Joint probabilistic modeling of single-cell multi-omic data with totalVI
The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified repr...
Saved in:
Published in | Nature methods Vol. 18; no. 3; pp. 272 - 282 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.03.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/s41592-020-01050-x |
Cover
Loading…
Abstract | The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI;
https://scvi-tools.org
), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.
Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells. |
---|---|
AbstractList | The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing. The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI's performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing. The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells. The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing.Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells. The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors, including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks such as dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules and differential expression testing. Total Variational Inference is a framework for end-to-end analysis of paired transcriptome and protein measurements such as CITE-seq data in single cells. The paired measurement of RNA and surface proteins in single cells with CITE-seq is a promising approach to connect transcriptional variation with cell phenotypes and functions. However, combining these paired views into a unified representation of cell state is made challenging by the unique technical characteristics of each measurement. Here we present Total Variational Inference (totalVI; https://scvi-tools.org ), a framework for end-to-end joint analysis of CITE-seq data that probabilistically represents the data as a composite of biological and technical factors including protein background and batch effects. To evaluate totalVI’s performance, we profiled immune cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. We demonstrate that totalVI provides a cohesive solution for common analysis tasks like dimensionality reduction, the integration of datasets with different measured proteins, estimation of correlations between molecules, and differential expression testing. |
Audience | Academic |
Author | Nazor, Kristopher L. Steier, Zoë Streets, Aaron Lopez, Romain Regier, Jeffrey Gayoso, Adam Yosef, Nir |
AuthorAffiliation | 5 BioLegend, Inc., San Diego, CA, USA 7 Ragon Institute of MGH, MIT and Harvard 6 Chan Zuckerberg Biohub, San Francisco, CA, USA 3 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA 1 Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA 2 Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA 4 Department of Statistics, University of Michigan, Ann Arbor, Ann Arbor, MI, USA |
AuthorAffiliation_xml | – name: 5 BioLegend, Inc., San Diego, CA, USA – name: 7 Ragon Institute of MGH, MIT and Harvard – name: 2 Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA – name: 3 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA – name: 1 Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA – name: 6 Chan Zuckerberg Biohub, San Francisco, CA, USA – name: 4 Department of Statistics, University of Michigan, Ann Arbor, Ann Arbor, MI, USA |
Author_xml | – sequence: 1 givenname: Adam orcidid: 0000-0001-9537-0845 surname: Gayoso fullname: Gayoso, Adam organization: Center for Computational Biology, University of California, Berkeley – sequence: 2 givenname: Zoë orcidid: 0000-0003-1488-7995 surname: Steier fullname: Steier, Zoë organization: Department of Bioengineering, University of California, Berkeley – sequence: 3 givenname: Romain orcidid: 0000-0003-0495-738X surname: Lopez fullname: Lopez, Romain organization: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley – sequence: 4 givenname: Jeffrey orcidid: 0000-0002-1472-5235 surname: Regier fullname: Regier, Jeffrey organization: Department of Statistics, University of Michigan, Ann Arbor – sequence: 5 givenname: Kristopher L. surname: Nazor fullname: Nazor, Kristopher L. organization: BioLegend, Inc – sequence: 6 givenname: Aaron orcidid: 0000-0002-3909-8389 surname: Streets fullname: Streets, Aaron email: astreets@berkeley.edu organization: Center for Computational Biology, University of California, Berkeley, Department of Bioengineering, University of California, Berkeley, Chan Zuckerberg Biohub – sequence: 7 givenname: Nir orcidid: 0000-0001-9004-1225 surname: Yosef fullname: Yosef, Nir email: niryosef@berkeley.edu organization: Center for Computational Biology, University of California, Berkeley, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Chan Zuckerberg Biohub, Ragon Institute of MGH, MIT and Harvard |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33589839$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhi1URK8vwAJFYtNNii-xE2-QqqrQokpsgK01SSanrhz7EDu9vD0OpxdaocqL8eX7_9GMZ5ds-eCRkPeMHjEqmk-xYlLzknJaUkYlLW_fkB0mq6as83HrYU812ya7MV5RKkTF5TuyLYRsdCP0Djn7FqxPxXoKLbTW2ZhsV4yhR2f9qghDEXN0WHboXDHOLtkyjBnpIUFxY9NlkUIC9-t8n7wdwEU8uI975OeX0x8nZ-XF96_nJ8cXZScrlsq20YjQSSVQKWCDajhyBNEj8FqIDqWioGSLTFVQN6BYC0oLoYYsEEMt9sjnje96bkfsO_RpAmfWkx1hujMBrHn-4u2lWYVrU2tZ6Upng8N7gyn8njEmM9q4lAcewxwNrzRlnAspMvrxBXoV5snn8hZKi7pWjX6iVuDQWD-EnLdbTM2xkrJmNRdVpo7-Q-XVY-5n_tjB5vtngg__FvpY4cPfZYBvgG4KMU44PCKMmmVAzGZATB4Q83dAzG0WNS9EnU2QbFiaZd3rUrGRxpzHr3B66sYrqj945M7i |
CitedBy_id | crossref_primary_10_1016_j_crmeth_2023_100563 crossref_primary_10_1038_s41592_024_02184_y crossref_primary_10_1093_bib_bbad313 crossref_primary_10_1186_s13059_023_02989_8 crossref_primary_10_1016_j_cels_2024_04_004 crossref_primary_10_1038_s41590_024_01782_4 crossref_primary_10_1093_bib_bbad309 crossref_primary_10_1038_s41581_021_00463_x crossref_primary_10_1186_s13059_023_02850_y crossref_primary_10_1038_s41569_022_00805_7 crossref_primary_10_1073_pnas_2205518119 crossref_primary_10_15252_msb_202211017 crossref_primary_10_1038_s41590_023_01584_0 crossref_primary_10_1186_s13059_024_03419_z crossref_primary_10_1038_s41514_024_00185_x crossref_primary_10_1038_s42003_025_07872_9 crossref_primary_10_1016_j_cels_2024_08_006 crossref_primary_10_1038_s41587_024_02173_8 crossref_primary_10_3389_fgene_2022_867880 crossref_primary_10_1084_jem_20230896 crossref_primary_10_1093_bib_bbad416 crossref_primary_10_1039_D2LC01096H crossref_primary_10_1371_journal_pcbi_1012386 crossref_primary_10_3389_fcell_2021_645276 crossref_primary_10_1093_genetics_iyac003 crossref_primary_10_1038_s41467_022_34277_7 crossref_primary_10_3389_fgene_2022_1100016 crossref_primary_10_1093_bib_bbae540 crossref_primary_10_1186_s12885_023_11685_6 crossref_primary_10_1093_bioinformatics_btad005 crossref_primary_10_1016_j_immuni_2023_06_025 crossref_primary_10_1073_pnas_2214414119 crossref_primary_10_3389_fmolb_2023_1184748 crossref_primary_10_1038_s41592_024_02365_9 crossref_primary_10_1038_s41590_023_01490_5 crossref_primary_10_1038_s42256_024_00934_3 crossref_primary_10_1016_j_crmeth_2023_100558 crossref_primary_10_1038_s41592_023_02117_1 crossref_primary_10_1093_bib_bbae095 crossref_primary_10_1038_s41598_023_31126_5 crossref_primary_10_1093_bioinformatics_btad382 crossref_primary_10_1080_01621459_2022_2063130 crossref_primary_10_1038_s41592_022_01709_7 crossref_primary_10_1038_s41467_025_56424_6 crossref_primary_10_1093_nar_gkae442 crossref_primary_10_3389_frai_2024_1424012 crossref_primary_10_1038_s41540_024_00484_9 crossref_primary_10_1103_PhysRevE_110_064405 crossref_primary_10_1038_s41592_023_01909_9 crossref_primary_10_1093_bioinformatics_btac736 crossref_primary_10_1186_s12859_024_05724_7 crossref_primary_10_1186_s13059_024_03322_7 crossref_primary_10_1038_s41587_023_02040_y crossref_primary_10_3389_fnmol_2022_1033159 crossref_primary_10_1093_bib_bbaf010 crossref_primary_10_1038_s41467_023_36559_0 crossref_primary_10_1093_bioadv_vbae170 crossref_primary_10_1002_advs_202307835 crossref_primary_10_1038_s41467_024_50837_5 crossref_primary_10_1038_s41467_023_37477_x crossref_primary_10_3389_fimmu_2022_899574 crossref_primary_10_1016_j_jpha_2023_04_003 crossref_primary_10_3390_biology12101313 crossref_primary_10_1186_s13059_023_03129_y crossref_primary_10_15302_J_QB_022_0318 crossref_primary_10_1093_bioinformatics_btae374 crossref_primary_10_3390_ijms26062447 crossref_primary_10_1016_j_exphem_2024_104167 crossref_primary_10_1038_s41467_024_52317_2 crossref_primary_10_1038_s41467_023_36016_y crossref_primary_10_1038_s42003_023_05182_6 crossref_primary_10_1360_nso_20220057 crossref_primary_10_1016_j_compbiomed_2024_108485 crossref_primary_10_1093_bib_bbab473 crossref_primary_10_1038_s41467_021_25957_x crossref_primary_10_15252_msb_202211001 crossref_primary_10_1038_s41467_022_29173_z crossref_primary_10_1186_s13073_024_01350_3 crossref_primary_10_1042_BST20210135 crossref_primary_10_1093_nar_gkab1147 crossref_primary_10_1186_s13059_022_02667_1 crossref_primary_10_1038_s43588_024_00683_8 crossref_primary_10_1093_bib_bbad523 crossref_primary_10_1371_journal_pcbi_1011044 crossref_primary_10_1093_bib_bbae615 crossref_primary_10_1038_s42256_022_00545_w crossref_primary_10_1038_s41467_022_35031_9 crossref_primary_10_1038_s41467_023_43019_2 crossref_primary_10_1038_s41467_024_51382_x crossref_primary_10_1093_nar_gkad157 crossref_primary_10_26599_BDMA_2024_9020034 crossref_primary_10_1360_TB_2024_0416 crossref_primary_10_1038_s41556_024_01358_2 crossref_primary_10_1002_adma_202413603 crossref_primary_10_1093_bib_bbad391 crossref_primary_10_1016_j_biopha_2023_115077 crossref_primary_10_1016_j_gpb_2022_11_011 crossref_primary_10_1038_s41590_021_01073_2 crossref_primary_10_1038_s41467_022_29356_8 crossref_primary_10_1042_BCJ20220572 crossref_primary_10_1038_s42003_022_04216_9 crossref_primary_10_1038_s41467_024_47418_x crossref_primary_10_1146_annurev_immunol_083122_040929 crossref_primary_10_1371_journal_pcbi_1012679 crossref_primary_10_1016_j_molcel_2021_12_012 crossref_primary_10_1038_s42256_022_00518_z crossref_primary_10_1186_s13073_024_01330_7 crossref_primary_10_1016_j_xpro_2024_103066 crossref_primary_10_1038_s41592_024_02429_w crossref_primary_10_3390_cells12151970 crossref_primary_10_1093_pnasnexus_pgac165 crossref_primary_10_1093_bib_bbad265 crossref_primary_10_1126_sciimmunol_add5976 crossref_primary_10_1093_bioadv_vbad171 crossref_primary_10_1126_sciimmunol_adk4893 crossref_primary_10_1093_bioinformatics_btae053 crossref_primary_10_1038_s41556_022_01072_x crossref_primary_10_1186_s12859_024_05773_y crossref_primary_10_1089_cmb_2022_0264 crossref_primary_10_1016_j_cell_2021_12_018 crossref_primary_10_1016_j_immuni_2024_11_007 crossref_primary_10_1016_j_clim_2024_110164 crossref_primary_10_1002_advs_202407137 crossref_primary_10_1016_j_crmeth_2024_100900 crossref_primary_10_1093_bioinformatics_btae179 crossref_primary_10_1186_s13059_025_03514_9 crossref_primary_10_1038_s41467_021_25534_2 crossref_primary_10_1038_s41467_024_55204_y crossref_primary_10_1038_s41467_022_35094_8 crossref_primary_10_1093_nar_gkad1032 crossref_primary_10_1038_s43588_024_00689_2 crossref_primary_10_1038_s41467_024_53971_2 crossref_primary_10_1038_s41576_023_00586_w crossref_primary_10_1038_s41587_022_01272_8 crossref_primary_10_1021_acs_jcim_4c02114 crossref_primary_10_1016_j_cub_2022_06_040 crossref_primary_10_3389_fmolb_2023_1176856 crossref_primary_10_1186_s13059_021_02556_z crossref_primary_10_1109_TCBB_2024_3469164 crossref_primary_10_1038_s41586_024_08453_2 crossref_primary_10_1093_bib_bbae492 crossref_primary_10_1111_nyas_14692 crossref_primary_10_1016_j_patter_2023_100899 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1073_pnas_2303647120 crossref_primary_10_1371_journal_pcbi_1011915 crossref_primary_10_1109_TVCG_2022_3209408 crossref_primary_10_1038_s41467_024_52525_w crossref_primary_10_1093_nar_gkac781 crossref_primary_10_1093_bioadv_vbad073 crossref_primary_10_1016_j_coisb_2021_04_006 crossref_primary_10_1016_j_csbj_2022_09_019 crossref_primary_10_1093_nar_gkae409 crossref_primary_10_1016_j_celrep_2024_114804 crossref_primary_10_1007_s12551_023_01091_4 crossref_primary_10_1016_j_ccell_2023_05_014 crossref_primary_10_1016_j_csbj_2024_12_030 crossref_primary_10_1093_bioinformatics_btad420 crossref_primary_10_1186_s13059_022_02774_z crossref_primary_10_1093_cei_uxae077 crossref_primary_10_1038_s43588_024_00625_4 crossref_primary_10_1038_s41576_022_00509_1 crossref_primary_10_1161_ATVBAHA_122_318333 crossref_primary_10_1016_j_procs_2023_01_246 crossref_primary_10_3389_fimmu_2021_697412 crossref_primary_10_1016_j_bpj_2024_04_034 crossref_primary_10_1002_eji_202350633 crossref_primary_10_1038_s41592_024_02257_y crossref_primary_10_1093_bioinformatics_btac220 crossref_primary_10_1158_1078_0432_CCR_23_1957 crossref_primary_10_1186_s13059_024_03338_z crossref_primary_10_1093_bib_bbad342 crossref_primary_10_1371_journal_pcbi_1011413 crossref_primary_10_1038_s41592_023_01955_3 crossref_primary_10_1038_s41592_023_01994_w crossref_primary_10_1038_s41592_024_02316_4 crossref_primary_10_1093_bib_bbad216 crossref_primary_10_2139_ssrn_4093295 crossref_primary_10_3389_fgene_2022_977968 crossref_primary_10_1038_s41592_021_01278_1 crossref_primary_10_1093_nar_gkad570 crossref_primary_10_1093_bib_bbae582 crossref_primary_10_1186_s13073_024_01282_y crossref_primary_10_1093_bioinformatics_btad329 crossref_primary_10_1158_2159_8290_CD_22_1297 crossref_primary_10_3389_fgene_2023_998504 crossref_primary_10_1007_s12551_023_01092_3 crossref_primary_10_1007_s40291_024_00757_3 crossref_primary_10_1016_j_jmb_2024_168610 crossref_primary_10_1016_j_stemcr_2022_11_007 crossref_primary_10_1016_j_immuni_2025_01_002 crossref_primary_10_1016_j_crmeth_2024_100938 crossref_primary_10_1038_s41587_021_01001_7 crossref_primary_10_1002_VIW_20230040 crossref_primary_10_1021_acsnano_2c04337 crossref_primary_10_1093_bib_bbae450 crossref_primary_10_1093_bib_bbad005 crossref_primary_10_3390_ijms221910891 crossref_primary_10_1186_s12859_024_05880_w crossref_primary_10_1038_s41467_022_30755_0 crossref_primary_10_1016_j_cels_2023_08_004 crossref_primary_10_1093_bioinformatics_btad337 crossref_primary_10_1080_15476286_2022_2027151 crossref_primary_10_1038_s41598_021_88875_4 crossref_primary_10_1016_j_compbiomed_2023_106865 crossref_primary_10_3389_fimmu_2021_712870 crossref_primary_10_1016_j_isci_2022_105123 crossref_primary_10_1038_s41467_022_28431_4 crossref_primary_10_1007_s11831_025_10230_x crossref_primary_10_1126_sciadv_add8564 crossref_primary_10_1016_j_semcdb_2023_06_005 crossref_primary_10_1038_s41587_021_01206_w |
Cites_doi | 10.1038/ni.3694 10.1093/bioinformatics/btr260 10.1038/s41467-018-03149-4 10.1084/jem.190.1.75 10.1146/annurev.immunol.15.1.821 10.1093/nar/30.1.207 10.1016/j.cels.2016.04.001 10.1038/ni.2395 10.1038/ni1263 10.1186/s13059-020-1950-6 10.1038/s41592-019-0392-0 10.1038/s41592-020-0905-x 10.1186/s13059-020-1945-3 10.1172/jci.insight.97322 10.1186/s13059-019-1662-y 10.1126/science.aan6828 10.1038/s41592-018-0229-2 10.1080/01621459.2017.1285773 10.1073/pnas.0609692104 10.1002/eji.200838168 10.1038/nmeth.4488 10.1016/0022-1759(90)90256-U 10.1016/j.cell.2016.03.014 10.1080/01621459.1995.10476572 10.1038/s41591-020-0769-8 10.1214/12-AOAS597 10.1371/journal.pcbi.1004224 10.1016/j.immuni.2011.11.016 10.1186/s13073-017-0467-4 10.2147/ITT.S61647 10.1038/s41467-020-14777-0 10.1038/s41570-020-0162-7 10.1016/j.cellimm.2006.04.007 10.1038/s41587-019-0332-7 10.1016/j.cell.2019.05.031 10.1038/nbt.4091 10.3389/fimmu.2017.01578 10.1093/gigascience/giaa151 10.1080/00401706.1994.10485840 10.1101/737601 10.1038/s41467-017-02554-5 10.1038/nmeth.4380 10.1038/s41467-017-02088-w 10.1214/17-BA1090 10.1038/nbt.3973 10.1093/bioinformatics/bts635 10.1111/j.2517-6161.1995.tb02031.x 10.1038/s41467-019-13993-7 10.1109/BigData47090.2019.9006484 10.1101/2020.02.06.937805 10.21105/joss.00861 10.1038/nbt.3711 10.1002/cyto.b.20485 10.4049/jimmunol.160.8.3861 10.1146/annurev-statistics-022513-115657 10.1186/s13059-017-1382-0 10.18547/gcb.2017.vol3.iss1.e46 10.1093/bioinformatics/btaa800 10.1038/s41587-019-0379-5 10.12688/f1000research.16613.2 10.1101/762773 10.1038/nri.2017.76 10.5281/zenodo.2678041 10.1101/791699 10.1101/794289 10.7554/eLife.27041 10.1038/nature21350 10.1038/s41587-019-0113-3 10.1038/ncomms14049 10.5281/zenodo.4330368 10.1093/intimm/dxh009 10.1186/s13059-018-1603-1 10.1089/cmb.2019.0337 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 COPYRIGHT 2021 Nature Publishing Group The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021 – notice: COPYRIGHT 2021 Nature Publishing Group – notice: The Author(s), under exclusive licence to Springer Nature America, Inc. 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QO 7SS 7TK 7U9 7X2 7X7 7XB 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. L6V LK8 M0K M0S M1P M2P M7N M7P M7S P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U RC3 7X8 5PM |
DOI | 10.1038/s41592-020-01050-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Health Research Premium Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1548-7105 |
EndPage | 282 |
ExternalDocumentID | PMC7954949 A655717234 33589839 10_1038_s41592_020_01050_x |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Science Foundation Graduate Research Fellowship – fundername: NIGMS of the National Institutes of Health grant number R35GM124916 – fundername: Koret-Berkeley-Tel Aviv (KBT) Initiative in Computational Biology; Chan-Zuckerberg Foundation Network grant number 2019-02452. – fundername: NIH Training Grant 5T32HG000047-19 – fundername: NHGRI NIH HHS grantid: K22 HG000047 – fundername: NHGRI NIH HHS grantid: T32 HG000047 – fundername: NIAID NIH HHS grantid: R24 AI145816 – fundername: NIMH NIH HHS grantid: U19 MH114821 – fundername: NIGMS NIH HHS grantid: R35 GM124916 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 7X2 7X7 7XC 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACGOD ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFRAH AFSHS AGAYW AHBCP AHMBA AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ BVXVI CCPQU CS3 D1I D1J D1K DB5 DU5 DWQXO EBS EE. EJD EMOBN ESX F5P FEDTE FSGXE FYUFA FZEXT GNUQQ HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ITC K6- KB. L6V LK5 LK8 M0K M1P M2P M7P M7R M7S NNMJJ O9- ODYON P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PTHSS PYCSY Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB PMFND 7QL 7QO 7SS 7TK 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c541t-b89eeac563e66a1f682e2ea3dea2733ce560a65be164a78a61ba69336f3e63f73 |
IEDL.DBID | 7X7 |
ISSN | 1548-7091 1548-7105 |
IngestDate | Thu Aug 21 14:03:16 EDT 2025 Thu Jul 10 22:47:30 EDT 2025 Fri Jul 25 08:52:38 EDT 2025 Tue Jun 17 21:42:54 EDT 2025 Tue Jun 10 20:40:31 EDT 2025 Mon Jul 21 05:35:41 EDT 2025 Tue Jul 01 00:44:35 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-b89eeac563e66a1f682e2ea3dea2733ce560a65be164a78a61ba69336f3e63f73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally. A.G. and Z.S. contributed equally. A.G., Z.S., A.S., and N.Y. designed the study. A.G., Z.S, R.L., J.R., and N.Y. conceived of the statistical model. A.G. implemented the totalVI software with input from R.L. K.L.N. designed and produced antibody panels and provided input on the study. Z.S. designed and led experiments with input from A.S. and N.Y. A.G. and Z.S. designed and implemented analysis methods and applied the software to analyze the data with input from A.S. and N.Y. A.S. and N.Y. supervised the work. A.G., Z.S., R.L., J.R., A.S., and N.Y. participated in writing the manuscript. Author contributions |
ORCID | 0000-0002-1472-5235 0000-0001-9004-1225 0000-0001-9537-0845 0000-0003-0495-738X 0000-0003-1488-7995 0000-0002-3909-8389 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7954949 |
PMID | 33589839 |
PQID | 2499377689 |
PQPubID | 28015 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7954949 proquest_miscellaneous_2490122353 proquest_journals_2499377689 gale_infotracmisc_A655717234 gale_infotracacademiconefile_A655717234 pubmed_primary_33589839 crossref_primary_10_1038_s41592_020_01050_x crossref_citationtrail_10_1038_s41592_020_01050_x springer_journals_10_1038_s41592_020_01050_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | Techniques for life scientists and chemists |
PublicationTitle | Nature methods |
PublicationTitleAbbrev | Nat Methods |
PublicationTitleAlternate | Nat Methods |
PublicationYear | 2021 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Kreslavsky (CR48) 2017; 18 Mimitou (CR58) 2019; 16 Benjamini, Hochberg (CR86) 1995; 57 Lopez, Regier, Cole, Jordan, Yosef (CR15) 2018; 15 CR37 CR36 CR35 Lock, Hoadley, Marron, Nobel (CR50) 2013; 7 CR79 CR33 Stuart (CR34) 2019; 177 CR77 CR31 CR75 CR30 CR74 CR73 CR72 CR71 CR70 Fontenot, Rasmussen, Gavin, Rudensky (CR89) 2005; 6 Sprouse (CR90) 2018; 3 Hünig, Beyersdorf, Kerkau (CR80) 2015; 4 CR2 CR4 CR6 CR5 CR8 Liberzon (CR92) 2011; 27 CR7 CR9 CR49 Edgar, Domrachev, Lash (CR93) 2002; 30 CR45 Zhou, Ye, Wang, Zhang (CR38) 2020; 11 CR87 CR85 CR40 CR84 CR81 Lun (CR76) 2019; 20 Heimberg, Bhatnagar, El-Samad, Thomson (CR55) 2016; 2 Filion, Izaguirre, Garber, Huebsh, Aye (CR82) 1990; 135 Walzer (CR42) 2007; 104 Clark (CR57) 2018; 9 Kotliarov (CR14) 2020; 26 Korem (CR44) 2015; 11 Bezman (CR41) 2012; 13 CR19 Labib, Kelley (CR3) 2020; 4 CR18 Gordon (CR43) 2012; 36 Stubbington, Rozenblatt-Rosen, Regev, Teichmann (CR1) 2017; 358 CR17 CR16 CR59 Loder (CR47) 1999; 190 CR56 Ganin (CR68) 2016; 17 Yang (CR28) 2020; 21 CR54 Gorin, Svensson, Pachter (CR53) 2020; 21 Thomas, Srivastava, Allman (CR46) 2006; 239 CR94 CR91 Haque, Engel, Teichmann, Lönnberg (CR11) 2017; 9 Todorovic (CR10) 2017; 14 Watts (CR78) 1997; 15 Haghverdi, Lun, Morgan, Marioni (CR83) 2018; 36 Praktiknjo (CR13) 2020; 11 Argelaguet (CR51) 2018; 14 CR29 Granja (CR12) 2019; 37 Li (CR32) 2020; 17 CR27 CR26 CR25 CR69 CR24 CR23 CR67 CR22 CR66 CR21 CR65 CR20 CR64 Liu, Beyer, Aebersold (CR52) 2016; 165 CR63 CR61 CR60 Blei, Kucukelbir, McAuliffe (CR62) 2017; 112 Kass, Raftery (CR39) 1995; 90 Roncarolo, Gregori (CR88) 2008; 38 Z Zhou (1050_CR38) 2020; 11 ML Sprouse (1050_CR90) 2018; 3 1050_CR37 1050_CR35 1050_CR79 1050_CR36 1050_CR33 1050_CR77 1050_CR31 1050_CR75 G Gorin (1050_CR53) 2020; 21 1050_CR73 1050_CR30 1050_CR74 Y Kotliarov (1050_CR14) 2020; 26 1050_CR71 1050_CR72 S Yang (1050_CR28) 2020; 21 1050_CR70 Y Liu (1050_CR52) 2016; 165 EP Mimitou (1050_CR58) 2019; 16 F Loder (1050_CR47) 1999; 190 C Watts (1050_CR78) 1997; 15 T Hünig (1050_CR80) 2015; 4 R Argelaguet (1050_CR51) 2018; 14 1050_CR29 1050_CR26 1050_CR27 1050_CR24 1050_CR25 1050_CR69 1050_CR22 1050_CR66 1050_CR23 1050_CR67 1050_CR20 NA Bezman (1050_CR41) 2012; 13 1050_CR64 1050_CR21 Y Korem (1050_CR44) 2015; 11 1050_CR65 1050_CR63 1050_CR60 MJT Stubbington (1050_CR1) 2017; 358 1050_CR61 JM Granja (1050_CR12) 2019; 37 DM Blei (1050_CR62) 2017; 112 R Edgar (1050_CR93) 2002; 30 R Lopez (1050_CR15) 2018; 15 Y Benjamini (1050_CR86) 1995; 57 G Heimberg (1050_CR55) 2016; 2 V Todorovic (1050_CR10) 2017; 14 1050_CR19 SJ Clark (1050_CR57) 2018; 9 1050_CR17 1050_CR18 1050_CR59 1050_CR16 T Stuart (1050_CR34) 2019; 177 RE Kass (1050_CR39) 1995; 90 1050_CR56 ATL Lun (1050_CR76) 2019; 20 1050_CR54 A Liberzon (1050_CR92) 2011; 27 1050_CR94 JD Fontenot (1050_CR89) 2005; 6 1050_CR91 M Labib (1050_CR3) 2020; 4 EF Lock (1050_CR50) 2013; 7 M-G Roncarolo (1050_CR88) 2008; 38 1050_CR2 SD Praktiknjo (1050_CR13) 2020; 11 T Kreslavsky (1050_CR48) 2017; 18 T Walzer (1050_CR42) 2007; 104 1050_CR8 1050_CR9 1050_CR6 L Haghverdi (1050_CR83) 2018; 36 1050_CR7 1050_CR4 LG Filion (1050_CR82) 1990; 135 1050_CR5 1050_CR49 B Li (1050_CR32) 2020; 17 1050_CR45 A Haque (1050_CR11) 2017; 9 1050_CR87 1050_CR40 MD Thomas (1050_CR46) 2006; 239 1050_CR84 1050_CR85 SM Gordon (1050_CR43) 2012; 36 1050_CR81 Y Ganin (1050_CR68) 2016; 17 |
References_xml | – ident: CR45 – ident: CR70 – ident: CR22 – volume: 18 start-page: 442 year: 2017 end-page: 455 ident: CR48 article-title: Essential role for the transcription factor Bhlhe41 in regulating the development, self-renewal and BCR repertoire of B-1a cells publication-title: Nat. Immunol. doi: 10.1038/ni.3694 – ident: CR49 – ident: CR74 – volume: 27 start-page: 1739 year: 2011 end-page: 1740 ident: CR92 article-title: Databases and ontologies Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – ident: CR4 – volume: 9 start-page: 1 year: 2018 end-page: 9 ident: CR57 article-title: ScNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-03149-4 – ident: CR87 – ident: CR16 – volume: 190 start-page: 75 year: 1999 end-page: 89 ident: CR47 article-title: B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals publication-title: J. Exp. Med. doi: 10.1084/jem.190.1.75 – ident: CR35 – volume: 15 start-page: 821 year: 1997 end-page: 850 ident: CR78 article-title: Capture and processing of exogenous antigens for presentation on MHC molecules publication-title: Ann. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.821 – ident: CR29 – ident: CR54 – ident: CR61 – ident: CR77 – ident: CR8 – ident: CR84 – ident: CR25 – volume: 30 start-page: 207 year: 2002 end-page: 210 ident: CR93 article-title: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.207 – volume: 2 start-page: 239 year: 2016 end-page: 250 ident: CR55 article-title: Low dimensionality in gene expression data enables the accurate extraction of transcriptional programs from shallow sequencing publication-title: Cell Sys. doi: 10.1016/j.cels.2016.04.001 – volume: 13 start-page: 1000 year: 2012 end-page: 1008 ident: CR41 article-title: Molecular definition of the identity and activation of natural killer cells publication-title: Nat. Immunol. doi: 10.1038/ni.2395 – ident: CR21 – ident: CR71 – ident: CR19 – ident: CR67 – ident: CR75 – volume: 6 start-page: 1142 year: 2005 end-page: 1151 ident: CR89 article-title: A function for interleukin 2 in Foxp3-expressing regulatory T cells publication-title: Nat. Immunol. doi: 10.1038/ni1263 – volume: 21 year: 2020 ident: CR28 article-title: Decontamination of ambient RNA in single-cell RNA-seq with DecontX publication-title: Genome Biol. doi: 10.1186/s13059-020-1950-6 – ident: CR9 – ident: CR60 – ident: CR36 – ident: CR85 – volume: 16 start-page: 409 year: 2019 end-page: 412 ident: CR58 article-title: Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells publication-title: Nat. Methods doi: 10.1038/s41592-019-0392-0 – ident: CR5 – volume: 17 start-page: 793 year: 2020 end-page: 798 ident: CR32 article-title: Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq publication-title: Nat. Methods doi: 10.1038/s41592-020-0905-x – ident: CR81 – volume: 21 start-page: 1 year: 2020 end-page: 6 ident: CR53 article-title: Protein velocity and acceleration from single-cell multiomics experiments publication-title: Genome Biol. doi: 10.1186/s13059-020-1945-3 – ident: CR64 – volume: 3 start-page: 1 year: 2018 end-page: 14 ident: CR90 article-title: High self-reactivity drives T-bet and potentiates Treg function in tissue-specific autoimmunity publication-title: JCI Insight doi: 10.1172/jci.insight.97322 – volume: 20 year: 2019 ident: CR76 article-title: EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data publication-title: Genome Biol. doi: 10.1186/s13059-019-1662-y – volume: 358 start-page: 58 year: 2017 end-page: 63 ident: CR1 article-title: Single-cell transcriptomics to explore the immune system in health and disease publication-title: Science doi: 10.1126/science.aan6828 – ident: CR26 – volume: 15 start-page: 1053 year: 2018 end-page: 1058 ident: CR15 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – ident: CR18 – ident: CR66 – ident: CR91 – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: CR62 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – ident: CR72 – volume: 104 start-page: 3384 year: 2007 end-page: 3389 ident: CR42 article-title: Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46 publication-title: PNAS doi: 10.1073/pnas.0609692104 – volume: 38 start-page: 925 year: 2008 end-page: 927 ident: CR88 article-title: Is FOXP3 a bona fide marker for human regulatory T cells? publication-title: Eur. J. Immunol. doi: 10.1002/eji.200838168 – ident: CR2 – ident: CR37 – volume: 14 start-page: 1028 year: 2017 end-page: 1029 ident: CR10 article-title: Single-cell RNA-seq—now with protein publication-title: Nat. Methods doi: 10.1038/nmeth.4488 – ident: CR30 – volume: 17 start-page: 2096 year: 2016 end-page: 2030 ident: CR68 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – volume: 135 start-page: 59 year: 1990 end-page: 69 ident: CR82 article-title: Detection of surface and cytoplasmic CD4 on blood monocytes from normal and HIV-1 infected individuals publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(90)90256-U – ident: CR33 – volume: 165 start-page: 535 year: 2016 end-page: 550 ident: CR52 article-title: On the dependency of cellular protein levels on mRNA abundance publication-title: Cell doi: 10.1016/j.cell.2016.03.014 – volume: 90 start-page: 773 year: 1995 end-page: 795 ident: CR39 article-title: Bayes factors publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 26 start-page: 618 year: 2020 end-page: 629 ident: CR14 article-title: Broad immune activation underlies shared set point signatures for vaccine responsiveness in healthy individuals and disease activity in patients with lupus publication-title: Nat. Med. doi: 10.1038/s41591-020-0769-8 – volume: 7 start-page: 523 year: 2013 end-page: 542 ident: CR50 article-title: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS597 – ident: CR6 – ident: CR79 – volume: 11 start-page: 1 year: 2015 end-page: 27 ident: CR44 article-title: Geometry of the gene expression space of individual cells publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004224 – ident: CR56 – ident: CR40 – ident: CR63 – ident: CR27 – ident: CR23 – ident: CR69 – ident: CR94 – volume: 36 start-page: 55 year: 2012 end-page: 67 ident: CR43 article-title: The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation publication-title: Immunity doi: 10.1016/j.immuni.2011.11.016 – ident: CR73 – ident: CR65 – volume: 9 start-page: 1 year: 2017 end-page: 12 ident: CR11 article-title: A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications publication-title: Genome Med. doi: 10.1186/s13073-017-0467-4 – volume: 4 start-page: 111 year: 2015 ident: CR80 article-title: CD28 co-stimulation in T-cell homeostasis: a recent perspective publication-title: ImmunoTargets Ther. doi: 10.2147/ITT.S61647 – ident: CR17 – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: CR38 article-title: Surface protein imputation from single cell transcriptomes by deep neural networks publication-title: Nat. Commun. – ident: CR31 – volume: 14 start-page: 1 year: 2018 end-page: 13 ident: CR51 article-title: Multi‐omics factor analysis—a framework for unsupervised integration of multi‐omics data sets publication-title: Mol. Sys. Biol. – volume: 11 year: 2020 ident: CR13 article-title: Tracing tumorigenesis in a solid tumor model at single-cell resolution publication-title: Nat. Commun. doi: 10.1038/s41467-020-14777-0 – volume: 4 start-page: 143 year: 2020 end-page: 158 ident: CR3 article-title: Single-cell analysis targeting the proteome publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0162-7 – ident: CR7 – ident: CR59 – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: CR86 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J. R. Stat. Soc. B – volume: 239 start-page: 92 year: 2006 end-page: 102 ident: CR46 article-title: Regulation of peripheral B cell maturation publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2006.04.007 – volume: 37 start-page: 1458 year: 2019 end-page: 1465 ident: CR12 article-title: Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0332-7 – ident: CR24 – ident: CR20 – volume: 177 start-page: 1888 year: 2019 end-page: 1902 ident: CR34 article-title: Comprehensive integration of single-cell data publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – volume: 36 start-page: 421 year: 2018 end-page: 427 ident: CR83 article-title: Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4091 – ident: 1050_CR67 – volume: 15 start-page: 821 year: 1997 ident: 1050_CR78 publication-title: Ann. Rev. Immunol. doi: 10.1146/annurev.immunol.15.1.821 – volume: 36 start-page: 55 year: 2012 ident: 1050_CR43 publication-title: Immunity doi: 10.1016/j.immuni.2011.11.016 – volume: 7 start-page: 523 year: 2013 ident: 1050_CR50 publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS597 – volume: 37 start-page: 1458 year: 2019 ident: 1050_CR12 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0332-7 – ident: 1050_CR73 – volume: 21 year: 2020 ident: 1050_CR28 publication-title: Genome Biol. doi: 10.1186/s13059-020-1950-6 – ident: 1050_CR87 doi: 10.3389/fimmu.2017.01578 – ident: 1050_CR29 doi: 10.1093/gigascience/giaa151 – ident: 1050_CR21 doi: 10.1080/00401706.1994.10485840 – ident: 1050_CR59 doi: 10.1101/737601 – volume: 36 start-page: 421 year: 2018 ident: 1050_CR83 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4091 – volume: 30 start-page: 207 year: 2002 ident: 1050_CR93 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.1.207 – volume: 9 start-page: 1 year: 2017 ident: 1050_CR11 publication-title: Genome Med. doi: 10.1186/s13073-017-0467-4 – ident: 1050_CR18 doi: 10.1038/s41467-017-02554-5 – volume: 90 start-page: 773 year: 1995 ident: 1050_CR39 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 18 start-page: 442 year: 2017 ident: 1050_CR48 publication-title: Nat. Immunol. doi: 10.1038/ni.3694 – volume: 27 start-page: 1739 year: 2011 ident: 1050_CR92 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – ident: 1050_CR24 – volume: 20 year: 2019 ident: 1050_CR76 publication-title: Genome Biol. doi: 10.1186/s13059-019-1662-y – ident: 1050_CR6 doi: 10.1038/nmeth.4380 – volume: 14 start-page: 1 year: 2018 ident: 1050_CR51 publication-title: Mol. Sys. Biol. – ident: 1050_CR66 – volume: 190 start-page: 75 year: 1999 ident: 1050_CR47 publication-title: J. Exp. Med. doi: 10.1084/jem.190.1.75 – volume: 9 start-page: 1 year: 2018 ident: 1050_CR57 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02088-w – ident: 1050_CR60 doi: 10.1214/17-BA1090 – ident: 1050_CR16 – ident: 1050_CR20 – volume: 16 start-page: 409 year: 2019 ident: 1050_CR58 publication-title: Nat. Methods doi: 10.1038/s41592-019-0392-0 – ident: 1050_CR7 doi: 10.1038/nbt.3973 – ident: 1050_CR37 – ident: 1050_CR71 doi: 10.1093/bioinformatics/bts635 – ident: 1050_CR5 – volume: 11 year: 2020 ident: 1050_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14777-0 – volume: 57 start-page: 289 year: 1995 ident: 1050_CR86 publication-title: J. R. Stat. Soc. B doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 11 start-page: 1 year: 2020 ident: 1050_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – ident: 1050_CR45 doi: 10.1109/BigData47090.2019.9006484 – ident: 1050_CR84 doi: 10.1101/2020.02.06.937805 – volume: 3 start-page: 1 year: 2018 ident: 1050_CR90 publication-title: JCI Insight doi: 10.1172/jci.insight.97322 – volume: 358 start-page: 58 year: 2017 ident: 1050_CR1 publication-title: Science doi: 10.1126/science.aan6828 – ident: 1050_CR81 doi: 10.21105/joss.00861 – ident: 1050_CR4 doi: 10.1038/nbt.3711 – volume: 239 start-page: 92 year: 2006 ident: 1050_CR46 publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2006.04.007 – volume: 135 start-page: 59 year: 1990 ident: 1050_CR82 publication-title: J. Immunol. Methods doi: 10.1016/0022-1759(90)90256-U – ident: 1050_CR27 doi: 10.1002/cyto.b.20485 – volume: 2 start-page: 239 year: 2016 ident: 1050_CR55 publication-title: Cell Sys. doi: 10.1016/j.cels.2016.04.001 – ident: 1050_CR65 – volume: 6 start-page: 1142 year: 2005 ident: 1050_CR89 publication-title: Nat. Immunol. doi: 10.1038/ni1263 – ident: 1050_CR77 doi: 10.4049/jimmunol.160.8.3861 – volume: 26 start-page: 618 year: 2020 ident: 1050_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-020-0769-8 – ident: 1050_CR19 doi: 10.1146/annurev-statistics-022513-115657 – ident: 1050_CR23 – ident: 1050_CR36 – volume: 38 start-page: 925 year: 2008 ident: 1050_CR88 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200838168 – volume: 13 start-page: 1000 year: 2012 ident: 1050_CR41 publication-title: Nat. Immunol. doi: 10.1038/ni.2395 – ident: 1050_CR56 doi: 10.1186/s13059-017-1382-0 – ident: 1050_CR75 – volume: 11 start-page: 1 year: 2015 ident: 1050_CR44 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004224 – ident: 1050_CR17 doi: 10.18547/gcb.2017.vol3.iss1.e46 – volume: 21 start-page: 1 year: 2020 ident: 1050_CR53 publication-title: Genome Biol. doi: 10.1186/s13059-020-1945-3 – ident: 1050_CR69 doi: 10.1093/bioinformatics/btaa800 – ident: 1050_CR26 – ident: 1050_CR61 doi: 10.1038/s41587-019-0379-5 – ident: 1050_CR33 doi: 10.12688/f1000research.16613.2 – ident: 1050_CR85 – ident: 1050_CR49 – volume: 112 start-page: 859 year: 2017 ident: 1050_CR62 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – ident: 1050_CR54 doi: 10.1101/762773 – ident: 1050_CR2 doi: 10.1038/nri.2017.76 – ident: 1050_CR72 doi: 10.5281/zenodo.2678041 – ident: 1050_CR30 doi: 10.1101/791699 – ident: 1050_CR91 – ident: 1050_CR64 – volume: 177 start-page: 1888 year: 2019 ident: 1050_CR34 publication-title: Cell doi: 10.1016/j.cell.2019.05.031 – ident: 1050_CR40 doi: 10.1101/794289 – volume: 104 start-page: 3384 year: 2007 ident: 1050_CR42 publication-title: PNAS doi: 10.1073/pnas.0609692104 – ident: 1050_CR74 – ident: 1050_CR8 doi: 10.7554/eLife.27041 – volume: 4 start-page: 111 year: 2015 ident: 1050_CR80 publication-title: ImmunoTargets Ther. doi: 10.2147/ITT.S61647 – ident: 1050_CR9 doi: 10.1038/nature21350 – volume: 165 start-page: 535 year: 2016 ident: 1050_CR52 publication-title: Cell doi: 10.1016/j.cell.2016.03.014 – volume: 14 start-page: 1028 year: 2017 ident: 1050_CR10 publication-title: Nat. Methods doi: 10.1038/nmeth.4488 – ident: 1050_CR35 doi: 10.1038/s41587-019-0113-3 – ident: 1050_CR70 doi: 10.1038/ncomms14049 – volume: 4 start-page: 143 year: 2020 ident: 1050_CR3 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0162-7 – volume: 17 start-page: 2096 year: 2016 ident: 1050_CR68 publication-title: J. Mach. Learn. Res. – ident: 1050_CR94 doi: 10.5281/zenodo.4330368 – ident: 1050_CR25 – volume: 17 start-page: 793 year: 2020 ident: 1050_CR32 publication-title: Nat. Methods doi: 10.1038/s41592-020-0905-x – ident: 1050_CR79 doi: 10.1093/intimm/dxh009 – ident: 1050_CR63 – volume: 15 start-page: 1053 year: 2018 ident: 1050_CR15 publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – ident: 1050_CR22 doi: 10.1186/s13059-018-1603-1 – ident: 1050_CR31 doi: 10.1089/cmb.2019.0337 |
SSID | ssj0033425 |
Score | 2.6975412 |
Snippet | The paired measurement of RNA and surface proteins in single cells with cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) is a... The paired measurement of RNA and surface proteins in single cells with CITE-seq is a promising approach to connect transcriptional variation with cell... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 272 |
SubjectTerms | 631/114 631/114/1305 631/114/2397 631/114/2401 631/250 Animals Bioinformatics Biological Microscopy Biological Techniques Biomedical and Life Sciences Biomedical Engineering/Biotechnology Cells, Cultured Correlation analysis Data Analysis Epitopes Female Gene expression High-Throughput Screening Assays - methods Immune system Inference Life Sciences Lymph nodes Lymph Nodes - cytology Lymph Nodes - metabolism Measurement Membrane proteins Methods Mice Mice, Inbred C57BL Phenotypes Phenotypic variations Probabilistic models Proteins Proteins - analysis Proteomics RNA - analysis RNA - genetics RNA sequencing Single-Cell Analysis - methods Spleen Spleen - cytology Spleen - metabolism Transcription Transcriptome - genetics Transcriptomes |
Title | Joint probabilistic modeling of single-cell multi-omic data with totalVI |
URI | https://link.springer.com/article/10.1038/s41592-020-01050-x https://www.ncbi.nlm.nih.gov/pubmed/33589839 https://www.proquest.com/docview/2499377689 https://www.proquest.com/docview/2490122353 https://pubmed.ncbi.nlm.nih.gov/PMC7954949 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLdgExIviG8KYwoSEg8QrdekSfo0bdOOYxITQgzdW5SmqZg0tYPrpPHfY6e9jp60vfQlSZs6jv2z49gA702QWlZ1xhHKV1wWDuUgqmlep75AAO0zl9EF56-nanEmT5b5cnC4rYawyrVMjIK6aj35yPfQTEBNiuC42L_8zalqFJ2uDiU07sM2pS4j40svR4NLCBmLrhIq5xoV43BpJhVmb4WKi-IuMwrLSvOUX08U06Z4_k8_bcZObhygRr00fwyPBkDJDnoOeAL3QvMUHvQlJv8-g8VJe950jOrGxFy6lJaZxfI3-DbW1ox8BReBkwOfxehCTveUGUWOMnLSsq5FfP7zy3M4mx__OFrwoXoC97mcdbw0RUCpmisRlHKzWpksZMGJKjiELMIHxDpO5WVAg8lp49SsdKoQQtU4QNRavICtpm3CK2A-KC29rLMqpLL2ZYlL6J035EQNqa4SmK1JZ_2QWpwqXFzYeMQtjO3JbZHcNpLbXifwcRxz2SfWuLP3B1oRS7sO34wf7y8P4Pwof5U9UHmOhmkmZAI7k564W_y0eb2mdtitK3vDWwm8G5tpJEWgNaG9in3oFFLkIoGXPQuM8xYiNwUizQT0hDnGDpTDe9rSnP-Kubw1HbNKHPlpzUY307qdHK_v_os38DCj0JsYKrcDW92fq_AWsVNX7sYNgk8z_7wL24fHp9--_wNv5xeU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASOBOIDVrO04yQGhClh2-zq1qDfXcRxRqUra7la0f4rfyIyTbMlK9NazH3HG43l4Ps8AvMu8SlVZCY6mfMlVblEOoprmVexyNKCdsIIeOO_s6sm-2jxIDlbgT_8WhmCVvUwMgrpsHN2Rr6ObgJoUjeP8y8kpp6pRFF3tS2i0bLHlL3-jyzb7PP2G-_teiPH3va8T3lUV4C5RozkvstyjtEm09FrbUaUz4YW3svQWVbl0Hm0Aq5PCoyNh08zqUWE1uv26wgGySiXOewtuKylzghBm4x-95JdShSKv5AXwFBVx90gnltn6DBUl4TwFwcDiJOYXA0W4rA7-0YfLWM2lgG3Qg-MHcL8zYNlGy3EPYcXXj-BOW9Ly8jFMNpujes6oTk3I3UtpoFkot4OzsaZidDdx7DkFDFhAM3J6F80IqcroUpjNG_QHfk6fwP6N0PUprNZN7Z8Dc16nyqlKlD5WlSsKZBlnXUaXtj5OywhGPemM61KZU0WNYxNC6jIzLbkNktsEcpuLCD4uxpy0iTyu7f2BdsTQKceZ8ePtYwVcH-XLMhs6SdARFlJFsDboiafTDZv7PTWddJiZK16O4O2imUYS4q32zXnoQ1FPmcgInrUssFi3lEmWo2UbQTpgjkUHyhk-bKmPfoXc4SmFdRWO_NSz0dWy_k-OF9f_xRu4O9nb2Tbb092tl3BPEOwnwPTWYHV-du5fod02L16Hw8Lg8KZP51-UbVKG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKQFwQbwIFjATiANZmbcdxDghVlGW3hYoDRb2ZxHHUSlXSsqlof42vY8ZJtuxK9NazH3HG8_S8AF4Zr1JVVoKjKl9yleXIB1FM8yp2GSrQTuSCEpy_7urpntreT_bX4M-QC0NhlQNPDIy6bBy9kY_QTEBJispxNqr6sIhvW5MPxyecOkiRp3Vop9GhyI4__43m2_z9bAvv-rUQk0_fP05532GAu0SNW16YzCPnSbT0WufjShvhhc9l6XMU69J51AdynRQejYo8NbkeF7nOpNQVLpBVKnHfa3A9lSam7glm8nmQAlKq0PCVLAKeolDuE3ZiaUZzFJoU8ykoJCxOYn62JBRXRcM_snE1bnPFeRtk4uQO3O6VWbbZYd9dWPP1PbjRtbc8vw_T7eawbhn1rAl1fKkkNAutd3A31lSM3imOPCfnAQuRjZxypBlFrTJ6IGZtg7bBj9kD2LsSuD6E9bqp_WNgzutUOVWJ0seqckWB6ONyZ-gB18dpGcF4AJ11fVlz6q5xZIN7XRrbgdsiuG0Atz2L4O1izXFX1OPS2W_oRixRPO6MH-8SF_B8VDvLbuokQaNYSBXBxtJMpFS3PDzcqe05xdxe4HUELxfDtJKi32rfnIY55AGViYzgUYcCi3NLmZgMtdwI0iXkWEyg-uHLI_XhQagjnpKLV-HKdwMaXRzr_-B4cvlfvICbSJf2y2x35yncEhQBFCL2NmC9_XXqn6EK1xbPA60w-HnVxPkXV19Wsw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Joint+probabilistic+modeling+of+single-cell+multi-omic+data+with+totalVI&rft.jtitle=Nature+methods&rft.au=Gayoso%2C+Adam&rft.au=Steier%2C+Zo%C3%AB&rft.au=Lopez%2C+Romain&rft.au=Regier%2C+Jeffrey&rft.date=2021-03-01&rft.eissn=1548-7105&rft.volume=18&rft.issue=3&rft.spage=272&rft_id=info:doi/10.1038%2Fs41592-020-01050-x&rft_id=info%3Apmid%2F33589839&rft.externalDocID=33589839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1548-7091&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1548-7091&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1548-7091&client=summon |