The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway

Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 151; no. 2; pp. 263 - 275
Main Authors Kirisako, Takayoshi, Ichimura, Yoshinobu, Okada, Hisashi, Kabeya, Yukiko, Mizushima, Noboru, Yoshimori, Tamotsu, Ohsumi, Mariko, Takao, Toshifumi, Noda, Takeshi, Ohsumi, Yoshinori
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 16.10.2000
The Rockefeller University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule "X" and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.
AbstractList Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule "X" and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule "X" and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.
Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature. We show here that the nature of the association of Apg8 with membranes changes depending on a series of modifications of the protein itself. First, the carboxy-terminal Arg residue of newly synthesized Apg8 is removed by Apg4/Aut2, a novel cysteine protease, and a Gly residue becomes the carboxy-terminal residue of the protein that is now designated Apg8FG. Subsequently, Apg8FG forms a conjugate with an unidentified molecule “X” and thereby binds tightly to membranes. This modification requires the carboxy-terminal Gly residue of Apg8FG and Apg7, a ubiquitin E1-like enzyme. Finally, the adduct Apg8FG-X is reversed to soluble or loosely membrane-bound Apg8FG by cleavage by Apg4. The mode of action of Apg4, which cleaves both newly synthesized Apg8 and modified Apg8FG, resembles that of deubiquitinating enzymes. A reaction similar to ubiquitination is probably involved in the second modification. The reversible modification of Apg8 appears to be coupled to the membrane dynamics of autophagy and the Cvt pathway.
Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which plays an important role in the formation of such vesicles, tends to bind to membranes in spite of its hydrophilic nature.
Author Ohsumi, Yoshinori
Noda, Takeshi
Mizushima, Noboru
Ohsumi, Mariko
Okada, Hisashi
Yoshimori, Tamotsu
Takao, Toshifumi
Ichimura, Yoshinobu
Kabeya, Yukiko
Kirisako, Takayoshi
Author_xml – sequence: 1
  givenname: Takayoshi
  surname: Kirisako
  fullname: Kirisako, Takayoshi
– sequence: 2
  givenname: Yoshinobu
  surname: Ichimura
  fullname: Ichimura, Yoshinobu
– sequence: 3
  givenname: Hisashi
  surname: Okada
  fullname: Okada, Hisashi
– sequence: 4
  givenname: Yukiko
  surname: Kabeya
  fullname: Kabeya, Yukiko
– sequence: 5
  givenname: Noboru
  surname: Mizushima
  fullname: Mizushima, Noboru
– sequence: 6
  givenname: Tamotsu
  surname: Yoshimori
  fullname: Yoshimori, Tamotsu
– sequence: 7
  givenname: Mariko
  surname: Ohsumi
  fullname: Ohsumi, Mariko
– sequence: 8
  givenname: Toshifumi
  surname: Takao
  fullname: Takao, Toshifumi
– sequence: 9
  givenname: Takeshi
  surname: Noda
  fullname: Noda, Takeshi
– sequence: 10
  givenname: Yoshinori
  surname: Ohsumi
  fullname: Ohsumi, Yoshinori
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11038174$$D View this record in MEDLINE/PubMed
BookMark eNp1kstuEzEUhi1URNPCkh1CFgt2k_o6ntkghahcpFYgCGwte8aeOJrYqe0pynvwwLhNoVCJlaXj7_znP5cTcOSDNwA8x2iOUUPPNp2eY47nZE5q-gjMMGeoajBDR2CGEMFVywk_BicpbRBCTDD6BBxjjGiDBZuBn6u1gV_MtYnJ6dHAy9A76zqVXfAlPkyjyibBXKhLs9VReVO9db53foBfc_mDwcLFbmjOFlMW8Dwl47NTI7QhwhIKu7Ua9lD5_lZjuS-RUaUtzAF-V90USs2VioPJN4qfVV7_UPun4LFVYzLP7t5T8O3d-Wr5obr49P7jcnFRdZzhXGnat1YIIqiqCbM9a62mXKvOcmQZEzVDGtOW9rxhBDWCKMx6qxVXvLdcE3oK3hx0d5Pemr4r1qMa5S66rYp7GZST__54t5ZDuJYEt2XabRF4fScQw9VkUpZblzozjmVMYUpSEMpq1tACvnoAbsIUfWmuaAkkKK_rAr38284fH7-3VYDqAHQxpBSNvUeQvLkGWa5BlmuQRBZ_hacP-M7l29WWbtz436wXh6xNyiHel6gJwg2nvwBIW8QO
CODEN JCLBA3
CitedBy_id crossref_primary_10_1074_jbc_M311139200
crossref_primary_10_1089_ars_2017_7266
crossref_primary_10_1134_S0006297916040052
crossref_primary_10_3390_ijms21082771
crossref_primary_10_4161_auto_8_2_18373
crossref_primary_10_1038_s41580_020_0241_0
crossref_primary_10_1186_s13578_020_00467_3
crossref_primary_10_1074_jbc_M801836200
crossref_primary_10_4161_auto_18705
crossref_primary_10_1080_15548627_2016_1208887
crossref_primary_10_1074_jbc_M413565200
crossref_primary_10_1080_15548627_2018_1454238
crossref_primary_10_1186_1471_2121_14_27
crossref_primary_10_1093_jb_mvad099
crossref_primary_10_1111_j_1600_0854_2007_00677_x
crossref_primary_10_1155_2022_8916464
crossref_primary_10_3390_cells6030023
crossref_primary_10_1534_genetics_117_300679
crossref_primary_10_1016_j_bbadis_2011_07_005
crossref_primary_10_1093_jb_mvae069
crossref_primary_10_3390_jof10020091
crossref_primary_10_1007_s12013_011_9181_9
crossref_primary_10_1016_j_bbapap_2011_05_011
crossref_primary_10_1016_j_febslet_2009_12_037
crossref_primary_10_1186_s12935_019_0779_0
crossref_primary_10_4103_jmedsci_jmedsci_23_20
crossref_primary_10_29169_1927_5951_2020_10_06_1
crossref_primary_10_1080_15548627_2015_1009781
crossref_primary_10_1159_000439185
crossref_primary_10_1080_15548627_2023_2259708
crossref_primary_10_1111_j_1365_2443_2008_01188_x
crossref_primary_10_1038_nsmb_2527
crossref_primary_10_1111_tpj_12043
crossref_primary_10_1080_15548627_2019_1598753
crossref_primary_10_1074_jbc_M110_113670
crossref_primary_10_1038_emboj_2009_321
crossref_primary_10_1080_15548627_2023_2179845
crossref_primary_10_1093_carcin_bgx029
crossref_primary_10_1371_journal_pone_0095197
crossref_primary_10_1016_j_bbrc_2007_02_150
crossref_primary_10_1074_jbc_M509805200
crossref_primary_10_1093_plcell_koae128
crossref_primary_10_1371_journal_pone_0007655
crossref_primary_10_1016_j_jmii_2018_11_002
crossref_primary_10_3390_jof10060431
crossref_primary_10_1111_j_1600_065X_2010_00919_x
crossref_primary_10_1074_jbc_M402047200
crossref_primary_10_15252_embr_201643146
crossref_primary_10_1038_s41467_024_55754_1
crossref_primary_10_4161_auto_24135
crossref_primary_10_1007_s00360_016_0990_4
crossref_primary_10_1074_jbc_M300550200
crossref_primary_10_3390_cells9010138
crossref_primary_10_1038_sj_embor_7400698
crossref_primary_10_1016_j_aquatox_2018_05_021
crossref_primary_10_1016_j_semcdb_2010_03_009
crossref_primary_10_1128_MCB_00508_18
crossref_primary_10_3389_fmolb_2022_1074701
crossref_primary_10_1128_mBio_00833_13
crossref_primary_10_1016_j_cell_2005_11_007
crossref_primary_10_1242_bio_022053
crossref_primary_10_1016_j_cell_2014_01_070
crossref_primary_10_1126_sciadv_abo1274
crossref_primary_10_1002_1873_3468_14742
crossref_primary_10_1093_advances_nmy011
crossref_primary_10_1016_S1534_5807_03_00296_X
crossref_primary_10_1128_IAI_00636_07
crossref_primary_10_1080_15548627_2018_1483806
crossref_primary_10_3389_fpls_2020_579875
crossref_primary_10_1016_j_jbc_2024_105662
crossref_primary_10_1016_j_ymeth_2014_12_008
crossref_primary_10_3390_cells1030263
crossref_primary_10_1091_mbc_12_12_3821
crossref_primary_10_1093_gerona_glt170
crossref_primary_10_4997_jrcpe_2016_403
crossref_primary_10_1016_j_chroma_2014_02_030
crossref_primary_10_1111_gtc_12198
crossref_primary_10_1016_S0896_6273_01_00558_X
crossref_primary_10_1093_jmcb_mjab059
crossref_primary_10_1016_j_chroma_2014_02_029
crossref_primary_10_1016_j_cj_2023_09_005
crossref_primary_10_1093_embo_reports_kvf026
crossref_primary_10_1111_obr_13164
crossref_primary_10_1007_s00018_023_05004_2
crossref_primary_10_1016_j_semcdb_2003_12_004
crossref_primary_10_1093_toxsci_kft246
crossref_primary_10_1152_japplphysiol_00924_2012
crossref_primary_10_1016_j_tibs_2021_01_004
crossref_primary_10_1016_j_fgb_2009_03_008
crossref_primary_10_1021_acs_biochem_2c00482
crossref_primary_10_1080_15548627_2018_1522467
crossref_primary_10_1016_j_jmb_2019_09_005
crossref_primary_10_1046_j_1462_5822_2002_00164_x
crossref_primary_10_1161_CIRCRESAHA_108_187427
crossref_primary_10_3390_cells8121597
crossref_primary_10_1074_jbc_M601612200
crossref_primary_10_1371_journal_pone_0040013
crossref_primary_10_1016_j_febslet_2004_04_088
crossref_primary_10_1074_jbc_M102346200
crossref_primary_10_1538_expanim_60_329
crossref_primary_10_1016_j_bpj_2015_09_022
crossref_primary_10_1038_nrm2708
crossref_primary_10_1242_jcs_01287
crossref_primary_10_12677_ACM_2024_143657
crossref_primary_10_1016_j_bj_2017_03_003
crossref_primary_10_1534_genetics_107_086199
crossref_primary_10_3390_cells12081132
crossref_primary_10_1016_S0165_0173_02_00159_5
crossref_primary_10_1007_s10522_020_09864_0
crossref_primary_10_1016_j_celrep_2018_04_043
crossref_primary_10_1111_j_1462_5822_2012_01795_x
crossref_primary_10_3103_S0095452721060128
crossref_primary_10_1016_j_celrep_2021_110286
crossref_primary_10_1038_ncb1007_1102
crossref_primary_10_4161_15548627_2014_994413
crossref_primary_10_4161_auto_34396
crossref_primary_10_1038_s41467_021_24007_w
crossref_primary_10_1080_15548627_2020_1856492
crossref_primary_10_3390_ijms130911804
crossref_primary_10_1016_S0006_291X_02_02907_8
crossref_primary_10_1089_ars_2013_5371
crossref_primary_10_1083_jcb_202107148
crossref_primary_10_1128_AAC_01489_17
crossref_primary_10_4161_auto_7_12_18424
crossref_primary_10_1093_jxb_eri276
crossref_primary_10_3389_fimmu_2018_01024
crossref_primary_10_1016_j_jmb_2016_02_004
crossref_primary_10_5625_lar_2012_28_3_171
crossref_primary_10_1146_annurev_cellbio_092910_154005
crossref_primary_10_1016_j_yexcr_2008_09_015
crossref_primary_10_1080_15592294_2016_1144007
crossref_primary_10_1091_mbc_e07_12_1257
crossref_primary_10_1371_journal_ppat_1011988
crossref_primary_10_1046_j_1365_2958_2003_03208_x
crossref_primary_10_1038_sj_onc_1207521
crossref_primary_10_1074_jbc_M602283200
crossref_primary_10_1111_j_1745_7254_2005_00235_x
crossref_primary_10_1021_cr800459r
crossref_primary_10_3389_fncel_2018_00039
crossref_primary_10_1002_yea_1152
crossref_primary_10_1016_j_semcdb_2010_04_002
crossref_primary_10_1038_s12276_021_00570_6
crossref_primary_10_1038_s41392_018_0018_5
crossref_primary_10_1080_15548627_2015_1034407
crossref_primary_10_3390_cells1030558
crossref_primary_10_1016_j_jmb_2025_168981
crossref_primary_10_1111_tpj_15649
crossref_primary_10_1146_annurev_biophys_060414_034248
crossref_primary_10_4161_auto_22398
crossref_primary_10_1111_cmi_12453
crossref_primary_10_3390_ijms222212466
crossref_primary_10_1016_j_bbamcr_2005_03_011
crossref_primary_10_1016_j_molcel_2021_03_020
crossref_primary_10_3390_cells9092008
crossref_primary_10_1091_mbc_e04_09_0842
crossref_primary_10_1111_j_1356_9597_2004_00750_x
crossref_primary_10_1016_j_cell_2013_12_022
crossref_primary_10_1007_s40279_013_0140_z
crossref_primary_10_1111_cpr_12167
crossref_primary_10_1007_s10059_010_0014_2
crossref_primary_10_1111_cmi_12450
crossref_primary_10_1111_febs_16280
crossref_primary_10_1371_journal_pone_0025257
crossref_primary_10_1074_jbc_M110_139915
crossref_primary_10_1038_sj_cdd_4401765
crossref_primary_10_1074_jbc_M204736200
crossref_primary_10_1104_pp_112_199992
crossref_primary_10_1074_jbc_TM117_000117
crossref_primary_10_4161_auto_24483
crossref_primary_10_1007_s12672_011_0081_7
crossref_primary_10_1042_BST20210813
crossref_primary_10_3390_ijms20030461
crossref_primary_10_1038_nsmb_2787
crossref_primary_10_1016_j_biocel_2010_08_010
crossref_primary_10_1074_jbc_M112_415372
crossref_primary_10_1016_j_jmb_2016_10_029
crossref_primary_10_1016_j_ceb_2017_03_010
crossref_primary_10_1099_mic_0_034389_0
crossref_primary_10_3389_fmicb_2019_02690
crossref_primary_10_1006_bbrc_2002_6645
crossref_primary_10_1038_embor_2008_163
crossref_primary_10_1042_BC20040516
crossref_primary_10_1042_BJ20051243
crossref_primary_10_1074_jbc_M110_199059
crossref_primary_10_5360_membrane_33_2
crossref_primary_10_4236_ajps_2013_43083
crossref_primary_10_1128_EC_01_1_11_21_2002
crossref_primary_10_1186_s12943_020_1138_4
crossref_primary_10_1016_j_tibs_2010_07_007
crossref_primary_10_1007_s00294_018_0882_0
crossref_primary_10_4155_fmc_12_112
crossref_primary_10_1016_j_jmb_2024_168588
crossref_primary_10_1152_physiol_00030_2017
crossref_primary_10_3389_fphar_2020_00787
crossref_primary_10_3390_biom13050734
crossref_primary_10_3390_cells12040668
crossref_primary_10_1262_jrd_10_110H
crossref_primary_10_5936_csbj_201308002
crossref_primary_10_1172_JCI42601
crossref_primary_10_1038_emboj_2010_74
crossref_primary_10_3390_ijms241310944
crossref_primary_10_1155_2014_962915
crossref_primary_10_1007_s10858_010_9420_1
crossref_primary_10_1038_emboj_2009_80
crossref_primary_10_3389_fcimb_2024_1457617
crossref_primary_10_15302_J_FASE_2016106
crossref_primary_10_1080_21505594_2022_2066611
crossref_primary_10_1186_s12906_016_1129_6
crossref_primary_10_1007_s00018_022_04281_7
crossref_primary_10_1091_mbc_e07_12_1292
crossref_primary_10_3389_fmicb_2018_01890
crossref_primary_10_3389_fpls_2019_00532
crossref_primary_10_1155_2011_498768
crossref_primary_10_1016_j_devcel_2019_02_013
crossref_primary_10_1146_annurev_nutr_27_061406_093749
crossref_primary_10_3390_cells11071086
crossref_primary_10_1074_jbc_M212108200
crossref_primary_10_4161_auto_32183
crossref_primary_10_1007_s13277_015_3496_x
crossref_primary_10_1016_j_febslet_2010_01_018
crossref_primary_10_1111_j_1872_034X_2011_00955_x
crossref_primary_10_1007_s00281_010_0223_y
crossref_primary_10_3389_fpls_2017_01459
crossref_primary_10_1002_cbic_201300344
crossref_primary_10_1177_1073858403009003013
crossref_primary_10_1007_s12013_013_9667_8
crossref_primary_10_1016_j_bbadis_2012_11_001
crossref_primary_10_1007_s11240_022_02423_0
crossref_primary_10_3389_fcimb_2021_794152
crossref_primary_10_3390_ijms23094883
crossref_primary_10_1016_j_bbalip_2012_09_008
crossref_primary_10_1039_D0CS00913J
crossref_primary_10_1128_JVI_00024_10
crossref_primary_10_1262_jrd_2012_005
crossref_primary_10_1080_15548627_2019_1709763
crossref_primary_10_1007_s11240_018_1437_2
crossref_primary_10_3390_v13112189
crossref_primary_10_1093_intimm_dxp088
crossref_primary_10_1007_s11064_022_03714_w
crossref_primary_10_4161_auto_23117
crossref_primary_10_1128_mBio_02021_17
crossref_primary_10_3390_ma14113019
crossref_primary_10_1007_s10126_012_9432_9
crossref_primary_10_1016_j_bbamcr_2021_119064
crossref_primary_10_1161_CIRCRESAHA_114_303788
crossref_primary_10_1038_sj_cdd_4401280
crossref_primary_10_1016_j_semradonc_2013_05_006
crossref_primary_10_3390_ijms19061666
crossref_primary_10_1016_j_actatropica_2015_09_013
crossref_primary_10_1016_j_jmb_2016_02_021
crossref_primary_10_1016_j_canlet_2008_09_004
crossref_primary_10_3390_cancers11050649
crossref_primary_10_1104_pp_104_044362
crossref_primary_10_3390_md14050102
crossref_primary_10_1002_mco2_150
crossref_primary_10_1080_15548627_2020_1713644
crossref_primary_10_1021_bi035421i
crossref_primary_10_1016_j_molcel_2021_03_001
crossref_primary_10_1155_2012_389562
crossref_primary_10_1038_sj_cdd_4402149
crossref_primary_10_4161_auto_25889
crossref_primary_10_1074_jbc_M112_348250
crossref_primary_10_1016_j_tcb_2016_11_011
crossref_primary_10_4161_auto_6_7_13075
crossref_primary_10_1007_BF03402040
crossref_primary_10_1016_j_virol_2006_03_029
crossref_primary_10_17352_2394_8418_000078
crossref_primary_10_1038_s41598_017_08249_7
crossref_primary_10_1371_journal_pone_0125099
crossref_primary_10_1016_j_cellsig_2021_109956
crossref_primary_10_1083_jcb_202002085
crossref_primary_10_3389_fcell_2021_670273
crossref_primary_10_1093_jb_mvx029
crossref_primary_10_1111_j_1574_6968_2010_02192_x
crossref_primary_10_1007_s00425_020_03558_0
crossref_primary_10_1016_j_freeradbiomed_2013_07_020
crossref_primary_10_1182_blood_2013_07_516807
crossref_primary_10_1016_j_jprot_2012_04_055
crossref_primary_10_3390_cells10113118
crossref_primary_10_1091_mbc_e13_02_0092
crossref_primary_10_1016_j_biocel_2004_05_009
crossref_primary_10_1371_journal_pone_0093875
crossref_primary_10_1111_jipb_13452
crossref_primary_10_1155_2012_982794
crossref_primary_10_1242_jcs_223792
crossref_primary_10_1038_35056522
crossref_primary_10_1074_jbc_M208247200
crossref_primary_10_1117_1_JBO_17_1_011008
crossref_primary_10_1074_jbc_M312706200
crossref_primary_10_1016_j_bbrc_2015_05_107
crossref_primary_10_1128_JVI_78_11_5900_5912_2004
crossref_primary_10_1242_jcs_00381
crossref_primary_10_2183_pjab_83_39
crossref_primary_10_15252_embj_201490315
crossref_primary_10_1038_35044114
crossref_primary_10_1038_emboj_2013_171
crossref_primary_10_1016_j_devcel_2023_06_001
crossref_primary_10_1371_journal_ppat_1003046
crossref_primary_10_1002_jcb_29889
crossref_primary_10_1038_cdd_2009_54
crossref_primary_10_1016_j_jmb_2019_12_028
crossref_primary_10_1101_gr_211649_116
crossref_primary_10_1186_1471_2199_10_50
crossref_primary_10_3390_microorganisms10061146
crossref_primary_10_4161_auto_19385
crossref_primary_10_1074_jbc_M405860200
crossref_primary_10_1016_j_cbpb_2010_06_011
crossref_primary_10_1371_journal_pone_0181047
crossref_primary_10_4049_jimmunol_1001954
crossref_primary_10_3390_molecules24132417
crossref_primary_10_1007_s00253_020_10504_3
crossref_primary_10_1111_j_1365_2443_2004_00782_x
crossref_primary_10_1007_s00441_014_1802_3
crossref_primary_10_1007_s11033_006_9011_0
crossref_primary_10_1111_j_1742_4658_2006_05260_x
crossref_primary_10_1016_j_bbrc_2014_06_082
crossref_primary_10_1016_S0014_5793_03_00899_8
crossref_primary_10_1080_15548627_2022_2025572
crossref_primary_10_1128_MMBR_65_3_463_479_2001
crossref_primary_10_1242_jcs_01131
crossref_primary_10_1038_s41598_019_51254_1
crossref_primary_10_1074_jbc_M308762200
crossref_primary_10_1128_spectrum_03531_23
crossref_primary_10_1016_j_mce_2012_04_009
crossref_primary_10_1007_s00253_018_9304_y
crossref_primary_10_1016_j_bioorg_2021_105092
crossref_primary_10_3389_ffunb_2022_948477
crossref_primary_10_1074_jbc_M706214200
crossref_primary_10_1083_jcb_200202082
crossref_primary_10_3390_ijms20030725
crossref_primary_10_1111_j_1364_3703_2010_00620_x
crossref_primary_10_3109_09687680903507080
crossref_primary_10_1073_pnas_1318207111
crossref_primary_10_1080_10715762_2020_1734588
crossref_primary_10_1080_15548627_2018_1517073
crossref_primary_10_1080_15592324_2021_1977527
crossref_primary_10_14348_molcells_2017_0030
crossref_primary_10_1093_g3journal_jkac033
crossref_primary_10_1016_j_freeradbiomed_2023_04_004
crossref_primary_10_1016_j_febslet_2014_06_015
crossref_primary_10_1242_jcs_093757
crossref_primary_10_1007_s10557_006_0583_7
crossref_primary_10_1038_s41467_017_00302_3
crossref_primary_10_1128_EC_05296_11
crossref_primary_10_1016_j_jmb_2019_05_010
crossref_primary_10_1007_s10495_008_0307_5
crossref_primary_10_1089_cbr_2012_1460
crossref_primary_10_1021_acs_jafc_4c11205
crossref_primary_10_1080_15548627_2023_2228533
crossref_primary_10_1074_jbc_M212467200
crossref_primary_10_1111_j_1365_2990_2010_01135_x
crossref_primary_10_4161_auto_7_3_14487
crossref_primary_10_1038_cr_2013_159
crossref_primary_10_1371_journal_ppat_1012085
crossref_primary_10_1016_j_jsb_2016_04_005
crossref_primary_10_3389_fpls_2019_00935
crossref_primary_10_1111_febs_13661
crossref_primary_10_3390_toxics11080682
crossref_primary_10_1016_j_crvi_2012_04_004
crossref_primary_10_1186_s12864_021_07419_2
crossref_primary_10_1080_15548627_2017_1287651
crossref_primary_10_1080_15548627_2018_1437341
crossref_primary_10_1002_chem_201603521
crossref_primary_10_1016_j_neuron_2020_01_018
crossref_primary_10_1016_j_mvr_2015_11_001
crossref_primary_10_1007_s10495_014_0981_4
crossref_primary_10_1016_j_funbio_2017_05_008
crossref_primary_10_1074_jbc_M401461200
crossref_primary_10_1016_j_jmb_2020_01_020
crossref_primary_10_1016_j_celrep_2024_114619
crossref_primary_10_1074_jbc_M112_365676
crossref_primary_10_1016_j_ejcb_2017_03_014
crossref_primary_10_1002_biot_201700674
crossref_primary_10_1038_cr_2013_168
crossref_primary_10_3390_ohbm1010007
crossref_primary_10_1007_s10493_017_0193_z
crossref_primary_10_1038_cr_2013_169
crossref_primary_10_1038_s41418_024_01438_8
crossref_primary_10_1074_jbc_C000752200
crossref_primary_10_4161_cc_23055
crossref_primary_10_1002_jcp_30819
crossref_primary_10_3389_fpls_2019_00709
crossref_primary_10_1074_jbc_M509158200
crossref_primary_10_1038_ja_2017_104
crossref_primary_10_1186_gb_2011_12_7_226
crossref_primary_10_1093_toxsci_kfp101
crossref_primary_10_1016_j_tcb_2012_04_005
crossref_primary_10_1016_j_ajpath_2013_04_028
crossref_primary_10_1083_jcb_200907015
crossref_primary_10_1111_nph_14627
crossref_primary_10_1016_j_febslet_2012_06_008
crossref_primary_10_1089_ars_2010_3478
crossref_primary_10_1016_j_ceb_2011_03_003
crossref_primary_10_1083_jcb_200606084
crossref_primary_10_1016_S1357_2725_02_00343_6
crossref_primary_10_3389_fmicb_2023_1147077
crossref_primary_10_1152_japplphysiol_00429_2011
crossref_primary_10_1016_j_tplants_2012_05_006
crossref_primary_10_3389_fmicb_2020_592524
crossref_primary_10_1002_arch_21114
crossref_primary_10_1074_jbc_M104087200
crossref_primary_10_1016_j_tcb_2023_03_014
crossref_primary_10_3390_life11060526
crossref_primary_10_1247_csf_27_421
crossref_primary_10_1080_15548627_2016_1243199
crossref_primary_10_1016_j_abb_2014_02_015
crossref_primary_10_1083_jcb_152_1_51
crossref_primary_10_4161_auto_19496
crossref_primary_10_1007_s00425_012_1657_3
crossref_primary_10_1152_physrev_00042_2009
crossref_primary_10_1016_j_jmb_2017_08_012
crossref_primary_10_1080_15548627_2019_1580104
crossref_primary_10_1021_pr0341080
crossref_primary_10_1128_MCB_00389_20
crossref_primary_10_1016_j_semcdb_2016_03_022
crossref_primary_10_1038_s44318_024_00091_8
crossref_primary_10_1016_j_micron_2015_10_007
crossref_primary_10_1111_gtc_12875
crossref_primary_10_18632_oncotarget_5352
crossref_primary_10_1038_s41421_020_0155_1
crossref_primary_10_1080_15548627_2020_1749367
crossref_primary_10_1038_nmeth857
crossref_primary_10_1271_bbb_110086
crossref_primary_10_1074_jbc_M802182200
crossref_primary_10_1074_jbc_M114_626952
crossref_primary_10_1126_science_290_5497_1717
crossref_primary_10_1074_jbc_C700195200
crossref_primary_10_1016_j_isci_2025_112118
crossref_primary_10_1016_j_tcb_2007_07_009
crossref_primary_10_1074_jbc_RA118_002614
crossref_primary_10_1113_expphysiol_2011_063008
crossref_primary_10_1080_15548627_2024_2447207
crossref_primary_10_1042_BJ20121721
crossref_primary_10_1016_j_redox_2014_08_007
crossref_primary_10_1101_pdb_top070466
crossref_primary_10_1074_jbc_M208191200
crossref_primary_10_1074_jbc_M303800200
crossref_primary_10_1038_s41598_017_02156_7
crossref_primary_10_1016_j_febslet_2010_02_001
crossref_primary_10_1091_mbc_e08_03_0309
crossref_primary_10_4161_auto_19313
crossref_primary_10_1016_j_mcn_2021_103589
crossref_primary_10_1016_j_mam_2006_08_004
crossref_primary_10_1146_annurev_micro_102215_095557
crossref_primary_10_1091_mbc_e08_03_0312
crossref_primary_10_1083_jcb_200904075
crossref_primary_10_1091_mbc_e04_02_0147
crossref_primary_10_1186_s12915_021_01048_7
crossref_primary_10_1074_jbc_RA120_013897
crossref_primary_10_1128_mBio_02334_14
crossref_primary_10_4161_auto_27166
crossref_primary_10_1016_j_bbrc_2005_10_211
crossref_primary_10_1016_j_mam_2006_08_010
crossref_primary_10_1074_jbc_M110_177618
crossref_primary_10_1016_j_ydbio_2018_04_009
crossref_primary_10_1242_jcs_221655
crossref_primary_10_1016_j_febslet_2010_02_017
crossref_primary_10_1242_jcs_01620
crossref_primary_10_1104_pp_011024
crossref_primary_10_1016_j_devcel_2024_02_002
crossref_primary_10_1016_j_febslet_2010_02_013
crossref_primary_10_1093_biolre_ioae066
crossref_primary_10_3389_fncel_2023_1307636
crossref_primary_10_1016_j_biotechadv_2007_03_004
crossref_primary_10_1016_j_cell_2007_05_021
crossref_primary_10_1038_s41467_017_00303_2
crossref_primary_10_1002_med_21772
crossref_primary_10_1089_ars_2010_3554
crossref_primary_10_1093_jxb_ery388
crossref_primary_10_3390_cells9051179
crossref_primary_10_1007_s00253_006_0489_0
crossref_primary_10_1128_mBio_02205_20
crossref_primary_10_1016_j_bbadis_2018_11_018
crossref_primary_10_1007_s00401_013_1158_x
crossref_primary_10_1016_j_bbrc_2011_07_036
crossref_primary_10_3390_ijms25137000
crossref_primary_10_1016_j_jmb_2025_169072
crossref_primary_10_1074_jbc_M007737200
crossref_primary_10_1111_j_1365_2443_2009_01376_x
crossref_primary_10_15252_embj_201591440
crossref_primary_10_3390_cells9051184
crossref_primary_10_1371_journal_pone_0115789
crossref_primary_10_1016_j_molcel_2022_08_008
crossref_primary_10_1016_j_bbamcr_2013_03_019
crossref_primary_10_4161_auto_7_12_17924
crossref_primary_10_1016_j_scienta_2024_113085
crossref_primary_10_1016_j_ceb_2005_06_007
crossref_primary_10_1371_journal_pbio_2006926
crossref_primary_10_1016_j_cell_2019_12_005
crossref_primary_10_1002_cncr_31978
crossref_primary_10_3347_kjp_2011_49_2_103
crossref_primary_10_1007_s00294_018_0810_3
crossref_primary_10_1034_j_1600_0854_2001_20802_x
crossref_primary_10_1091_mbc_e04_10_0894
crossref_primary_10_1016_j_tibs_2016_08_001
crossref_primary_10_1080_15548627_2019_1569925
crossref_primary_10_4161_15548627_2014_984267
crossref_primary_10_1016_j_bbrc_2013_11_007
crossref_primary_10_1242_jcs_253682
crossref_primary_10_1101_pdb_prot086512
crossref_primary_10_1128_EC_00282_07
crossref_primary_10_3390_cells13010103
crossref_primary_10_1016_j_bbamcr_2009_02_009
crossref_primary_10_1111_tpj_17211
crossref_primary_10_1186_1471_2164_8_170
crossref_primary_10_3389_fpls_2014_00400
crossref_primary_10_1371_journal_pone_0007124
crossref_primary_10_1080_27694127_2023_2188523
crossref_primary_10_4161_cib_21522
crossref_primary_10_1016_j_mcn_2018_04_009
crossref_primary_10_1038_cddis_2017_373
crossref_primary_10_1016_j_bbrc_2010_04_043
crossref_primary_10_1371_journal_pgen_1003196
crossref_primary_10_4161_auto_29557
crossref_primary_10_1016_j_ejmech_2019_05_086
crossref_primary_10_1002_yea_3803
crossref_primary_10_1016_j_cell_2007_06_041
crossref_primary_10_1016_j_femsle_2005_03_030
crossref_primary_10_1034_j_1600_0854_2002_30704_x
crossref_primary_10_1242_dev_016105
crossref_primary_10_1016_j_bbadis_2008_10_016
crossref_primary_10_1016_j_bbrc_2011_06_061
crossref_primary_10_1038_s41467_020_15287_9
crossref_primary_10_3390_ijms21020578
crossref_primary_10_1074_jbc_M407016200
crossref_primary_10_1523_JNEUROSCI_2061_10_2010
crossref_primary_10_1074_jbc_M115_658088
crossref_primary_10_1074_jbc_M708474200
crossref_primary_10_4161_auto_18777
crossref_primary_10_1007_s11154_014_9295_7
crossref_primary_10_1074_jbc_M109_080374
crossref_primary_10_1093_burnst_tkz001
crossref_primary_10_1074_jbc_M609876200
crossref_primary_10_1007_s00018_015_2034_8
crossref_primary_10_1016_j_freeradbiomed_2016_12_003
crossref_primary_10_1080_15548627_2018_1525475
crossref_primary_10_1016_j_xpro_2024_103181
crossref_primary_10_4161_auto_25189
crossref_primary_10_14789_pjmj_49_475
crossref_primary_10_3390_ijms19102986
crossref_primary_10_1016_j_devcel_2011_02_006
crossref_primary_10_1126_science_1227026
crossref_primary_10_1016_j_bbcan_2021_188565
crossref_primary_10_1016_j_yexcr_2006_03_002
crossref_primary_10_1007_s11103_018_0733_x
crossref_primary_10_1016_S0167_4889_03_00086_7
crossref_primary_10_1111_j_1742_4658_2009_07207_x
crossref_primary_10_1038_sj_emboj_7601623
crossref_primary_10_1247_csf_21078
crossref_primary_10_1016_j_biocel_2004_02_005
crossref_primary_10_1371_journal_ppat_1002416
crossref_primary_10_7554_eLife_85748
crossref_primary_10_1111_j_1753_4887_2009_00252_x
crossref_primary_10_1242_jcs_026005
crossref_primary_10_1111_febs_14453
crossref_primary_10_1242_jcs_070045
crossref_primary_10_1016_j_yjmcc_2008_01_010
crossref_primary_10_1074_jbc_M701194200
crossref_primary_10_1242_jcs_261028
crossref_primary_10_1247_csf_23016
crossref_primary_10_7554_eLife_23905
crossref_primary_10_1007_s00018_016_2224_z
crossref_primary_10_1146_annurev_genet_102808_114910
crossref_primary_10_7717_peerj_5988
crossref_primary_10_4161_auto_19652
crossref_primary_10_1074_jbc_R117_804641
crossref_primary_10_1016_j_molbiopara_2009_06_005
crossref_primary_10_1074_jbc_M505888200
crossref_primary_10_1083_jcb_201909033
crossref_primary_10_1111_j_1365_2583_2012_01152_x
crossref_primary_10_3390_ijms21145147
crossref_primary_10_2217_fmb_2019_0298
crossref_primary_10_1182_bloodadvances_2021005910
crossref_primary_10_1038_cddis_2016_318
crossref_primary_10_1016_j_ejcb_2005_06_004
crossref_primary_10_1074_jbc_M115_687764
crossref_primary_10_1074_jbc_M512307200
crossref_primary_10_5511_plantbiotechnology_26_317
crossref_primary_10_1074_jbc_M109043200
crossref_primary_10_2147_OTT_S485100
crossref_primary_10_1093_plphys_kiad520
crossref_primary_10_3390_cancers14061462
crossref_primary_10_3390_cells11152262
crossref_primary_10_1080_15548627_2021_1885183
crossref_primary_10_3389_fpls_2014_00308
crossref_primary_10_1074_jbc_M404399200
crossref_primary_10_1091_mbc_e05_07_0629
crossref_primary_10_1016_S0014_5793_02_03739_0
crossref_primary_10_1016_j_bbalip_2006_05_006
crossref_primary_10_1016_j_preteyeres_2013_08_001
crossref_primary_10_1074_jbc_M200385200
crossref_primary_10_1111_jcmm_13933
crossref_primary_10_1094_PHYTO_01_21_0015_R
crossref_primary_10_1016_j_ymeth_2014_11_021
crossref_primary_10_1074_jbc_M611473200
crossref_primary_10_3390_cells11121876
crossref_primary_10_1038_s41579_018_0003_6
crossref_primary_10_1074_jbc_M109134200
crossref_primary_10_1038_aps_2010_118
crossref_primary_10_1128_JVI_76_24_13069_13076_2002
crossref_primary_10_1074_jbc_M405704200
crossref_primary_10_1016_j_ymeth_2014_11_023
crossref_primary_10_1074_jbc_M607031200
crossref_primary_10_1038_cdd_2014_219
crossref_primary_10_1111_j_1365_2443_2008_01238_x
crossref_primary_10_1111_j_1600_0854_2004_00252_x
crossref_primary_10_1042_bse0550039
crossref_primary_10_1002_yea_843
crossref_primary_10_1002_wrna_1522
crossref_primary_10_1155_2018_8602041
crossref_primary_10_4161_auto_18864
crossref_primary_10_1074_jbc_M115_684233
crossref_primary_10_1074_jbc_M703663200
crossref_primary_10_1111_j_1365_2443_2010_01433_x
crossref_primary_10_1016_j_bcp_2018_06_016
crossref_primary_10_1111_j_1365_313X_2005_02396_x
crossref_primary_10_1038_cddiscovery_2017_52
crossref_primary_10_1016_j_devcel_2015_08_010
crossref_primary_10_4161_auto_29989
crossref_primary_10_1053_j_gastro_2011_08_005
crossref_primary_10_1007_s00299_017_2149_5
crossref_primary_10_1016_j_jmb_2005_11_018
crossref_primary_10_3109_10715762_2015_1129534
crossref_primary_10_1371_journal_pgen_1005169
crossref_primary_10_1074_jbc_M607007200
crossref_primary_10_1111_j_1600_0854_2010_01086_x
crossref_primary_10_1128_EC_00024_06
crossref_primary_10_1172_JCI73940
crossref_primary_10_3389_fpls_2020_00756
crossref_primary_10_1016_S0167_4889_03_00096_X
crossref_primary_10_4161_auto_8_2_18351
crossref_primary_10_1007_s10571_010_9507_y
crossref_primary_10_4161_auto_7_11_17661
crossref_primary_10_1002_pro_3866
crossref_primary_10_1091_mbc_E23_09_0359_T
crossref_primary_10_1073_pnas_0901477106
crossref_primary_10_1074_jbc_AC119_009977
crossref_primary_10_1111_j_1744_7909_2012_01178_x
crossref_primary_10_1523_JNEUROSCI_5809_11_2012
crossref_primary_10_1093_jxb_erab063
crossref_primary_10_1371_journal_pone_0230981
crossref_primary_10_1016_j_pharmthera_2004_04_003
crossref_primary_10_1016_j_febslet_2007_01_096
crossref_primary_10_18632_oncotarget_13321
crossref_primary_10_1038_s41467_024_45839_2
crossref_primary_10_1128_AEM_02455_17
crossref_primary_10_1016_S0955_0674_02_00343_5
crossref_primary_10_1016_S1534_5807_04_00099_1
crossref_primary_10_1074_jbc_M101150200
crossref_primary_10_1007_s11011_018_0214_6
crossref_primary_10_1177_1087057113492200
crossref_primary_10_1371_journal_pone_0062110
crossref_primary_10_1016_j_bbagen_2022_130203
crossref_primary_10_1016_j_devcel_2004_07_005
crossref_primary_10_1016_j_ymeth_2014_11_004
crossref_primary_10_3390_cells10112814
crossref_primary_10_1242_jcs_158758
crossref_primary_10_1074_jbc_M111_230896
crossref_primary_10_3390_biomedicines9111625
crossref_primary_10_1038_35048012
crossref_primary_10_1177_25152564231162495
crossref_primary_10_2142_biophys_47_107
crossref_primary_10_1016_j_brainres_2008_02_077
crossref_primary_10_1016_S2095_3119_21_63863_7
crossref_primary_10_4155_fmc_09_155
Cites_doi 10.1016/S0092-8674(00)81862-0
10.1093/emboj/17.24.7151
10.1016/S1097-2765(00)80133-1
10.1074/jbc.275.8.5845
10.1083/jcb.138.1.37
10.1006/bbrc.1995.1636
10.1126/science.270.5243.1828
10.1073/pnas.93.22.12304
10.1016/0378-1119(96)00354-X
10.1016/S0968-0004(97)01122-5
10.1128/MCB.18.9.5308
10.1083/jcb.111.3.941
10.1093/genetics/122.1.19
10.1096/fasebj.11.14.9409543
10.1016/S0378-1119(97)00084-X
10.1016/S0021-9258(18)42585-9
10.1093/emboj/19.7.1494
10.1093/emboj/18.19.5234
10.1083/jcb.138.3.517
10.1146/annurev.biochem.67.1.425
10.1093/emboj/17.13.3597
10.1083/jcb.139.7.1687
10.1038/18457
10.1038/26506
10.1038/16264
10.1083/jcb.148.3.465
10.1083/jcb.119.2.301
10.1083/jcb.124.6.903
10.1083/jcb.131.3.591
10.1093/emboj/16.18.5509
10.1083/jcb.147.2.435
10.1083/jcb.135.6.1457
10.1091/mbc.10.6.1719
10.1016/S0378-1119(97)00031-0
10.1016/S0962-8924(98)01491-3
10.1074/jbc.272.45.28557
10.1101/gad.12.15.2263
10.1074/jbc.273.35.22284
10.1074/jbc.275.11.7462
10.1146/annurev.genet.30.1.405
10.1128/JVI.72.5.4139-4148.1998
10.1093/emboj/17.8.2208
10.1016/S0092-8674(00)80982-4
10.1101/gad.12.7.914
10.1074/jbc.273.7.3963
10.1016/S0092-8674(00)80188-9
10.1074/jbc.274.44.31131
10.1074/jbc.271.30.17621
10.1083/jcb.137.3.609
10.1016/0962-8924(94)90069-8
10.1091/mbc.10.5.1337
10.1016/0014-5793(93)80398-E
10.1128/JB.181.6.1963-1967.1999
10.1091/mbc.10.5.1367
10.1074/jbc.274.35.25061
10.1093/emboj/18.21.6005
ContentType Journal Article
Copyright Copyright 2000 The Rockefeller University Press
Copyright Rockefeller University Press Oct 16, 2000
2000 The Rockefeller University Press 2000 The Rockefeller University Press
Copyright_xml – notice: Copyright 2000 The Rockefeller University Press
– notice: Copyright Rockefeller University Press Oct 16, 2000
– notice: 2000 The Rockefeller University Press 2000 The Rockefeller University Press
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1083/jcb.151.2.263
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Anatomy & Physiology
EISSN 1540-8140
EndPage 275
ExternalDocumentID PMC2192639
63733567
11038174
10_1083_jcb_151_2_263
1620185
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0VX
123
18M
1VV
29K
2WC
34G
36B
39C
3O-
4.4
53G
85S
9QQ
AAUTI
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKIV
ACKOT
ACNCT
ACNKL
ACPRK
ACPVT
ADBBV
ADXHL
AEILP
AENEX
AFOSN
AFRAH
AGCDD
AHJTV
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
C45
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EJD
EMB
F5P
F9R
FRP
GX1
H13
HF~
HGD
HYE
IH2
J5H
JZ9
KQ8
MVM
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7L
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YYP
YZZ
ZCA
ZGI
ZY4
~KM
AAYXX
CITATION
ABTAH
AEUPB
CGR
CUY
CVF
ECM
EIF
JENOY
JST
NPM
OVD
RHF
RPM
VQA
VXZ
YIN
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c541t-b3d9f77273a624fd49fb35bacf50f447640b1393d58420872a14dfba5a5df5b23
ISSN 0021-9525
IngestDate Thu Aug 21 18:41:47 EDT 2025
Tue Aug 05 08:47:22 EDT 2025
Wed Aug 13 04:07:53 EDT 2025
Wed Feb 19 02:32:12 EST 2025
Tue Jul 01 02:22:05 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Thu May 29 08:53:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-b3d9f77273a624fd49fb35bacf50f447640b1393d58420872a14dfba5a5df5b23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2192639
PMID 11038174
PQID 217073566
PQPubID 48855
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2192639
proquest_miscellaneous_72346483
proquest_journals_217073566
pubmed_primary_11038174
crossref_primary_10_1083_jcb_151_2_263
crossref_citationtrail_10_1083_jcb_151_2_263
jstor_primary_1620185
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2000-10-16
PublicationDateYYYYMMDD 2000-10-16
PublicationDate_xml – month: 10
  year: 2000
  text: 2000-10-16
  day: 16
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2000
Publisher Rockefeller University Press
The Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
– name: The Rockefeller University Press
References Baba (2023072902384080700_Babaetal1997) 1997; 139
Hegde (2023072902384080700_Hegdeetal1997) 1997; 89
Wang (2023072902384080700_Wangetal1999) 1999; 397
Hicke (2023072902384080700_HickeandRiezman1996) 1996; 84
Kim (2023072902384080700_Kimetal1999b) 1999; 181
Tanida (2023072902384080700_Tanidaetal1999) 1999; 10
Huang (2023072902384080700_Huangetal1995) 1995; 270
Loeb (2023072902384080700_LoebandHaas1992) 1992; 267
Noda (2023072902384080700_Nodaetal2000) 2000; 148
Sato (2023072902384080700_Satoetal1998) 1998; 18
Wilkinson (2023072902384080700_Wilkinson1997) 1997; 11
Abeliovich (2023072902384080700_Abeliovichetal1999) 1999; 18
Meyers (2023072902384080700_Meyersetal1998) 1998; 72
Scott (2023072902384080700_Scottetal1997) 1997; 138
Sagiv (2023072902384080700_Sagivetal2000) 2000; 19
Potter (2023072902384080700_Potteretal1999) 1999; 274
Liakopoulos (2023072902384080700_Liakopoulosetal1998) 1998; 17
Johnson (2023072902384080700_Johnsonetal1997) 1997; 16
Darsow (2023072902384080700_Darsowetal1997) 1997; 138
Varshavsky (2023072902384080700_Varshavsky1997) 1997; 22
Kametaka (2023072902384080700_Kametakaetal1996) 1996; 178
Funakoshi (2023072902384080700_Funakoshietal1997) 1997; 192
Kirisako (2023072902384080700_Kirisakoetal1999) 1999; 147
Kamitani (2023072902384080700_Kamitanietal1997) 1997; 272
Kametaka (2023072902384080700_Kametakaetal1998) 1998; 273
Shintani (2023072902384080700_Shintanietal1999) 1999; 18
Noda (2023072902384080700_Nodaetal1995) 1995; 210
Mizushima (2023072902384080700_Mizushimaetal1998) 1998; 395
Li (2023072902384080700_LiandHochstrasser1999) 1999; 398
Lang (2023072902384080700_Langetal1998) 1998; 17
Lammer (2023072902384080700_Lammeretal1998) 1998; 12
Kopitz (2023072902384080700_Kopitzetal1990) 1990; 111
Suzuki (2023072902384080700_Suzukietal1999) 1999; 274
Tsukada (2023072902384080700_TsukadaandOhsumi1993) 1993; 333
Ciechanover (2023072902384080700_Ciechanover1998) 1998; 17
Dunn (2023072902384080700_Dunn1994) 1994; 4
Kim (2023072902384080700_Kimetal1999a) 1999; 10
Matsuura (2023072902384080700_Matsuuraetal1997) 1997; 192
Sikorski (2023072902384080700_SikorskiandHieter1989) 1989; 122
Huang (2023072902384080700_Huangetal2000) 2000; 275
Takeshige (2023072902384080700_Takeshigeetal1992) 1992; 119
Osaka (2023072902384080700_Osakaetal1998) 1998; 12
Desterro (2023072902384080700_Desterroetal1998) 1998; 2
Harding (2023072902384080700_Hardingetal1996) 1996; 271
Hershko (2023072902384080700_HershkoandCiechanover1998) 1998; 67
Scott (2023072902384080700_Scottetal1996) 1996; 93
Harding (2023072902384080700_Hardingetal1995) 1995; 131
Hicke (2023072902384080700_Hicke1999) 1999; 9
Matunis (2023072902384080700_Matunisetal1996) 1996; 135
Furukawa (2023072902384080700_Furukawaetal2000) 2000; 275
Baba (2023072902384080700_Babaetal1994) 1994; 124
Fischer von Mollard (2023072902384080700_FischervonMollardandStevens1999) 1999; 10
Hochstrasser (2023072902384080700_Hochstrasser1996) 1996; 30
Noda (2023072902384080700_NodaandOhsumi1998) 1998; 273
Kim (2023072902384080700_Kimetal1997) 1997; 137
Mahajan (2023072902384080700_Mahajanetal1997) 1997; 88
References_xml – volume: 88
  start-page: 97
  year: 1997
  ident: 2023072902384080700_Mahajanetal1997
  article-title: A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81862-0
– volume: 17
  start-page: 7151
  year: 1998
  ident: 2023072902384080700_Ciechanover1998
  article-title: The ubiquitin-proteasome pathwayon protein death and cell life
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/17.24.7151
– volume: 2
  start-page: 233
  year: 1998
  ident: 2023072902384080700_Desterroetal1998
  article-title: SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(00)80133-1
– volume: 275
  start-page: 5845
  year: 2000
  ident: 2023072902384080700_Huangetal2000
  article-title: The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the Autophagy/Cvt pathways
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.275.8.5845
– volume: 138
  start-page: 37
  year: 1997
  ident: 2023072902384080700_Scottetal1997
  article-title: Aminopeptidase I is targeted to the vacuole by a nonclassical vesicular mechanism
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.138.1.37
– volume: 210
  start-page: 126
  year: 1995
  ident: 2023072902384080700_Nodaetal1995
  article-title: Novel system for monitoring autophagy in the yeast Saccharomyces cerevisiae
  publication-title: Biochem. Biophys. Res. Commun
  doi: 10.1006/bbrc.1995.1636
– volume: 270
  start-page: 1828
  year: 1995
  ident: 2023072902384080700_Huangetal1995
  article-title: Control of cell fate by a deubiquitinating enzyme encoded by the fat facets gene
  publication-title: Science
  doi: 10.1126/science.270.5243.1828
– volume: 93
  start-page: 12304
  year: 1996
  ident: 2023072902384080700_Scottetal1996
  article-title: Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.22.12304
– volume: 178
  start-page: 139
  year: 1996
  ident: 2023072902384080700_Kametakaetal1996
  article-title: Structural and functional analyses of APG5, a gene involved in autophagy in yeast
  publication-title: Gene
  doi: 10.1016/0378-1119(96)00354-X
– volume: 22
  start-page: 383
  year: 1997
  ident: 2023072902384080700_Varshavsky1997
  article-title: The ubiquitin system
  publication-title: Trends Biochem. Sci
  doi: 10.1016/S0968-0004(97)01122-5
– volume: 18
  start-page: 5308
  year: 1998
  ident: 2023072902384080700_Satoetal1998
  article-title: Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking
  publication-title: Mol. Cell Biol
  doi: 10.1128/MCB.18.9.5308
– volume: 111
  start-page: 941
  year: 1990
  ident: 2023072902384080700_Kopitzetal1990
  article-title: Nonselective autophagy of cytosolic enzymes by isolated rat hepatocytes
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.111.3.941
– volume: 122
  start-page: 19
  year: 1989
  ident: 2023072902384080700_SikorskiandHieter1989
  article-title: A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/122.1.19
– volume: 11
  start-page: 1245
  year: 1997
  ident: 2023072902384080700_Wilkinson1997
  article-title: Regulation of ubiquitin-dependent processes by deubiquitinating enzymes
  publication-title: FASEB J
  doi: 10.1096/fasebj.11.14.9409543
– volume: 192
  start-page: 245
  year: 1997
  ident: 2023072902384080700_Matsuuraetal1997
  article-title: Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae
  publication-title: Gene
  doi: 10.1016/S0378-1119(97)00084-X
– volume: 267
  start-page: 7806
  year: 1992
  ident: 2023072902384080700_LoebandHaas1992
  article-title: The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins
  publication-title: J. Biol. Chem
  doi: 10.1016/S0021-9258(18)42585-9
– volume: 19
  start-page: 1494
  year: 2000
  ident: 2023072902384080700_Sagivetal2000
  article-title: GATE-16, a membrane transport modulator, interacts with NSF and the Golgi v-SNARE GOS-28
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/19.7.1494
– volume: 18
  start-page: 5234
  year: 1999
  ident: 2023072902384080700_Shintanietal1999
  article-title: Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/18.19.5234
– volume: 138
  start-page: 517
  year: 1997
  ident: 2023072902384080700_Darsowetal1997
  article-title: A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.138.3.517
– volume: 67
  start-page: 425
  year: 1998
  ident: 2023072902384080700_HershkoandCiechanover1998
  article-title: The ubiquitin system
  publication-title: Annu. Rev. Biochem
  doi: 10.1146/annurev.biochem.67.1.425
– volume: 17
  start-page: 3597
  year: 1998
  ident: 2023072902384080700_Langetal1998
  article-title: Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/17.13.3597
– volume: 139
  start-page: 1687
  year: 1997
  ident: 2023072902384080700_Babaetal1997
  article-title: Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.139.7.1687
– volume: 398
  start-page: 246
  year: 1999
  ident: 2023072902384080700_LiandHochstrasser1999
  article-title: A new protease required for cell-cycle progression in yeast
  publication-title: Nature
  doi: 10.1038/18457
– volume: 395
  start-page: 395
  year: 1998
  ident: 2023072902384080700_Mizushimaetal1998
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
  doi: 10.1038/26506
– volume: 397
  start-page: 69
  year: 1999
  ident: 2023072902384080700_Wangetal1999
  article-title: GABA(A)-receptor–associated protein links GABA(A) receptors and the cytoskeleton
  publication-title: Nature
  doi: 10.1038/16264
– volume: 148
  start-page: 465
  year: 2000
  ident: 2023072902384080700_Nodaetal2000
  article-title: Apg9p/Cvt7p is an integral membrane protein required for transport vesicle formation in the Cvt and autophagy pathway
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.148.3.465
– volume: 119
  start-page: 301
  year: 1992
  ident: 2023072902384080700_Takeshigeetal1992
  article-title: Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.119.2.301
– volume: 124
  start-page: 903
  year: 1994
  ident: 2023072902384080700_Babaetal1994
  article-title: Ultrastructural analysis of the autophagic process in yeastdetection of autophagosomes and their characterization
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.124.6.903
– volume: 131
  start-page: 591
  year: 1995
  ident: 2023072902384080700_Hardingetal1995
  article-title: Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.131.3.591
– volume: 16
  start-page: 5509
  year: 1997
  ident: 2023072902384080700_Johnsonetal1997
  article-title: The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/16.18.5509
– volume: 147
  start-page: 435
  year: 1999
  ident: 2023072902384080700_Kirisakoetal1999
  article-title: Formation process of autophagosome is traced with Apg8/Aut7p in yeast
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.147.2.435
– volume: 135
  start-page: 1457
  year: 1996
  ident: 2023072902384080700_Matunisetal1996
  article-title: A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase–activating protein RanGAP1 between the cytosol and the nuclear pore complex
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.135.6.1457
– volume: 10
  start-page: 1719
  year: 1999
  ident: 2023072902384080700_FischervonMollardandStevens1999
  article-title: The Saccharomyces cerevisiae v-SNARE Vti1p is required for multiple membrane transport pathways to the vacuole
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.6.1719
– volume: 192
  start-page: 207
  year: 1997
  ident: 2023072902384080700_Funakoshietal1997
  article-title: Analyses of APG13 gene involved in autophagy in yeast, Saccharomyces cerevisiae
  publication-title: Gene
  doi: 10.1016/S0378-1119(97)00031-0
– volume: 9
  start-page: 107
  year: 1999
  ident: 2023072902384080700_Hicke1999
  article-title: Gettin' down with ubiquitinturning off cell-surface receptors, transporters and channels
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(98)01491-3
– volume: 272
  start-page: 28557
  year: 1997
  ident: 2023072902384080700_Kamitanietal1997
  article-title: Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.272.45.28557
– volume: 12
  start-page: 2263
  year: 1998
  ident: 2023072902384080700_Osakaetal1998
  article-title: A new NEDD8-ligating system for cullin-4A
  publication-title: Genes Dev
  doi: 10.1101/gad.12.15.2263
– volume: 273
  start-page: 22284
  year: 1998
  ident: 2023072902384080700_Kametakaetal1998
  article-title: Apg14p and Apg6/Vps30p form a protein complex essential for autophagy in the yeast, Saccharomyces cerevisiae
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.273.35.22284
– volume: 275
  start-page: 7462
  year: 2000
  ident: 2023072902384080700_Furukawaetal2000
  article-title: A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.11.7462
– volume: 30
  start-page: 405
  year: 1996
  ident: 2023072902384080700_Hochstrasser1996
  article-title: Ubiquitin-dependent protein degradation
  publication-title: Annu. Rev. Genet
  doi: 10.1146/annurev.genet.30.1.405
– volume: 72
  start-page: 4139
  year: 1998
  ident: 2023072902384080700_Meyersetal1998
  article-title: Insertion of a sequence encoding light chain 3 of microtubule-associated proteins 1A and 1B in a pestivirus genomeconnection with virus cytopathogenicity and induction of lethal disease in cattle
  publication-title: J. Virol
  doi: 10.1128/JVI.72.5.4139-4148.1998
– volume: 17
  start-page: 2208
  year: 1998
  ident: 2023072902384080700_Liakopoulosetal1998
  article-title: A novel protein modification pathway related to the ubiquitin system
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/17.8.2208
– volume: 84
  start-page: 277
  year: 1996
  ident: 2023072902384080700_HickeandRiezman1996
  article-title: Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80982-4
– volume: 12
  start-page: 914
  year: 1998
  ident: 2023072902384080700_Lammeretal1998
  article-title: Modification of yeast Cdc53p by the ubiquitin-related protein rub1p affects function of the SCFCdc4 complex
  publication-title: Genes Dev
  doi: 10.1101/gad.12.7.914
– volume: 273
  start-page: 3963
  year: 1998
  ident: 2023072902384080700_NodaandOhsumi1998
  article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.273.7.3963
– volume: 89
  start-page: 115
  year: 1997
  ident: 2023072902384080700_Hegdeetal1997
  article-title: Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80188-9
– volume: 274
  start-page: 31131
  year: 1999
  ident: 2023072902384080700_Suzukietal1999
  article-title: A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.274.44.31131
– volume: 271
  start-page: 17621
  year: 1996
  ident: 2023072902384080700_Hardingetal1996
  article-title: Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.271.30.17621
– volume: 137
  start-page: 609
  year: 1997
  ident: 2023072902384080700_Kimetal1997
  article-title: Transport of a large oligomeric protein by the cytoplasm to vacuole protein targeting pathway
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.137.3.609
– volume: 4
  start-page: 139
  year: 1994
  ident: 2023072902384080700_Dunn1994
  article-title: Autophagy and related mechanisms of lysosome-mediated protein degradation
  publication-title: Trends Cell Biol
  doi: 10.1016/0962-8924(94)90069-8
– volume: 10
  start-page: 1337
  year: 1999
  ident: 2023072902384080700_Kimetal1999a
  article-title: Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.5.1337
– volume: 333
  start-page: 169
  year: 1993
  ident: 2023072902384080700_TsukadaandOhsumi1993
  article-title: Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae
  publication-title: FEBS Lett
  doi: 10.1016/0014-5793(93)80398-E
– volume: 181
  start-page: 1963
  year: 1999
  ident: 2023072902384080700_Kimetal1999b
  article-title: LB-AUT7, a novel symbiosis-regulated gene from an ectomycorrhizal fungus, Laccaria bicolor, is functionally related to vesicular transport and autophagocytosis
  publication-title: J. Bacteriol
  doi: 10.1128/JB.181.6.1963-1967.1999
– volume: 10
  start-page: 1367
  year: 1999
  ident: 2023072902384080700_Tanidaetal1999
  article-title: Apg7p/Cvt2pa novel protein-activating enzyme essential for autophagy
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.10.5.1367
– volume: 274
  start-page: 25061
  year: 1999
  ident: 2023072902384080700_Potteretal1999
  article-title: Precursor processing of pro-ISG15/UCRP, an interferon-beta–induced ubiquitin-like protein
  publication-title: J. Biol. Chem
  doi: 10.1074/jbc.274.35.25061
– volume: 18
  start-page: 6005
  year: 1999
  ident: 2023072902384080700_Abeliovichetal1999
  article-title: Cytoplasm to vacuole trafficking of aminopeptidase I requires a t-SNARE-Sec1p complex composed of Tlg2p and Vps45p
  publication-title: EMBO (Eur. Mol. Biol. Org.) J
  doi: 10.1093/emboj/18.21.6005
SSID ssj0004743
Score 2.2816346
Snippet Autophagy and the Cvt pathway are examples of nonclassical vesicular transport from the cytoplasm to the vacuole via double-membrane vesicles. Apg8/Aut7, which...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 263
SubjectTerms Amino Acid Sequence
Anatomy & physiology
Antibodies
Autophagy
Autophagy-Related Protein 8 Family
Autophagy-Related Proteins
Biological Transport
Catalytic Domain
Cells
Cysteine Endopeptidases - metabolism
Cytoplasm
Cytoplasm - metabolism
Enzymes
Immunoblotting
Ligases - metabolism
Membrane Proteins - metabolism
Membranes
Microtubule-Associated Proteins - metabolism
Models, Biological
Molecular Sequence Data
Molecules
Original
Peroxisomes - metabolism
Plasmids
Protein Binding
Protein Processing, Post-Translational
Protein Sorting Signals
Saccharomyces cerevisiae Proteins
Sequence Homology, Amino Acid
Ubiquitin-Protein Ligases
Ubiquitins
Ubiquitins - metabolism
Vacuoles
Vacuoles - metabolism
Yeasts
Title The Reversible Modification Regulates the Membrane-Binding State of Apg8/Aut7 Essential for Autophagy and the Cytoplasm to Vacuole Targeting Pathway
URI https://www.jstor.org/stable/1620185
https://www.ncbi.nlm.nih.gov/pubmed/11038174
https://www.proquest.com/docview/217073566
https://www.proquest.com/docview/72346483
https://pubmed.ncbi.nlm.nih.gov/PMC2192639
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiQuiEeBpTx8QFyWbPNwXscVAhUQcGmlvUV2nNBVm2TVJqDlN3DkBzNje51kaSXgEq2SiR3t92Uyk8x8JuSl4KmbyBjSEpdxhwVu4SR-HjlpwhK_FKighY3Cnz5HRyfswzJcTiY_B1VLXSvm-Y8r-0r-B1XYB7hil-w_IGsHhR3wG_CFLSAM27_GGCWYIOHHBqiqkVj4oyG90IvMo4IDWFVFBWlxXWAiLM0rBF0gsFh_xQL9RdfGM9QRr9uV7mmc8Q5FB7hRaMJR8g3sgXC7woj1G887LE3UteSqqR2iye989J247zxTMS9-JpgZ3af-6z_q_J41o4rt9_npqurUGkgzG2x_OeOSjxoqPnJRbAZG29cXLvp93V1p2wk8Jw1197N1yUaEdjVIjY2D1e7wD8cPkSQ6_lzM4dy5P9-xA9zWlWKB5ylRQtY__2xV4vbQDXLTh6RDtY4v-4IhFpsaTHPBRrEVZj4czYs6tGakUbCj612vymR2C3IHEc7xXXLHwEQXmmf3yKSo75NberHSzQPyC7CkPdvokG3Uso0CT-gu26hiG21Kimw7RK5RyzUKXKOWaxS4psawXKNtQw3XqOUaNVzbJyfv3h6_OXLMmh5OHjKvdUQg0zLGoJlHPislS0sRhILnZeiWjMURcwUkJYGEwNh3k9jnHpOl4CEPZRkKP3hI9uqmLh4TyqWP-TCclicoMwiJcslEGInY49hwPiWvt39-lhvBe1x35TxThRdJkAFsGcCW-RnANiWvrPlaK71cZ7ivkOytIoiiE5jvYItsZpzEZQYZPzxEIWeakhf2KHhwvN8Ah6a7zIBpLGIJjPtIs6Af2NBoSuIRP6wBasOPj9SrU6URD4EIXGr65NoxD8jt_nZ8Svbai654BvF1K54r2v8GAcjTDg
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+reversible+modification+regulates+the+membrane-binding+state+of+Apg8%2FAut7+essential+for+autophagy+and+the+cytoplasm+to+vacuole+targeting+pathway&rft.jtitle=The+Journal+of+cell+biology&rft.au=Kirisako%2C+T&rft.au=Ichimura%2C+Y&rft.au=Okada%2C+H&rft.au=Kabeya%2C+Y&rft.date=2000-10-16&rft.issn=0021-9525&rft.volume=151&rft.issue=2&rft.spage=263&rft_id=info:doi/10.1083%2Fjcb.151.2.263&rft_id=info%3Apmid%2F11038174&rft.externalDocID=11038174
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon