Highly selective urea electrooxidation coupled with efficient hydrogen evolution

Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N 2 . Herein we demonstrate that atomically isolated...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 5918 - 10
Main Authors Zhan, Guangming, Hu, Lufa, Li, Hao, Dai, Jie, Zhao, Long, Zheng, Qian, Zou, Xingyue, Shi, Yanbiao, Wang, Jiaxian, Hou, Wei, Yao, Yancai, Zhang, Lizhi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N 2 . Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N 2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N 2 selectivity below 55%, and also deliver a H 2 evolution rate of 22.0 mL h –1 when coupled to a Pt counter cathode under 213 mA cm –2 at 1.40 V RHE . These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N 2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H 2 production. Urea electrooxidation often produces harmful cyanates and nitrites instead of N2, limiting its use in wastewater denitrification. Here, the authors develop an asymmetric Ni–O–Ti catalytic sites on Ti foam that reduce these byproducts, achieve 99% N2 selectivity, and boost H2 evolution.
AbstractList Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N 2 . Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N 2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N 2 selectivity below 55%, and also deliver a H 2 evolution rate of 22.0 mL h –1 when coupled to a Pt counter cathode under 213 mA cm –2 at 1.40 V RHE . These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N 2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H 2 production. Urea electrooxidation often produces harmful cyanates and nitrites instead of N2, limiting its use in wastewater denitrification. Here, the authors develop an asymmetric Ni–O–Ti catalytic sites on Ti foam that reduce these byproducts, achieve 99% N2 selectivity, and boost H2 evolution.
Abstract Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h–1 when coupled to a Pt counter cathode under 213 mA cm–2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.
Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h–1 when coupled to a Pt counter cathode under 213 mA cm–2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.Urea electrooxidation often produces harmful cyanates and nitrites instead of N2, limiting its use in wastewater denitrification. Here, the authors develop an asymmetric Ni–O–Ti catalytic sites on Ti foam that reduce these byproducts, achieve 99% N2 selectivity, and boost H2 evolution.
Electrochemical urea oxidation offers a sustainable avenue for H production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N . Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N selectivity below 55%, and also deliver a H evolution rate of 22.0 mL h when coupled to a Pt counter cathode under 213 mA cm at 1.40 V . These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H production.
Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h-1 when coupled to a Pt counter cathode under 213 mA cm-2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h-1 when coupled to a Pt counter cathode under 213 mA cm-2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.
Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N 2 . Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N 2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N 2 selectivity below 55%, and also deliver a H 2 evolution rate of 22.0 mL h –1 when coupled to a Pt counter cathode under 213 mA cm –2 at 1.40 V RHE . These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N 2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H 2 production.
ArticleNumber 5918
Author Wang, Jiaxian
Zhang, Lizhi
Dai, Jie
Hou, Wei
Shi, Yanbiao
Yao, Yancai
Li, Hao
Zheng, Qian
Zhan, Guangming
Zhao, Long
Zou, Xingyue
Hu, Lufa
Author_xml – sequence: 1
  givenname: Guangming
  orcidid: 0000-0001-9485-3458
  surname: Zhan
  fullname: Zhan, Guangming
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 2
  givenname: Lufa
  surname: Hu
  fullname: Hu, Lufa
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 3
  givenname: Hao
  orcidid: 0000-0002-1135-8353
  surname: Li
  fullname: Li, Hao
  email: hao_li@sjtu.edu.cn
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 4
  givenname: Jie
  orcidid: 0000-0001-9470-5172
  surname: Dai
  fullname: Dai, Jie
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 5
  givenname: Long
  orcidid: 0000-0002-8979-7241
  surname: Zhao
  fullname: Zhao, Long
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 6
  givenname: Qian
  surname: Zheng
  fullname: Zheng, Qian
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 7
  givenname: Xingyue
  surname: Zou
  fullname: Zou, Xingyue
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 8
  givenname: Yanbiao
  orcidid: 0000-0003-3137-9837
  surname: Shi
  fullname: Shi, Yanbiao
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 9
  givenname: Jiaxian
  surname: Wang
  fullname: Wang, Jiaxian
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 10
  givenname: Wei
  surname: Hou
  fullname: Hou, Wei
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 11
  givenname: Yancai
  surname: Yao
  fullname: Yao, Yancai
  email: yyancai@sjtu.edu.cn
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
– sequence: 12
  givenname: Lizhi
  orcidid: 0000-0002-6842-9167
  surname: Zhang
  fullname: Zhang, Lizhi
  email: zhanglizhi@sjtu.edu.cn
  organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39004672$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxIVL4PkjsXNCqAJaqRIc4Gw5zkvWK2-82MnC_nu8m1LaHuqL7eeZ8Tx7XpKTMYxIyGsK7ylw9SEJKmpZAhNlBVzwUj0jZwwELalk_OTe-pRcpLSGPHhDlRAvyClvADKbnZHvV25Y-X2R0KOd3A6LOaIpjrsYwh_XmcmFsbBh3nrsit9uWhXY9846HKdite9iGHAscBf8fEC-Is974xNe3M7n5OeXzz8ur8qbb1-vLz_dlLYSdCpbENkOb5GpFgx2XGFbK8Fy0SrAqraiB9kwWzdGVrKX0Ki2gaqStq6t7Pg5uV50u2DWehvdxsS9DsbpYyHEQZs4OetRS9YwaTIZ-0o0vDamE61osOW2RWVl1vq4aG3ndoOdzZ1F4x-IPjwZ3UoPYacpZUKCOii8u1WI4deMadIblyx6b0YMc9IcFNS8YvUB-vYRdB3mOOa3OqIApGI8o97ct3Tn5d_PZQBbADaGlCL2dxAK-pAQvSRE54ToY0K0yiT1iGTddPzg3JbzT1P5Qk35nnHA-N_2E6y_9RTPcg
CitedBy_id crossref_primary_10_1039_D5CC00206K
crossref_primary_10_1002_adfm_202501170
crossref_primary_10_1002_ange_202423457
crossref_primary_10_1002_adfm_202421136
crossref_primary_10_1002_adma_202415269
crossref_primary_10_1002_ange_202424014
crossref_primary_10_1039_D4NR04915B
crossref_primary_10_1002_anie_202423457
crossref_primary_10_1016_j_seppur_2024_130989
crossref_primary_10_1016_j_scib_2024_09_033
crossref_primary_10_1002_anie_202424014
crossref_primary_10_1016_j_cej_2024_158950
crossref_primary_10_1016_j_heliyon_2025_e43103
crossref_primary_10_1016_j_rineng_2024_102959
crossref_primary_10_1002_cjoc_202400442
crossref_primary_10_1002_smll_202410848
crossref_primary_10_1016_j_apcatb_2024_124718
crossref_primary_10_1039_D4IM00163J
crossref_primary_10_1002_advs_202411964
crossref_primary_10_1002_smll_202410044
crossref_primary_10_3390_catal14120937
crossref_primary_10_1002_adma_202412173
crossref_primary_10_1038_s41467_025_57560_9
crossref_primary_10_1016_j_apcatb_2025_125158
Cites_doi 10.1103/PhysRevB.54.11169
10.1002/anie.202209839
10.1021/ja01564a014
10.3390/catal12030337
10.1021/acs.nanolett.3c01905
10.1021/acs.est.3c04475
10.1039/D2TA00120A
10.1007/s10800-016-0993-6
10.1002/anie.202206050
10.1007/s40820-023-01127-0
10.1021/acs.est.2c03771
10.1016/j.checat.2023.100840
10.1021/acscatal.3c00113
10.1073/pnas.2308828120
10.1002/adma.202301549
10.6023/A23040133
10.1002/ange.201909832
10.1002/adfm.202303986
10.1016/j.scib.2022.08.008
10.1002/anie.202107886
10.1016/j.nanoen.2021.106217
10.1002/anie.202309319
10.1002/anie.202208215
10.1002/adfm.202300687
10.1002/jcc.24300
10.1039/c0ee00705f
10.1021/la961044h
10.1002/adfm.202209698
10.1016/j.cell.2018.07.019
10.1021/jacs.1c08890
10.1002/adma.202209338
10.1021/j100135a014
10.1016/j.ijhydene.2016.11.048
10.1021/jp202489s
10.1038/s41467-023-41588-w
10.1021/acscatal.3c03126
10.1021/acscatal.1c05190
10.1021/jacs.8b05913
10.1021/acs.iecr.3c00802
10.1002/jcc.26353
10.1038/s41557-020-0481-9
10.1021/ja030145g
10.1016/0927-0256(96)00008-0
10.1002/anie.202015773
10.1002/anie.202108563
10.1021/acs.est.2c07282
10.1002/anie.202217449
10.1038/s41560-021-00899-2
10.1021/acs.inorgchem.6b01702
10.1039/B905974A
10.1201/b17118
10.1016/j.fmre.2023.03.019
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50343-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Proquest-Biological Science
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_72927a905ef54936aad4b49eb3cbe8c7
PMC11247087
39004672
10_1038_s41467_024_50343_8
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China, 2021YFA1201701; Shenzhen Science and Technology Program, JCYJ20220818095601002.
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M722080; 2021M702117; 2022M712049; 2023T160419
  funderid: https://doi.org/10.13039/501100002858
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U22A20402; 22206124; 22306119; 22102100
  funderid: https://doi.org/10.13039/501100001809
– fundername: Shanghai Postdoctoral Excellence Program, 2021182
– fundername: Shanghai Postdoctoral Excellence Program, 2022381
– fundername: Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality)
  grantid: 23ZR1431000; 22ZR1431700
  funderid: https://doi.org/10.13039/100007219
– fundername: National Key Research and Development Program of China, 2022YFA1505000;
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22206124
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22102100
– fundername: Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality)
  grantid: 22ZR1431700
– fundername: Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality)
  grantid: 23ZR1431000
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M712049
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U22A20402
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22306119
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M702117
– fundername: China Postdoctoral Science Foundation
  grantid: 2022M722080
– fundername: China Postdoctoral Science Foundation
  grantid: 2023T160419
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-b040393be28b0aed38eb6842039c80e56c4f0792c69a757f7098b90557c66c7d3
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:26 EDT 2025
Thu Aug 21 18:33:12 EDT 2025
Thu Jul 10 17:55:58 EDT 2025
Wed Aug 13 04:19:44 EDT 2025
Wed Feb 19 02:01:28 EST 2025
Tue Jul 01 02:37:21 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 21 02:37:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-b040393be28b0aed38eb6842039c80e56c4f0792c69a757f7098b90557c66c7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8979-7241
0000-0001-9470-5172
0000-0003-3137-9837
0000-0001-9485-3458
0000-0002-1135-8353
0000-0002-6842-9167
OpenAccessLink https://www.proquest.com/docview/3080007823?pq-origsite=%requestingapplication%
PMID 39004672
PQID 3080007823
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_72927a905ef54936aad4b49eb3cbe8c7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11247087
proquest_miscellaneous_3080635267
proquest_journals_3080007823
pubmed_primary_39004672
crossref_primary_10_1038_s41467_024_50343_8
crossref_citationtrail_10_1038_s41467_024_50343_8
springer_journals_10_1038_s41467_024_50343_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-14
PublicationDateYYYYMMDD 2024-07-14
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nelson (CR46) 2020; 41
Wang (CR23) 2023; 33
Qin (CR34) 2023; 33
Chen (CR1) 2020; 12
Cai (CR13) 2022; 35
Lu, Zhang, Sim, Gao, Lou (CR14) 2021; 60
Shen, Qi, Ge, Jiang, Li (CR32) 2023; 62
Zhang, Liu, Graham, Zhang, Yu (CR25) 2021; 87
Zhao (CR49) 2023; 120
Cao (CR37) 2023; 57
Urbańczyk, Sowa, Simka (CR5) 2016; 46
CR33
Zhang, Feizpoor, Humayun, Wang (CR8) 2024; 4
Geng (CR9) 2021; 6
Chen (CR24) 2021; 60
Gao (CR44) 2023; 14
Dong, Laguna, Liu, Guo, Tarpeh (CR4) 2022; 56
Rollinson, Jones, Dupont, Twigg (CR3) 2011; 4
Zhao (CR10) 2023; 57
Sun (CR41) 2022; 144
Ji (CR36) 2021; 12
Yao (CR30) 2022; 61
Penland, Mizushima, Curran, Quagliano (CR20) 1957; 79
Li (CR6) 2022; 10
Li (CR17) 2021; 60
Qin (CR42) 2023; 23
Liu (CR39) 2023; 62
Maintz, Deringer, Tchougreeff, Dronskowski (CR45) 2016; 37
Suárez, Díaz, Merz (CR16) 2003; 125
Tatarchuk, Medvedev, Li, Tobolovskaya, Klinkova (CR18) 2022; 61
Dronskowski, Blochl (CR47) 1993; 97
Gao (CR38) 2023; 15
CR11
Zheng (CR12) 2023; 62
Kresse, Furthmüller (CR52) 1996; 6
Ma, Ma, Wang, Wang (CR15) 2022; 12
Climent (CR21) 1997; 13
Zhang (CR22) 2019; 131
Overbury (CR26) 2018; 140
Wang, Vijapur, Wang, Botte (CR31) 2017; 42
Sun (CR50) 2022; 67
Kepp (CR28) 2016; 55
Lee (CR2) 2018; 174
CR29
Zemtsova, Oshchepkov, Savinova (CR43) 2023; 13
Han (CR40) 2022; 61
Deringer, Tchougreeff, Dronskowski (CR48) 2011; 115
Xu (CR7) 2023; 33
Hou, Yao, Zhang (CR19) 2023; 81
Zhu (CR35) 2023; 35
Wang (CR27) 2023; 13
Kresse, Furthmüller (CR51) 1996; 54
JS Lee (50343_CR2) 2018; 174
Y Gao (50343_CR38) 2023; 15
X Xu (50343_CR7) 2023; 33
Y Zhu (50343_CR35) 2023; 35
X Zhang (50343_CR8) 2024; 4
AN Rollinson (50343_CR3) 2011; 4
VL Deringer (50343_CR48) 2011; 115
T Wang (50343_CR27) 2023; 13
Z Shen (50343_CR32) 2023; 62
50343_CR11
H Sun (50343_CR41) 2022; 144
L Zhang (50343_CR22) 2019; 131
VM Zemtsova (50343_CR43) 2023; 13
E Urbańczyk (50343_CR5) 2016; 46
G Kresse (50343_CR52) 1996; 6
J Li (50343_CR6) 2022; 10
D Wang (50343_CR31) 2017; 42
J Li (50343_CR17) 2021; 60
H Dong (50343_CR4) 2022; 56
50343_CR29
SH Overbury (50343_CR26) 2018; 140
L Zhao (50343_CR49) 2023; 120
P Wang (50343_CR23) 2023; 33
Y Ma (50343_CR15) 2022; 12
KP Kepp (50343_CR28) 2016; 55
M Cai (50343_CR13) 2022; 35
W Hou (50343_CR19) 2023; 81
S Cao (50343_CR37) 2023; 57
X Gao (50343_CR44) 2023; 14
W Chen (50343_CR24) 2021; 60
K Zhang (50343_CR25) 2021; 87
Z Ji (50343_CR36) 2021; 12
WK Han (50343_CR40) 2022; 61
H Qin (50343_CR34) 2023; 33
Z Liu (50343_CR39) 2023; 62
V Climent (50343_CR21) 1997; 13
50343_CR33
H Sun (50343_CR50) 2022; 67
Y Qin (50343_CR42) 2023; 23
RB Penland (50343_CR20) 1957; 79
S Maintz (50343_CR45) 2016; 37
H Zhao (50343_CR10) 2023; 57
SW Tatarchuk (50343_CR18) 2022; 61
X Zheng (50343_CR12) 2023; 62
D Suárez (50343_CR16) 2003; 125
R Dronskowski (50343_CR47) 1993; 97
XF Lu (50343_CR14) 2021; 60
C Chen (50343_CR1) 2020; 12
R Nelson (50343_CR46) 2020; 41
S-K Geng (50343_CR9) 2021; 6
Y Yao (50343_CR30) 2022; 61
G Kresse (50343_CR51) 1996; 54
References_xml – volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR51
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 61
  start-page: e202209839
  year: 2022
  ident: CR18
  article-title: Nickel-catalyzed urea electrolysis: from nitrite and cyanate as major products to nitrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209839
– volume: 79
  start-page: 1575
  year: 1957
  end-page: 1578
  ident: CR20
  article-title: Infrared absorption spectra of inorganic coördination complexes. X. studies of some metal-urea complexes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01564a014
– volume: 12
  start-page: 337
  year: 2022
  ident: CR15
  article-title: Advanced nickel-based catalysts for urea oxidation reaction: challenges and developments
  publication-title: Catalysts
  doi: 10.3390/catal12030337
– volume: 23
  start-page: 9227
  year: 2023
  end-page: 9234
  ident: CR42
  article-title: Homogeneous vacancies-enhanced orbital hybridization for selective and efficient CO -to-CO electrocatalysis
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01905
– volume: 57
  start-page: 16532
  year: 2023
  end-page: 16540
  ident: CR37
  article-title: Construction of an OCP-ATR-FTIR spectroscopy device to in situ monitor the interfacial reaction of contaminants: competitive adsorption of Cr(VI) and oxalate on hematite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c04475
– volume: 10
  start-page: 9308
  year: 2022
  end-page: 9326
  ident: CR6
  article-title: A review of hetero-structured Ni-based active catalysts for urea electrolysis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00120A
– ident: CR29
– volume: 46
  start-page: 1011
  year: 2016
  end-page: 1029
  ident: CR5
  article-title: Urea removal from aqueous solutions–a review
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-016-0993-6
– volume: 61
  start-page: e202206050
  year: 2022
  ident: CR40
  article-title: Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206050
– volume: 15
  year: 2023
  ident: CR38
  article-title: Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01127-0
– volume: 56
  start-page: 16134
  year: 2022
  end-page: 16143
  ident: CR4
  article-title: Electrified ion exchange enabled by water dissociation in bipolar membranes for nitrogen recovery from source-separated urine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c03771
– volume: 4
  start-page: 100840
  year: 2024
  ident: CR8
  article-title: Urea oxidation reaction electrocatalysts: Correlation of structure, activity, and selectivity
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2023.100840
– volume: 13
  start-page: 4091
  year: 2023
  end-page: 4100
  ident: CR27
  article-title: Interfacial engineering of Ni N/Mo N heterojunctions for urea-assisted hydrogen evolution reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00113
– volume: 120
  year: 2023
  ident: CR49
  article-title: A universal approach to dual-metal-atom catalytic sites confined in carbon dots for various target reactions
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2308828120
– volume: 35
  start-page: 2301549
  year: 2023
  ident: CR35
  article-title: Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH) catalyst for UOR
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301549
– volume: 81
  start-page: 979
  year: 2023
  end-page: 989
  ident: CR19
  article-title: Advances in electrochemical reductive removal of oxyanions in water
  publication-title: Acta Chim. Sinica
  doi: 10.6023/A23040133
– volume: 131
  start-page: 16976
  year: 2019
  end-page: 16981
  ident: CR22
  article-title: A lattice-oxygen-involved reaction pathway to boost urea oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201909832
– volume: 33
  start-page: 2303986
  year: 2023
  ident: CR7
  article-title: Fluorinated Ni-O-C heterogeneous catalyst for efficient urea-assisted hydrogen production
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303986
– ident: CR11
– volume: 67
  start-page: 1763
  year: 2022
  end-page: 1775
  ident: CR50
  article-title: Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.08.008
– volume: 60
  start-page: 26656
  year: 2021
  end-page: 26662
  ident: CR17
  article-title: Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107886
– volume: 87
  start-page: 106217
  year: 2021
  ident: CR25
  article-title: Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106217
– volume: 62
  start-page: e202309319
  year: 2023
  ident: CR39
  article-title: Interfacial water tuning by intermolecular spacing for stable CO electroreduction to C products
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202309319
– volume: 61
  start-page: e202208215
  year: 2022
  ident: CR30
  article-title: Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202208215
– volume: 33
  start-page: 2300687
  year: 2023
  ident: CR23
  article-title: Directed urea-to-nitrite electrooxidation via tuning intermediate adsorption on Co, Ge Co-doped Ni sites
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300687
– volume: 37
  start-page: 1030
  year: 2016
  end-page: 1035
  ident: CR45
  article-title: LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 4
  start-page: 1216
  year: 2011
  end-page: 1224
  ident: CR3
  article-title: Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00705f
– volume: 13
  start-page: 2380
  year: 1997
  end-page: 2389
  ident: CR21
  article-title: On the electrochemical and in-Situ fourier transform infrared spectroscopy characterization of urea adlayers at Pt(100) electrodes
  publication-title: Langmuir
  doi: 10.1021/la961044h
– volume: 33
  start-page: 2209698
  year: 2023
  ident: CR34
  article-title: Synergistic engineering of doping and vacancy in Ni(OH) to boost urea electrooxidation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209698
– volume: 174
  start-page: 1559
  year: 2018
  end-page: 1570
  ident: CR2
  article-title: Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.019
– volume: 144
  start-page: 1174
  year: 2022
  end-page: 1186
  ident: CR41
  article-title: Atomic metal–support interaction enables reconstruction-free dual-site electrocatalyst
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08890
– volume: 35
  start-page: 2209338
  year: 2022
  ident: CR13
  article-title: Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209338
– ident: CR33
– volume: 97
  start-page: 8617
  year: 1993
  end-page: 8624
  ident: CR47
  article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100135a014
– volume: 42
  start-page: 3987
  year: 2017
  end-page: 3993
  ident: CR31
  article-title: NiCo O nanosheets grown on current collectors as binder-free electrodes for hydrogen production via urea electrolysis
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.048
– volume: 115
  start-page: 5461
  year: 2011
  end-page: 5466
  ident: CR48
  article-title: Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
– volume: 14
  year: 2023
  ident: CR44
  article-title: Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41588-w
– volume: 13
  start-page: 13466
  year: 2023
  end-page: 13473
  ident: CR43
  article-title: Unveiling the role of iron in the nickel-catalyzed urea oxidation reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03126
– volume: 12
  start-page: 569
  year: 2021
  end-page: 579
  ident: CR36
  article-title: Pathway manipulation via Ni, Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05190
– volume: 140
  start-page: 10305
  year: 2018
  end-page: 10314
  ident: CR26
  article-title: Complexity of intercalation in MXenes: destabilization of urea by two-dimensional titanium carbide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05913
– volume: 62
  start-page: 8736
  year: 2023
  end-page: 8743
  ident: CR32
  article-title: Highly selective electrooxidation of urea to nitrogen on copper/nickel boride interface under alkaline condition
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c00802
– volume: 41
  start-page: 1931
  year: 2020
  end-page: 1940
  ident: CR46
  article-title: LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26353
– volume: 12
  start-page: 717
  year: 2020
  end-page: 724
  ident: CR1
  article-title: Coupling N and CO in H O to synthesize urea under ambient conditions
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0481-9
– volume: 125
  start-page: 15324
  year: 2003
  end-page: 15337
  ident: CR16
  article-title: Ureases:  quantum chemical calculations on cluster models
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030145g
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR52
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 60
  start-page: 7297
  year: 2021
  end-page: 7307
  ident: CR24
  article-title: Unveiling the electrooxidation of urea: intramolecular coupling of the N−N bond
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015773
– volume: 60
  start-page: 22885
  year: 2021
  end-page: 22891
  ident: CR14
  article-title: Phosphorized CoNi S yolk–shell spheres for highly efficient hydrogen production via water and urea electrolysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108563
– volume: 57
  start-page: 2939
  year: 2023
  end-page: 2948
  ident: CR10
  article-title: Facile, controllable, and ultrathin NiFe-LDH in situ grown on a Ni foam by ultrasonic self-etching for highly efficient urine conversion
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c07282
– volume: 62
  start-page: e202217449
  year: 2023
  ident: CR12
  article-title: Dual-atom support boosts nickel-catalyzed urea electrooxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202217449
– volume: 6
  start-page: 904
  year: 2021
  end-page: 912
  ident: CR9
  article-title: Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00899-2
– volume: 55
  start-page: 9461
  year: 2016
  end-page: 9470
  ident: CR28
  article-title: A quantitative scale of oxophilicity and thiophilicity
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01702
– ident: 50343_CR11
  doi: 10.1039/B905974A
– volume: 56
  start-page: 16134
  year: 2022
  ident: 50343_CR4
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c03771
– volume: 33
  start-page: 2300687
  year: 2023
  ident: 50343_CR23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202300687
– volume: 12
  start-page: 337
  year: 2022
  ident: 50343_CR15
  publication-title: Catalysts
  doi: 10.3390/catal12030337
– volume: 87
  start-page: 106217
  year: 2021
  ident: 50343_CR25
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106217
– volume: 55
  start-page: 9461
  year: 2016
  ident: 50343_CR28
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b01702
– volume: 60
  start-page: 7297
  year: 2021
  ident: 50343_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202015773
– volume: 35
  start-page: 2209338
  year: 2022
  ident: 50343_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209338
– volume: 15
  year: 2023
  ident: 50343_CR38
  publication-title: Nano Micro Lett.
  doi: 10.1007/s40820-023-01127-0
– volume: 60
  start-page: 22885
  year: 2021
  ident: 50343_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202108563
– volume: 13
  start-page: 2380
  year: 1997
  ident: 50343_CR21
  publication-title: Langmuir
  doi: 10.1021/la961044h
– volume: 97
  start-page: 8617
  year: 1993
  ident: 50343_CR47
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100135a014
– ident: 50343_CR29
  doi: 10.1201/b17118
– volume: 125
  start-page: 15324
  year: 2003
  ident: 50343_CR16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja030145g
– volume: 6
  start-page: 904
  year: 2021
  ident: 50343_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00899-2
– volume: 81
  start-page: 979
  year: 2023
  ident: 50343_CR19
  publication-title: Acta Chim. Sinica
  doi: 10.6023/A23040133
– volume: 57
  start-page: 16532
  year: 2023
  ident: 50343_CR37
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c04475
– volume: 13
  start-page: 13466
  year: 2023
  ident: 50343_CR43
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c03126
– volume: 23
  start-page: 9227
  year: 2023
  ident: 50343_CR42
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c01905
– volume: 54
  start-page: 11169
  year: 1996
  ident: 50343_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  start-page: 9308
  year: 2022
  ident: 50343_CR6
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA00120A
– volume: 57
  start-page: 2939
  year: 2023
  ident: 50343_CR10
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c07282
– volume: 62
  start-page: 8736
  year: 2023
  ident: 50343_CR32
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c00802
– volume: 120
  year: 2023
  ident: 50343_CR49
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2308828120
– volume: 33
  start-page: 2209698
  year: 2023
  ident: 50343_CR34
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202209698
– volume: 35
  start-page: 2301549
  year: 2023
  ident: 50343_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202301549
– volume: 144
  start-page: 1174
  year: 2022
  ident: 50343_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08890
– volume: 37
  start-page: 1030
  year: 2016
  ident: 50343_CR45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.24300
– volume: 61
  start-page: e202206050
  year: 2022
  ident: 50343_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206050
– volume: 4
  start-page: 100840
  year: 2024
  ident: 50343_CR8
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2023.100840
– volume: 67
  start-page: 1763
  year: 2022
  ident: 50343_CR50
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2022.08.008
– volume: 13
  start-page: 4091
  year: 2023
  ident: 50343_CR27
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c00113
– volume: 62
  start-page: e202309319
  year: 2023
  ident: 50343_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202309319
– volume: 33
  start-page: 2303986
  year: 2023
  ident: 50343_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202303986
– volume: 41
  start-page: 1931
  year: 2020
  ident: 50343_CR46
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.26353
– volume: 62
  start-page: e202217449
  year: 2023
  ident: 50343_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202217449
– volume: 4
  start-page: 1216
  year: 2011
  ident: 50343_CR3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00705f
– volume: 131
  start-page: 16976
  year: 2019
  ident: 50343_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201909832
– volume: 140
  start-page: 10305
  year: 2018
  ident: 50343_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05913
– volume: 79
  start-page: 1575
  year: 1957
  ident: 50343_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01564a014
– volume: 12
  start-page: 717
  year: 2020
  ident: 50343_CR1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-020-0481-9
– volume: 61
  start-page: e202209839
  year: 2022
  ident: 50343_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202209839
– volume: 61
  start-page: e202208215
  year: 2022
  ident: 50343_CR30
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202208215
– volume: 115
  start-page: 5461
  year: 2011
  ident: 50343_CR48
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp202489s
– volume: 174
  start-page: 1559
  year: 2018
  ident: 50343_CR2
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.019
– volume: 42
  start-page: 3987
  year: 2017
  ident: 50343_CR31
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.048
– volume: 12
  start-page: 569
  year: 2021
  ident: 50343_CR36
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05190
– volume: 60
  start-page: 26656
  year: 2021
  ident: 50343_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202107886
– volume: 6
  start-page: 15
  year: 1996
  ident: 50343_CR52
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 46
  start-page: 1011
  year: 2016
  ident: 50343_CR5
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-016-0993-6
– volume: 14
  year: 2023
  ident: 50343_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41588-w
– ident: 50343_CR33
  doi: 10.1016/j.fmre.2023.03.019
SSID ssj0000391844
Score 2.6236098
Snippet Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide...
Electrochemical urea oxidation offers a sustainable avenue for H production and wastewater denitrification within the water-energy nexus; however, its wide...
Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide...
Abstract Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5918
SubjectTerms 119/118
140/133
140/146
140/58
639/301/299/886
639/638/161/886
639/638/169/896
Active sites
Amino groups
Asymmetry
Carbonyl compounds
Carbonyls
Cyanates
Denitrification
Electrocatalysts
Electrochemistry
Evolution
Humanities and Social Sciences
Hydrogen evolution
Hydrogen production
multidisciplinary
Nitrites
Oxidation
Photovoltaic cells
Photovoltaics
Science
Science (multidisciplinary)
Selectivity
Solar energy
Urea
Wastewater
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-lIPgiWquutiVC3zQ0t_l-VGkpgqUPLfQt5Gtp4dgtvTvx_nsnyd7Zs1VffE2y2TCZycxkJr9B6FA50UndeRK7VhFuQiQ-MUEiqEPQz9GJklX57UyeXvKvV-LqXqmvnBNW4YEr4Y7A-GuVM1SkDlwZJp2L3HMDPmDwSYfyjhx03j1nqpzBzIDrwsdXMpTpoxkvZwKoJCIo44zoDU1UAPsfszIfJkv-FjEtiujkOXo2WpD4U135C7SV-h30pNaUXL5E5zlzY7rEs1LgBs4ynPPO8VjuZvhxU4so4TAsbqcp4nwRi1MBkoBf4-tlvBuAqXD6PjLlLro8Ob74ckrGsgkkCD6ZEw9yyQzzqdWeuhSZTj5H26AxaJqEDLyjyrRBGqeE6hQ12puMxRWkDCqyV2i7H_r0BmHojknHNupJxztuHOVcBc9kCjFOomvQZEVCG0ZM8VzaYmpLbJtpW8lugey2kN3qBn1Yf3NbETX-Ovpz3pn1yIyGXRqAR-zII_ZfPNKgvdW-2lFEZ5ZlWzkbSKxB79fdIFw5YuL6NCzqGJkrCMAUrysbrFfCTL5bUG2D9AaDbCx1s6e_uS4A3mDjckU1TPpxxUu_1vVnWrz9H7R4h562WQgyNijfQ9vzu0XaB7tq7g-KCP0ElOcetQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuiHdDCzISNzBkY8ePA0KAqCqkIg6s1JvlV2ilVVL2gbr_vmMnWbSw9Bo_Yo9nPDMeez6AV9LWjVCNo6GpJOXaB-oiq2lAdYj6Odg636o8_SZOpvzrWX22ByPc0UDAxU7XLuFJTeezt1e_1h9Q4N_3T8bVuwXP4o7ahtYl44yqW3AbNZNMgno6mPt5Z2YaHRo-vJ3Z3XRLP-U0_rtsz3-vUP4VR83q6fg-3BvsSvKxZ4QHsBfbh3CnR5pcP4Lv6T7HbE0WGfYGdziSbqOTAQSnu7rooZWI71aXsxhIOp4lMaeXwF-T83WYd8hqJP4eWPUxTI-__Ph8QgcwBeprPllSh9LKNHOxUq60MTAVXYrB4UevylgLz5tS6soLbWUtG1lq5XTK0OWF8DKwJ7Dfdm08AILFIapQBTVpeMO1LTmX3jERfQiTYAuYjCQ0fsg0ngAvZiZHvJkyPdkNkt1kshtVwOtNm8s-z8aNtT-lldnUTDmy84du_tMMImfQbaikxSnEBp1gJqwN3HEdHfMuKi8LOBrX1Yx8Z1iyoJPZxAp4uSlGkUtxFNvGbtXXEQlXALt42rPBZiRMpxMHWRWgthhka6jbJe3FeU7rjZYvl6XCTt-MvPRnXP-nxbObp3EId6vE3ikXKD-C_eV8FZ-jHbV0L7JwXANQDRjE
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfClWK9bq0TwTYN7NtlcHvVgKYLig4W-hdzWFg675Vyk5983k73I0Sr0NbfNTmYyk8zkG4C30taNUI2joakk5doH6iKraUjqMOnnYOscVfn1mzg941_O6_M9qMa3MDloP0Na5m16jA77sOJZpJNGoXXJOKPqHtxH6Hbk6rmYT_cqiHiuOB_ex5RM3dJ1RwdlqP7b7Mu_wyT_8JVmFXTyCA4G25F87Gd7CHuxfQwP-myS2yfwHWM2Fluyyqlt0i5GMOKcDIluuuvLPn0S8d3mahEDwStYEjOERPo0udiGZZfYicRfAzs-hbOTzz_mp3RImEB9zWdr6pJEMs1crJQrbQxMRYd-tlToVRlr4XlTSl15oa2sZSNLrZxGFC4vhJeBPYP9tmvjCyCpOkQVqqBmDW-4tiXn0jsmog9hFmwBs5GExg9o4pjUYmGyV5sp05PdJLKbTHajCng39bnqsTT-2_oTrszUEnGwc0G3_GkGvjDpaFBJm34hNumgy4S1gTuuo2PeReVlAcfjuppBOFeGoZWMphEr4M1UncQKfSW2jd2mbyMwd0Aa4nnPBtNMmMZbBVkVoHYYZGequzXt5UWG7k7WLZelSoO-H3np97z-TYujuzV_CQ8rZHfE_-THsL9ebuKrZDut3essLDf4txNs
  priority: 102
  providerName: Springer Nature
Title Highly selective urea electrooxidation coupled with efficient hydrogen evolution
URI https://link.springer.com/article/10.1038/s41467-024-50343-8
https://www.ncbi.nlm.nih.gov/pubmed/39004672
https://www.proquest.com/docview/3080007823
https://www.proquest.com/docview/3080635267
https://pubmed.ncbi.nlm.nih.gov/PMC11247087
https://doaj.org/article/72927a905ef54936aad4b49eb3cbe8c7
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUP9raJOpYsyU8jDc1KoKVsK-RNWB9eC8HO8jGW_353suKSffTFBkm25dOd7nx3_h0h72VV1ELVhro6l5SX1lHjWUEdqEPQz64qQlbl-YU4u-LTWTGLDrdVTKvc7Ylho3atRR_5MUPTBvUZ-7T4QbFqFEZXYwmN--QQocswpUvOZO9jQfRzxXn8VyZj6njFw84AiokWGeOMqj19FGD7_2Vr_p0y-UfcNKijyWPyKNqR6ahb-Cfknm-ekgddZcntM3KJ-RvzbboKZW5gR0sx-zyNRW_aXzddKaXUtpvF3LsU3bGpD3AS8Oj0euuWLbBW6n9G1nxOrian38ZnNBZPoLbgwzU1IJ2sZMbnymSVd0x5gzE3aLQq84WwvM5kmVtRVrKQtcxKZUpE5LJCWOnYC3LQtI1_RVLodl653KlhzWteVhnn0homvHVu6KqEDHck1DYii2OBi7kOEW6mdEd2DWTXgexaJeRDf82iw9W4c_QJrkw_EjGxQ0O7_K6jiGn4TMhlBa_ga_joZaKqHDe89IZZ45WVCTnarauOgrrSt2yVkHd9N4gYxk2qxrebbozAOgJwi5cdG_QzYSV6GGSeELXHIHtT3e9pbq4DjDdYulxmCm76ccdLt_P6Py1e3_0ab8jDHNkbsT_5ETlYLzf-LdhNazMIwgFHNfk8IIej0fTrFM4npxeXX6B1LMaD4JGA4zlXvwFmdhxI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi2BAkaCE1jNxE7sHBBiq6Z0EYdWmpvxFlpplAyzAPOn-I285yRTDUtvvcaOYz-_zX4v7yPkuTR5VajKMl9lkonSeWYDz5kHcwj22Zs8ZlUeHhXDE_FplI82yK_-XxhMq-x1YlTUvnF4R77D0bVBe8bfTL4xRI3C6GoPodGyxX5Y_oAj2-z13gfY3xdZtvvx-P2QdagCzOViMGcW2JaX3IZM2dQEz1WwGIyCh06lIS-cqFJZZq4ojcxlJdNS2RJLVbmicNJzGPcKuQqGN0WJkiO5utPBautKiO7fnJSrnZmImggMIctTLjhTa_YvwgT8y7f9O0XzjzhtNH-7t8jNzm-lb1tGu002Qn2HXGuRLJd3yWfMFxkv6SzC6oAGpZjtTjuQnebnWQvdRF2zmIyDp3j9S0MsXwGfpqdLP22AlWn43onCPXJyKWS9Tzbrpg4PCIVmH5TPvBpUohKlSYWQzvIiOO8H3iRk0JNQu66SOQJqjHWMqHOlW7JrILuOZNcqIS9X70zaOh4X9n6HO7PqiTW444Nm-lV3Iq3hWJJJA0sIFRyyeWGMF1aUwXJng3IyIdv9vupOMcz0ORsn5NmqGUQa4zSmDs2i7VMgbgEMsdWywWomvMQbDZklRK0xyNpU11vqs9NYNhw8ayFTBYO-6nnpfF7_p8XDi5fxlFwfHh8e6IO9o_1H5EaGrI51R8U22ZxPF-Ex-Gxz-yQKCiVfLlsyfwNZZVDX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNZmYyd2DggBZdVSqHqg0t6MX6GVVsmyD2D_Gr-OGSfZann01mvsOPZ4XvZM5iPkmTR5VajKMl9lkonSeWYDz5kHcwj22Zs8ZlV-Oiz2jsWHcT7eIr_6f2EwrbLXiVFR-8bhHfmAo2uD9owPqi4t4mh39Hr6jSGCFEZaeziNlkUOwuoHHN_mr_Z3Ya-fZ9no_ed3e6xDGGAuF8MFs8DCvOQ2ZMqmJniugsXAFDx0Kg154USVyjJzRWlkLiuZlsqWWLbKFYWTnsO4l8hlCctCGZNjub7fwcrrSojuP52Uq8FcRK0ERpHlKRecqQ1bGCED_uXn_p2u-UfMNprC0Q1yvfNh6ZuW6W6SrVDfIldaVMvVbXKEuSOTFZ1HiB3QphQz32kHuNP8PG1hnKhrltNJ8BSvgmmIpSzg0_Rk5WcNsDUN3zuxuEOOL4Ssd8l23dThPqHQ7IPymVfDSlSiNKkQ0lleBOf90JuEDHsSatdVNUdwjYmO0XWudEt2DWTXkexaJeTF-p1pW9Pj3N5vcWfWPbEed3zQzL7qTrw1HFEyaWAJoYIDNy-M8cKKMljubFBOJmSn31fdKYm5PmPphDxdN4N4Y8zG1KFZtn0KxDCAIe61bLCeCS_xdkNmCVEbDLIx1c2W-vQklhAHL1vIVMGgL3teOpvX_2nx4PxlPCFXQSb1x_3Dg4fkWoacjiVIxQ7ZXsyW4RG4bwv7OMoJJV8uWjB_Ay97VQ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+selective+urea+electrooxidation+coupled+with+efficient+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Zhan%2C+Guangming&rft.au=Hu%2C+Lufa&rft.au=Li%2C+Hao&rft.au=Dai%2C+Jie&rft.date=2024-07-14&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5918&rft_id=info:doi/10.1038%2Fs41467-024-50343-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon