The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis

Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membran...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 2; p. e00947
Main Authors Ge, Liang, Melville, David, Zhang, Min, Schekman, Randy
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 06.08.2013
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. Cells continually adapt their behavior to accommodate changes in their environment. For example, when nutrients are abundant, cells can grow or proliferate; in times of scarcity, however, they must conserve resources for essential tasks. In particular, during periods of starvation, cells can cannibalize themselves in a process called autophagy, which literally means ‘self-eating’. Structures called autophagosomes engulf bits of cytoplasm and carry the contents to the digestive compartment of the cell, the lysosome, to be broken down into their constituent parts. This can include the degradation of proteins into amino acids, which can then be recycled into other proteins needed by the cell. In cells, proteins are shipped to their destinations—which can be the plasma membrane or a specific organelle within the cell—via a delivery system known as the secretory pathway. This pathway begins in the endoplasmic reticulum (ER), where many of these proteins are made. From the ER, the proteins move to a compartment called the Golgi apparatus, which then sends them to their destinations, or to the lysosome to be broken down. Between the ER and Golgi they pass through a structure called the ER–Golgi intermediate compartment (ERGIC). Although the signaling pathways that initiate autophagy are known, less is understood about the actual formation of the autophagosomes. Now, Ge et al. have developed an in vitro system to study their formation, and gone on to identify a membrane that is both necessary and sufficient to create these structures. Previous studies have implicated a variety of membranes—including the plasma membrane and the membranes belonging to the ER, the Golgi apparatus, the lysosome and various other organelles—in the formation of autophagosomes. To identify which of these membranes might be involved, Ge et al. focused on a protein called LC3 that is a key marker for the formation of the autophagosome. This protein is recruited to the growing autophagosome by a lipid, so discovering which membranes can add a lipid to LC3 should shed light on the assembly process. By separating the full range of organelles in a cell lysate into fractions (a process called fractionation), Ge et al. found that the ERGIC was the most active membrane to attach lipid to LC3. Additionally, the lipid was only added when signaling pathways that stimulate autophagy—such as the PI3K pathway—were activated. Together, these results provide insight into the mechanism of autophagosome formation, and the structures in the cell that participate in this process.
AbstractList Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes.DOI: http://dx.doi.org/10.7554/eLife.00947.001
Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes.
Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. DOI: http://dx.doi.org/10.7554/eLife.00947.001 Cells continually adapt their behavior to accommodate changes in their environment. For example, when nutrients are abundant, cells can grow or proliferate; in times of scarcity, however, they must conserve resources for essential tasks. In particular, during periods of starvation, cells can cannibalize themselves in a process called autophagy, which literally means ‘self-eating’. Structures called autophagosomes engulf bits of cytoplasm and carry the contents to the digestive compartment of the cell, the lysosome, to be broken down into their constituent parts. This can include the degradation of proteins into amino acids, which can then be recycled into other proteins needed by the cell. In cells, proteins are shipped to their destinations—which can be the plasma membrane or a specific organelle within the cell—via a delivery system known as the secretory pathway. This pathway begins in the endoplasmic reticulum (ER), where many of these proteins are made. From the ER, the proteins move to a compartment called the Golgi apparatus, which then sends them to their destinations, or to the lysosome to be broken down. Between the ER and Golgi they pass through a structure called the ER–Golgi intermediate compartment (ERGIC). Although the signaling pathways that initiate autophagy are known, less is understood about the actual formation of the autophagosomes. Now, Ge et al. have developed an in vitro system to study their formation, and gone on to identify a membrane that is both necessary and sufficient to create these structures. Previous studies have implicated a variety of membranes—including the plasma membrane and the membranes belonging to the ER, the Golgi apparatus, the lysosome and various other organelles—in the formation of autophagosomes. To identify which of these membranes might be involved, Ge et al. focused on a protein called LC3 that is a key marker for the formation of the autophagosome. This protein is recruited to the growing autophagosome by a lipid, so discovering which membranes can add a lipid to LC3 should shed light on the assembly process. By separating the full range of organelles in a cell lysate into fractions (a process called fractionation), Ge et al. found that the ERGIC was the most active membrane to attach lipid to LC3. Additionally, the lipid was only added when signaling pathways that stimulate autophagy—such as the PI3K pathway—were activated. Together, these results provide insight into the mechanism of autophagosome formation, and the structures in the cell that participate in this process. DOI: http://dx.doi.org/10.7554/eLife.00947.002
Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. Cells continually adapt their behavior to accommodate changes in their environment. For example, when nutrients are abundant, cells can grow or proliferate; in times of scarcity, however, they must conserve resources for essential tasks. In particular, during periods of starvation, cells can cannibalize themselves in a process called autophagy, which literally means ‘self-eating’. Structures called autophagosomes engulf bits of cytoplasm and carry the contents to the digestive compartment of the cell, the lysosome, to be broken down into their constituent parts. This can include the degradation of proteins into amino acids, which can then be recycled into other proteins needed by the cell. In cells, proteins are shipped to their destinations—which can be the plasma membrane or a specific organelle within the cell—via a delivery system known as the secretory pathway. This pathway begins in the endoplasmic reticulum (ER), where many of these proteins are made. From the ER, the proteins move to a compartment called the Golgi apparatus, which then sends them to their destinations, or to the lysosome to be broken down. Between the ER and Golgi they pass through a structure called the ER–Golgi intermediate compartment (ERGIC). Although the signaling pathways that initiate autophagy are known, less is understood about the actual formation of the autophagosomes. Now, Ge et al. have developed an in vitro system to study their formation, and gone on to identify a membrane that is both necessary and sufficient to create these structures. Previous studies have implicated a variety of membranes—including the plasma membrane and the membranes belonging to the ER, the Golgi apparatus, the lysosome and various other organelles—in the formation of autophagosomes. To identify which of these membranes might be involved, Ge et al. focused on a protein called LC3 that is a key marker for the formation of the autophagosome. This protein is recruited to the growing autophagosome by a lipid, so discovering which membranes can add a lipid to LC3 should shed light on the assembly process. By separating the full range of organelles in a cell lysate into fractions (a process called fractionation), Ge et al. found that the ERGIC was the most active membrane to attach lipid to LC3. Additionally, the lipid was only added when signaling pathways that stimulate autophagy—such as the PI3K pathway—were activated. Together, these results provide insight into the mechanism of autophagosome formation, and the structures in the cell that participate in this process.
Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. DOI:http://dx.doi.org/10.7554/eLife.00947.001.
Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. DOI:http://dx.doi.org/10.7554/eLife.00947.001.Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes. DOI:http://dx.doi.org/10.7554/eLife.00947.001.
Author Melville, David
Ge, Liang
Schekman, Randy
Zhang, Min
Author_xml – sequence: 1
  givenname: Liang
  surname: Ge
  fullname: Ge, Liang
  organization: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
– sequence: 2
  givenname: David
  surname: Melville
  fullname: Melville, David
  organization: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
– sequence: 3
  givenname: Min
  surname: Zhang
  fullname: Zhang, Min
  organization: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
– sequence: 4
  givenname: Randy
  surname: Schekman
  fullname: Schekman, Randy
  organization: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23930225$$D View this record in MEDLINE/PubMed
BookMark eNptkt9qFDEUxgep2Fp75b0EvBFka_5OkhuhLLUWFgSp4F3IZM7sZp2ZjElG7J3v4Bv6JKa7tbTF3ORw8svHOd85z6uDMYxQVS8JPpVC8Hew8h2cYqy5fFIdUSzwAiv-9eBefFidpLTF5UiuFNHPqkPKNMOUiqPq59UG0PnnP79-X4R-7ZEfM8QBWm8zIBeGycY8wJiRT8iib3CNBhiaaEdAKczRAepCRLmIrJYM9X7yrc0-jChlmFDokJ1zmDZ2HVIYADU-rGGE5NOL6mln-wQnt_dx9eXD-dXy42L16eJyebZaOMFJXjSkZrTFXWsplk61tusY1URaRUFTJkhDuGwwo7IlvG4k2BI4axvaNK2ilB1Xl3vdNtitmaIfbLw2wXqzS4S4NqVF73owQkqFGdFKMMeFoLprOGaaKOWwJKIrWu_3WtPcFI9c8SXa_oHow5fRb8w6_DBMslpwXgTe3ArE8H2GlM3gk4O-L36GORnCiWa8gKqgrx-h2-L3WKwyRNd1rWuib7p7db-iu1L-DbgAb_eAiyGlCN0dQrC52SCz2yCz26BCk0e083k3z9KO7__75y98VsqH
CitedBy_id crossref_primary_10_1016_j_biochi_2022_10_004
crossref_primary_10_7554_eLife_58504
crossref_primary_10_1038_s41594_024_01300_y
crossref_primary_10_1038_s41556_018_0092_5
crossref_primary_10_1002_iub_2611
crossref_primary_10_1016_j_jgg_2022_07_001
crossref_primary_10_1038_ncomms11808
crossref_primary_10_1093_jb_mvad099
crossref_primary_10_1080_21541248_2016_1220779
crossref_primary_10_1038_cr_2013_159
crossref_primary_10_1016_j_jsb_2016_04_005
crossref_primary_10_1073_pnas_2021293118
crossref_primary_10_1111_febs_13661
crossref_primary_10_1016_j_bbamem_2021_183731
crossref_primary_10_1016_j_bbamem_2024_184308
crossref_primary_10_1016_j_cub_2018_06_035
crossref_primary_10_1038_ncb3579
crossref_primary_10_3390_ijms21103689
crossref_primary_10_12677_ACM_2019_93027
crossref_primary_10_18632_oncotarget_18221
crossref_primary_10_15252_embj_2021110057
crossref_primary_10_1016_j_celrep_2024_114619
crossref_primary_10_1091_mbc_E18_11_0743
crossref_primary_10_1080_15548627_2015_1017178
crossref_primary_10_1073_pnas_1523145113
crossref_primary_10_1091_mbc_e16_11_0762
crossref_primary_10_1093_jnen_nlab029
crossref_primary_10_1038_nri_2016_100
crossref_primary_10_3389_fimmu_2024_1352479
crossref_primary_10_1002_1873_3468_14983
crossref_primary_10_3390_ijms252011160
crossref_primary_10_3390_cells5020024
crossref_primary_10_1016_j_bbalip_2021_158956
crossref_primary_10_1016_j_neuron_2017_01_022
crossref_primary_10_1016_j_ymeth_2014_12_008
crossref_primary_10_1080_15548627_2024_2367907
crossref_primary_10_1038_ncomms9045
crossref_primary_10_1016_j_molcel_2019_12_028
crossref_primary_10_1038_s41423_019_0240_2
crossref_primary_10_1091_mbc_e17_01_0022
crossref_primary_10_1038_s41467_022_31181_y
crossref_primary_10_7554_eLife_45777
crossref_primary_10_1002_ptr_7551
crossref_primary_10_1111_boc_201400065
crossref_primary_10_1083_jcb_201705047
crossref_primary_10_3389_fimmu_2020_578038
crossref_primary_10_1080_15548627_2020_1796321
crossref_primary_10_1083_jcb_202203083
crossref_primary_10_1038_cr_2016_146
crossref_primary_10_7554_eLife_42253
crossref_primary_10_15252_embj_201695081
crossref_primary_10_1073_pnas_1814552115
crossref_primary_10_15252_embj_201592695
crossref_primary_10_1038_s41422_023_00782_7
crossref_primary_10_1080_15548627_2019_1596478
crossref_primary_10_1016_j_jbior_2018_02_003
crossref_primary_10_1038_s41598_018_21106_5
crossref_primary_10_1002_advs_202405127
crossref_primary_10_15252_embj_201797006
crossref_primary_10_1016_j_tibs_2021_01_006
crossref_primary_10_1073_pnas_1316356110
crossref_primary_10_7554_eLife_21690
crossref_primary_10_1016_j_yexcr_2023_113635
crossref_primary_10_1146_annurev_cellbio_100818_125418
crossref_primary_10_1002_bies_202400038
crossref_primary_10_1016_j_jmb_2017_01_002
crossref_primary_10_1016_j_devcel_2017_03_015
crossref_primary_10_1371_journal_ppat_1006609
crossref_primary_10_1016_j_jmb_2019_09_005
crossref_primary_10_1016_j_bbagrm_2023_194936
crossref_primary_10_1016_j_celrep_2016_01_047
crossref_primary_10_1016_j_mib_2016_11_004
crossref_primary_10_1038_s42003_024_07191_5
crossref_primary_10_3390_cells12040621
crossref_primary_10_1146_annurev_neuro_071013_014149
crossref_primary_10_3390_cells7120278
crossref_primary_10_1016_j_virs_2024_01_001
crossref_primary_10_1038_s41467_025_57408_2
crossref_primary_10_1016_j_jmb_2024_168472
crossref_primary_10_3389_fphys_2016_00470
crossref_primary_10_1007_s10534_014_9773_0
crossref_primary_10_1042_BST20220713
crossref_primary_10_1080_15548627_2020_1732713
crossref_primary_10_1146_annurev_biochem_061516_044820
crossref_primary_10_1038_cr_2017_4
crossref_primary_10_1080_15548627_2018_1505153
crossref_primary_10_1111_bph_13052
crossref_primary_10_1016_j_antiviral_2024_105955
crossref_primary_10_1016_j_bbalip_2016_01_006
crossref_primary_10_3389_fimmu_2018_01024
crossref_primary_10_1016_j_bbamcr_2019_118627
crossref_primary_10_1016_j_cub_2017_10_054
crossref_primary_10_1083_jcb_202404047
crossref_primary_10_1084_jem_20150956
crossref_primary_10_1016_j_xgen_2024_100510
crossref_primary_10_1128_IAI_00110_15
crossref_primary_10_3389_fmicb_2021_661446
crossref_primary_10_1038_s41586_019_1006_9
crossref_primary_10_1007_s00418_018_1717_2
crossref_primary_10_1038_s41467_018_06275_1
crossref_primary_10_3390_ijms232113643
crossref_primary_10_1016_j_ceb_2018_04_003
crossref_primary_10_1242_jcs_141036
crossref_primary_10_1038_srep06952
crossref_primary_10_1038_s41467_024_52818_0
crossref_primary_10_1016_j_tibs_2020_12_010
crossref_primary_10_15252_embj_2022112387
crossref_primary_10_1080_15548627_2023_2254191
crossref_primary_10_3390_ijms19123783
crossref_primary_10_1016_j_cell_2021_10_017
crossref_primary_10_1042_BST20200130
crossref_primary_10_1186_s40880_017_0219_2
crossref_primary_10_1089_dna_2017_4115
crossref_primary_10_1093_cvr_cvab158
crossref_primary_10_1007_s10495_015_1108_2
crossref_primary_10_3389_fpls_2020_00477
crossref_primary_10_1016_j_cub_2022_04_071
crossref_primary_10_1093_brain_awu278
crossref_primary_10_1016_j_tcb_2022_08_006
crossref_primary_10_1016_j_devcel_2017_11_024
crossref_primary_10_1007_s12032_024_02539_7
crossref_primary_10_1016_j_ceb_2014_02_005
crossref_primary_10_3390_biomedicines10051027
crossref_primary_10_1080_15548627_2021_1994297
crossref_primary_10_3389_fpls_2016_01655
crossref_primary_10_1038_s41421_020_0161_3
crossref_primary_10_1016_j_febslet_2015_05_008
crossref_primary_10_1016_j_fsi_2018_06_044
crossref_primary_10_15252_embj_2019103563
crossref_primary_10_1016_j_molcel_2016_04_020
crossref_primary_10_1038_s41422_021_00563_0
crossref_primary_10_15252_embr_201744837
crossref_primary_10_1038_s41422_025_01085_9
crossref_primary_10_1038_s41467_020_18153_w
crossref_primary_10_1080_15548627_2021_1896157
crossref_primary_10_1083_jcb_202211039
crossref_primary_10_1016_j_jmb_2016_10_029
crossref_primary_10_1016_j_redox_2015_01_003
crossref_primary_10_1080_15548627_2020_1779468
crossref_primary_10_3390_cells9051184
crossref_primary_10_1038_s41556_024_01445_4
crossref_primary_10_1042_BST20140247
crossref_primary_10_1051_medsci_20173303004
crossref_primary_10_15252_embj_2022112845
crossref_primary_10_1016_j_tplants_2018_05_002
crossref_primary_10_15252_embr_201439076
crossref_primary_10_7554_eLife_85837
crossref_primary_10_1038_s41590_020_0730_5
crossref_primary_10_1016_j_cell_2019_12_005
crossref_primary_10_1083_jcb_201810099
crossref_primary_10_1038_cddis_2016_230
crossref_primary_10_1038_s41594_021_00614_5
crossref_primary_10_1016_j_tibs_2016_08_001
crossref_primary_10_1016_j_molimm_2018_06_265
crossref_primary_10_1073_pnas_1811874115
crossref_primary_10_1016_j_mcn_2022_103754
crossref_primary_10_1083_jcb_202404152
crossref_primary_10_1016_j_yexcr_2017_02_017
crossref_primary_10_1002_cpcb_33
crossref_primary_10_1038_cddis_2017_370
crossref_primary_10_1007_s00418_019_01829_w
crossref_primary_10_1038_s41421_021_00268_z
crossref_primary_10_1002_bies_201800004
crossref_primary_10_1016_j_plantsci_2019_01_017
crossref_primary_10_1016_j_sbi_2016_09_010
crossref_primary_10_3390_ijms222413232
crossref_primary_10_1002_jcp_31512
crossref_primary_10_1051_medsci_2024013
crossref_primary_10_3390_ijms222112087
crossref_primary_10_1371_journal_ppat_1004747
crossref_primary_10_1038_s41467_023_36553_6
crossref_primary_10_1016_j_devcel_2017_02_016
crossref_primary_10_1038_s41477_021_00997_9
crossref_primary_10_1016_j_molcel_2023_04_026
crossref_primary_10_1083_jcb_201408075
crossref_primary_10_1016_j_yexcr_2015_02_003
crossref_primary_10_3389_fimmu_2017_00165
crossref_primary_10_1016_j_cell_2020_03_031
crossref_primary_10_3390_cells11192996
crossref_primary_10_1007_s00726_014_1765_4
crossref_primary_10_1093_burnst_tkz001
crossref_primary_10_1016_j_chom_2015_07_001
crossref_primary_10_1016_j_lfs_2017_08_029
crossref_primary_10_3389_fcell_2020_564975
crossref_primary_10_1007_s12035_016_0140_8
crossref_primary_10_1007_s00018_015_2034_8
crossref_primary_10_1093_hmg_ddv126
crossref_primary_10_1080_15548627_2018_1493315
crossref_primary_10_1042_BST20140183
crossref_primary_10_1016_j_devcel_2023_03_014
crossref_primary_10_1016_j_semcancer_2021_09_003
crossref_primary_10_1101_cshperspect_a041258
crossref_primary_10_1080_15548627_2019_1628539
crossref_primary_10_1083_jcb_201812135
crossref_primary_10_1242_bio_058736
crossref_primary_10_1371_journal_pbio_2007044
crossref_primary_10_1016_j_scib_2025_03_045
crossref_primary_10_1016_j_ejphar_2020_173660
crossref_primary_10_1128_jvi_01476_22
crossref_primary_10_4161_auto_27242
crossref_primary_10_1080_15548627_2020_1838117
crossref_primary_10_1080_21505594_2020_1726594
crossref_primary_10_1080_15548627_2021_1943177
crossref_primary_10_1016_j_pbi_2019_05_009
crossref_primary_10_1186_s40478_016_0324_5
crossref_primary_10_1007_s00418_018_1689_2
crossref_primary_10_1016_j_celrep_2016_04_062
crossref_primary_10_1016_j_tibs_2021_03_006
crossref_primary_10_1016_j_yjmcc_2015_12_005
crossref_primary_10_1038_s41418_017_0017_z
crossref_primary_10_1360_nso_20220018
crossref_primary_10_1016_j_mad_2016_01_003
crossref_primary_10_1073_pnas_2002110117
crossref_primary_10_1080_15548627_2017_1378838
crossref_primary_10_1128_JVI_02399_20
crossref_primary_10_1128_mBio_02021_17
crossref_primary_10_1126_sciadv_abj8156
crossref_primary_10_1016_j_jmb_2016_02_024
crossref_primary_10_3389_fcell_2023_1177440
crossref_primary_10_1128_mBio_02147_14
crossref_primary_10_1038_srep42591
crossref_primary_10_1083_jcb_201708039
crossref_primary_10_1007_s11154_013_9276_2
crossref_primary_10_3390_biom14121517
crossref_primary_10_1080_15548627_2023_2287932
crossref_primary_10_1016_j_isci_2024_111594
crossref_primary_10_3390_cells8121627
crossref_primary_10_1016_j_ceb_2017_02_011
crossref_primary_10_1080_15548627_2016_1203489
crossref_primary_10_1146_annurev_immunol_042617_053253
crossref_primary_10_1038_s41467_020_19028_w
crossref_primary_10_1038_s41419_024_07208_1
crossref_primary_10_1038_cddis_2016_312
crossref_primary_10_1128_MCB_01327_13
crossref_primary_10_1146_annurev_biochem_060815_014556
crossref_primary_10_1194_jlr_M051862
crossref_primary_10_15252_embr_201845889
crossref_primary_10_1038_s41467_022_33933_2
crossref_primary_10_1016_j_bbrc_2017_11_049
crossref_primary_10_1016_j_celrep_2023_112108
crossref_primary_10_1080_15548627_2016_1256521
crossref_primary_10_1016_j_ceb_2021_02_001
crossref_primary_10_1016_j_ceb_2018_06_003
crossref_primary_10_1038_s41579_018_0003_6
crossref_primary_10_1111_tra_12654
crossref_primary_10_1038_s41556_022_00861_8
crossref_primary_10_1002_jat_3393
crossref_primary_10_1016_j_devcel_2019_01_027
crossref_primary_10_1038_ncomms14846
crossref_primary_10_1083_jcb_201402054
crossref_primary_10_15252_embj_201695189
crossref_primary_10_1111_febs_13987
crossref_primary_10_3389_fonc_2021_603224
crossref_primary_10_1007_s00726_014_1787_y
crossref_primary_10_1038_ncomms12420
crossref_primary_10_1080_15548627_2021_1969634
crossref_primary_10_1007_s13238_020_00793_9
crossref_primary_10_1242_jcs_223792
crossref_primary_10_1038_s41421_024_00659_y
crossref_primary_10_1016_j_cell_2022_03_005
crossref_primary_10_1080_15548627_2020_1817279
crossref_primary_10_1016_j_jmb_2016_12_013
crossref_primary_10_1139_bcb_2014_0115
crossref_primary_10_1080_15548627_2020_1783118
crossref_primary_10_1038_nrm3696
crossref_primary_10_1016_j_cub_2022_01_040
crossref_primary_10_1152_japplphysiol_00550_2015
crossref_primary_10_1016_j_devcel_2014_06_001
crossref_primary_10_1038_s41418_019_0481_8
crossref_primary_10_3389_fonc_2022_841625
crossref_primary_10_1016_j_tplants_2016_11_015
crossref_primary_10_3390_ijms19061775
crossref_primary_10_1016_j_jmb_2016_06_011
crossref_primary_10_24998_maeusabed_355164
crossref_primary_10_1093_plcell_koab263
crossref_primary_10_1007_s00726_014_1775_2
crossref_primary_10_1002_jcp_26583
crossref_primary_10_1146_annurev_cellbio_101011_155756
crossref_primary_10_1083_jcb_201508102
crossref_primary_10_15252_embr_201744559
crossref_primary_10_1111_cmi_12409
crossref_primary_10_1016_j_devcel_2018_03_008
crossref_primary_10_1016_j_bbalip_2019_03_005
crossref_primary_10_1038_s41422_021_00579_6
crossref_primary_10_3389_fcell_2022_892450
crossref_primary_10_3389_fcell_2023_1069256
crossref_primary_10_1080_15548627_2022_2025572
crossref_primary_10_3389_fmmed_2022_971247
crossref_primary_10_1083_jcb_202203045
crossref_primary_10_3389_fcell_2019_00171
crossref_primary_10_1002_1873_3468_13637
crossref_primary_10_7554_eLife_04135
crossref_primary_10_1002_jcp_31366
crossref_primary_10_1080_21541248_2021_1892443
crossref_primary_10_1371_journal_ppat_1007982
crossref_primary_10_1038_s42003_023_05382_0
crossref_primary_10_1007_s11427_023_2443_9
crossref_primary_10_1016_j_canlet_2024_216659
crossref_primary_10_1016_j_jplph_2016_06_001
crossref_primary_10_1016_j_metabol_2023_155629
crossref_primary_10_1080_15548627_2018_1462426
crossref_primary_10_12688_f1000research_22111_1
crossref_primary_10_1083_jcb_201809032
crossref_primary_10_1038_s41421_020_0166_y
crossref_primary_10_1038_cddis_2014_243
crossref_primary_10_1242_jcs_158758
crossref_primary_10_3390_biomedicines9111625
crossref_primary_10_1016_j_cub_2017_02_061
crossref_primary_10_3390_cells11233813
crossref_primary_10_1016_j_bbagen_2017_10_021
Cites_doi 10.1016/j.cell.2012.11.028
10.1126/science.1207056
10.1074/jbc.273.7.3963
10.1016/j.cca.2011.04.023
10.1038/ncb2078
10.1247/csf.28.49
10.4161/auto.6.1.10928
10.1083/jcb.200912089
10.1038/26506
10.1146/annurev-biochem-052709-094552
10.1023/A:1007667802497
10.1016/j.ceb.2009.12.004
10.7554/eLife.00160
10.1016/j.cell.2011.06.022
10.1038/ncb2152
10.1038/ncb1991
10.1242/jcs.112.23.4175
10.1074/jbc.273.51.33889
10.1038/ncb1846
10.1083/jcb.152.4.657
10.1242/jcs.093203
10.1091/mbc.E03-06-0437
10.1091/mbc.E09-04-0345
10.1111/j.1365-2443.2009.01299.x
10.4161/auto.19496
10.1155/2011/713435
10.4161/auto.5.8.10274
10.1083/jcb.200911141
10.1007/s00281-010-0222-z
10.1016/j.cell.2010.04.009
10.1074/jbc.C700195200
10.1083/jcb.200904075
10.1083/jcb.200803137
10.1073/pnas.1014434108
10.1038/35044114
10.1016/j.cmet.2008.04.001
10.1021/jm101144f
10.1021/ml100230n
10.1091/mbc.E09-11-0969
10.1016/j.cell.2005.01.005
10.1016/j.cell.2011.06.025
10.1038/nature03029
10.1242/jcs.03172
10.1038/embor.2008.163
10.1016/j.cell.2012.12.016
10.1073/pnas.0810452105
10.1126/science.1715094
10.1111/j.1600-0854.2010.01086.x
10.1016/j.cub.2011.11.034
10.1091/mbc.10.2.435
10.1091/mbc.E08-03-0309
10.4161/auto.6.6.12709
10.1016/j.molcel.2008.06.001
10.1182/blood-2008-02-137398
10.1016/S0021-9258(19)34116-X
10.1083/jcb.200107045
10.1038/ncb1854
10.1242/jcs.03019
10.1016/j.cell.2011.06.023
10.1073/pnas.0910342106
10.1083/jcb.201111079
10.1038/nature06639
10.1091/mbc.E10-05-0457
10.1016/S1097-2765(00)80455-4
10.1093/emboj/19.21.5720
10.1016/j.febslet.2009.10.053
10.1074/jbc.M801836200
10.1074/jbc.M401461200
10.1074/jbc.M505888200
10.1038/nature11910
10.1083/jcb.201202061
10.1091/mbc.E11-09-0746
10.1038/nprot.2009.151
10.1091/mbc.E07-12-1257
10.1083/jcb.201002108
10.1242/jcs.114.22.3991
10.1083/jcb.200412022
10.4161/auto.3270
10.1073/pnas.1016472108
10.1016/j.ceb.2009.11.014
10.1074/jbc.C000449200
10.1074/jbc.M411091200
10.3410/B3-25
ContentType Journal Article
Copyright Copyright © 2013, Ge et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2013, Ge et al 2013 Ge et al
Copyright_xml – notice: Copyright © 2013, Ge et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2013, Ge et al 2013 Ge et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.00947
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_57780319853c45529fb4039188c0715f
PMC3736544
23930225
10_7554_eLife_00947
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Human Frontier Science Program
  grantid: LT000003/2012
– fundername: University of California, Berkeley Miller Institute
– fundername: Jane Coffin Childs Fund
– fundername: Howard Hughes Medical Institute
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RHI
RNS
RPM
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-b1632d0fda207c8daff32917a82e92351b147b0327d146b7ea7d1caab2bbd8223
IEDL.DBID DOA
ISSN 2050-084X
IngestDate Wed Aug 27 01:25:49 EDT 2025
Thu Aug 21 14:31:28 EDT 2025
Fri Jul 11 10:55:12 EDT 2025
Fri Jul 25 12:08:56 EDT 2025
Mon Jul 21 05:50:01 EDT 2025
Tue Jul 01 01:29:30 EDT 2025
Thu Apr 24 22:54:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Human
autophagy
Mouse
autophagosome
LC3 lipidation
ER–Golgi intermediate compartment
Language English
License http://creativecommons.org/licenses/by/3.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-b1632d0fda207c8daff32917a82e92351b147b0327d146b7ea7d1caab2bbd8223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/57780319853c45529fb4039188c0715f
PMID 23930225
PQID 1966696192
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_57780319853c45529fb4039188c0715f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3736544
proquest_miscellaneous_1419344438
proquest_journals_1966696192
pubmed_primary_23930225
crossref_primary_10_7554_eLife_00947
crossref_citationtrail_10_7554_eLife_00947
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-06
PublicationDateYYYYMMDD 2013-08-06
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2013
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Axe (bib3) 2008; 182
Ravikumar (bib58) 2010; 12
Kim (bib30) 2013; 152
Kim (bib31) 2011; 13
Peyroche (bib55) 1999; 3
Wieckowski (bib74) 2009; 4
Zoppino (bib83) 2010; 11
Heitman (bib24) 1991; 253
Sun (bib67) 2008; 105
Young (bib79) 2006; 119
Yamamoto (bib75) 2012; 198
Burman (bib5) 2010; 32
Sou (bib64) 2006; 281
von Kleist (bib70) 2011; 146
Hanada (bib22) 2007; 282
Hayashi-Nishino (bib23) 2009; 11
Yla-Anttila (bib78) 2009; 5
Mizushima (bib45) 1998a; 395
Chijiwa (bib8) 1990; 265
Guo (bib17) 2012; 125
Mari (bib40) 2011; 3
Ridley (bib59) 2001; 114
Mizushima (bib46) 1998b; 273
Zoncu (bib82) 2011; 334
Kuma (bib34) 2004; 432
Moreau (bib48) 2011; 146
Stenmark (bib66) 1999; 112
Hokazono (bib25) 2011; 412
Ward (bib71) 2001; 155
Ichimura (bib26) 2000; 408
de Figueiredo (bib9) 1999; 15
Sou (bib65) 2008; 19
Ge (bib13) 2011; 108
van der Vaart (bib69) 2010; 21
Ohashi (bib53) 2010; 21
Zhong (bib81) 2009; 11
Schindler (bib61) 2009; 106
Mizushima (bib44) 2008; 451
Nair (bib49) 2011; 146
Longatti (bib38) 2012; 197
Hamasaki (bib20) 2013; 495
Bravo-Altamirano (bib4) 2011; 2
Kabeya (bib28) 2000; 19
Oh-oka (bib52) 2008; 283
Gao (bib12) 2010; 6
Tanida (bib68) 2004; 279
Yang (bib76) 2010; 22
Fan (bib10) 2011; 108
Shao (bib63) 2007; 3
Mizushima (bib43) 2010; 22
Aridor (bib2) 2000; 275
Sekito (bib62) 2009; 14
Levine (bib36) 2005; 120
Matsunaga (bib41) 2010; 190
Matsunaga (bib42) 2009; 11
Komatsu (bib33) 2005; 169
Kim (bib29) 2005; 280
Puri (bib56) 2003; 14
Cherra (bib7) 2010; 190
Geng (bib15) 2008; 9
Zhang (bib80) 1999; 10
Yen (bib77) 2010; 188
Klionsky (bib32) 2012; 8
Mizushima (bib47) 2001; 152
Mari (bib39) 2010; 190
Hailey (bib19) 2010; 141
Geng (bib16) 2010; 21
Capitani (bib6) 2009; 583
Rubinsztein (bib60) 2012; 22
Itakura (bib27) 2010; 6
Orsi (bib54) 2012; 23
Guo (bib18) 2013; 2
Ragusa (bib57) 2012; 151
Obara (bib51) 2011; 2011
Wei (bib72) 2008; 30
Noda (bib50) 1998; 273
Ge (bib14) 2008; 7
Hamasaki (bib21) 2003; 28
Liu (bib37) 2010; 53
Appenzeller-Herzog (bib1) 2006; 119
Weidberg (bib73) 2011; 80
Fujita (bib11) 2008; 19
Kundu (bib35) 2008; 112
10813364 - Cell Biol Toxicol. 1999;15(5):311-23
22162728 - F1000 Biol Rep. 2011;3:25
11060023 - EMBO J. 2000 Nov 1;19(21):5720-8
20639694 - Autophagy. 2010 Aug;6(6):764-76
11001944 - J Biol Chem. 2000 Nov 17;275(46):35673-6
20861302 - Mol Biol Cell. 2010 Nov 15;21(22):3998-4008
23332761 - Cell. 2013 Jan 17;152(1-2):290-303
19855179 - Autophagy. 2009 Nov;5(8):1180-5
19898463 - Nat Cell Biol. 2009 Dec;11(12):1433-7
20061800 - Autophagy. 2010 Jan;6(1):126-37
16940348 - J Cell Sci. 2006 Sep 15;119(Pt 18):3888-900
9759731 - Nature. 1998 Sep 24;395(6700):395-8
18321988 - Mol Biol Cell. 2008 May;19(5):2092-100
18768753 - Mol Biol Cell. 2008 Nov;19(11):4762-75
11100732 - Nature. 2000 Nov 23;408(6811):488-92
20065092 - J Cell Biol. 2010 Jan 11;188(1):101-14
19050071 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19211-6
19371383 - Genes Cells. 2009 May;14(5):525-38
15525940 - Nature. 2004 Dec 23;432(7020):1032-6
20056399 - Curr Opin Cell Biol. 2010 Apr;22(2):132-9
22053050 - Science. 2011 Nov 4;334(6056):678-83
21617763 - ACS Med Chem Lett. 2011 Feb 14;2(2):154-159
10564636 - J Cell Sci. 1999 Dec;112 ( Pt 23):4175-83
21518905 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7769-74
23455425 - Nature. 2013 Mar 21;495(7441):389-93
20478256 - Cell. 2010 May 14;141(4):656-67
20713597 - J Cell Biol. 2010 Aug 23;190(4):511-21
19816421 - Nat Protoc. 2009;4(11):1582-90
15623526 - J Biol Chem. 2005 Mar 4;280(9):7758-68
20444982 - Mol Biol Cell. 2010 Jul 1;21(13):2270-84
11266458 - J Cell Biol. 2001 Feb 19;152(4):657-68
21784249 - Cell. 2011 Jul 22;146(2):290-302
23326640 - Elife. 2013;2:e00160
20444978 - Mol Biol Cell. 2010 Jul 1;21(13):2257-69
20860370 - J Med Chem. 2010 Oct 14;53(19):7146-55
15866887 - J Cell Biol. 2005 May 9;169(3):425-34
20855505 - J Cell Biol. 2010 Sep 20;190(6):1005-22
2156866 - J Biol Chem. 1990 Mar 25;265(9):5267-72
18539900 - Blood. 2008 Aug 15;112(4):1493-502
18544538 - J Biol Chem. 2008 Aug 8;283(32):21847-52
11706049 - J Cell Biol. 2001 Nov 12;155(4):557-70
11739631 - J Cell Sci. 2001 Nov;114(Pt 22):3991-4000
19822759 - Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17775-80
22240478 - Curr Biol. 2012 Jan 10;22(1):R29-34
21784250 - Cell. 2011 Jul 22;146(2):303-17
20034776 - Curr Opin Cell Biol. 2010 Apr;22(2):124-31
15680321 - Cell. 2005 Jan 28;120(2):159-62
20713600 - J Cell Biol. 2010 Aug 23;190(4):533-9
22613832 - J Cell Biol. 2012 May 28;197(5):659-75
16723730 - J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83
10198630 - Mol Cell. 1999 Mar;3(3):275-85
19270696 - Nat Cell Biol. 2009 Apr;11(4):385-96
22966490 - Autophagy. 2012 Apr;8(4):445-544
21548784 - Annu Rev Biochem. 2011;80:125-56
16963840 - Autophagy. 2007 Jan-Feb;3(1):10-6
9950687 - Mol Biol Cell. 1999 Feb;10(2):435-53
14565973 - Mol Biol Cell. 2003 Dec;14(12):5011-8
20545908 - Traffic. 2010 Sep;11(9):1246-61
17986448 - J Biol Chem. 2007 Dec 28;282(52):37298-302
18704115 - EMBO Rep. 2008 Sep;9(9):859-64
21816279 - Cell. 2011 Aug 5;146(3):471-84
21187433 - Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):551-6
18570871 - Mol Cell. 2008 Jun 20;30(6):678-88
22013444 - Int J Cell Biol. 2011;2011:713435
23219485 - Cell. 2012 Dec 21;151(7):1501-12
21549106 - Clin Chim Acta. 2011 Jul 15;412(15-16):1436-40
9852036 - J Biol Chem. 1998 Dec 18;273(51):33889-92
18305538 - Nature. 2008 Feb 28;451(7182):1069-75
16303767 - J Biol Chem. 2006 Feb 10;281(6):3017-24
21258367 - Nat Cell Biol. 2011 Feb;13(2):132-41
18522832 - Cell Metab. 2008 Jun;7(6):508-19
19854180 - FEBS Lett. 2009 Dec 3;583(23):3863-71
20639872 - Nat Cell Biol. 2010 Aug;12(8):747-57
20740284 - Semin Immunopathol. 2010 Dec;32(4):397-413
19270693 - Nat Cell Biol. 2009 Apr;11(4):468-76
22328508 - J Cell Sci. 2012 Apr 1;125(Pt 7):1706-15
22826123 - J Cell Biol. 2012 Jul 23;198(2):219-33
15187094 - J Biol Chem. 2004 Aug 27;279(35):36268-76
12655150 - Cell Struct Funct. 2003 Feb;28(1):49-54
9461583 - J Biol Chem. 1998 Feb 13;273(7):3963-6
18725538 - J Cell Biol. 2008 Aug 25;182(4):685-701
1715094 - Science. 1991 Aug 23;253(5022):905-9
22456507 - Mol Biol Cell. 2012 May;23(10):1860-73
References_xml – volume: 151
  start-page: 1501
  year: 2012
  ident: bib57
  article-title: Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.028
– volume: 334
  start-page: 678
  year: 2011
  ident: bib82
  article-title: mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
  publication-title: Science
  doi: 10.1126/science.1207056
– volume: 273
  start-page: 3963
  year: 1998
  ident: bib50
  article-title: Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.7.3963
– volume: 412
  start-page: 1436
  year: 2011
  ident: bib25
  article-title: Enzymatic assay of phosphatidylethanolamine in serum using amine oxidase from Arthrobacter sp
  publication-title: Clin Chim Acta
  doi: 10.1016/j.cca.2011.04.023
– volume: 12
  start-page: 747
  year: 2010
  ident: bib58
  article-title: Plasma membrane contributes to the formation of pre-autophagosomal structures
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2078
– volume: 28
  start-page: 49
  year: 2003
  ident: bib21
  article-title: The early secretory pathway contributes to autophagy in yeast
  publication-title: Cell Struct Funct
  doi: 10.1247/csf.28.49
– volume: 6
  start-page: 126
  year: 2010
  ident: bib12
  article-title: Processing of autophagic protein LC3 by the 20S proteasome
  publication-title: Autophagy
  doi: 10.4161/auto.6.1.10928
– volume: 190
  start-page: 1005
  year: 2010
  ident: bib39
  article-title: An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200912089
– volume: 395
  start-page: 395
  year: 1998a
  ident: bib45
  article-title: A protein conjugation system essential for autophagy
  publication-title: Nature
  doi: 10.1038/26506
– volume: 80
  start-page: 125
  year: 2011
  ident: bib73
  article-title: Biogenesis and cargo selectivity of autophagosomes
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev-biochem-052709-094552
– volume: 15
  start-page: 311
  year: 1999
  ident: bib9
  article-title: Clofibrate inhibits membrane trafficking to the Golgi complex and induces its retrograde movement to the endoplasmic reticulum
  publication-title: Cell Biol Toxicol
  doi: 10.1023/A:1007667802497
– volume: 22
  start-page: 132
  year: 2010
  ident: bib43
  article-title: The role of the Atg1/ULK1 complex in autophagy regulation
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2009.12.004
– volume: 2
  start-page: e00160
  year: 2013
  ident: bib18
  article-title: A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network
  publication-title: eLife
  doi: 10.7554/eLife.00160
– volume: 146
  start-page: 290
  year: 2011
  ident: bib49
  article-title: SNARE proteins are required for macroautophagy
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.022
– volume: 13
  start-page: 132
  year: 2011
  ident: bib31
  article-title: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb2152
– volume: 11
  start-page: 1433
  year: 2009
  ident: bib23
  article-title: A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1991
– volume: 112
  start-page: 4175
  issue: Pt 23
  year: 1999
  ident: bib66
  article-title: FYVE-finger proteins–effectors of an inositol lipid
  publication-title: J Cell Sci
  doi: 10.1242/jcs.112.23.4175
– volume: 273
  start-page: 33889
  year: 1998b
  ident: bib46
  article-title: A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.51.33889
– volume: 11
  start-page: 385
  year: 2009
  ident: bib42
  article-title: Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1846
– volume: 152
  start-page: 657
  year: 2001
  ident: bib47
  article-title: Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.152.4.657
– volume: 125
  start-page: 1706
  year: 2012
  ident: bib17
  article-title: AP1 is essential for generation of autophagosomes from the trans-Golgi network
  publication-title: J Cell Sci
  doi: 10.1242/jcs.093203
– volume: 14
  start-page: 5011
  year: 2003
  ident: bib56
  article-title: Capacity of the golgi apparatus for biogenesis from the endoplasmic reticulum
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E03-06-0437
– volume: 21
  start-page: 2270
  year: 2010
  ident: bib69
  article-title: Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E09-04-0345
– volume: 14
  start-page: 525
  year: 2009
  ident: bib62
  article-title: Atg17 recruits Atg9 to organize the pre-autophagosomal structure
  publication-title: Genes Cells
  doi: 10.1111/j.1365-2443.2009.01299.x
– volume: 8
  start-page: 445
  year: 2012
  ident: bib32
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.19496
– volume: 2011
  start-page: 713435
  year: 2011
  ident: bib51
  article-title: Atg14: a key player in orchestrating autophagy
  publication-title: Int J Cell Biol
  doi: 10.1155/2011/713435
– volume: 5
  start-page: 1180
  year: 2009
  ident: bib78
  article-title: 3D tomography reveals connections between the phagophore and endoplasmic reticulum
  publication-title: Autophagy
  doi: 10.4161/auto.5.8.10274
– volume: 190
  start-page: 511
  year: 2010
  ident: bib41
  article-title: Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200911141
– volume: 32
  start-page: 397
  year: 2010
  ident: bib5
  article-title: Autophagosome formation in mammalian cells
  publication-title: Semin Immunopathol
  doi: 10.1007/s00281-010-0222-z
– volume: 141
  start-page: 656
  year: 2010
  ident: bib19
  article-title: Mitochondria supply membranes for autophagosome biogenesis during starvation
  publication-title: Cell
  doi: 10.1016/j.cell.2010.04.009
– volume: 282
  start-page: 37298
  year: 2007
  ident: bib22
  article-title: The Atg12–Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C700195200
– volume: 188
  start-page: 101
  year: 2010
  ident: bib77
  article-title: The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200904075
– volume: 182
  start-page: 685
  year: 2008
  ident: bib3
  article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200803137
– volume: 108
  start-page: 551
  year: 2011
  ident: bib13
  article-title: Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1014434108
– volume: 408
  start-page: 488
  year: 2000
  ident: bib26
  article-title: A ubiquitin-like system mediates protein lipidation
  publication-title: Nature
  doi: 10.1038/35044114
– volume: 7
  start-page: 508
  year: 2008
  ident: bib14
  article-title: The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2008.04.001
– volume: 53
  start-page: 7146
  year: 2010
  ident: bib37
  article-title: Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benz o[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer
  publication-title: J Med Chem
  doi: 10.1021/jm101144f
– volume: 2
  start-page: 154
  year: 2011
  ident: bib4
  article-title: Synthesis and structure-activity relationships of benzothienothiazepinone inhibitors of protein kinase D
  publication-title: ACS Med Chem Lett
  doi: 10.1021/ml100230n
– volume: 21
  start-page: 2257
  year: 2010
  ident: bib16
  article-title: Post-Golgi Sec proteins are required for autophagy in Saccharomyces cerevisiae
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E09-11-0969
– volume: 120
  start-page: 159
  year: 2005
  ident: bib36
  article-title: Eating oneself and uninvited guests: autophagy-related pathways in cellular defense
  publication-title: Cell
  doi: 10.1016/j.cell.2005.01.005
– volume: 146
  start-page: 471
  year: 2011
  ident: bib70
  article-title: Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.025
– volume: 432
  start-page: 1032
  year: 2004
  ident: bib34
  article-title: The role of autophagy during the early neonatal starvation period
  publication-title: Nature
  doi: 10.1038/nature03029
– volume: 119
  start-page: 3888
  year: 2006
  ident: bib79
  article-title: Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes
  publication-title: J Cell Sci
  doi: 10.1242/jcs.03172
– volume: 9
  start-page: 859
  year: 2008
  ident: bib15
  article-title: The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series
  publication-title: EMBO Rep
  doi: 10.1038/embor.2008.163
– volume: 152
  start-page: 290
  year: 2013
  ident: bib30
  article-title: Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
  publication-title: Cell
  doi: 10.1016/j.cell.2012.12.016
– volume: 105
  start-page: 19211
  year: 2008
  ident: bib67
  article-title: Identification of Barkor as a mammalian autophagy-specific factor for Beclin 1 and class III phosphatidylinositol 3-kinase
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0810452105
– volume: 253
  start-page: 905
  year: 1991
  ident: bib24
  article-title: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
  publication-title: Science
  doi: 10.1126/science.1715094
– volume: 11
  start-page: 1246
  year: 2010
  ident: bib83
  article-title: Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2010.01086.x
– volume: 22
  start-page: R29
  year: 2012
  ident: bib60
  article-title: Mechanisms of autophagosome biogenesis
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2011.11.034
– volume: 10
  start-page: 435
  year: 1999
  ident: bib80
  article-title: Morphological and functional association of Sec22b/ERS-24 with the pre-Golgi intermediate compartment
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.10.2.435
– volume: 19
  start-page: 4762
  year: 2008
  ident: bib65
  article-title: The Atg8 conjugation system is indispensable for proper development of autophagic isolation membranes in mice
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E08-03-0309
– volume: 6
  start-page: 764
  year: 2010
  ident: bib27
  article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
  publication-title: Autophagy
  doi: 10.4161/auto.6.6.12709
– volume: 30
  start-page: 678
  year: 2008
  ident: bib72
  article-title: JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2008.06.001
– volume: 112
  start-page: 1493
  year: 2008
  ident: bib35
  article-title: Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation
  publication-title: Blood
  doi: 10.1182/blood-2008-02-137398
– volume: 265
  start-page: 5267
  year: 1990
  ident: bib8
  article-title: Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)34116-X
– volume: 155
  start-page: 557
  year: 2001
  ident: bib71
  article-title: Maintenance of Golgi structure and function depends on the integrity of ER export
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200107045
– volume: 11
  start-page: 468
  year: 2009
  ident: bib81
  article-title: Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1854
– volume: 119
  start-page: 2173
  year: 2006
  ident: bib1
  article-title: The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function
  publication-title: J Cell Sci
  doi: 10.1242/jcs.03019
– volume: 146
  start-page: 303
  year: 2011
  ident: bib48
  article-title: Autophagosome precursor maturation requires homotypic fusion
  publication-title: Cell
  doi: 10.1016/j.cell.2011.06.023
– volume: 106
  start-page: 17775
  year: 2009
  ident: bib61
  article-title: In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0910342106
– volume: 197
  start-page: 659
  year: 2012
  ident: bib38
  article-title: TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201111079
– volume: 451
  start-page: 1069
  year: 2008
  ident: bib44
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  doi: 10.1038/nature06639
– volume: 21
  start-page: 3998
  year: 2010
  ident: bib53
  article-title: Membrane delivery to the yeast autophagosome from the Golgi-endosomal system
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E10-05-0457
– volume: 3
  start-page: 275
  year: 1999
  ident: bib55
  article-title: Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain
  publication-title: Mol Cell
  doi: 10.1016/S1097-2765(00)80455-4
– volume: 19
  start-page: 5720
  year: 2000
  ident: bib28
  article-title: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
  publication-title: EMBO J
  doi: 10.1093/emboj/19.21.5720
– volume: 583
  start-page: 3863
  year: 2009
  ident: bib6
  article-title: The KDEL receptor: new functions for an old protein
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.10.053
– volume: 283
  start-page: 21847
  year: 2008
  ident: bib52
  article-title: Physiological pH and acidic phospholipids contribute to substrate specificity in lipidation of Atg8
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M801836200
– volume: 279
  start-page: 36268
  year: 2004
  ident: bib68
  article-title: HsAtg4B/HsApg4B/autophagin-1 cleaves the carboxyl termini of three human Atg8 homologues and delipidates microtubule-associated protein light chain 3- and GABAA receptor-associated protein-phospholipid conjugates
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M401461200
– volume: 281
  start-page: 3017
  year: 2006
  ident: bib64
  article-title: Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M505888200
– volume: 495
  start-page: 389
  year: 2013
  ident: bib20
  article-title: Autophagosomes form at ER-mitochondria contact sites
  publication-title: Nature
  doi: 10.1038/nature11910
– volume: 198
  start-page: 219
  year: 2012
  ident: bib75
  article-title: Atg9 vesicles are an important membrane source during early steps of autophagosome formation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201202061
– volume: 23
  start-page: 1860
  year: 2012
  ident: bib54
  article-title: Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E11-09-0746
– volume: 4
  start-page: 1582
  year: 2009
  ident: bib74
  article-title: Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.151
– volume: 19
  start-page: 2092
  year: 2008
  ident: bib11
  article-title: The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.E07-12-1257
– volume: 190
  start-page: 533
  year: 2010
  ident: bib7
  article-title: Regulation of the autophagy protein LC3 by phosphorylation
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201002108
– volume: 114
  start-page: 3991
  year: 2001
  ident: bib59
  article-title: FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments
  publication-title: J Cell Sci
  doi: 10.1242/jcs.114.22.3991
– volume: 169
  start-page: 425
  year: 2005
  ident: bib33
  article-title: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200412022
– volume: 3
  start-page: 10
  year: 2007
  ident: bib63
  article-title: Stimulation of ATG12–ATG5 conjugation by ribonucleic acid
  publication-title: Autophagy
  doi: 10.4161/auto.3270
– volume: 108
  start-page: 7769
  year: 2011
  ident: bib10
  article-title: Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1016472108
– volume: 22
  start-page: 124
  year: 2010
  ident: bib76
  article-title: Mammalian autophagy: core molecular machinery and signaling regulation
  publication-title: Curr Opin Cell Biol
  doi: 10.1016/j.ceb.2009.11.014
– volume: 275
  start-page: 35673
  year: 2000
  ident: bib2
  article-title: Kinase signaling initiates coat complex II (COPII) recruitment and export from the mammalian endoplasmic reticulum
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C000449200
– volume: 280
  start-page: 7758
  year: 2005
  ident: bib29
  article-title: Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M411091200
– volume: 3
  start-page: 25
  year: 2011
  ident: bib40
  article-title: The puzzling origin of the autophagosomal membrane
  publication-title: F1000 Biol Rep
  doi: 10.3410/B3-25
– reference: 21187433 - Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):551-6
– reference: 16963840 - Autophagy. 2007 Jan-Feb;3(1):10-6
– reference: 20861302 - Mol Biol Cell. 2010 Nov 15;21(22):3998-4008
– reference: 20065092 - J Cell Biol. 2010 Jan 11;188(1):101-14
– reference: 15187094 - J Biol Chem. 2004 Aug 27;279(35):36268-76
– reference: 18570871 - Mol Cell. 2008 Jun 20;30(6):678-88
– reference: 11266458 - J Cell Biol. 2001 Feb 19;152(4):657-68
– reference: 21617763 - ACS Med Chem Lett. 2011 Feb 14;2(2):154-159
– reference: 19898463 - Nat Cell Biol. 2009 Dec;11(12):1433-7
– reference: 20056399 - Curr Opin Cell Biol. 2010 Apr;22(2):132-9
– reference: 12655150 - Cell Struct Funct. 2003 Feb;28(1):49-54
– reference: 14565973 - Mol Biol Cell. 2003 Dec;14(12):5011-8
– reference: 11001944 - J Biol Chem. 2000 Nov 17;275(46):35673-6
– reference: 22613832 - J Cell Biol. 2012 May 28;197(5):659-75
– reference: 19855179 - Autophagy. 2009 Nov;5(8):1180-5
– reference: 20545908 - Traffic. 2010 Sep;11(9):1246-61
– reference: 16723730 - J Cell Sci. 2006 Jun 1;119(Pt 11):2173-83
– reference: 19371383 - Genes Cells. 2009 May;14(5):525-38
– reference: 19816421 - Nat Protoc. 2009;4(11):1582-90
– reference: 22966490 - Autophagy. 2012 Apr;8(4):445-544
– reference: 23326640 - Elife. 2013;2:e00160
– reference: 16940348 - J Cell Sci. 2006 Sep 15;119(Pt 18):3888-900
– reference: 23332761 - Cell. 2013 Jan 17;152(1-2):290-303
– reference: 15525940 - Nature. 2004 Dec 23;432(7020):1032-6
– reference: 10198630 - Mol Cell. 1999 Mar;3(3):275-85
– reference: 21816279 - Cell. 2011 Aug 5;146(3):471-84
– reference: 21258367 - Nat Cell Biol. 2011 Feb;13(2):132-41
– reference: 20478256 - Cell. 2010 May 14;141(4):656-67
– reference: 1715094 - Science. 1991 Aug 23;253(5022):905-9
– reference: 20034776 - Curr Opin Cell Biol. 2010 Apr;22(2):124-31
– reference: 21784249 - Cell. 2011 Jul 22;146(2):290-302
– reference: 21549106 - Clin Chim Acta. 2011 Jul 15;412(15-16):1436-40
– reference: 18321988 - Mol Biol Cell. 2008 May;19(5):2092-100
– reference: 18522832 - Cell Metab. 2008 Jun;7(6):508-19
– reference: 17986448 - J Biol Chem. 2007 Dec 28;282(52):37298-302
– reference: 10813364 - Cell Biol Toxicol. 1999;15(5):311-23
– reference: 22240478 - Curr Biol. 2012 Jan 10;22(1):R29-34
– reference: 18704115 - EMBO Rep. 2008 Sep;9(9):859-64
– reference: 9950687 - Mol Biol Cell. 1999 Feb;10(2):435-53
– reference: 11100732 - Nature. 2000 Nov 23;408(6811):488-92
– reference: 16303767 - J Biol Chem. 2006 Feb 10;281(6):3017-24
– reference: 20639694 - Autophagy. 2010 Aug;6(6):764-76
– reference: 19822759 - Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17775-80
– reference: 23219485 - Cell. 2012 Dec 21;151(7):1501-12
– reference: 20444978 - Mol Biol Cell. 2010 Jul 1;21(13):2257-69
– reference: 20639872 - Nat Cell Biol. 2010 Aug;12(8):747-57
– reference: 20061800 - Autophagy. 2010 Jan;6(1):126-37
– reference: 18539900 - Blood. 2008 Aug 15;112(4):1493-502
– reference: 9759731 - Nature. 1998 Sep 24;395(6700):395-8
– reference: 11706049 - J Cell Biol. 2001 Nov 12;155(4):557-70
– reference: 22162728 - F1000 Biol Rep. 2011;3:25
– reference: 22053050 - Science. 2011 Nov 4;334(6056):678-83
– reference: 20713600 - J Cell Biol. 2010 Aug 23;190(4):533-9
– reference: 19270693 - Nat Cell Biol. 2009 Apr;11(4):468-76
– reference: 21784250 - Cell. 2011 Jul 22;146(2):303-17
– reference: 21548784 - Annu Rev Biochem. 2011;80:125-56
– reference: 18768753 - Mol Biol Cell. 2008 Nov;19(11):4762-75
– reference: 15680321 - Cell. 2005 Jan 28;120(2):159-62
– reference: 20855505 - J Cell Biol. 2010 Sep 20;190(6):1005-22
– reference: 15623526 - J Biol Chem. 2005 Mar 4;280(9):7758-68
– reference: 9461583 - J Biol Chem. 1998 Feb 13;273(7):3963-6
– reference: 18305538 - Nature. 2008 Feb 28;451(7182):1069-75
– reference: 21518905 - Proc Natl Acad Sci U S A. 2011 May 10;108(19):7769-74
– reference: 15866887 - J Cell Biol. 2005 May 9;169(3):425-34
– reference: 22826123 - J Cell Biol. 2012 Jul 23;198(2):219-33
– reference: 11739631 - J Cell Sci. 2001 Nov;114(Pt 22):3991-4000
– reference: 20740284 - Semin Immunopathol. 2010 Dec;32(4):397-413
– reference: 22013444 - Int J Cell Biol. 2011;2011:713435
– reference: 9852036 - J Biol Chem. 1998 Dec 18;273(51):33889-92
– reference: 2156866 - J Biol Chem. 1990 Mar 25;265(9):5267-72
– reference: 22456507 - Mol Biol Cell. 2012 May;23(10):1860-73
– reference: 11060023 - EMBO J. 2000 Nov 1;19(21):5720-8
– reference: 19854180 - FEBS Lett. 2009 Dec 3;583(23):3863-71
– reference: 20860370 - J Med Chem. 2010 Oct 14;53(19):7146-55
– reference: 22328508 - J Cell Sci. 2012 Apr 1;125(Pt 7):1706-15
– reference: 19050071 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19211-6
– reference: 19270696 - Nat Cell Biol. 2009 Apr;11(4):385-96
– reference: 18725538 - J Cell Biol. 2008 Aug 25;182(4):685-701
– reference: 18544538 - J Biol Chem. 2008 Aug 8;283(32):21847-52
– reference: 23455425 - Nature. 2013 Mar 21;495(7441):389-93
– reference: 10564636 - J Cell Sci. 1999 Dec;112 ( Pt 23):4175-83
– reference: 20713597 - J Cell Biol. 2010 Aug 23;190(4):511-21
– reference: 20444982 - Mol Biol Cell. 2010 Jul 1;21(13):2270-84
SSID ssj0000748819
Score 2.5107355
Snippet Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e00947
SubjectTerms autophagosome
Autophagy
Biochemistry
Biosynthesis
Cell Biology
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
ER–Golgi intermediate compartment
Fibroblasts
Golgi apparatus
Golgi Apparatus - metabolism
Kinases
LC3 lipidation
Lipid Metabolism
Membranes
Phagocytosis
Phagosomes
Phagosomes - metabolism
Physiology
Proteins
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCIlLxT-BgozUE1Jo4p_Ye6qgaqlQ4YCotLfIju0l0m6y3exKcOMdeEOepDNONrCoIqco9sHKjD3fjGe-IeRwYnKtDQe3xBUmFUKp1ATLU8cLy1lwYOSxOPnT5-L8UnycyukQcOuGtMrtmRgPatdWGCM_Ak0pignC_ePlVYpdo_B2dWihcZvcQeoyTOlSUzXGWMA8arB4fVmeAsN55C_q4N9iOp3aMUSRr_8mkPlvruRfxufsPtkfUCN914v5Abnlm4fkbt9H8scj8h2ETU-__P7560M7n9UUOSBWsSZk7WmfZR6TyWndUUNh29KFX4Cb3HjaB-8pQFcKUJBenHA6r5d132mJggosaRuo2SD_gJm1Xbvw1NbtDI_IuntMLs9Ov56cp0NLhbSSIl-nFuAXc1lwhmWq0s6EwBl4bEYzD1BP5jYXymacKQdHqFXewEtljGXWOsAS_AnZa9rGPyM0Z4Xx4F0WPmQiaGbgCZlWzGBU0dmEvNn-37Ia-Max7cW8BL8DhVFGYZRRGAk5HCcve5qNm6e9R0GNU5AbO35oV7Ny2GqlVEpjbRYAkUpIySbBCuTB17oCPCVDQg62Yi6HDduVf9QrIa_HYdhqeH8C4mg3MEcA2hVCcJ2Qp71WjCtBJjmAQzIhakdfdpa6O9LU3yKdN1e8kEI8__-yXpB7LHbi0GlWHJC99WrjXwIeWttXUemvAXVuDic
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6VIiQuiPIbaJGRekLKktiO7T1VULVUqOWAWKm3yI7tJdJusuyP1N54B96QJ-nYya7Yao_kFMWO5HhmPN84428Ajoc6V0ozDEus0CnnUqbaG5ZaJgyj3qKTD4eTr76JixH_el1c78G6GGc_gYudoV2oJzWaTwY3v25P0OARvw4kesOP7rL2bhBy5OQDeIguSQYLvepxflySJeppPuzO591_Z8sjReL-XWjzftLkP17o_Ck86eEj-dTJ-wD2XPMMHnUFJW-fww1KnZx9__v7z5d2Mq5JIIOYx8MhS0e6dPOYVU7qBdEE7ZdM3RTj5caRbhefIIYliAnJ5Skjk3pWdyWXCOrCjLSe6FUgItDjdtFOHTF1Ow5rZb14AaPzsx-nF2lfWyGtCp4vU4M4jNrMW00zWSmrvWcUQzetqEPMV-Qm59JkjEqLa6mRTuNNpbWhxlgEFewl7Ddt414DyanQDsNM4XzGvaIaL58pSXXYXrQmgQ_r-S2rnng81L-YlBiABGGUURhlFEYCx5vOs45vY3e3z0FQmy6BJDs-aOfjsre5spBShUNaiEgqXhR06A0PhPhKVQisCp_A4VrM5VrxSlyRhBiGsDKB95tmtLnwIwXF0a6wD0fYyzlnKoFXnVZsRhIo5RAXFQnILX3ZGup2S1P_jLzeTDJRcP7mf3zbW3hMY-EOlWbiEPaX85U7Qvi0NO-iadwBbwkcUQ
  priority: 102
  providerName: Scholars Portal
Title The ER–Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/23930225
https://www.proquest.com/docview/1966696192
https://www.proquest.com/docview/1419344438
https://pubmed.ncbi.nlm.nih.gov/PMC3736544
https://doaj.org/article/57780319853c45529fb4039188c0715f
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NatwwEB7alEIvJf13mywq5FRwa0uypT0mYZNQklBCA3szkiVtDbv2kt2F9tZ36Bv2STKSnGW3BHqJD8ZYOsia0cw38ugbgIOhyqVUDMMSU6qUcyFS5TRLDSs1o86gk_eHky8uy7Nr_nVcjDdKffmcsEgPHCcOA3Yh_UkbdCs1Lwo6dJp7VnMpa_SOhfPWF33eRjAVbLBAxcyH8UCeQJf5xZ43zn72iXRiywUFpv774OW_WZIbbudkF573eJEcxnG-gEe2fQlPYwXJX6_gJ4qZjK7-_v5z2k0nDfHsDzfhNMjSkphfHtLISbMgiuCCJTM7wwC5tSRu2xMErQRBIDk_ZmTazJtYY4mg8Oekc0StPPOAmnSLbmaJbrqJN47N4jVcn4y-H5-lfTGFtC54vkw1Ai9qMmcUzUQtjXKOUYzVlKQWQV6R65wLnTEqDBpPLazCh1opTbU2iCLYG9hpu9a-A5LTUlmMK0vrMu4kVXi5TAqq_H6i0Ql8upvfqu6Zxn3Bi2mFEYcXRhWEUQVhJHCw7jyPBBv3dzvyglp38azY4QXqStXrSvU_XUlg707MVb9UFxWaoLIc-jgygY_rZlxk_s8JiqNbYR-OOJdzzmQCb6NWrEfiOeQQCBUJiC192Rrqdkvb_AhE3kywsuD8_UN82wd4RkOlDplm5R7sLG9Wdh_x0lIP4LEYiwE8ORpdfrsahIWC9wsubwF0qBd_
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO4EBhhpvCCFJbYTuw8IsdHRsa5C0ybtLbMTu0Rqk9KLYG_8B_4HP4pfwnGSBoom3panKLYiy-f2HftcALa7KpRSMXRLslj5nAvhK6uZn7FYM2ozNPIuOfloGPdP-cez6GwDfq5yYVxY5UonVoo6K1N3Rr6DnBLHXQf3306_-K5rlLtdXbXQqNni0Fx8RZdt_ubgPdL3JaX7vZO9vt90FfDTiIcLXyMCoVlgM0UDkcpMWcsoOi1KUoNoJwp1yIUOGBUZahEtjMKXVClNtc7QnDL87zXY5AxdmQ5s7vaGn47bUx00yBJtbJ0IKNBU75hBbs1rF8An1kxf1SHgMlj7b3TmX-Zu_zbcanAqeVcz1h3YMMVduF53rry4B9-QvUjv-Nf3Hx_K8SgnrurErMpCWRhSx7VX4esknxNFUFGQiZmgY14YUl8XEATLBMEnGewxMs6ned3biSDTTUlpiVq6igdqVM7LiSE6L0dOKefz-3B6Jdv9ADpFWZhHQEIaK4P-bGxswK2kCh8bSEGVO8fMtAevVvubpE2Fc9doY5ygp-OIkVTESCpieLDdTp7WhT0un7brCNVOcdW4qw_lbJQ0wp1EQkiXDYbQJ-VRRLtWc1d5X8oUEVxkPdhakTlpVMQ8-cPQHrxoh1G43Y0NkqNc4hyO-JpzzqQHD2uuaFfiatchAIs8EGv8srbU9ZEi_1wVEGeCxRHnj_-_rOdwo39yNEgGB8PDJ3CTVn1ApB_EW9BZzJbmKaKxhX7WiACB86uWut_34Uyc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhCXijcpBYxULkhhE9uJvQeEoO3S0qVCiEp7S-3EXiLtJss-BL3xH_g3_Bx-CeO8YFHFrTlFySiyMq9v7HkA7PZVKKViGJZksfI5F8JXVjM_Y7Fm1Gbo5F1x8vuT-PCUvxtFow342dbCuLTK1iZWhjorU7dH3kNJieO-g_s926RFfNgfvJp98d0EKXfS2o7TqEXk2Jx_xfBt8fJoH3n9jNLBwae9Q7-ZMOCnEQ-XvkY0QrPAZooGIpWZspZRDGCUpAaRTxTqkAsdMCoytChaGIU3qVKaap2ha2X43StwVSCl0zExEt3-Drpmid62LgkU6LR7Zphb88Kl8ok1J1jNCrgI4P6bp_mX4xvchK0GsZLXtYjdgg1T3IZr9QzL8zvwDQWNHHz89f3H23IyzonrPzGv6lGWhtQZ7lUiO8kXRBE0GWRqphiiF4bUBwcEYTNBGEqGe4xM8lleT3kiKH4zUlqiVq73gRqXi3JqiM7LsTPP-eIunF7Kz74Hm0VZmAdAQhorg5FtbGzAraQKLxtIQZXb0cy0B8_b_5ukTa9zN3JjkmDM45iRVMxIKmZ4sNsRz-oWHxeTvXGM6khcX-7qQTkfJ42aJ5EQ0tWFIQhKeRTRvtXc9eCXMkUsF1kPdlo2J42xWCR_RNuDp91rVHN3doPsKFdIwxFpc86Z9OB-LRXdSlwXO4RikQdiTV7Wlrr-psg_V63EmWBxxPn2_5f1BK6jriXDo5Pjh3CDVgNBpB_EO7C5nK_MI4RlS_24kn8CZ5etcL8Bh3FPbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ER%E2%80%93Golgi+intermediate+compartment+is+a+key+membrane+source+for+the+LC3+lipidation+step+of+autophagosome+biogenesis&rft.jtitle=eLife&rft.au=Liang+Ge&rft.au=David+Melville&rft.au=Min+Zhang&rft.au=Randy+Schekman&rft.date=2013-08-06&rft.pub=eLife+Sciences+Publications+Ltd&rft.eissn=2050-084X&rft.volume=2&rft_id=info:doi/10.7554%2FeLife.00947&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_57780319853c45529fb4039188c0715f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon