1050_CR27
  doi: 10.1002/cyto.b.20485
– volume: 2
  start-page: 239
  year: 2016
  ident: 1050_CR55
  publication-title: Cell Sys.
  doi: 10.1016/j.cels.2016.04.001
– ident: 1050_CR65
– volume: 6
  start-page: 1142
  year: 2005
  ident: 1050_CR89
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1263
– ident: 1050_CR77
  doi: 10.4049/jimmunol.160.8.3861
– volume: 26
  start-page: 618
  year: 2020
  ident: 1050_CR14
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0769-8
– ident: 1050_CR19
  doi: 10.1146/annurev-statistics-022513-115657
– ident: 1050_CR23
– ident: 1050_CR36
– volume: 38
  start-page: 925
  year: 2008
  ident: 1050_CR88
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200838168
– volume: 13
  start-page: 1000
  year: 2012
  ident: 1050_CR41
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2395
– ident: 1050_CR56
  doi: 10.1186/s13059-017-1382-0
– ident: 1050_CR75
– volume: 11
  start-page: 1
  year: 2015
  ident: 1050_CR44
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1004224
– ident: 1050_CR17
  doi: 10.18547/gcb.2017.vol3.iss1.e46
– volume: 21
  start-page: 1
  year: 2020
  ident: 1050_CR53
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-1945-3
– ident: 1050_CR69
  doi: 10.1093/bioinformatics/btaa800
– ident: 1050_CR26
– ident: 1050_CR61
  doi: 10.1038/s41587-019-0379-5
– ident: 1050_CR33
  doi: 10.12688/f1000research.16613.2
– ident: 1050_CR85
– ident: 1050_CR49
– volume: 112
  start-page: 859
  year: 2017
  ident: 1050_CR62
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– ident: 1050_CR54
  doi: 10.1101/762773
– ident: 1050_CR2
  doi: 10.1038/nri.2017.76
– ident: 1050_CR72
  doi: 10.5281/zenodo.2678041
– ident: 1050_CR30
  doi: 10.1101/791699
– ident: 1050_CR91
– ident: 1050_CR64
– volume: 177
  start-page: 1888
  year: 2019
  ident: 1050_CR34
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.031
– ident: 1050_CR40
  doi: 10.1101/794289
– volume: 104
  start-page: 3384
  year: 2007
  ident: 1050_CR42
  publication-title: PNAS
  doi: 10.1073/pnas.0609692104
– ident: 1050_CR74
– ident: 1050_CR8
  doi: 10.7554/eLife.27041
– volume: 4
  start-page: 111
  year: 2015
  ident: 1050_CR80
  publication-title: ImmunoTargets Ther.
  doi: 10.2147/ITT.S61647
– ident: 1050_CR9
  doi: 10.1038/nature21350
– volume: 165
  start-page: 535
  year: 2016
  ident: 1050_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.014
– volume: 14
  start-page: 1028
  year: 2017
  ident: 1050_CR10
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4488
– ident: 1050_CR35
  doi: 10.1038/s41587-019-0113-3
– ident: 1050_CR70
  doi: 10.1038/ncomms14049
– volume: 4
  start-page: 143
  year: 2020
  ident: 1050_CR3
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0162-7
– volume: 17
  start-page: 2096
  year: 2016
  ident: 1050_CR68
  publication-title: J. Mach. Learn. Res.
– ident: 1050_CR94
  doi: 10.5281/zenodo.4330368
– ident: 1050_CR25
– volume: 17
  start-page: 793
  year: 2020
  ident: 1050_CR32
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0905-x
– ident: 1050_CR79
  doi: 10.1093/intimm/dxh009
– ident: 1050_CR63
– volume: 15
  start-page: 1053
  year: 2018
  ident: 1050_CR15
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– ident: 1050_CR22
  doi: 10.1186/s13059-018-1603-1
– ident: 1050_CR31
  doi: 10.1089/cmb.2019.0337
SSID ssj0033425
Score 2.6975412
Snippet The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a...
The paired measurement of RNA and surface proteins in single cells with CITE-seq is a promising approach to connect transcriptional variation with cell...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 272
SubjectTerms 631/114
631/114/1305
631/114/2397
631/114/2401
631/250
Animals
Bioinformatics
Biological Microscopy
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Cells, Cultured
Correlation analysis
Data Analysis
Epitopes
Female
Gene expression
High-Throughput Screening Assays - methods
Immune system
Inference
Life Sciences
Lymph nodes
Lymph Nodes - cytology
Lymph Nodes - metabolism
Measurement
Membrane proteins
Methods
Mice
Mice, Inbred C57BL
Phenotypes
Phenotypic variations
Probabilistic models
Proteins
Proteins - analysis
Proteomics
RNA - analysis
RNA - genetics
RNA sequencing
Single-Cell Analysis - methods
Spleen
Spleen - cytology
Spleen - metabolism
Transcription
Transcriptome - genetics
Transcriptomes
Title Joint probabilistic modeling of single-cell multi-omic data with totalVI
URI https://link.springer.com/article/10.1038/s41592-020-01050-x
https://www.ncbi.nlm.nih.gov/pubmed/33589839
https://www.proquest.com/docview/2499377689
https://www.proquest.com/docview/2490122353
https://pubmed.ncbi.nlm.nih.gov/PMC7954949
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgExIviG8KYwoSEg8QrdekSfo0bdOOYxITQgzdW5SmqZg0tYPrpPHfY6e9jp60vfQlSZs6jv2z49gA702QWlZ1xhHKV1wWDuUgqmlep75AAO0zl9EF56-nanEmT5b5cnC4rYawyrVMjIK6aj35yPfQTEBNiuC42L_8zalqFJ2uDiU07sM2pS4j40svR4NLCBmLrhIq5xoV43BpJhVmb4WKi-IuMwrLSvOUX08U06Z4_k8_bcZObhygRr00fwyPBkDJDnoOeAL3QvMUHvQlJv8-g8VJe950jOrGxFy6lJaZxfI3-DbW1ox8BReBkwOfxehCTveUGUWOMnLSsq5FfP7zy3M4mx__OFrwoXoC97mcdbw0RUCpmisRlHKzWpksZMGJKjiELMIHxDpO5WVAg8lp49SsdKoQQtU4QNRavICtpm3CK2A-KC29rLMqpLL2ZYlL6J035EQNqa4SmK1JZ_2QWpwqXFzYeMQtjO3JbZHcNpLbXifwcRxz2SfWuLP3B1oRS7sO34wf7y8P4Pwof5U9UHmOhmkmZAI7k564W_y0eb2mdtitK3vDWwm8G5tpJEWgNaG9in3oFFLkIoGXPQuM8xYiNwUizQT0hDnGDpTDe9rSnP-Kubw1HbNKHPlpzUY307qdHK_v_os38DCj0JsYKrcDW92fq_AWsVNX7sYNgk8z_7wL24fHp9--_wNv5xeU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASOBOIDVrO04yQGhClh2-zq1qDfXcRxRqUra7la0f4rfyIyTbMlK9NazH3HG43l4Ps8AvMu8SlVZCY6mfMlVblEOoprmVexyNKCdsIIeOO_s6sm-2jxIDlbgT_8WhmCVvUwMgrpsHN2Rr6ObgJoUjeP8y8kpp6pRFF3tS2i0bLHlL3-jyzb7PP2G-_teiPH3va8T3lUV4C5RozkvstyjtEm09FrbUaUz4YW3svQWVbl0Hm0Aq5PCoyNh08zqUWE1uv26wgGySiXOewtuKylzghBm4x-95JdShSKv5AXwFBVx90gnltn6DBUl4TwFwcDiJOYXA0W4rA7-0YfLWM2lgG3Qg-MHcL8zYNlGy3EPYcXXj-BOW9Ly8jFMNpujes6oTk3I3UtpoFkot4OzsaZidDdx7DkFDFhAM3J6F80IqcroUpjNG_QHfk6fwP6N0PUprNZN7Z8Dc16nyqlKlD5WlSsKZBlnXUaXtj5OywhGPemM61KZU0WNYxNC6jIzLbkNktsEcpuLCD4uxpy0iTyu7f2BdsTQKceZ8ePtYwVcH-XLMhs6SdARFlJFsDboiafTDZv7PTWddJiZK16O4O2imUYS4q32zXnoQ1FPmcgInrUssFi3lEmWo2UbQTpgjkUHyhk-bKmPfoXc4SmFdRWO_NSz0dWy_k-OF9f_xRu4O9nb2Tbb092tl3BPEOwnwPTWYHV-du5fod02L16Hw8Lg8KZP51-UbVKG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQbwIFjATiANZmbcdxDghVlGW3hYoDRb2ZxHHUSlXSsqlof42vY8ZJtuxK9NazH3HG8_S8AF4Zr1JVVoKjKl9yleXIB1FM8yp2GSrQTuSCEpy_7urpntreT_bX4M-QC0NhlQNPDIy6bBy9kY_QTEBJispxNqr6sIhvW5MPxyecOkiRp3Vop9GhyI4__43m2_z9bAvv-rUQk0_fP05532GAu0SNW16YzCPnSbT0WufjShvhhc9l6XMU69J51AdynRQejYo8NbkeF7nOpNQVLpBVKnHfa3A9lSam7glm8nmQAlKq0PCVLAKeolDuE3ZiaUZzFJoU8ykoJCxOYn62JBRXRcM_snE1bnPFeRtk4uQO3O6VWbbZYd9dWPP1PbjRtbc8vw_T7eawbhn1rAl1fKkkNAutd3A31lSM3imOPCfnAQuRjZxypBlFrTJ6IGZtg7bBj9kD2LsSuD6E9bqp_WNgzutUOVWJ0seqckWB6ONyZ-gB18dpGcF4AJ11fVlz6q5xZIN7XRrbgdsiuG0Atz2L4O1izXFX1OPS2W_oRixRPO6MH-8SF_B8VDvLbuokQaNYSBXBxtJMpFS3PDzcqe05xdxe4HUELxfDtJKi32rfnIY55AGViYzgUYcCi3NLmZgMtdwI0iXkWEyg-uHLI_XhQagjnpKLV-HKdwMaXRzr_-B4cvlfvICbSJf2y2x35yncEhQBFCL2NmC9_XXqn6EK1xbPA60w-HnVxPkXV19Wsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+probabilistic+modeling+of+single-cell+multi-omic+data+with+totalVI&rft.jtitle=Nature+methods&rft.au=Gayoso%2C+Adam&rft.au=Steier%2C+Zo%C3%AB&rft.au=Lopez%2C+Romain&rft.au=Regier%2C+Jeffrey&rft.date=2021-03-01&rft.eissn=1548-7105&rft.volume=18&rft.issue=3&rft.spage=272&rft_id=info:doi/10.1038%2Fs41592-020-01050-x&rft_id=info%3Apmid%2F33589839&rft.externalDocID=33589839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon