Highly selective urea electrooxidation coupled with efficient hydrogen evolution
Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N 2 . Herein we demonstrate that atomically isolated...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5918 - 10 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrochemical urea oxidation offers a sustainable avenue for H
2
production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N
2
. Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N
2
selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N
2
selectivity below 55%, and also deliver a H
2
evolution rate of 22.0 mL h
–1
when coupled to a Pt counter cathode under 213 mA cm
–2
at 1.40 V
RHE
. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N
2
evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H
2
production.
Urea electrooxidation often produces harmful cyanates and nitrites instead of N2, limiting its use in wastewater denitrification. Here, the authors develop an asymmetric Ni–O–Ti catalytic sites on Ti foam that reduce these byproducts, achieve 99% N2 selectivity, and boost H2 evolution. |
---|---|
AbstractList | Electrochemical urea oxidation offers a sustainable avenue for H
2
production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N
2
. Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N
2
selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N
2
selectivity below 55%, and also deliver a H
2
evolution rate of 22.0 mL h
–1
when coupled to a Pt counter cathode under 213 mA cm
–2
at 1.40 V
RHE
. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N
2
evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H
2
production.
Urea electrooxidation often produces harmful cyanates and nitrites instead of N2, limiting its use in wastewater denitrification. Here, the authors develop an asymmetric Ni–O–Ti catalytic sites on Ti foam that reduce these byproducts, achieve 99% N2 selectivity, and boost H2 evolution. Abstract Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h–1 when coupled to a Pt counter cathode under 213 mA cm–2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production. Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h–1 when coupled to a Pt counter cathode under 213 mA cm–2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.Urea electrooxidation often produces harmful cyanates and nitrites instead of N2, limiting its use in wastewater denitrification. Here, the authors develop an asymmetric Ni–O–Ti catalytic sites on Ti foam that reduce these byproducts, achieve 99% N2 selectivity, and boost H2 evolution. Electrochemical urea oxidation offers a sustainable avenue for H production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N . Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N selectivity below 55%, and also deliver a H evolution rate of 22.0 mL h when coupled to a Pt counter cathode under 213 mA cm at 1.40 V . These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H production. Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h-1 when coupled to a Pt counter cathode under 213 mA cm-2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production.Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N2. Herein we demonstrate that atomically isolated asymmetric Ni-O-Ti sites on Ti foam anode achieve a N2 selectivity of 99%, surpassing the connected symmetric Ni-O-Ni counterparts in documented Ni-based electrocatalysts with N2 selectivity below 55%, and also deliver a H2 evolution rate of 22.0 mL h-1 when coupled to a Pt counter cathode under 213 mA cm-2 at 1.40 VRHE. These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N-N coupling towards N2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H2 production. Electrochemical urea oxidation offers a sustainable avenue for H 2 production and wastewater denitrification within the water-energy nexus; however, its wide application is limited by detrimental cyanate or nitrite production instead of innocuous N 2 . Herein we demonstrate that atomically isolated asymmetric Ni–O–Ti sites on Ti foam anode achieve a N 2 selectivity of 99%, surpassing the connected symmetric Ni–O–Ni counterparts in documented Ni-based electrocatalysts with N 2 selectivity below 55%, and also deliver a H 2 evolution rate of 22.0 mL h –1 when coupled to a Pt counter cathode under 213 mA cm –2 at 1.40 V RHE . These asymmetric sites, featuring oxygenophilic Ti adjacent to Ni, favor interaction with the carbonyl over amino groups in urea, thus preventing premature resonant C⎓N bond breakage before intramolecular N–N coupling towards N 2 evolution. A prototype device powered by a commercial Si photovoltaic cell is further developed for solar-powered on-site urine processing and decentralized H 2 production. |
ArticleNumber | 5918 |
Author | Wang, Jiaxian Zhang, Lizhi Dai, Jie Hou, Wei Shi, Yanbiao Yao, Yancai Li, Hao Zheng, Qian Zhan, Guangming Zhao, Long Zou, Xingyue Hu, Lufa |
Author_xml | – sequence: 1 givenname: Guangming orcidid: 0000-0001-9485-3458 surname: Zhan fullname: Zhan, Guangming organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 2 givenname: Lufa surname: Hu fullname: Hu, Lufa organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 3 givenname: Hao orcidid: 0000-0002-1135-8353 surname: Li fullname: Li, Hao email: hao_li@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 4 givenname: Jie orcidid: 0000-0001-9470-5172 surname: Dai fullname: Dai, Jie organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 5 givenname: Long orcidid: 0000-0002-8979-7241 surname: Zhao fullname: Zhao, Long organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 6 givenname: Qian surname: Zheng fullname: Zheng, Qian organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 7 givenname: Xingyue surname: Zou fullname: Zou, Xingyue organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 8 givenname: Yanbiao orcidid: 0000-0003-3137-9837 surname: Shi fullname: Shi, Yanbiao organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 9 givenname: Jiaxian surname: Wang fullname: Wang, Jiaxian organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 10 givenname: Wei surname: Hou fullname: Hou, Wei organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 11 givenname: Yancai surname: Yao fullname: Yao, Yancai email: yyancai@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University – sequence: 12 givenname: Lizhi orcidid: 0000-0002-6842-9167 surname: Zhang fullname: Zhang, Lizhi email: zhanglizhi@sjtu.edu.cn organization: School of Environmental Science and Engineering, Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39004672$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxIVL4PkjsXNCqAJaqRIc4Gw5zkvWK2-82MnC_nu8m1LaHuqL7eeZ8Tx7XpKTMYxIyGsK7ylw9SEJKmpZAhNlBVzwUj0jZwwELalk_OTe-pRcpLSGPHhDlRAvyClvADKbnZHvV25Y-X2R0KOd3A6LOaIpjrsYwh_XmcmFsbBh3nrsit9uWhXY9846HKdite9iGHAscBf8fEC-Is974xNe3M7n5OeXzz8ur8qbb1-vLz_dlLYSdCpbENkOb5GpFgx2XGFbK8Fy0SrAqraiB9kwWzdGVrKX0Ki2gaqStq6t7Pg5uV50u2DWehvdxsS9DsbpYyHEQZs4OetRS9YwaTIZ-0o0vDamE61osOW2RWVl1vq4aG3ndoOdzZ1F4x-IPjwZ3UoPYacpZUKCOii8u1WI4deMadIblyx6b0YMc9IcFNS8YvUB-vYRdB3mOOa3OqIApGI8o97ct3Tn5d_PZQBbADaGlCL2dxAK-pAQvSRE54ToY0K0yiT1iGTddPzg3JbzT1P5Qk35nnHA-N_2E6y_9RTPcg |
CitedBy_id | crossref_primary_10_1039_D5CC00206K crossref_primary_10_1002_adfm_202501170 crossref_primary_10_1002_ange_202423457 crossref_primary_10_1002_adfm_202421136 crossref_primary_10_1002_adma_202415269 crossref_primary_10_1002_ange_202424014 crossref_primary_10_1039_D4NR04915B crossref_primary_10_1002_anie_202423457 crossref_primary_10_1016_j_seppur_2024_130989 crossref_primary_10_1016_j_scib_2024_09_033 crossref_primary_10_1002_anie_202424014 crossref_primary_10_1016_j_cej_2024_158950 crossref_primary_10_1016_j_heliyon_2025_e43103 crossref_primary_10_1016_j_rineng_2024_102959 crossref_primary_10_1002_cjoc_202400442 crossref_primary_10_1002_smll_202410848 crossref_primary_10_1016_j_apcatb_2024_124718 crossref_primary_10_1039_D4IM00163J crossref_primary_10_1002_advs_202411964 crossref_primary_10_1002_smll_202410044 crossref_primary_10_3390_catal14120937 crossref_primary_10_1002_adma_202412173 crossref_primary_10_1038_s41467_025_57560_9 crossref_primary_10_1016_j_apcatb_2025_125158 |
Cites_doi | 10.1103/PhysRevB.54.11169 10.1002/anie.202209839 10.1021/ja01564a014 10.3390/catal12030337 10.1021/acs.nanolett.3c01905 10.1021/acs.est.3c04475 10.1039/D2TA00120A 10.1007/s10800-016-0993-6 10.1002/anie.202206050 10.1007/s40820-023-01127-0 10.1021/acs.est.2c03771 10.1016/j.checat.2023.100840 10.1021/acscatal.3c00113 10.1073/pnas.2308828120 10.1002/adma.202301549 10.6023/A23040133 10.1002/ange.201909832 10.1002/adfm.202303986 10.1016/j.scib.2022.08.008 10.1002/anie.202107886 10.1016/j.nanoen.2021.106217 10.1002/anie.202309319 10.1002/anie.202208215 10.1002/adfm.202300687 10.1002/jcc.24300 10.1039/c0ee00705f 10.1021/la961044h 10.1002/adfm.202209698 10.1016/j.cell.2018.07.019 10.1021/jacs.1c08890 10.1002/adma.202209338 10.1021/j100135a014 10.1016/j.ijhydene.2016.11.048 10.1021/jp202489s 10.1038/s41467-023-41588-w 10.1021/acscatal.3c03126 10.1021/acscatal.1c05190 10.1021/jacs.8b05913 10.1021/acs.iecr.3c00802 10.1002/jcc.26353 10.1038/s41557-020-0481-9 10.1021/ja030145g 10.1016/0927-0256(96)00008-0 10.1002/anie.202015773 10.1002/anie.202108563 10.1021/acs.est.2c07282 10.1002/anie.202217449 10.1038/s41560-021-00899-2 10.1021/acs.inorgchem.6b01702 10.1039/B905974A 10.1201/b17118 10.1016/j.fmre.2023.03.019 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-50343-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Proquest-Biological Science Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_72927a905ef54936aad4b49eb3cbe8c7 PMC11247087 39004672 10_1038_s41467_024_50343_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China, 2021YFA1201701; Shenzhen Science and Technology Program, JCYJ20220818095601002. – fundername: China Postdoctoral Science Foundation grantid: 2022M722080; 2021M702117; 2022M712049; 2023T160419 funderid: https://doi.org/10.13039/501100002858 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U22A20402; 22206124; 22306119; 22102100 funderid: https://doi.org/10.13039/501100001809 – fundername: Shanghai Postdoctoral Excellence Program, 2021182 – fundername: Shanghai Postdoctoral Excellence Program, 2022381 – fundername: Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality) grantid: 23ZR1431000; 22ZR1431700 funderid: https://doi.org/10.13039/100007219 – fundername: National Key Research and Development Program of China, 2022YFA1505000; – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22206124 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22102100 – fundername: Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality) grantid: 22ZR1431700 – fundername: Natural Science Foundation of Shanghai (Natural Science Foundation of Shanghai Municipality) grantid: 23ZR1431000 – fundername: China Postdoctoral Science Foundation grantid: 2022M712049 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U22A20402 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22306119 – fundername: China Postdoctoral Science Foundation grantid: 2021M702117 – fundername: China Postdoctoral Science Foundation grantid: 2022M722080 – fundername: China Postdoctoral Science Foundation grantid: 2023T160419 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-b040393be28b0aed38eb6842039c80e56c4f0792c69a757f7098b90557c66c7d3 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Thu Aug 21 18:33:12 EDT 2025 Thu Jul 10 17:55:58 EDT 2025 Wed Aug 13 04:19:44 EDT 2025 Wed Feb 19 02:01:28 EST 2025 Tue Jul 01 02:37:21 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 21 02:37:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-b040393be28b0aed38eb6842039c80e56c4f0792c69a757f7098b90557c66c7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8979-7241 0000-0001-9470-5172 0000-0003-3137-9837 0000-0001-9485-3458 0000-0002-1135-8353 0000-0002-6842-9167 |
OpenAccessLink | https://www.proquest.com/docview/3080007823?pq-origsite=%requestingapplication% |
PMID | 39004672 |
PQID | 3080007823 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_72927a905ef54936aad4b49eb3cbe8c7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11247087 proquest_miscellaneous_3080635267 proquest_journals_3080007823 pubmed_primary_39004672 crossref_primary_10_1038_s41467_024_50343_8 crossref_citationtrail_10_1038_s41467_024_50343_8 springer_journals_10_1038_s41467_024_50343_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-14 |
PublicationDateYYYYMMDD | 2024-07-14 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Nelson (CR46) 2020; 41 Wang (CR23) 2023; 33 Qin (CR34) 2023; 33 Chen (CR1) 2020; 12 Cai (CR13) 2022; 35 Lu, Zhang, Sim, Gao, Lou (CR14) 2021; 60 Shen, Qi, Ge, Jiang, Li (CR32) 2023; 62 Zhang, Liu, Graham, Zhang, Yu (CR25) 2021; 87 Zhao (CR49) 2023; 120 Cao (CR37) 2023; 57 Urbańczyk, Sowa, Simka (CR5) 2016; 46 CR33 Zhang, Feizpoor, Humayun, Wang (CR8) 2024; 4 Geng (CR9) 2021; 6 Chen (CR24) 2021; 60 Gao (CR44) 2023; 14 Dong, Laguna, Liu, Guo, Tarpeh (CR4) 2022; 56 Rollinson, Jones, Dupont, Twigg (CR3) 2011; 4 Zhao (CR10) 2023; 57 Sun (CR41) 2022; 144 Ji (CR36) 2021; 12 Yao (CR30) 2022; 61 Penland, Mizushima, Curran, Quagliano (CR20) 1957; 79 Li (CR6) 2022; 10 Li (CR17) 2021; 60 Qin (CR42) 2023; 23 Liu (CR39) 2023; 62 Maintz, Deringer, Tchougreeff, Dronskowski (CR45) 2016; 37 Suárez, Díaz, Merz (CR16) 2003; 125 Tatarchuk, Medvedev, Li, Tobolovskaya, Klinkova (CR18) 2022; 61 Dronskowski, Blochl (CR47) 1993; 97 Gao (CR38) 2023; 15 CR11 Zheng (CR12) 2023; 62 Kresse, Furthmüller (CR52) 1996; 6 Ma, Ma, Wang, Wang (CR15) 2022; 12 Climent (CR21) 1997; 13 Zhang (CR22) 2019; 131 Overbury (CR26) 2018; 140 Wang, Vijapur, Wang, Botte (CR31) 2017; 42 Sun (CR50) 2022; 67 Kepp (CR28) 2016; 55 Lee (CR2) 2018; 174 CR29 Zemtsova, Oshchepkov, Savinova (CR43) 2023; 13 Han (CR40) 2022; 61 Deringer, Tchougreeff, Dronskowski (CR48) 2011; 115 Xu (CR7) 2023; 33 Hou, Yao, Zhang (CR19) 2023; 81 Zhu (CR35) 2023; 35 Wang (CR27) 2023; 13 Kresse, Furthmüller (CR51) 1996; 54 JS Lee (50343_CR2) 2018; 174 Y Gao (50343_CR38) 2023; 15 X Xu (50343_CR7) 2023; 33 Y Zhu (50343_CR35) 2023; 35 X Zhang (50343_CR8) 2024; 4 AN Rollinson (50343_CR3) 2011; 4 VL Deringer (50343_CR48) 2011; 115 T Wang (50343_CR27) 2023; 13 Z Shen (50343_CR32) 2023; 62 50343_CR11 H Sun (50343_CR41) 2022; 144 L Zhang (50343_CR22) 2019; 131 VM Zemtsova (50343_CR43) 2023; 13 E Urbańczyk (50343_CR5) 2016; 46 G Kresse (50343_CR52) 1996; 6 J Li (50343_CR6) 2022; 10 D Wang (50343_CR31) 2017; 42 J Li (50343_CR17) 2021; 60 H Dong (50343_CR4) 2022; 56 50343_CR29 SH Overbury (50343_CR26) 2018; 140 L Zhao (50343_CR49) 2023; 120 P Wang (50343_CR23) 2023; 33 Y Ma (50343_CR15) 2022; 12 KP Kepp (50343_CR28) 2016; 55 M Cai (50343_CR13) 2022; 35 W Hou (50343_CR19) 2023; 81 S Cao (50343_CR37) 2023; 57 X Gao (50343_CR44) 2023; 14 W Chen (50343_CR24) 2021; 60 K Zhang (50343_CR25) 2021; 87 Z Ji (50343_CR36) 2021; 12 WK Han (50343_CR40) 2022; 61 H Qin (50343_CR34) 2023; 33 Z Liu (50343_CR39) 2023; 62 V Climent (50343_CR21) 1997; 13 50343_CR33 H Sun (50343_CR50) 2022; 67 Y Qin (50343_CR42) 2023; 23 RB Penland (50343_CR20) 1957; 79 S Maintz (50343_CR45) 2016; 37 H Zhao (50343_CR10) 2023; 57 SW Tatarchuk (50343_CR18) 2022; 61 X Zheng (50343_CR12) 2023; 62 D Suárez (50343_CR16) 2003; 125 R Dronskowski (50343_CR47) 1993; 97 XF Lu (50343_CR14) 2021; 60 C Chen (50343_CR1) 2020; 12 R Nelson (50343_CR46) 2020; 41 S-K Geng (50343_CR9) 2021; 6 Y Yao (50343_CR30) 2022; 61 G Kresse (50343_CR51) 1996; 54 |
References_xml | – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR51 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 61 start-page: e202209839 year: 2022 ident: CR18 article-title: Nickel-catalyzed urea electrolysis: from nitrite and cyanate as major products to nitrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209839 – volume: 79 start-page: 1575 year: 1957 end-page: 1578 ident: CR20 article-title: Infrared absorption spectra of inorganic coördination complexes. X. studies of some metal-urea complexes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01564a014 – volume: 12 start-page: 337 year: 2022 ident: CR15 article-title: Advanced nickel-based catalysts for urea oxidation reaction: challenges and developments publication-title: Catalysts doi: 10.3390/catal12030337 – volume: 23 start-page: 9227 year: 2023 end-page: 9234 ident: CR42 article-title: Homogeneous vacancies-enhanced orbital hybridization for selective and efficient CO -to-CO electrocatalysis publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c01905 – volume: 57 start-page: 16532 year: 2023 end-page: 16540 ident: CR37 article-title: Construction of an OCP-ATR-FTIR spectroscopy device to in situ monitor the interfacial reaction of contaminants: competitive adsorption of Cr(VI) and oxalate on hematite publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c04475 – volume: 10 start-page: 9308 year: 2022 end-page: 9326 ident: CR6 article-title: A review of hetero-structured Ni-based active catalysts for urea electrolysis publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00120A – ident: CR29 – volume: 46 start-page: 1011 year: 2016 end-page: 1029 ident: CR5 article-title: Urea removal from aqueous solutions–a review publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-016-0993-6 – volume: 61 start-page: e202206050 year: 2022 ident: CR40 article-title: Activating lattice oxygen in layered lithium oxides through cation vacancies for enhanced urea electrolysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206050 – volume: 15 year: 2023 ident: CR38 article-title: Engineering spin states of isolated copper species in a metal–organic framework improves urea electrosynthesis publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01127-0 – volume: 56 start-page: 16134 year: 2022 end-page: 16143 ident: CR4 article-title: Electrified ion exchange enabled by water dissociation in bipolar membranes for nitrogen recovery from source-separated urine publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03771 – volume: 4 start-page: 100840 year: 2024 ident: CR8 article-title: Urea oxidation reaction electrocatalysts: Correlation of structure, activity, and selectivity publication-title: Chem. Catal. doi: 10.1016/j.checat.2023.100840 – volume: 13 start-page: 4091 year: 2023 end-page: 4100 ident: CR27 article-title: Interfacial engineering of Ni N/Mo N heterojunctions for urea-assisted hydrogen evolution reaction publication-title: ACS Catal. doi: 10.1021/acscatal.3c00113 – volume: 120 year: 2023 ident: CR49 article-title: A universal approach to dual-metal-atom catalytic sites confined in carbon dots for various target reactions publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2308828120 – volume: 35 start-page: 2301549 year: 2023 ident: CR35 article-title: Multistep dissolution of lamellar crystals generates superthin amorphous Ni(OH) catalyst for UOR publication-title: Adv. Mater. doi: 10.1002/adma.202301549 – volume: 81 start-page: 979 year: 2023 end-page: 989 ident: CR19 article-title: Advances in electrochemical reductive removal of oxyanions in water publication-title: Acta Chim. Sinica doi: 10.6023/A23040133 – volume: 131 start-page: 16976 year: 2019 end-page: 16981 ident: CR22 article-title: A lattice-oxygen-involved reaction pathway to boost urea oxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201909832 – volume: 33 start-page: 2303986 year: 2023 ident: CR7 article-title: Fluorinated Ni-O-C heterogeneous catalyst for efficient urea-assisted hydrogen production publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303986 – ident: CR11 – volume: 67 start-page: 1763 year: 2022 end-page: 1775 ident: CR50 article-title: Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.08.008 – volume: 60 start-page: 26656 year: 2021 end-page: 26662 ident: CR17 article-title: Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107886 – volume: 87 start-page: 106217 year: 2021 ident: CR25 article-title: Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect of intermediate activation and radical mediator for electrocatalytic urea splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106217 – volume: 62 start-page: e202309319 year: 2023 ident: CR39 article-title: Interfacial water tuning by intermolecular spacing for stable CO electroreduction to C products publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202309319 – volume: 61 start-page: e202208215 year: 2022 ident: CR30 article-title: Single atom Ru monolithic electrode for efficient chlorine evolution and nitrate reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202208215 – volume: 33 start-page: 2300687 year: 2023 ident: CR23 article-title: Directed urea-to-nitrite electrooxidation via tuning intermediate adsorption on Co, Ge Co-doped Ni sites publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300687 – volume: 37 start-page: 1030 year: 2016 end-page: 1035 ident: CR45 article-title: LOBSTER: A tool to extract chemical bonding from plane-wave based DFT publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 4 start-page: 1216 year: 2011 end-page: 1224 ident: CR3 article-title: Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00705f – volume: 13 start-page: 2380 year: 1997 end-page: 2389 ident: CR21 article-title: On the electrochemical and in-Situ fourier transform infrared spectroscopy characterization of urea adlayers at Pt(100) electrodes publication-title: Langmuir doi: 10.1021/la961044h – volume: 33 start-page: 2209698 year: 2023 ident: CR34 article-title: Synergistic engineering of doping and vacancy in Ni(OH) to boost urea electrooxidation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209698 – volume: 174 start-page: 1559 year: 2018 end-page: 1570 ident: CR2 article-title: Urea cycle dysregulation generates clinically relevant genomic and biochemical signatures publication-title: Cell doi: 10.1016/j.cell.2018.07.019 – volume: 144 start-page: 1174 year: 2022 end-page: 1186 ident: CR41 article-title: Atomic metal–support interaction enables reconstruction-free dual-site electrocatalyst publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08890 – volume: 35 start-page: 2209338 year: 2022 ident: CR13 article-title: Formation and stabilization of NiOOH by introducing α-FeOOH in LDH: composite electrocatalyst for oxygen evolution and urea oxidation reactions publication-title: Adv. Mater. doi: 10.1002/adma.202209338 – ident: CR33 – volume: 97 start-page: 8617 year: 1993 end-page: 8624 ident: CR47 article-title: Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations publication-title: J. Phys. Chem. doi: 10.1021/j100135a014 – volume: 42 start-page: 3987 year: 2017 end-page: 3993 ident: CR31 article-title: NiCo O nanosheets grown on current collectors as binder-free electrodes for hydrogen production via urea electrolysis publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.048 – volume: 115 start-page: 5461 year: 2011 end-page: 5466 ident: CR48 article-title: Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets publication-title: J. Phys. Chem. A doi: 10.1021/jp202489s – volume: 14 year: 2023 ident: CR44 article-title: Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation publication-title: Nat. Commun. doi: 10.1038/s41467-023-41588-w – volume: 13 start-page: 13466 year: 2023 end-page: 13473 ident: CR43 article-title: Unveiling the role of iron in the nickel-catalyzed urea oxidation reaction publication-title: ACS Catal. doi: 10.1021/acscatal.3c03126 – volume: 12 start-page: 569 year: 2021 end-page: 579 ident: CR36 article-title: Pathway manipulation via Ni, Co, and V ternary synergism to realize high efficiency for urea electrocatalytic oxidation publication-title: ACS Catal. doi: 10.1021/acscatal.1c05190 – volume: 140 start-page: 10305 year: 2018 end-page: 10314 ident: CR26 article-title: Complexity of intercalation in MXenes: destabilization of urea by two-dimensional titanium carbide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05913 – volume: 62 start-page: 8736 year: 2023 end-page: 8743 ident: CR32 article-title: Highly selective electrooxidation of urea to nitrogen on copper/nickel boride interface under alkaline condition publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c00802 – volume: 41 start-page: 1931 year: 2020 end-page: 1940 ident: CR46 article-title: LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory publication-title: J. Comput. Chem. doi: 10.1002/jcc.26353 – volume: 12 start-page: 717 year: 2020 end-page: 724 ident: CR1 article-title: Coupling N and CO in H O to synthesize urea under ambient conditions publication-title: Nat. Chem. doi: 10.1038/s41557-020-0481-9 – volume: 125 start-page: 15324 year: 2003 end-page: 15337 ident: CR16 article-title: Ureases: quantum chemical calculations on cluster models publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030145g – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR52 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 60 start-page: 7297 year: 2021 end-page: 7307 ident: CR24 article-title: Unveiling the electrooxidation of urea: intramolecular coupling of the N−N bond publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015773 – volume: 60 start-page: 22885 year: 2021 end-page: 22891 ident: CR14 article-title: Phosphorized CoNi S yolk–shell spheres for highly efficient hydrogen production via water and urea electrolysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108563 – volume: 57 start-page: 2939 year: 2023 end-page: 2948 ident: CR10 article-title: Facile, controllable, and ultrathin NiFe-LDH in situ grown on a Ni foam by ultrasonic self-etching for highly efficient urine conversion publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c07282 – volume: 62 start-page: e202217449 year: 2023 ident: CR12 article-title: Dual-atom support boosts nickel-catalyzed urea electrooxidation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202217449 – volume: 6 start-page: 904 year: 2021 end-page: 912 ident: CR9 article-title: Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst publication-title: Nat. Energy doi: 10.1038/s41560-021-00899-2 – volume: 55 start-page: 9461 year: 2016 end-page: 9470 ident: CR28 article-title: A quantitative scale of oxophilicity and thiophilicity publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01702 – ident: 50343_CR11 doi: 10.1039/B905974A – volume: 56 start-page: 16134 year: 2022 ident: 50343_CR4 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03771 – volume: 33 start-page: 2300687 year: 2023 ident: 50343_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202300687 – volume: 12 start-page: 337 year: 2022 ident: 50343_CR15 publication-title: Catalysts doi: 10.3390/catal12030337 – volume: 87 start-page: 106217 year: 2021 ident: 50343_CR25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106217 – volume: 55 start-page: 9461 year: 2016 ident: 50343_CR28 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b01702 – volume: 60 start-page: 7297 year: 2021 ident: 50343_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202015773 – volume: 35 start-page: 2209338 year: 2022 ident: 50343_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.202209338 – volume: 15 year: 2023 ident: 50343_CR38 publication-title: Nano Micro Lett. doi: 10.1007/s40820-023-01127-0 – volume: 60 start-page: 22885 year: 2021 ident: 50343_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108563 – volume: 13 start-page: 2380 year: 1997 ident: 50343_CR21 publication-title: Langmuir doi: 10.1021/la961044h – volume: 97 start-page: 8617 year: 1993 ident: 50343_CR47 publication-title: J. Phys. Chem. doi: 10.1021/j100135a014 – ident: 50343_CR29 doi: 10.1201/b17118 – volume: 125 start-page: 15324 year: 2003 ident: 50343_CR16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja030145g – volume: 6 start-page: 904 year: 2021 ident: 50343_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-021-00899-2 – volume: 81 start-page: 979 year: 2023 ident: 50343_CR19 publication-title: Acta Chim. Sinica doi: 10.6023/A23040133 – volume: 57 start-page: 16532 year: 2023 ident: 50343_CR37 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c04475 – volume: 13 start-page: 13466 year: 2023 ident: 50343_CR43 publication-title: ACS Catal. doi: 10.1021/acscatal.3c03126 – volume: 23 start-page: 9227 year: 2023 ident: 50343_CR42 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c01905 – volume: 54 start-page: 11169 year: 1996 ident: 50343_CR51 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 10 start-page: 9308 year: 2022 ident: 50343_CR6 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA00120A – volume: 57 start-page: 2939 year: 2023 ident: 50343_CR10 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c07282 – volume: 62 start-page: 8736 year: 2023 ident: 50343_CR32 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c00802 – volume: 120 year: 2023 ident: 50343_CR49 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2308828120 – volume: 33 start-page: 2209698 year: 2023 ident: 50343_CR34 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202209698 – volume: 35 start-page: 2301549 year: 2023 ident: 50343_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.202301549 – volume: 144 start-page: 1174 year: 2022 ident: 50343_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c08890 – volume: 37 start-page: 1030 year: 2016 ident: 50343_CR45 publication-title: J. Comput. Chem. doi: 10.1002/jcc.24300 – volume: 61 start-page: e202206050 year: 2022 ident: 50343_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202206050 – volume: 4 start-page: 100840 year: 2024 ident: 50343_CR8 publication-title: Chem. Catal. doi: 10.1016/j.checat.2023.100840 – volume: 67 start-page: 1763 year: 2022 ident: 50343_CR50 publication-title: Sci. Bull. doi: 10.1016/j.scib.2022.08.008 – volume: 13 start-page: 4091 year: 2023 ident: 50343_CR27 publication-title: ACS Catal. doi: 10.1021/acscatal.3c00113 – volume: 62 start-page: e202309319 year: 2023 ident: 50343_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202309319 – volume: 33 start-page: 2303986 year: 2023 ident: 50343_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202303986 – volume: 41 start-page: 1931 year: 2020 ident: 50343_CR46 publication-title: J. Comput. Chem. doi: 10.1002/jcc.26353 – volume: 62 start-page: e202217449 year: 2023 ident: 50343_CR12 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202217449 – volume: 4 start-page: 1216 year: 2011 ident: 50343_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00705f – volume: 131 start-page: 16976 year: 2019 ident: 50343_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201909832 – volume: 140 start-page: 10305 year: 2018 ident: 50343_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05913 – volume: 79 start-page: 1575 year: 1957 ident: 50343_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01564a014 – volume: 12 start-page: 717 year: 2020 ident: 50343_CR1 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0481-9 – volume: 61 start-page: e202209839 year: 2022 ident: 50343_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202209839 – volume: 61 start-page: e202208215 year: 2022 ident: 50343_CR30 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202208215 – volume: 115 start-page: 5461 year: 2011 ident: 50343_CR48 publication-title: J. Phys. Chem. A doi: 10.1021/jp202489s – volume: 174 start-page: 1559 year: 2018 ident: 50343_CR2 publication-title: Cell doi: 10.1016/j.cell.2018.07.019 – volume: 42 start-page: 3987 year: 2017 ident: 50343_CR31 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.11.048 – volume: 12 start-page: 569 year: 2021 ident: 50343_CR36 publication-title: ACS Catal. doi: 10.1021/acscatal.1c05190 – volume: 60 start-page: 26656 year: 2021 ident: 50343_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202107886 – volume: 6 start-page: 15 year: 1996 ident: 50343_CR52 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 46 start-page: 1011 year: 2016 ident: 50343_CR5 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-016-0993-6 – volume: 14 year: 2023 ident: 50343_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-023-41588-w – ident: 50343_CR33 doi: 10.1016/j.fmre.2023.03.019 |
SSID | ssj0000391844 |
Score | 2.6236098 |
Snippet | Electrochemical urea oxidation offers a sustainable avenue for H
2
production and wastewater denitrification within the water-energy nexus; however, its wide... Electrochemical urea oxidation offers a sustainable avenue for H production and wastewater denitrification within the water-energy nexus; however, its wide... Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however, its wide... Abstract Electrochemical urea oxidation offers a sustainable avenue for H2 production and wastewater denitrification within the water-energy nexus; however,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5918 |
SubjectTerms | 119/118 140/133 140/146 140/58 639/301/299/886 639/638/161/886 639/638/169/896 Active sites Amino groups Asymmetry Carbonyl compounds Carbonyls Cyanates Denitrification Electrocatalysts Electrochemistry Evolution Humanities and Social Sciences Hydrogen evolution Hydrogen production multidisciplinary Nitrites Oxidation Photovoltaic cells Photovoltaics Science Science (multidisciplinary) Selectivity Solar energy Urea Wastewater |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEA-lIPgiWquutiVC3zQ0t_l-VGkpgqUPLfQt5Gtp4dgtvTvx_nsnyd7Zs1VffE2y2TCZycxkJr9B6FA50UndeRK7VhFuQiQ-MUEiqEPQz9GJklX57UyeXvKvV-LqXqmvnBNW4YEr4Y7A-GuVM1SkDlwZJp2L3HMDPmDwSYfyjhx03j1nqpzBzIDrwsdXMpTpoxkvZwKoJCIo44zoDU1UAPsfszIfJkv-FjEtiujkOXo2WpD4U135C7SV-h30pNaUXL5E5zlzY7rEs1LgBs4ynPPO8VjuZvhxU4so4TAsbqcp4nwRi1MBkoBf4-tlvBuAqXD6PjLlLro8Ob74ckrGsgkkCD6ZEw9yyQzzqdWeuhSZTj5H26AxaJqEDLyjyrRBGqeE6hQ12puMxRWkDCqyV2i7H_r0BmHojknHNupJxztuHOVcBc9kCjFOomvQZEVCG0ZM8VzaYmpLbJtpW8lugey2kN3qBn1Yf3NbETX-Ovpz3pn1yIyGXRqAR-zII_ZfPNKgvdW-2lFEZ5ZlWzkbSKxB79fdIFw5YuL6NCzqGJkrCMAUrysbrFfCTL5bUG2D9AaDbCx1s6e_uS4A3mDjckU1TPpxxUu_1vVnWrz9H7R4h562WQgyNijfQ9vzu0XaB7tq7g-KCP0ElOcetQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuiHdDCzISNzBkY8ePA0KAqCqkIg6s1JvlV2ilVVL2gbr_vmMnWbSw9Bo_Yo9nPDMeez6AV9LWjVCNo6GpJOXaB-oiq2lAdYj6Odg636o8_SZOpvzrWX22ByPc0UDAxU7XLuFJTeezt1e_1h9Q4N_3T8bVuwXP4o7ahtYl44yqW3AbNZNMgno6mPt5Z2YaHRo-vJ3Z3XRLP-U0_rtsz3-vUP4VR83q6fg-3BvsSvKxZ4QHsBfbh3CnR5pcP4Lv6T7HbE0WGfYGdziSbqOTAQSnu7rooZWI71aXsxhIOp4lMaeXwF-T83WYd8hqJP4eWPUxTI-__Ph8QgcwBeprPllSh9LKNHOxUq60MTAVXYrB4UevylgLz5tS6soLbWUtG1lq5XTK0OWF8DKwJ7Dfdm08AILFIapQBTVpeMO1LTmX3jERfQiTYAuYjCQ0fsg0ngAvZiZHvJkyPdkNkt1kshtVwOtNm8s-z8aNtT-lldnUTDmy84du_tMMImfQbaikxSnEBp1gJqwN3HEdHfMuKi8LOBrX1Yx8Z1iyoJPZxAp4uSlGkUtxFNvGbtXXEQlXALt42rPBZiRMpxMHWRWgthhka6jbJe3FeU7rjZYvl6XCTt-MvPRnXP-nxbObp3EId6vE3ikXKD-C_eV8FZ-jHbV0L7JwXANQDRjE priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfClWK9bq0TwTYN7NtlcHvVgKYLig4W-hdzWFg675Vyk5983k73I0Sr0NbfNTmYyk8zkG4C30taNUI2joakk5doH6iKraUjqMOnnYOscVfn1mzg941_O6_M9qMa3MDloP0Na5m16jA77sOJZpJNGoXXJOKPqHtxH6Hbk6rmYT_cqiHiuOB_ex5RM3dJ1RwdlqP7b7Mu_wyT_8JVmFXTyCA4G25F87Gd7CHuxfQwP-myS2yfwHWM2Fluyyqlt0i5GMOKcDIluuuvLPn0S8d3mahEDwStYEjOERPo0udiGZZfYicRfAzs-hbOTzz_mp3RImEB9zWdr6pJEMs1crJQrbQxMRYd-tlToVRlr4XlTSl15oa2sZSNLrZxGFC4vhJeBPYP9tmvjCyCpOkQVqqBmDW-4tiXn0jsmog9hFmwBs5GExg9o4pjUYmGyV5sp05PdJLKbTHajCng39bnqsTT-2_oTrszUEnGwc0G3_GkGvjDpaFBJm34hNumgy4S1gTuuo2PeReVlAcfjuppBOFeGoZWMphEr4M1UncQKfSW2jd2mbyMwd0Aa4nnPBtNMmMZbBVkVoHYYZGequzXt5UWG7k7WLZelSoO-H3np97z-TYujuzV_CQ8rZHfE_-THsL9ebuKrZDut3essLDf4txNs priority: 102 providerName: Springer Nature |
Title | Highly selective urea electrooxidation coupled with efficient hydrogen evolution |
URI | https://link.springer.com/article/10.1038/s41467-024-50343-8 https://www.ncbi.nlm.nih.gov/pubmed/39004672 https://www.proquest.com/docview/3080007823 https://www.proquest.com/docview/3080635267 https://pubmed.ncbi.nlm.nih.gov/PMC11247087 https://doaj.org/article/72927a905ef54936aad4b49eb3cbe8c7 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUP9raJOpYsyU8jDc1KoKVsK-RNWB9eC8HO8jGW_353suKSffTFBkm25dOd7nx3_h0h72VV1ELVhro6l5SX1lHjWUEdqEPQz64qQlbl-YU4u-LTWTGLDrdVTKvc7Ylho3atRR_5MUPTBvUZ-7T4QbFqFEZXYwmN--QQocswpUvOZO9jQfRzxXn8VyZj6njFw84AiokWGeOMqj19FGD7_2Vr_p0y-UfcNKijyWPyKNqR6ahb-Cfknm-ekgddZcntM3KJ-RvzbboKZW5gR0sx-zyNRW_aXzddKaXUtpvF3LsU3bGpD3AS8Oj0euuWLbBW6n9G1nxOrian38ZnNBZPoLbgwzU1IJ2sZMbnymSVd0x5gzE3aLQq84WwvM5kmVtRVrKQtcxKZUpE5LJCWOnYC3LQtI1_RVLodl653KlhzWteVhnn0homvHVu6KqEDHck1DYii2OBi7kOEW6mdEd2DWTXgexaJeRDf82iw9W4c_QJrkw_EjGxQ0O7_K6jiGn4TMhlBa_ga_joZaKqHDe89IZZ45WVCTnarauOgrrSt2yVkHd9N4gYxk2qxrebbozAOgJwi5cdG_QzYSV6GGSeELXHIHtT3e9pbq4DjDdYulxmCm76ccdLt_P6Py1e3_0ab8jDHNkbsT_5ETlYLzf-LdhNazMIwgFHNfk8IIej0fTrFM4npxeXX6B1LMaD4JGA4zlXvwFmdhxI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi2BAkaCE1jNxE7sHBBiq6Z0EYdWmpvxFlpplAyzAPOn-I285yRTDUtvvcaOYz-_zX4v7yPkuTR5VajKMl9lkonSeWYDz5kHcwj22Zs8ZlUeHhXDE_FplI82yK_-XxhMq-x1YlTUvnF4R77D0bVBe8bfTL4xRI3C6GoPodGyxX5Y_oAj2-z13gfY3xdZtvvx-P2QdagCzOViMGcW2JaX3IZM2dQEz1WwGIyCh06lIS-cqFJZZq4ojcxlJdNS2RJLVbmicNJzGPcKuQqGN0WJkiO5utPBautKiO7fnJSrnZmImggMIctTLjhTa_YvwgT8y7f9O0XzjzhtNH-7t8jNzm-lb1tGu002Qn2HXGuRLJd3yWfMFxkv6SzC6oAGpZjtTjuQnebnWQvdRF2zmIyDp3j9S0MsXwGfpqdLP22AlWn43onCPXJyKWS9Tzbrpg4PCIVmH5TPvBpUohKlSYWQzvIiOO8H3iRk0JNQu66SOQJqjHWMqHOlW7JrILuOZNcqIS9X70zaOh4X9n6HO7PqiTW444Nm-lV3Iq3hWJJJA0sIFRyyeWGMF1aUwXJng3IyIdv9vupOMcz0ORsn5NmqGUQa4zSmDs2i7VMgbgEMsdWywWomvMQbDZklRK0xyNpU11vqs9NYNhw8ayFTBYO-6nnpfF7_p8XDi5fxlFwfHh8e6IO9o_1H5EaGrI51R8U22ZxPF-Ex-Gxz-yQKCiVfLlsyfwNZZVDX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNZmYyd2DggBZdVSqHqg0t6MX6GVVsmyD2D_Gr-OGSfZann01mvsOPZ4XvZM5iPkmTR5VajKMl9lkonSeWYDz5kHcwj22Zs8ZlV-Oiz2jsWHcT7eIr_6f2EwrbLXiVFR-8bhHfmAo2uD9owPqi4t4mh39Hr6jSGCFEZaeziNlkUOwuoHHN_mr_Z3Ya-fZ9no_ed3e6xDGGAuF8MFs8DCvOQ2ZMqmJniugsXAFDx0Kg154USVyjJzRWlkLiuZlsqWWLbKFYWTnsO4l8hlCctCGZNjub7fwcrrSojuP52Uq8FcRK0ERpHlKRecqQ1bGCED_uXn_p2u-UfMNprC0Q1yvfNh6ZuW6W6SrVDfIldaVMvVbXKEuSOTFZ1HiB3QphQz32kHuNP8PG1hnKhrltNJ8BSvgmmIpSzg0_Rk5WcNsDUN3zuxuEOOL4Ssd8l23dThPqHQ7IPymVfDSlSiNKkQ0lleBOf90JuEDHsSatdVNUdwjYmO0XWudEt2DWTXkexaJeTF-p1pW9Pj3N5vcWfWPbEed3zQzL7qTrw1HFEyaWAJoYIDNy-M8cKKMljubFBOJmSn31fdKYm5PmPphDxdN4N4Y8zG1KFZtn0KxDCAIe61bLCeCS_xdkNmCVEbDLIx1c2W-vQklhAHL1vIVMGgL3teOpvX_2nx4PxlPCFXQSb1x_3Dg4fkWoacjiVIxQ7ZXsyW4RG4bwv7OMoJJV8uWjB_Ay97VQ0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+selective+urea+electrooxidation+coupled+with+efficient+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Zhan%2C+Guangming&rft.au=Hu%2C+Lufa&rft.au=Li%2C+Hao&rft.au=Dai%2C+Jie&rft.date=2024-07-14&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=5918&rft_id=info:doi/10.1038%2Fs41467-024-50343-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |