Elucidating Microglial Heterogeneity and Functions in Alzheimer’s Disease Using Single-cell Analysis and Convolutional Neural Network Disease Model Construction
In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 17271 - 11 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the pivotal role of microglia in AD pathology, our analysis revealed 11 distinct microglial subclusters, with 4 exhibiting obviously alterations in AD and HC groups. The investigation of cell–cell communication networks unveiled intricate interactions between AD-related microglia and various cell types within the central nervous system (CNS). Integration of WGCNA and scRNA-seq facilitated the identification of critical genes associated with AD-related microglia, providing insights into their involvement in processes such as peptide chain elongation, synapse-related functions, and cell adhesion. The identification of 9 hub genes, including USP3, through the least absolute shrinkage and selection operator (LASSO) and COX regression analyses, presents potential therapeutic targets. Furthermore, the development of a CNN-based model showcases the application of deep learning in enhancing diagnostic accuracy for AD. Overall, our findings significantly contribute to unraveling the molecular intricacies of microglial responses in AD, offering promising avenues for targeted therapeutic interventions and improved diagnostic precision. |
---|---|
AbstractList | In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the pivotal role of microglia in AD pathology, our analysis revealed 11 distinct microglial subclusters, with 4 exhibiting obviously alterations in AD and HC groups. The investigation of cell-cell communication networks unveiled intricate interactions between AD-related microglia and various cell types within the central nervous system (CNS). Integration of WGCNA and scRNA-seq facilitated the identification of critical genes associated with AD-related microglia, providing insights into their involvement in processes such as peptide chain elongation, synapse-related functions, and cell adhesion. The identification of 9 hub genes, including USP3, through the least absolute shrinkage and selection operator (LASSO) and COX regression analyses, presents potential therapeutic targets. Furthermore, the development of a CNN-based model showcases the application of deep learning in enhancing diagnostic accuracy for AD. Overall, our findings significantly contribute to unraveling the molecular intricacies of microglial responses in AD, offering promising avenues for targeted therapeutic interventions and improved diagnostic precision.In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the pivotal role of microglia in AD pathology, our analysis revealed 11 distinct microglial subclusters, with 4 exhibiting obviously alterations in AD and HC groups. The investigation of cell-cell communication networks unveiled intricate interactions between AD-related microglia and various cell types within the central nervous system (CNS). Integration of WGCNA and scRNA-seq facilitated the identification of critical genes associated with AD-related microglia, providing insights into their involvement in processes such as peptide chain elongation, synapse-related functions, and cell adhesion. The identification of 9 hub genes, including USP3, through the least absolute shrinkage and selection operator (LASSO) and COX regression analyses, presents potential therapeutic targets. Furthermore, the development of a CNN-based model showcases the application of deep learning in enhancing diagnostic accuracy for AD. Overall, our findings significantly contribute to unraveling the molecular intricacies of microglial responses in AD, offering promising avenues for targeted therapeutic interventions and improved diagnostic precision. In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the pivotal role of microglia in AD pathology, our analysis revealed 11 distinct microglial subclusters, with 4 exhibiting obviously alterations in AD and HC groups. The investigation of cell–cell communication networks unveiled intricate interactions between AD-related microglia and various cell types within the central nervous system (CNS). Integration of WGCNA and scRNA-seq facilitated the identification of critical genes associated with AD-related microglia, providing insights into their involvement in processes such as peptide chain elongation, synapse-related functions, and cell adhesion. The identification of 9 hub genes, including USP3, through the least absolute shrinkage and selection operator (LASSO) and COX regression analyses, presents potential therapeutic targets. Furthermore, the development of a CNN-based model showcases the application of deep learning in enhancing diagnostic accuracy for AD. Overall, our findings significantly contribute to unraveling the molecular intricacies of microglial responses in AD, offering promising avenues for targeted therapeutic interventions and improved diagnostic precision. Abstract In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA sequencing (scRNA-seq), weighted gene co-expression network analysis (WGCNA), and a convolutional neural network (CNN) model. Focusing on the pivotal role of microglia in AD pathology, our analysis revealed 11 distinct microglial subclusters, with 4 exhibiting obviously alterations in AD and HC groups. The investigation of cell–cell communication networks unveiled intricate interactions between AD-related microglia and various cell types within the central nervous system (CNS). Integration of WGCNA and scRNA-seq facilitated the identification of critical genes associated with AD-related microglia, providing insights into their involvement in processes such as peptide chain elongation, synapse-related functions, and cell adhesion. The identification of 9 hub genes, including USP3, through the least absolute shrinkage and selection operator (LASSO) and COX regression analyses, presents potential therapeutic targets. Furthermore, the development of a CNN-based model showcases the application of deep learning in enhancing diagnostic accuracy for AD. Overall, our findings significantly contribute to unraveling the molecular intricacies of microglial responses in AD, offering promising avenues for targeted therapeutic interventions and improved diagnostic precision. |
ArticleNumber | 17271 |
Author | Xiao, Chuyu Sun, Huanan Jin, Jiahui Cao, Xuezhao Zhang, Xinyue Wu, Xinyi Cui, Xiaotong Liu, Mingyu Tong, Xiangyi Pan, Xue Ren, Liou Wang, Yaxuan |
Author_xml | – sequence: 1 givenname: Xinyi surname: Wu fullname: Wu, Xinyi organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 2 givenname: Mingyu surname: Liu fullname: Liu, Mingyu organization: Department of Vascular and Thyroid Surgery, The First Hospital of China Medical University – sequence: 3 givenname: Xinyue surname: Zhang fullname: Zhang, Xinyue organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 4 givenname: Xue surname: Pan fullname: Pan, Xue organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 5 givenname: Xiaotong surname: Cui fullname: Cui, Xiaotong organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 6 givenname: Jiahui surname: Jin fullname: Jin, Jiahui organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 7 givenname: Huanan surname: Sun fullname: Sun, Huanan organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 8 givenname: Chuyu surname: Xiao fullname: Xiao, Chuyu organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 9 givenname: Xiangyi surname: Tong fullname: Tong, Xiangyi organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 10 givenname: Liou surname: Ren fullname: Ren, Liou organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 11 givenname: Yaxuan surname: Wang fullname: Wang, Yaxuan organization: Department of Anesthesiology, The First Hospital of China Medical University – sequence: 12 givenname: Xuezhao surname: Cao fullname: Cao, Xuezhao email: xuezhaocao2011@163.com organization: Department of Anesthesiology, The First Hospital of China Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39068182$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxiNUREvpC3BAkbhwCfhfvM4JVduWVmrhAD1bjj3ZevHaxU6KlhOvwZVH40lwNmVpe6gPtmV_85vx-Hte7PjgoSheYvQWIyreJYbrRlSIsIrPajqr8JNijyBWV4QSsnNnv1scpLREedSkYbh5VuzSBnGBBdkrfh-7QVujeusX5YXVMSycVa48hR7yHjzYfl0qb8qTweveBp9K68tD9-MK7Arin5-_UnlkE6gE5WUaKZ_z5KDS4Fx56JVbJ5s2hHnwN8ENIyRn-AhD3Cz99xC_bhkXwYAbpamPwybhi-Jpp1yCg9t1v7g8Of4yP63OP304mx-eV7pmuK9aqltUc4WAALS8ZR1uNO06oRhCMyY00i2vCTamY1ojTjlqlREKdV1NOqLofnE2cU1QS3kd7UrFtQzKys1BiAupYm-1A9nSjnPDM9Ug1nCt6pkBQVmjsUEdaTLr_cS6HtoVGA2-z4-9B71_4-2VXIQbiTHJHMEy4c0tIYZvA6Rermwae6o8hCFJikTNBWtmOEtfP5AuwxBzjycVzu1hIqte3S1pW8s_L2QBmQTZBClF6LYSjOToOTl5TmbPyY3n5JhbPAjStlfjt-VnWfd4KJ1CU87jFxD_l_1I1F8Y6O_L |
CitedBy_id | crossref_primary_10_3389_fdata_2025_1515341 |
Cites_doi | 10.1002/glia.22986 10.1126/science.aad8373 10.1038/cr.2013.170 10.1007/s00330-019-06318-1 10.1146/annurev-biochem-061516-044916 10.1146/annurev-immunol-051116-052358 10.1038/475S1a 10.1371/journal.pone.0137305 10.1038/nbt.2859 10.1002/glia.22401 10.1038/nm.3913 10.1016/j.coi.2020.05.008 10.1038/s41591-023-02505-2 10.1038/nn.4475 10.1111/acel.12522 10.1016/j.ccell.2020.12.014 10.1038/nbt.4096 10.1186/1742-2094-3-33 10.3390/ijms232112990 10.1038/s41588-019-0358-2 10.1186/s12974-022-02565-0 10.1186/s13059-016-1070-5 10.1038/nrd.2018.109 10.1089/omi.2011.0118 10.3389/fimmu.2022.1019638 10.1038/nature21029 10.1038/s41586-022-05534-y 10.1111/cns.13899 10.1093/bioinformatics/bts034 10.3390/ph15101177 10.1038/s41467-021-21246-9 10.1186/1471-2105-14-7 10.1186/s12974-016-0759-4 10.1186/1471-2105-9-559 10.1038/s41588-018-0311-9 10.1038/s41588-022-01024-z 10.3233/JAD-150704 10.1038/s41423-022-00917-7 10.1016/j.cell.2019.08.053 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-67537-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_b3f66d6748d0496ca57de8349c1d0f29 PMC11283484 39068182 10_1038_s41598_024_67537_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: (No. 81300938) – fundername: Natural Science Foundation of Liaoning Province grantid: (No. 2022-MS-222) funderid: http://dx.doi.org/10.13039/501100005047 – fundername: Natural Science Foundation of Liaoning Province grantid: (No. 2022-MS-222) |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-b3cb056a0e2eeb6b4f19c3ff8a400748c0cb6521ddf4cc06360bad8a0ff52f2a3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:10:41 EDT 2025 Thu Aug 21 18:34:06 EDT 2025 Fri Jul 11 10:09:58 EDT 2025 Wed Aug 13 08:19:48 EDT 2025 Mon Jul 21 06:05:04 EDT 2025 Thu Apr 24 22:55:40 EDT 2025 Tue Jul 01 01:02:16 EDT 2025 Fri Feb 21 02:37:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | scRNA-seq Alzheimer’s disease Convolutional neural network Microglia |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-b3cb056a0e2eeb6b4f19c3ff8a400748c0cb6521ddf4cc06360bad8a0ff52f2a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-67537-1 |
PMID | 39068182 |
PQID | 3085154148 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b3f66d6748d0496ca57de8349c1d0f29 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11283484 proquest_miscellaneous_3085684971 proquest_journals_3085154148 pubmed_primary_39068182 crossref_primary_10_1038_s41598_024_67537_1 crossref_citationtrail_10_1038_s41598_024_67537_1 springer_journals_10_1038_s41598_024_67537_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-27 |
PublicationDateYYYYMMDD | 2024-07-27 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Brody (CR1) 2011; 475 Jansen, Savage, Watanabe (CR17) 2019; 51 Colonna, Butovsky (CR4) 2017; 35 Jin, Guerrero-Juarez, Zhang (CR6) 2021; 12 Mevissen, Komander (CR30) 2017; 86 McNamara, Munro, Bestard-Cuche (CR25) 2023; 613 Ghosh, Garcia-Castillo, Aguirre (CR35) 2012; 60 Langfelder, Horvath (CR5) 2008 Liddelow, Guttenplan, Clarke (CR23) 2017; 541 Wang, Qiao, Zhang (CR8) 2022; 13 Dang, He, Yang (CR12) 2022 Boland, Yu, Corti (CR31) 2018; 17 Zhuang, Zhang, Zheng (CR32) 2022; 19 Peng, Kang, Ning (CR10) 2019; 30 Martin, Boucher, Fontaine, Delarasse (CR19) 2017; 16 Kunkle, Grenier-Boley, Sims (CR39) 2019; 51 Trapnell, Cacchiarelli, Grimsby (CR7) 2014; 32 Self, Holtzman (CR2) 2023; 29 Cui, Song, Li (CR33) 2014; 24 Bolos, Llorens-Martin, Jurado-Arjona, Hernandez, Rabano, Avila (CR21) 2016; 50 Singh (CR24) 2022; 19 Butler, Hoffman, Smibert, Papalexi, Satija (CR11) 2018; 36 Prinz, Priller (CR27) 2017; 20 Zenaro, Pietronigro, Della Bianca (CR29) 2015; 21 Yu, Wang, Stetler, Leak, Hu, Chen (CR26) 2022; 28 Yu, Wang, Han, He (CR14) 2012; 16 Merighi, Nigro, Travagli, Gessi (CR18) 2022 Becht, Giraldo, Lacroix (CR16) 2016; 17 Olson, Geng, Raghavan (CR36) 2020; 64 Gabbita, Johnson, Kobritz (CR28) 2015; 10 Bellenguez, Kucukali, Jansen (CR20) 2022; 54 Hong, Beja-Glasser, Nfonoyim (CR22) 2016; 352 Gay, Stewart, Park (CR9) 2021; 39 Lehmann, Barnardo, Fuggle (CR38) 2006; 3 Pearse, Hughes (CR34) 2016; 64 Wootla, Denic, Watzlawik (CR37) 2016; 13 Prinz, Jung, Priller (CR3) 2019; 179 Leek, Johnson, Parker, Jaffe, Storey (CR13) 2012; 28 Hänzelmann, Castelo, Guinney (CR15) 2013; 14 Y Dang (67537_CR12) 2022 W Zhuang (67537_CR32) 2022; 19 DJ Lehmann (67537_CR38) 2006; 3 J Cui (67537_CR33) 2014; 24 J Peng (67537_CR10) 2019; 30 M Bolos (67537_CR21) 2016; 50 E Martin (67537_CR19) 2017; 16 P Langfelder (67537_CR5) 2008 B Wootla (67537_CR37) 2016; 13 G Yu (67537_CR14) 2012; 16 SA Liddelow (67537_CR23) 2017; 541 E Becht (67537_CR16) 2016; 17 S Hong (67537_CR22) 2016; 352 TET Mevissen (67537_CR30) 2017; 86 S Jin (67537_CR6) 2021; 12 C Bellenguez (67537_CR20) 2022; 54 E Olson (67537_CR36) 2020; 64 M Ghosh (67537_CR35) 2012; 60 C Trapnell (67537_CR7) 2014; 32 D Singh (67537_CR24) 2022; 19 BW Kunkle (67537_CR39) 2019; 51 IE Jansen (67537_CR17) 2019; 51 S Hänzelmann (67537_CR15) 2013; 14 E Zenaro (67537_CR29) 2015; 21 M Prinz (67537_CR3) 2019; 179 NB McNamara (67537_CR25) 2023; 613 WK Self (67537_CR2) 2023; 29 Q Wang (67537_CR8) 2022; 13 CM Gay (67537_CR9) 2021; 39 A Butler (67537_CR11) 2018; 36 B Boland (67537_CR31) 2018; 17 H Brody (67537_CR1) 2011; 475 F Yu (67537_CR26) 2022; 28 S Merighi (67537_CR18) 2022 SP Gabbita (67537_CR28) 2015; 10 JT Leek (67537_CR13) 2012; 28 M Prinz (67537_CR27) 2017; 20 M Colonna (67537_CR4) 2017; 35 DD Pearse (67537_CR34) 2016; 64 |
References_xml | – volume: 64 start-page: 1698 issue: 10 year: 2016 end-page: 1709 ident: CR34 article-title: PDE4B as a microglia target to reduce neuroinflammation publication-title: Glia. doi: 10.1002/glia.22986 – volume: 352 start-page: 712 issue: 6286 year: 2016 end-page: 716 ident: CR22 article-title: Complement and microglia mediate early synapse loss in Alzheimer mouse models publication-title: Science. doi: 10.1126/science.aad8373 – volume: 24 start-page: 400 issue: 4 year: 2014 end-page: 416 ident: CR33 article-title: USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors publication-title: Cell Res. doi: 10.1038/cr.2013.170 – volume: 30 start-page: 413 issue: 1 year: 2019 end-page: 424 ident: CR10 article-title: Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06318-1 – volume: 86 start-page: 159 year: 2017 end-page: 192 ident: CR30 article-title: Mechanisms of deubiquitinase specificity and regulation publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044916 – volume: 35 start-page: 441 year: 2017 end-page: 468 ident: CR4 article-title: Microglia function in the central nervous system during health and neurodegeneration publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-051116-052358 – volume: 475 start-page: S1 issue: 7355 year: 2011 ident: CR1 article-title: Alzheimer's disease publication-title: Nature. doi: 10.1038/475S1a – volume: 10 issue: 10 year: 2015 ident: CR28 article-title: Oral TNFalpha modulation alters neutrophil infiltration, improves cognition and diminishes tau and amyloid pathology in the 3xTgAD mouse model publication-title: PLoS ONE. doi: 10.1371/journal.pone.0137305 – volume: 32 start-page: 381 issue: 4 year: 2014 end-page: 386 ident: CR7 article-title: The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 60 start-page: 1839 issue: 12 year: 2012 end-page: 1859 ident: CR35 article-title: Proinflammatory cytokine regulation of cyclic AMP-phosphodiesterase 4 signaling in microglia in vitro and following CNS injury publication-title: Glia. doi: 10.1002/glia.22401 – volume: 21 start-page: 880 issue: 8 year: 2015 end-page: 886 ident: CR29 article-title: Neutrophils promote Alzheimer's disease-like pathology and cognitive decline via LFA-1 integrin publication-title: Nat. Med. doi: 10.1038/nm.3913 – volume: 64 start-page: 137 year: 2020 end-page: 145 ident: CR36 article-title: Polymorphisms of HLA-B: Influences on assembly and immunity publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2020.05.008 – volume: 29 start-page: 2187 issue: 9 year: 2023 end-page: 2199 ident: CR2 article-title: Emerging diagnostics and therapeutics for Alzheimer disease publication-title: Nat. Med. doi: 10.1038/s41591-023-02505-2 – volume: 20 start-page: 136 issue: 2 year: 2017 end-page: 144 ident: CR27 article-title: The role of peripheral immune cells in the CNS in steady state and disease publication-title: Nat. Neurosci. doi: 10.1038/nn.4475 – volume: 16 start-page: 27 issue: 1 year: 2017 end-page: 38 ident: CR19 article-title: Distinct inflammatory phenotypes of microglia and monocyte-derived macrophages in Alzheimer's disease models: Effects of aging and amyloid pathology publication-title: Aging Cell. doi: 10.1111/acel.12522 – volume: 39 start-page: 346 issue: 3 year: 2021 end-page: 360.e7 ident: CR9 article-title: Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities publication-title: Cancer Cell. doi: 10.1016/j.ccell.2020.12.014 – volume: 36 start-page: 411 issue: 5 year: 2018 end-page: 420 ident: CR11 article-title: Integrating single-cell transcriptomic data across different conditions, technologies, and species publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 3 start-page: 33 year: 2006 ident: CR38 article-title: Replication of the association of HLA-B7 with Alzheimer's disease: A role for homozygosity? publication-title: J. Neuroinflammation. doi: 10.1186/1742-2094-3-33 – year: 2022 ident: CR18 article-title: Microglia and Alzheimer's disease publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms232112990 – volume: 51 start-page: 414 issue: 3 year: 2019 end-page: 430 ident: CR39 article-title: Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing publication-title: Nat. Genet. doi: 10.1038/s41588-019-0358-2 – volume: 19 start-page: 206 issue: 1 year: 2022 ident: CR24 article-title: Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease publication-title: J. Neuroinflammation. doi: 10.1186/s12974-022-02565-0 – volume: 17 start-page: 218 issue: 1 year: 2016 ident: CR16 article-title: Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression publication-title: Genome Biol. doi: 10.1186/s13059-016-1070-5 – volume: 17 start-page: 660 issue: 9 year: 2018 end-page: 688 ident: CR31 article-title: Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.109 – volume: 16 start-page: 284 issue: 5 year: 2012 end-page: 287 ident: CR14 article-title: clusterProfiler: An R package for comparing biological themes among gene clusters publication-title: OMICS. doi: 10.1089/omi.2011.0118 – volume: 13 start-page: 1019638 year: 2022 ident: CR8 article-title: Nomogram established on account of Lasso-Cox regression for predicting recurrence in patients with early-stage hepatocellular carcinoma publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1019638 – volume: 541 start-page: 481 issue: 7638 year: 2017 end-page: 487 ident: CR23 article-title: Neurotoxic reactive astrocytes are induced by activated microglia publication-title: Nature. doi: 10.1038/nature21029 – volume: 613 start-page: 120 issue: 7942 year: 2023 end-page: 129 ident: CR25 article-title: Microglia regulate central nervous system myelin growth and integrity publication-title: Nature. doi: 10.1038/s41586-022-05534-y – volume: 28 start-page: 1279 issue: 9 year: 2022 end-page: 1293 ident: CR26 article-title: Phagocytic microglia and macrophages in brain injury and repair publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.13899 – volume: 28 start-page: 882 issue: 6 year: 2012 end-page: 883 ident: CR13 article-title: The sva package for removing batch effects and other unwanted variation in high-throughput experiments publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts034 – year: 2022 ident: CR12 article-title: FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer's disease: Evidence from single-cell transcriptomic analysis publication-title: Pharmaceuticals doi: 10.3390/ph15101177 – volume: 12 start-page: 1088 issue: 1 year: 2021 ident: CR6 article-title: Inference and analysis of cell-cell communication using Cell Chat publication-title: Nat. Commun. doi: 10.1038/s41467-021-21246-9 – volume: 14 start-page: 7 year: 2013 ident: CR15 article-title: GSVA: Gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-14-7 – volume: 13 start-page: 293 issue: 1 year: 2016 ident: CR37 article-title: Human class I major histocompatibility complex alleles determine central nervous system injury versus repair publication-title: J. Neuroinflammation. doi: 10.1186/s12974-016-0759-4 – year: 2008 ident: CR5 article-title: WGCNA: An R package for weighted correlation network analysis publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-9-559 – volume: 51 start-page: 404 issue: 3 year: 2019 end-page: 413 ident: CR17 article-title: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk publication-title: Nat. Genet. doi: 10.1038/s41588-018-0311-9 – volume: 54 start-page: 412 issue: 4 year: 2022 end-page: 436 ident: CR20 article-title: New insights into the genetic etiology of Alzheimer's disease and related dementias publication-title: Nat. Genet. doi: 10.1038/s41588-022-01024-z – volume: 50 start-page: 77 issue: 1 year: 2016 end-page: 87 ident: CR21 article-title: Direct evidence of internalization of tau by microglia in vitro and in vivo publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150704 – volume: 19 start-page: 1141 issue: 10 year: 2022 end-page: 1152 ident: CR32 article-title: USP3 deubiquitinates and stabilizes the adapter protein ASC to regulate inflammasome activation publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-022-00917-7 – volume: 179 start-page: 292 issue: 2 year: 2019 end-page: 311 ident: CR3 article-title: Microglia biology: One century of evolving concepts publication-title: Cell. doi: 10.1016/j.cell.2019.08.053 – volume: 10 issue: 10 year: 2015 ident: 67537_CR28 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0137305 – volume: 17 start-page: 218 issue: 1 year: 2016 ident: 67537_CR16 publication-title: Genome Biol. doi: 10.1186/s13059-016-1070-5 – volume: 35 start-page: 441 year: 2017 ident: 67537_CR4 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-051116-052358 – volume: 21 start-page: 880 issue: 8 year: 2015 ident: 67537_CR29 publication-title: Nat. Med. doi: 10.1038/nm.3913 – volume: 613 start-page: 120 issue: 7942 year: 2023 ident: 67537_CR25 publication-title: Nature. doi: 10.1038/s41586-022-05534-y – volume: 32 start-page: 381 issue: 4 year: 2014 ident: 67537_CR7 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2859 – volume: 28 start-page: 1279 issue: 9 year: 2022 ident: 67537_CR26 publication-title: CNS Neurosci. Ther. doi: 10.1111/cns.13899 – volume: 36 start-page: 411 issue: 5 year: 2018 ident: 67537_CR11 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4096 – volume: 51 start-page: 404 issue: 3 year: 2019 ident: 67537_CR17 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0311-9 – volume: 39 start-page: 346 issue: 3 year: 2021 ident: 67537_CR9 publication-title: Cancer Cell. doi: 10.1016/j.ccell.2020.12.014 – volume: 60 start-page: 1839 issue: 12 year: 2012 ident: 67537_CR35 publication-title: Glia. doi: 10.1002/glia.22401 – volume: 475 start-page: S1 issue: 7355 year: 2011 ident: 67537_CR1 publication-title: Nature. doi: 10.1038/475S1a – volume: 29 start-page: 2187 issue: 9 year: 2023 ident: 67537_CR2 publication-title: Nat. Med. doi: 10.1038/s41591-023-02505-2 – volume: 3 start-page: 33 year: 2006 ident: 67537_CR38 publication-title: J. Neuroinflammation. doi: 10.1186/1742-2094-3-33 – volume: 17 start-page: 660 issue: 9 year: 2018 ident: 67537_CR31 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.109 – volume: 179 start-page: 292 issue: 2 year: 2019 ident: 67537_CR3 publication-title: Cell. doi: 10.1016/j.cell.2019.08.053 – volume: 51 start-page: 414 issue: 3 year: 2019 ident: 67537_CR39 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0358-2 – volume: 541 start-page: 481 issue: 7638 year: 2017 ident: 67537_CR23 publication-title: Nature. doi: 10.1038/nature21029 – volume: 12 start-page: 1088 issue: 1 year: 2021 ident: 67537_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21246-9 – volume: 352 start-page: 712 issue: 6286 year: 2016 ident: 67537_CR22 publication-title: Science. doi: 10.1126/science.aad8373 – volume: 20 start-page: 136 issue: 2 year: 2017 ident: 67537_CR27 publication-title: Nat. Neurosci. doi: 10.1038/nn.4475 – volume: 19 start-page: 1141 issue: 10 year: 2022 ident: 67537_CR32 publication-title: Cell Mol. Immunol. doi: 10.1038/s41423-022-00917-7 – volume: 24 start-page: 400 issue: 4 year: 2014 ident: 67537_CR33 publication-title: Cell Res. doi: 10.1038/cr.2013.170 – volume: 13 start-page: 1019638 year: 2022 ident: 67537_CR8 publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1019638 – volume: 30 start-page: 413 issue: 1 year: 2019 ident: 67537_CR10 publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06318-1 – year: 2022 ident: 67537_CR12 publication-title: Pharmaceuticals doi: 10.3390/ph15101177 – volume: 14 start-page: 7 year: 2013 ident: 67537_CR15 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-14-7 – volume: 64 start-page: 137 year: 2020 ident: 67537_CR36 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2020.05.008 – volume: 50 start-page: 77 issue: 1 year: 2016 ident: 67537_CR21 publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-150704 – volume: 86 start-page: 159 year: 2017 ident: 67537_CR30 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-061516-044916 – volume: 64 start-page: 1698 issue: 10 year: 2016 ident: 67537_CR34 publication-title: Glia. doi: 10.1002/glia.22986 – year: 2008 ident: 67537_CR5 publication-title: BMC Bioinformatics. doi: 10.1186/1471-2105-9-559 – volume: 19 start-page: 206 issue: 1 year: 2022 ident: 67537_CR24 publication-title: J. Neuroinflammation. doi: 10.1186/s12974-022-02565-0 – volume: 13 start-page: 293 issue: 1 year: 2016 ident: 67537_CR37 publication-title: J. Neuroinflammation. doi: 10.1186/s12974-016-0759-4 – volume: 16 start-page: 27 issue: 1 year: 2017 ident: 67537_CR19 publication-title: Aging Cell. doi: 10.1111/acel.12522 – volume: 54 start-page: 412 issue: 4 year: 2022 ident: 67537_CR20 publication-title: Nat. Genet. doi: 10.1038/s41588-022-01024-z – volume: 28 start-page: 882 issue: 6 year: 2012 ident: 67537_CR13 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts034 – volume: 16 start-page: 284 issue: 5 year: 2012 ident: 67537_CR14 publication-title: OMICS. doi: 10.1089/omi.2011.0118 – year: 2022 ident: 67537_CR18 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms232112990 |
SSID | ssj0000529419 |
Score | 2.446401 |
Snippet | In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell RNA... Abstract In this study, we conducted an in-depth exploration of Alzheimer's Disease (AD) by integrating state-of-the-art methodologies, including single-cell... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17271 |
SubjectTerms | 631/1647/48 631/378 Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer Disease - pathology Alzheimer's disease Cell adhesion Cell interactions Central nervous system Convolutional neural network Deep Learning Gene Expression Profiling Gene Regulatory Networks Heterogeneity Humanities and Social Sciences Humans Microglia Microglia - metabolism Microglia - pathology multidisciplinary Neural networks Neural Networks, Computer Neurodegenerative diseases Science Science (multidisciplinary) scRNA-seq Single-Cell Analysis - methods Synapses Therapeutic applications Therapeutic targets |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbhA1sZ3YOZbS1QqpXKBSb5af7UohW7EtUjnxN7jy0_glzNjZ0OV54bJZJU4y8nzWfLHH3xDyLIQq-CBcaZ1sSyHhn2K2wnkrKYO1wElwHvLwTTs_Eq-Pm-Mrpb4wJyzLA-eO27U8tq3HkhgeyGzrTCN9UFx0rvZVZGnrHsS8Kx9TWdWbdaLuxl0yFVe7K4hUuJuMiRI4MpdlvRGJkmD_71jmr8mSP62YpkA0u0VujgyS7mXLt8m1MNwm13NNycs75OtBf-EWuGlhOKGHmG530gPG6BzzXpYAlwC8m5rB0xmEtIQ6uhjoXv_pNCzehw_fPn9Z0Vd52YamhAL6Fn76UOIcP12LmKQn7C-HjyN04Q2o85EOKbF8egZWW-ux6SRVe5cczQ7e7c_LsRBD6RpRn5eWOwtEyVSBhWBbK2LdOR6jMlhVXShXOdsCD_A-CucqlCCzxitTxdiwyAy_R7aG5RAeEOqdjNwxqRrTCAbkxsP3FjdSGhdr1sqC1GunaDeqlGOxjF6n1XKudHakBkfq5EhdF-T5dM9Z1uj4a-uX6OupJeprpxOAOj2iTv8LdQXZWSNFj4N-pTnSVyyrrgrydLoMwxX9Y4awvMhtWiU6CXbcz8CaLOFd1QJ_YgVRG5DbMHXzyrA4TZLgwJrBOiUK8mKNzh92_bkvHv6PvnhEbjAcVpUsmdwhWwCm8BiY2rl9kgbldzBQPXA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlET24mdEyqlqxVSuUClvUV-bldKk9JtkcqJv8GVn8YvYcZ5VMujl81q4ySzmW_iLzPjGUJeeZ9554VNjZVlKiR8U8xk6LeS0hsDnAT9kIcfy_mR-LAoFoPDbT2kVY7PxPigdp1FH_kuR26APavV29MvKXaNwujq0ELjJrmFpcsQ1XIhJx8LRrFEXg1rZTKudtcwX-GaMiZSYMpcpvnGfBTL9v-La_6dMvlH3DROR7N75O7AI-ler_j75IZvH5DbfWfJy4fk50FzYVe4dKFd0kNMuls2gDQ6x-yXDkDjgX1T3To6g4ktYo-uWrrXfDv2qxN_9uv7jzV93wdvaEwroJ_go_EpevrpWMoknmG_a78OAIYrYLWPuInp5dM5sOdag0OngrWPyNHs4PP-PB3aMaQW7vt5arg1QJd05pn3pjQi5JXlISiNvdWFspk1JbAB54KwNsNCZEY7pbMQChaY5o_JVtu1_imhzsrALZOq0IVgQHEcvHVxLaW2IWelTEg-KqW2Q61ybJnR1DFmzlXdK7IGRdZRkXWekNfTMad9pY5rR79DXU8jscp2_KE7W9aD0daGh7J02I7FwYtUaXUhnVdcVDZ3WWBVQnZGpNSD6a_rK6Am5OW0G4wW9aNb3130Y0olKglyPOmBNUnCq6wEFsUSojYgtyHq5p52dRwLgwN3BumUSMibEZ1Xcv3_Xmxf_zeekTsMDSaTKZM7ZAtg4p8DEzs3L6K5_QY5GzUQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEG8CBRmJG0QkthM7x6V0tVqpXEql3iI_tyuFBHXbSuXE3-DKT-OXMOM80EJB4rJZbSbJaOdz_Nkef0PIK-8z77ywqbGyTIWEb4qZDOetpPTGACfBecijD-XiRCxPi9Mdwsa9MDFpP0paxtf0mB32dgMdDW4GYyIFistlCiOePZRqB2zvzWbL4-U0s4JrVyKvhh0yGVc3XLzVC0Wx_psY5p-Jkr-tlsZOaH6X3BnYI531_t4jO769T2719SSvH5Dvh82lXeOGhXZFjzDVbtUAvugCc146gIoHzk116-gcurOIOLpu6az5cubXn_z5j6_fNvR9v2RDYzIBPYaPxqc4v09HAZN4h4OuvRpgC09AjY94iEnl0z2w0lqDppNM7UNyMj_8eLBIhyIMqS1EfpEabg2QJJ155r0pjQh5ZXkISmNFdaFsZk0JHMC5IKzNUH7MaKd0FkLBAtP8Edltu9Y_IdRZGbhlUhW6EAyIjYOxFtdSahtyVsqE5GNQajsolGOhjKaOK-Vc1X0gawhkHQNZ5wl5PV3zudfn-Kf1O4z1ZIna2vGH7nxVD1irDQ9l6bAIi4PhU2l1IZ1XXFQ2d1lgVUL2R6TUQ4Pf1BypK5ZUVwl5OZ2Gporx0a3vLnubUolKgh-Pe2BNnvAqK4E7sYSoLchtubp9pl2fRTlwYMzgnRIJeTOi85dff_8vnv6f-TNym2EDymTK5D7ZBdj458DHLsyLoQH-BKkiNE0 priority: 102 providerName: Springer Nature |
Title | Elucidating Microglial Heterogeneity and Functions in Alzheimer’s Disease Using Single-cell Analysis and Convolutional Neural Network Disease Model Construction |
URI | https://link.springer.com/article/10.1038/s41598-024-67537-1 https://www.ncbi.nlm.nih.gov/pubmed/39068182 https://www.proquest.com/docview/3085154148 https://www.proquest.com/docview/3085684971 https://pubmed.ncbi.nlm.nih.gov/PMC11283484 https://doaj.org/article/b3f66d6748d0496ca57de8349c1d0f29 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9NAGB3WXQRfxLvRtYwg-KDRZDLJTB5EurWlFLqIa6FvIXNJtxATbXfF9df4U_2-yUWqVXxpSjIZPvKdYc7cziHkmbWBNZZrX2mR-FzAP8lUgPNWQlilgJPgPOT8NJku-GwZLw9IZ3fUfsDt3qEd-kktNuWrb1-u3kKDf9McGZevt9AJ4UExxn2gv5HwYTR0BD2TQEeDeUv3G61vlnLn9YEi7D6QCdaeo9lfzU5f5ST99_HQP7dT_ram6rqqyS1ys-WYdNiA4jY5sNUdcr1xnby6S36My0u9xmMN1YrOcUPeqgQU0inujKkBUBaYOc0rQyfQ6Tlc0nVFh-X3c7v-ZDfPt_Rds6xD3YYDegY_pfVxDYB2Iifu_VFdfW2hDfWjDoi7uI3nfR3oxlZi0V7K9h5ZTMYfR1O_NWrwdczDC19FWgGRygPLrFWJ4kWY6qgoZI6u61zqQKsEeIIxBdc6QIkylRuZB0URs4Ll0X1yWNWVfUio0aKINBMyzmPOgPwYGI9FuRC5LkKWCI-EXUoy3aqYo5lGmbnV9EhmTRozSGPm0piFHnnRv_O50fD4Z-kTzHRfEvW33Y16s8ra5pypqEgSg0YtBoZYic5jYayMeKpDExQs9chxh5Osw3QWIb1F23Xpkaf9Y2jOmJ-8svVlUyaRPBUQx4MGVn0kURokwK-YR-QO4HZC3X1Src-dZDiwaohOco-87LD5K66_f4tH_xHnY3KDYZsJhM_EMTkErNgnQNQu1IBcE0sxIEfD4exsBteT8en7D3B3lIwGbvJj4NrnTznNQDc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgQXxLMYCiwSnMCqvbvxrg8IlbZRSpteaKXcjPfhNJKxS9OCyom_wZUfwI_ilzCzflTh0VsvSRSv15PM69ud2RlCnjsXOeuECbWRSSgkfFJMR7hvJaXTGjAJ7kOO95LRgXg3GUyWyM_uLAymVXY20RtqWxvcI1_jiA2wZ7V6c_QpxK5RGF3tWmg0YrHjzr7Akm3-ensT-PuCseHW_sYobLsKhAZuPwk1Nxq8fh455pxOtCji1PCiUDm2CBfKREYn4NSsLYQxEdbT0rlVeVQUA1awnMO8V8hVcLwRLvbkRPZ7Ohg1E3Hans2JuFqbg3_EM2xMhIDMuQzjBf_n2wT8C9v-naL5R5zWu7_hLXKzxa10vRG022TJVXfItaaT5dld8mOrPDUzPCpRTekYk_ymJUg2HWG2TQ1C6gDt07yydAiO1Ms6nVV0vfx66GYf3fGvb9_ndLMJFlGfxkDfw0vpQows0K50ip9ho64-twoDT8DqIv7Np7P3c2CPtxKH9gVy75GDS2HUfbJc1ZV7QKg1suCGSTXIB4IBpLKwyuO5lLkpYpbIgMQdUzLT1kbHFh1l5mP0XGUNIzNgZOYZmcUBednfc9RUBrlw9FvkdT8Sq3r7L-rjadYaiUzzIkkstn-xsHBLTD6Q1ikuUhPbqGBpQFY7SclaUzPPzhUjIM_6y2AkkD955erTZkyiRCqBjpVGsHpKeBolgNpYQNSCyC2Qunilmh36QuSA1YE6JQLyqpPOc7r-_188vPhnPCXXR_vj3Wx3e2_nEbnBUHkiGTK5SpZBZNxjQIEn-olXPUo-XLau_wanyHOh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VVCAuiDeGAosEJ7Birzde-4BQ2yRKKY0qoFJvxvtKIxm7NC2onPgbXPkZ_Bx-CTPrRxUevfUSR_FmM868vt2ZnSHkqTGB0YYrXyoR-1zAu4TJAPethDBSAibBfcidaTzZ46_3B_sr5Gd7FgbTKlub6Ay1rhTukfcjxAbYszrp2yYtYnc4fnX4yccOUhhpbdtp1CKybU6_wPJt8XJrCLx-xth49H5z4jcdBnwFUx37MlISEEAeGGaMjCW3Yaoia5Mc24XzRAVKxuDgtLZcqQBra8lcJ3lg7YBZlkcw7yWyKnBV1COrG6Pp7ttuhwdjaDxMm5M6QZT0F-At8UQb4z7g9Ej44ZI3dE0D_oV0_07Y_CNq65zh-Dq51qBYul6L3Q2yYsqb5HLd1_L0FvkxKk7UHA9OlDO6gyl_swLknE4w96YCkTWA_WleajoGt-okn85Lul58PTDzj-bo17fvCzqsQ0fUJTXQd_BSGB_jDLQtpOJm2KzKz436wC9grRF3ccnt3RzY8a3AoV253Ntk70JYdYf0yqo09wjVSthIMZEM8gFnALA0rPmiXIhc2ZDFwiNhy5RMNZXSsWFHkbmIfZRkNSMzYGTmGJmFHnnefeewrhNy7ugN5HU3Emt8uw-qo1nWmIxMRjaONTaD0bCMi1U-ENokEU9VqAPLUo-stZKSNYZnkZ2piUeedLfBZCB_8tJUJ_WYOOGpADru1oLVURKlQQwYjnkkWRK5JVKX75TzA1eWHJA7UJdwj7xopfOMrv__F_fPf4zH5AroefZma7r9gFxlqDuB8JlYIz2QGPMQIOGxfNToHiUfLlrdfwMcJHk8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elucidating+Microglial+Heterogeneity+and+Functions+in+Alzheimer%27s+Disease+Using+Single-cell+Analysis+and+Convolutional+Neural+Network+Disease+Model+Construction&rft.jtitle=Scientific+reports&rft.au=Wu%2C+Xinyi&rft.au=Liu%2C+Mingyu&rft.au=Zhang%2C+Xinyue&rft.au=Pan%2C+Xue&rft.date=2024-07-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=17271&rft_id=info:doi/10.1038%2Fs41598-024-67537-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |