The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber
This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO)...
Saved in:
Published in | International journal of food microbiology Vol. 266; pp. 69 - 78 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
02.02.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9mg/mL gelatin/CO@CNPs treatment for 24h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6mg/mL and 9mg/mL gelatin/CO@CNPs nanofibers treatment at 12°C for 4days, 4.28 and 4.97 log10 reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for >4days.
•The clove oil-loaded chitosan nanoparticles (CO@CNPs) were prepared.•The gelatin nanofibers containing CO@CNPs was prepared by electrospinning.•The gelatin nanofibers can eliminate E. coli O157:H7 biofilms.•The gelatin nanofibers can maintain sensory quality of cucumber. |
---|---|
AbstractList | This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9mg/mL gelatin/CO@CNPs treatment for 24h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6mg/mL and 9mg/mL gelatin/CO@CNPs nanofibers treatment at 12°C for 4days, 4.28 and 4.97 log
reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for >4days. This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9mg/mL gelatin/CO@CNPs treatment for 24h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6mg/mL and 9mg/mL gelatin/CO@CNPs nanofibers treatment at 12°C for 4days, 4.28 and 4.97 log10 reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for >4days. This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9mg/mL gelatin/CO@CNPs treatment for 24h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6mg/mL and 9mg/mL gelatin/CO@CNPs nanofibers treatment at 12°C for 4days, 4.28 and 4.97 log10 reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for >4days. •The clove oil-loaded chitosan nanoparticles (CO@CNPs) were prepared.•The gelatin nanofibers containing CO@CNPs was prepared by electrospinning.•The gelatin nanofibers can eliminate E. coli O157:H7 biofilms.•The gelatin nanofibers can maintain sensory quality of cucumber. This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9mg/mL gelatin/CO@CNPs treatment for 24h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6mg/mL and 9mg/mL gelatin/CO@CNPs nanofibers treatment at 12°C for 4days, 4.28 and 4.97 log10 reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for >4days.This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9mg/mL gelatin/CO@CNPs treatment for 24h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6mg/mL and 9mg/mL gelatin/CO@CNPs nanofibers treatment at 12°C for 4days, 4.28 and 4.97 log10 reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for >4days. This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against Escherichia coli O157:H7 (E. coli O157:H7) biofilms on cucumbers. The optimal CO@CNPs were prepared when the initial concentration of clove oil (CO) was 2.5 mg/mL according to the ionic crosslinking method. CO@CNPs showed high antibacterial activity against E. coli O157:H7 biofilms. After 8 h treatment, almost 99.98% reduction in E. coli O157:H7 population was achieved when CO@CNPs were applied at 30% (w/v). Subsequently, the prepared CO@CNPs were incorporated successfully within gelatin nanofibers by electrospinning. After 9 mg/mL gelatin/CO@CNPs treatment for 24 h, the population of E. coli O157:H7 biofilm reduced by about 99.99% in vitro. Further, the application of gelatin/CO@CNPs nanofibers on cucumber against E. coli O157:H7 biofilm was evaluated as well. After 6 mg/mL and 9 mg/mL gelatin/CO@CNPs nanofibers treatment at 12 °C for 4 days, 4.28 and 4.97 log10 reductions of E. coli O157:H7 biofilm in population were observed, respectively. Finally, the sensory evaluation results implied that the gelatin/CO@CNPs nanofibers treatment could maintain the color and flavor of cucumber well for > 4 days. |
Author | Bai, Mei Rashed, Marwan M.A. Lin, Lin Cui, Haiying |
Author_xml | – sequence: 1 givenname: Haiying surname: Cui fullname: Cui, Haiying – sequence: 2 givenname: Mei surname: Bai fullname: Bai, Mei – sequence: 3 givenname: Marwan M.A. surname: Rashed fullname: Rashed, Marwan M.A. – sequence: 4 givenname: Lin orcidid: 0000-0001-6374-2165 surname: Lin fullname: Lin, Lin email: linl@ujs.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29179098$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksFq3DAQhkVJaTZpX6Go9NLLbiTLtqxeSlmSphDIJT0LWR5nZ5GlrSQv5C36yNVmEyi5NCcJ9M036J85Iyc-eCDkE2crznh7sV3hdgxhmNDGsKoYlyvOV4yrN2TBO6mWom7ZCVkUtlvyljWn5CylLWOsEYK9I6eV4lIx1S3In7sNUOMz9sZmiGgcLRfcY36gYaTWhT3QgO7CbjCHZDz1xoediRmtg0Rh6mEYYKD34EzG4_OIPcREzb1BnzK9THZT1MVgqA0O6S1v5NdrSXssqJsSDZ7a2c7FFd-Tt6NxCT48nefk19Xl3fp6eXP74-f6-83SNjXPSzN2sholmLZtWtFBr2wnamNbIetGmU5YYWtr67ZvhtqwQdRgpKiqDpqqVxLEOfly9O5i-D1DynrCZME54yHMSVclq05VLav-i3LVKlXVQsqCfn6BbsMcffmIPoyJiVryg_DjEzX3Ewx6F3Ey8UE_j6UA345AmW9KEUZtMZd4g8_RoNOc6cMi6K3-ZxEeO2jOdVmEYlAvDM9NXlO7PtZCyX-PEHWyCN7CgBFs1kPAV1j-AlJg1kY |
CitedBy_id | crossref_primary_10_1002_bit_27971 crossref_primary_10_1016_j_fpsl_2019_100439 crossref_primary_10_1007_s13399_024_05669_0 crossref_primary_10_1016_j_ijbiomac_2021_10_069 crossref_primary_10_1021_acs_jafc_8b03183 crossref_primary_10_1016_j_lwt_2021_112698 crossref_primary_10_1002_pat_6594 crossref_primary_10_1016_j_carres_2020_108004 crossref_primary_10_1088_2053_1591_ab5387 crossref_primary_10_3390_coatings10040315 crossref_primary_10_1016_j_cis_2021_102544 crossref_primary_10_1016_j_mtcomm_2022_104132 crossref_primary_10_1080_10408398_2021_1980370 crossref_primary_10_1016_j_foodchem_2024_141590 crossref_primary_10_32710_tekstilvekonfeksiyon_621380 crossref_primary_10_3390_ijms23084101 crossref_primary_10_1016_j_indcrop_2019_111498 crossref_primary_10_1016_j_lwt_2023_115683 crossref_primary_10_1016_j_micpath_2019_103600 crossref_primary_10_3390_antibiotics12040726 crossref_primary_10_1016_j_ijbiomac_2023_123885 crossref_primary_10_3390_polym14071361 crossref_primary_10_1016_j_ijbiomac_2019_03_133 crossref_primary_10_1016_j_onano_2022_100087 crossref_primary_10_1016_j_fpsl_2018_12_005 crossref_primary_10_1016_j_fpsl_2019_100329 crossref_primary_10_1155_2020_9040535 crossref_primary_10_3390_ijms22084017 crossref_primary_10_1016_j_tifs_2021_03_014 crossref_primary_10_1016_j_foodres_2019_108927 crossref_primary_10_1016_j_foodchem_2024_139305 crossref_primary_10_1016_j_cej_2020_125405 crossref_primary_10_1007_s10934_020_00863_7 crossref_primary_10_1007_s11694_023_01998_2 crossref_primary_10_1016_j_fpsl_2020_100559 crossref_primary_10_2139_ssrn_4163566 crossref_primary_10_1007_s00289_019_03042_0 crossref_primary_10_1016_j_ijbiomac_2021_01_156 crossref_primary_10_1016_j_jiec_2023_09_032 crossref_primary_10_1016_j_sjbs_2020_09_025 crossref_primary_10_1021_acsami_8b05467 crossref_primary_10_1007_s12221_019_9350_9 crossref_primary_10_1016_j_ijfoodmicro_2023_110127 crossref_primary_10_1016_j_foodchem_2019_05_038 crossref_primary_10_1016_j_foodcont_2018_07_007 crossref_primary_10_1016_j_ultsonch_2019_05_021 crossref_primary_10_1002_app_53141 crossref_primary_10_1111_jam_14411 crossref_primary_10_3390_plants12132565 crossref_primary_10_1016_j_ijbiomac_2019_06_087 crossref_primary_10_1080_10408398_2021_1899128 crossref_primary_10_1080_10408398_2020_1851169 crossref_primary_10_3390_foods11050760 crossref_primary_10_3390_molecules25051134 crossref_primary_10_1007_s12393_022_09318_y crossref_primary_10_1111_1541_4337_12933 crossref_primary_10_2174_2210298101666201012121522 crossref_primary_10_1016_j_jfoodeng_2021_110762 crossref_primary_10_3390_molecules26092491 crossref_primary_10_1016_j_heliyon_2021_e05896 crossref_primary_10_3390_polym14030436 crossref_primary_10_1016_j_actbio_2023_07_023 crossref_primary_10_1016_j_ijbiomac_2025_139535 crossref_primary_10_1016_j_ijbiomac_2020_08_152 crossref_primary_10_1016_j_lwt_2020_109744 crossref_primary_10_1016_j_foodhyd_2019_105436 crossref_primary_10_3390_molecules26071870 crossref_primary_10_3390_pharmaceutics11110570 crossref_primary_10_1016_j_fbio_2020_100871 crossref_primary_10_1016_j_foodcont_2020_107133 crossref_primary_10_1093_jambio_lxae043 crossref_primary_10_1016_j_eurpolymj_2024_113093 crossref_primary_10_1016_j_fpsl_2022_100945 crossref_primary_10_1016_j_mtcomm_2020_101161 crossref_primary_10_1155_2021_9940591 crossref_primary_10_1016_j_jafr_2024_101164 crossref_primary_10_1021_acsomega_2c06881 crossref_primary_10_1016_j_indcrop_2020_112824 crossref_primary_10_1016_j_ijbiomac_2020_10_215 crossref_primary_10_1016_j_fpsl_2019_100420 crossref_primary_10_1016_j_indcrop_2019_04_070 crossref_primary_10_1016_j_eurpolymj_2018_11_008 crossref_primary_10_1111_1541_4337_12827 crossref_primary_10_3390_foods9081117 crossref_primary_10_1016_j_ijbiomac_2020_12_046 crossref_primary_10_1002_fft2_201 crossref_primary_10_3390_pharmaceutics12070669 crossref_primary_10_1007_s43450_022_00312_3 crossref_primary_10_1016_j_ijbiomac_2023_128981 crossref_primary_10_1016_j_carbpol_2021_118427 crossref_primary_10_1016_j_colsurfb_2019_110627 crossref_primary_10_1016_j_fpsl_2024_101303 crossref_primary_10_1002_jbm_a_37592 crossref_primary_10_1016_j_foodchem_2021_131351 crossref_primary_10_1016_j_porgcoat_2024_108235 crossref_primary_10_1016_j_lwt_2019_108656 crossref_primary_10_1039_D2TB01544G crossref_primary_10_1007_s12221_019_1092_1 crossref_primary_10_1016_j_ijbiomac_2019_11_177 crossref_primary_10_1007_s12668_024_01498_7 crossref_primary_10_1088_1361_6528_abf7ee crossref_primary_10_3390_foods12051046 crossref_primary_10_1016_j_ijfoodmicro_2020_108989 crossref_primary_10_3390_polym12040908 crossref_primary_10_1016_j_indcrop_2019_111615 crossref_primary_10_1111_1541_4337_13126 crossref_primary_10_1111_1541_4337_13128 crossref_primary_10_1016_j_lwt_2019_02_079 crossref_primary_10_1016_j_heliyon_2021_e05909 crossref_primary_10_1016_j_tifs_2020_09_016 crossref_primary_10_1016_j_foodhyd_2018_10_003 crossref_primary_10_1016_j_fpsl_2021_100647 crossref_primary_10_1002_jsfa_10477 crossref_primary_10_1016_j_lwt_2021_111394 crossref_primary_10_1016_j_carbpol_2018_12_008 crossref_primary_10_1016_j_lwt_2021_111310 crossref_primary_10_1016_j_sajb_2023_02_031 crossref_primary_10_1039_C8RA00385H crossref_primary_10_1111_ijfs_15340 crossref_primary_10_1016_j_heliyon_2024_e25194 crossref_primary_10_1016_j_lwt_2020_109018 crossref_primary_10_1080_10408398_2022_2122924 crossref_primary_10_1016_j_fbp_2019_06_001 crossref_primary_10_1016_j_fpsl_2018_08_004 crossref_primary_10_1039_D4FB00147H crossref_primary_10_1016_j_foodchem_2018_09_173 crossref_primary_10_1016_j_ifset_2020_102336 crossref_primary_10_1080_10408398_2021_2004992 crossref_primary_10_1016_j_foodcont_2018_08_011 crossref_primary_10_1016_j_micpath_2019_103580 crossref_primary_10_12688_f1000research_54196_1 crossref_primary_10_1007_s11274_025_04289_8 crossref_primary_10_12688_f1000research_54196_2 crossref_primary_10_3389_fsufs_2021_734921 crossref_primary_10_1007_s12221_020_1356_9 crossref_primary_10_1016_j_ifset_2020_102571 crossref_primary_10_1016_j_ifset_2023_103340 crossref_primary_10_1134_S1068162023020097 crossref_primary_10_1016_j_envres_2022_114218 crossref_primary_10_1016_j_tifs_2020_03_001 crossref_primary_10_1016_j_lwt_2022_114374 crossref_primary_10_1016_j_lwt_2021_112470 crossref_primary_10_1016_j_meafoo_2022_100062 crossref_primary_10_1016_j_msec_2020_111190 crossref_primary_10_1016_j_fpsl_2019_100346 crossref_primary_10_1016_j_foohum_2025_100565 crossref_primary_10_1016_j_addr_2021_114019 crossref_primary_10_1088_2053_1591_abe791 crossref_primary_10_2174_1381612825666190717125538 crossref_primary_10_1016_j_mtcomm_2021_102883 crossref_primary_10_1016_j_fm_2019_103344 crossref_primary_10_1016_j_ijbiomac_2020_09_034 crossref_primary_10_1016_j_tifs_2023_104143 |
Cites_doi | 10.1016/j.lwt.2016.02.037 10.1016/j.foodcont.2015.09.034 10.1016/j.ijbiomac.2016.01.042 10.1016/j.fm.2009.07.016 10.1016/j.ijfoodmicro.2011.01.018 10.1016/j.foodcont.2012.12.001 10.1039/C6FO01201A 10.1016/j.foodres.2015.11.012 10.1016/j.fm.2014.08.003 10.1016/j.foodcont.2015.03.026 10.1016/j.biotechadv.2010.01.004 10.1016/j.foodcont.2016.09.018 10.1016/j.msec.2016.10.003 10.3168/jds.2016-11133 10.1016/j.cherd.2010.01.020 10.1016/j.carbpol.2012.08.117 10.1016/j.foodhyd.2016.08.021 10.1016/j.carbpol.2014.06.075 10.1016/j.meatsci.2015.01.014 10.1128/AEM.68.1.397-400.2002 10.1016/j.msec.2017.03.252 10.1016/j.jfoodeng.2016.02.026 10.1016/j.foodhyd.2017.01.041 10.1016/j.indcrop.2017.02.016 10.1016/j.lwt.2017.04.003 10.1016/j.tifs.2010.03.003 10.1016/j.carbpol.2015.11.073 10.1016/j.msec.2017.05.047 10.1016/j.ijbiomac.2016.07.013 10.1016/j.ijfoodmicro.2004.01.019 10.1016/j.ijbiomac.2016.07.041 10.1021/jf402085f |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. Copyright Elsevier BV Feb 2, 2018 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. – notice: Copyright Elsevier BV Feb 2, 2018 |
DBID | AAYXX CITATION NPM 7QL 7QO 7QR 7T7 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
DOI | 10.1016/j.ijfoodmicro.2017.11.019 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Biology |
EISSN | 1879-3460 |
EndPage | 78 |
ExternalDocumentID | 29179098 10_1016_j_ijfoodmicro_2017_11_019 S0168160517305135 |
Genre | Journal Article |
GroupedDBID | --- --K --M .1- .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARKO AATLK AAXUO ABFNM ABFRF ABGRD ABMAC ABYKQ ACDAQ ACGFO ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFCTW AFKWA AFRAH AFTJW AFXIZ AGEKW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CJTIS CNWQP CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LUGTX LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SAB SDF SDG SES SPCBC SSA SSI SSZ T5K UBH Z5R ~G- ~KM 29J 3EH 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AJUYK AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMG HVGLF HZ~ R2- SEW SIN SSH VH1 WUQ XPP Y6R NPM 7QL 7QO 7QR 7T7 7U9 8FD C1K EFKBS FR3 H94 M7N P64 RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c541t-af872f7ea665638eb9c834ac637459a83c3c4cc46b5d4a0d34ea73228e52b97e3 |
IEDL.DBID | .~1 |
ISSN | 0168-1605 1879-3460 |
IngestDate | Tue Aug 05 10:58:43 EDT 2025 Fri Jul 11 07:53:17 EDT 2025 Wed Aug 13 04:39:57 EDT 2025 Wed Feb 19 02:43:10 EST 2025 Thu Apr 24 23:08:00 EDT 2025 Tue Jul 01 01:58:05 EDT 2025 Fri Feb 23 02:29:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Clove oil Chitosan nanoparticles Biofilms Nanofibers Cucumber Escherichia coli O157:H7 |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-af872f7ea665638eb9c834ac637459a83c3c4cc46b5d4a0d34ea73228e52b97e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6374-2165 |
PMID | 29179098 |
PQID | 2017034712 |
PQPubID | 105385 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2053892602 proquest_miscellaneous_1969924377 proquest_journals_2017034712 pubmed_primary_29179098 crossref_citationtrail_10_1016_j_ijfoodmicro_2017_11_019 crossref_primary_10_1016_j_ijfoodmicro_2017_11_019 elsevier_sciencedirect_doi_10_1016_j_ijfoodmicro_2017_11_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-02 |
PublicationDateYYYYMMDD | 2018-02-02 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
PublicationTitle | International journal of food microbiology |
PublicationTitleAlternate | Int J Food Microbiol |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Bajer, Šilha, Ventura, Bajerová (bb0015) 2017; 100 Liang, Yan, Puligundla, Gao, Zhou, Wan (bb0095) 2017; 69 Cui, Wu, Li, Lin (bb0035) 2017; 81 Tan, Xia, Xue, Xie, Feng, Zhang (bb0150) 2013; 61 Ongeng, Vasquez, Muyanja, Ryckeboer, Geeraerd, Springael (bb0115) 2011; 145 Li, Farid (bb0090) 2016; 182 Cui, Ma, Lin (bb0030) 2016; 7 Cui, Zhao, Lin (bb0050) 2016; 99 Hashad, Ishak, Fahmy, Mansour, Geneidi (bb0070) 2016; 86 Almasoud, Hettiarachchy, Rayaprolu, Horax, Eswaranandam (bb0010) 2015; 78 Jahid, Han, Zhang, Ha (bb0075) 2015; 46 Cui, Wu, Lin (bb0040) 2016; 61 Rayner, Veeh, Flood (bb0120) 2004; 95 Rieger, Schiffman (bb0130) 2014; 113 Feyzioglu, Tornuk (bb0065) 2016; 70 Woranuch, Yoksan (bb0160) 2013; 96 Etxabide, Uranga, Guerrero, Caba (bb0060) 2017; 68 Sheen, Hwang (bb0135) 2010; 27 Malheiros, Daroit, Brandelli (bb0100) 2010; 21 Srey, Jahid, Ha (bb0140) 2013; 31 Lee, Lim, Birajdar, Lee, Park (bb0085) 2016; 93 Surucu, Sasmazel (bb0145) 2016; 92 Costa, Silva, Vicente, Neto, Castro, Veiga, Madureira, Tauaria, Pintado (bb0025) 2017; 79 Agheb, Dinari, Rafienia, Salehi (bb0005) 2017; 71 Olomon, Yaron, Matthews (bb0110) 2002; 68 Rieger, Birch, Schiffman (bb0125) 2016; 139 Mulla, Ahmed, Al-Attar, Castro-Aguirre, Arfat, Auras (bb0105) 2017; 73 Wen, Liu, Zheng, You, Pu, Li (bb0155) 2010; 88 Bhardwa, Kundu (bb0020) 2010; 28 Cui, Zhao, Lin (bb0045) 2015; 56 Esmaeili, Haseli (bb0055) 2017; 77 Kerth, Harbison, Smith, Miller (bb0080) 2015; 104 Costa (10.1016/j.ijfoodmicro.2017.11.019_bb0025) 2017; 79 Malheiros (10.1016/j.ijfoodmicro.2017.11.019_bb0100) 2010; 21 Rieger (10.1016/j.ijfoodmicro.2017.11.019_bb0125) 2016; 139 Li (10.1016/j.ijfoodmicro.2017.11.019_bb0090) 2016; 182 Lee (10.1016/j.ijfoodmicro.2017.11.019_bb0085) 2016; 93 Rieger (10.1016/j.ijfoodmicro.2017.11.019_bb0130) 2014; 113 Srey (10.1016/j.ijfoodmicro.2017.11.019_bb0140) 2013; 31 Mulla (10.1016/j.ijfoodmicro.2017.11.019_bb0105) 2017; 73 Kerth (10.1016/j.ijfoodmicro.2017.11.019_bb0080) 2015; 104 Cui (10.1016/j.ijfoodmicro.2017.11.019_bb0050) 2016; 99 Cui (10.1016/j.ijfoodmicro.2017.11.019_bb0035) 2017; 81 Wen (10.1016/j.ijfoodmicro.2017.11.019_bb0155) 2010; 88 Bhardwa (10.1016/j.ijfoodmicro.2017.11.019_bb0020) 2010; 28 Sheen (10.1016/j.ijfoodmicro.2017.11.019_bb0135) 2010; 27 Tan (10.1016/j.ijfoodmicro.2017.11.019_bb0150) 2013; 61 Feyzioglu (10.1016/j.ijfoodmicro.2017.11.019_bb0065) 2016; 70 Olomon (10.1016/j.ijfoodmicro.2017.11.019_bb0110) 2002; 68 Jahid (10.1016/j.ijfoodmicro.2017.11.019_bb0075) 2015; 46 Cui (10.1016/j.ijfoodmicro.2017.11.019_bb0030) 2016; 7 Cui (10.1016/j.ijfoodmicro.2017.11.019_bb0045) 2015; 56 Bajer (10.1016/j.ijfoodmicro.2017.11.019_bb0015) 2017; 100 Ongeng (10.1016/j.ijfoodmicro.2017.11.019_bb0115) 2011; 145 Rayner (10.1016/j.ijfoodmicro.2017.11.019_bb0120) 2004; 95 Esmaeili (10.1016/j.ijfoodmicro.2017.11.019_bb0055) 2017; 77 Hashad (10.1016/j.ijfoodmicro.2017.11.019_bb0070) 2016; 86 Cui (10.1016/j.ijfoodmicro.2017.11.019_bb0040) 2016; 61 Surucu (10.1016/j.ijfoodmicro.2017.11.019_bb0145) 2016; 92 Agheb (10.1016/j.ijfoodmicro.2017.11.019_bb0005) 2017; 71 Woranuch (10.1016/j.ijfoodmicro.2017.11.019_bb0160) 2013; 96 Etxabide (10.1016/j.ijfoodmicro.2017.11.019_bb0060) 2017; 68 Liang (10.1016/j.ijfoodmicro.2017.11.019_bb0095) 2017; 69 Almasoud (10.1016/j.ijfoodmicro.2017.11.019_bb0010) 2015; 78 |
References_xml | – volume: 100 start-page: 95 year: 2017 end-page: 105 ident: bb0015 article-title: Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from publication-title: Ind. Crop. Prod. – volume: 88 start-page: 1102 year: 2010 end-page: 1107 ident: bb0155 article-title: Preparation of liposomes entrapping essential oil from publication-title: Chem. Eng. Res. Des. – volume: 113 start-page: 561 year: 2014 end-page: 568 ident: bb0130 article-title: Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers publication-title: Carbohydr. Polym. – volume: 145 start-page: 301 year: 2011 end-page: 310 ident: bb0115 article-title: Transfer and internalisation of publication-title: Int. J. Food Microbiol. – volume: 56 start-page: 128 year: 2015 end-page: 134 ident: bb0045 article-title: The specific antibacterial activity of liposome-encapsulated clove oil and its application in tofu publication-title: Food Control – volume: 68 start-page: 397 year: 2002 end-page: 400 ident: bb0110 article-title: Transmission of publication-title: Appl. Environ. Microbiol. – volume: 28 start-page: 325 year: 2010 end-page: 347 ident: bb0020 article-title: Electrospinning: a fascinating fiber fabrication technique publication-title: Biotechnol. Adv. – volume: 78 start-page: 27 year: 2015 end-page: 33 ident: bb0010 article-title: Electrostatic spraying of organic acids on biofilms formed by publication-title: Food Res. Int. – volume: 99 start-page: 6097 year: 2016 end-page: 6104 ident: bb0050 article-title: Inhibitory effect of liposome-entrapped lemongrass oil on the growth of publication-title: J. Dairy Sci. – volume: 70 start-page: 104 year: 2016 end-page: 110 ident: bb0065 article-title: Development of chitosan nanoparticles loaded with summer savory ( publication-title: LWT Food Sci. Technol. – volume: 86 start-page: 50 year: 2016 end-page: 58 ident: bb0070 article-title: Chitosan-tripolyphosphate nanoparticles: optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks publication-title: Int. J. Biol. Macromol. – volume: 27 start-page: 37 year: 2010 end-page: 43 ident: bb0135 article-title: Mathematical modeling the cross-contamination of publication-title: Food Microbiol. – volume: 92 start-page: 321 year: 2016 end-page: 328 ident: bb0145 article-title: Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds publication-title: Int. J. Biol. Macromol. – volume: 68 start-page: 192 year: 2017 end-page: 198 ident: bb0060 article-title: Development of active gelatin films by means of valorisation of food processing waste: a review publication-title: Food Hydrocoll. – volume: 93 start-page: 1559 year: 2016 end-page: 1566 ident: bb0085 article-title: Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 182 start-page: 33 year: 2016 end-page: 45 ident: bb0090 article-title: A review on recent development in non-conventional food sterilization technologies publication-title: J. Food Eng. – volume: 96 start-page: 578 year: 2013 end-page: 585 ident: bb0160 article-title: Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation publication-title: Carbohydr. Polym. – volume: 61 start-page: 92 year: 2016 end-page: 98 ident: bb0040 article-title: The specific antibacterial effect of the Salvia oil nanoliposomes against publication-title: Food Control – volume: 71 start-page: 240 year: 2017 end-page: 251 ident: bb0005 article-title: Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering publication-title: Mater. Sci. Eng. C – volume: 104 start-page: 30 year: 2015 end-page: 36 ident: bb0080 article-title: Consumer sensory evaluation, fatty acid composition, and shelf-life of ground beef with subcutaneous fat trimmings from different carcass locations publication-title: Meat Sci. – volume: 77 start-page: 1117 year: 2017 end-page: 1127 ident: bb0055 article-title: Electrospinning of thermoplastic carboxymethyl cellulose/poly(ethylene oxide) nanofibers for use in drug-release systems publication-title: Mater. Sci. Eng. C – volume: 139 start-page: 131 year: 2016 end-page: 138 ident: bb0125 article-title: Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation publication-title: Carbohydr. Polym. – volume: 81 start-page: 233 year: 2017 end-page: 242 ident: bb0035 article-title: Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles publication-title: LWT Food Sci. Technol. – volume: 21 start-page: 284 year: 2010 end-page: 292 ident: bb0100 article-title: Food applications of liposome-encapsulated antimicrobial peptides publication-title: Trends Food Sci. Technol. – volume: 95 start-page: 29 year: 2004 end-page: 39 ident: bb0120 article-title: Prevalence of microbial biofilms on selected fresh produce and household surfaces publication-title: Int. J. Food Microbiol. – volume: 79 start-page: 221 year: 2017 end-page: 226 ident: bb0025 article-title: Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal antibiofilm and antiadhesive effects publication-title: Mater. Sci. Eng. C – volume: 73 start-page: 663 year: 2017 end-page: 671 ident: bb0105 article-title: Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging publication-title: Food Control – volume: 46 start-page: 383 year: 2015 end-page: 394 ident: bb0075 article-title: Mixed culture biofilms of publication-title: Food Microbiol. – volume: 31 start-page: 572 year: 2013 end-page: 585 ident: bb0140 article-title: Biofilm formation in food industries: a food safety concern publication-title: Food Control – volume: 7 start-page: 4030 year: 2016 end-page: 4040 ident: bb0030 article-title: Co-loaded proteinase K/thyme oil liposomes for inactivation of publication-title: Food Funct. – volume: 69 start-page: 286 year: 2017 end-page: 292 ident: bb0095 article-title: Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review publication-title: Food Hydrocoll. – volume: 61 start-page: 8175 year: 2013 end-page: 8184 ident: bb0150 article-title: Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure publication-title: J. Agric. Food Chem. – volume: 70 start-page: 104 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0065 article-title: Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications publication-title: LWT Food Sci. Technol. doi: 10.1016/j.lwt.2016.02.037 – volume: 61 start-page: 92 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0040 article-title: The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofilms on milk container publication-title: Food Control doi: 10.1016/j.foodcont.2015.09.034 – volume: 86 start-page: 50 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0070 article-title: Chitosan-tripolyphosphate nanoparticles: optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.01.042 – volume: 27 start-page: 37 year: 2010 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0135 article-title: Mathematical modeling the cross-contamination of Escherichia coli O157:H7 on the surface of ready-to-eat meat product while slicing publication-title: Food Microbiol. doi: 10.1016/j.fm.2009.07.016 – volume: 145 start-page: 301 year: 2011 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0115 article-title: Transfer and internalisation of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in cabbage cultivated on contaminated manure-amended soil under tropical field conditions in Sub-Saharan Africa publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2011.01.018 – volume: 31 start-page: 572 year: 2013 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0140 article-title: Biofilm formation in food industries: a food safety concern publication-title: Food Control doi: 10.1016/j.foodcont.2012.12.001 – volume: 7 start-page: 4030 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0030 article-title: Co-loaded proteinase K/thyme oil liposomes for inactivation of Escherichia coli O157:H7 biofilms on cucumber publication-title: Food Funct. doi: 10.1039/C6FO01201A – volume: 78 start-page: 27 year: 2015 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0010 article-title: Electrostatic spraying of organic acids on biofilms formed by E. coli O157:H7 and Salmonella Typhimurium on fresh produce publication-title: Food Res. Int. doi: 10.1016/j.foodres.2015.11.012 – volume: 46 start-page: 383 year: 2015 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0075 article-title: Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma publication-title: Food Microbiol. doi: 10.1016/j.fm.2014.08.003 – volume: 56 start-page: 128 year: 2015 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0045 article-title: The specific antibacterial activity of liposome-encapsulated clove oil and its application in tofu publication-title: Food Control doi: 10.1016/j.foodcont.2015.03.026 – volume: 28 start-page: 325 year: 2010 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0020 article-title: Electrospinning: a fascinating fiber fabrication technique publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.01.004 – volume: 73 start-page: 663 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0105 article-title: Antimicrobial efficacy of clove essential oil infused into chemically modified LLDPE film for chicken meat packaging publication-title: Food Control doi: 10.1016/j.foodcont.2016.09.018 – volume: 71 start-page: 240 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0005 article-title: Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.10.003 – volume: 99 start-page: 6097 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0050 article-title: Inhibitory effect of liposome-entrapped lemongrass oil on the growth of Listeria monocytogenes in cheese publication-title: J. Dairy Sci. doi: 10.3168/jds.2016-11133 – volume: 88 start-page: 1102 year: 2010 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0155 article-title: Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.01.020 – volume: 96 start-page: 578 year: 2013 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0160 article-title: Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.08.117 – volume: 68 start-page: 192 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0060 article-title: Development of active gelatin films by means of valorisation of food processing waste: a review publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2016.08.021 – volume: 113 start-page: 561 year: 2014 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0130 article-title: Electrospinning an essential oil: cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.06.075 – volume: 104 start-page: 30 year: 2015 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0080 article-title: Consumer sensory evaluation, fatty acid composition, and shelf-life of ground beef with subcutaneous fat trimmings from different carcass locations publication-title: Meat Sci. doi: 10.1016/j.meatsci.2015.01.014 – volume: 68 start-page: 397 year: 2002 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0110 article-title: Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.1.397-400.2002 – volume: 77 start-page: 1117 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0055 article-title: Electrospinning of thermoplastic carboxymethyl cellulose/poly(ethylene oxide) nanofibers for use in drug-release systems publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.03.252 – volume: 182 start-page: 33 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0090 article-title: A review on recent development in non-conventional food sterilization technologies publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2016.02.026 – volume: 69 start-page: 286 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0095 article-title: Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review publication-title: Food Hydrocoll. doi: 10.1016/j.foodhyd.2017.01.041 – volume: 100 start-page: 95 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0015 article-title: Composition and antimicrobial activity of the essential oil, distilled aromatic water and herbal infusion from Epilobium parviflorum, Schreb publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2017.02.016 – volume: 81 start-page: 233 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0035 article-title: Improving anti-listeria activity of cheese packaging via nanofiber containing nisin-loaded nanoparticles publication-title: LWT Food Sci. Technol. doi: 10.1016/j.lwt.2017.04.003 – volume: 21 start-page: 284 year: 2010 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0100 article-title: Food applications of liposome-encapsulated antimicrobial peptides publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2010.03.003 – volume: 139 start-page: 131 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0125 article-title: Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.11.073 – volume: 79 start-page: 221 year: 2017 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0025 article-title: Chitosan nanoparticles as alternative anti-staphylococci agents: bactericidal antibiofilm and antiadhesive effects publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.05.047 – volume: 92 start-page: 321 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0145 article-title: Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.07.013 – volume: 95 start-page: 29 year: 2004 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0120 article-title: Prevalence of microbial biofilms on selected fresh produce and household surfaces publication-title: Int. J. Food Microbiol. doi: 10.1016/j.ijfoodmicro.2004.01.019 – volume: 93 start-page: 1559 year: 2016 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0085 article-title: Fabrication of FGF-2 immobilized electrospun gelatin nanofibers for tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.07.041 – volume: 61 start-page: 8175 year: 2013 ident: 10.1016/j.ijfoodmicro.2017.11.019_bb0150 article-title: Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure publication-title: J. Agric. Food Chem. doi: 10.1021/jf402085f |
SSID | ssj0005330 |
Score | 2.6023796 |
Snippet | This study aims to evaluate the antibacterial activity of clove oil-loaded chitosan nanoparticles (CO@CNPs) and gelatin electrospun nanofibers against... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 69 |
SubjectTerms | Antibacterial activity antibacterial properties Bacteria biofilm Biofilms Chitosan Chitosan nanoparticles Clove oil cloves color Crosslinking Cucumber Cucumbers E coli Escherichia coli Escherichia coli O157 Escherichia coli O157:H7 Essential oils flavor Flavors Gelatin Nanofibers Nanoparticles Sensory evaluation Vegetables |
Title | The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber |
URI | https://dx.doi.org/10.1016/j.ijfoodmicro.2017.11.019 https://www.ncbi.nlm.nih.gov/pubmed/29179098 https://www.proquest.com/docview/2017034712 https://www.proquest.com/docview/1969924377 https://www.proquest.com/docview/2053892602 |
Volume | 266 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQqI8LamlLt6XISL2GTWwnthEXhEDbVqWHFolbZDsOMmIT1OweeuE38JM74yRbKhUJqcf4ESWe8XhG_uYbQj7Wwuepq0TiMssS4SBA0cz6hGknHLRJH-unfD0rZufi80V-sUaOx1wYhFUOtr-36dFaDy3TYTWnNyFMv4OzorICOaZAZzOOieZCSNTy_dt7MA8e643g4ARHPyV7fzBe4apu22qO0DdEecl9JPRE0p1_n1EP-aDxLDp9QTYHJ5Ie9d_5kqz5Zos86ctK_toiz8Zs4-4VuQM9oLB6wfa0zDANUxmwYgRta-oQwknbcD3F-4S2Mw1tTAOB9ICXo35uPdimil5G1FzfXSPMpKPm0gTwLulJh5IPiJqmoFeBfstyeTCT1AYsCD7vaNtQt3Sx-Mhrcn568uN4lgxVGBKXi2yRmFpJVktvCnD9uPJWO8WFcQWXItdGccdRrKKweSVMWnHhjQQzoXzOrJaevyHrTdv4t4QqrsAhsSmvIa5kDkK91NdIjy1Mbq2uJkSN6166gaIcK2VclyMW7aq8J7ISRQYhTAkimxC2mnrT83Q8ZtLhKNzyL6Ur4Tx5zPSdUSHKYed3sT_lcOSzCdlbdcOexYsY0_h22ZVISaSRCVI-PIaB5ioN0Sa8Z7tXttWPMY28alq9-7_vf0-ew5OKGHS2Q9YXP5f-A7hYC7sb99Au2Tj69GV29huy6CjD |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQLgvJaKOBKcEw3sZ3YRnBA0GpLHxxopd6M7ThVqm5SkV2hXvgN_Bf-IDN5LEWiUiXUqx1bjmcynlE-fx8hrwoR0tjnIvKJY5HwUKBo5kLEtBce2mRo9VP29rPJofh0lB4tkV_DXRiEVfaxv4vpbbTuW8b9bo7PynL8BZIVlWTIMQU-m_ABWbkTzr9D3da82_4IRn7N2NbmwYdJ1EsLRD4VySyyhZKskMFmkM9wFZz2igvrMy5Fqq3inuNaRebSXNg45yJYCb6vQsqcloHDvDfITQHhAmUTNn5cwJXwVuAEVxfh8m6T9T-gsvKkqOt8ilg7hJXJDWQQRZaffx-KlyW97eG3dY_c7bNW-r7bmPtkKVSr5FanY3m-SlaG683NA_ITHI-CuUrX8UDDMLw7gRIVtC6oR8worcvTMf7AqBtb0cpWULn3AD0api5AMMzpcQvT67oLxLU01B7bEtJZutmgq5UI06bgyCX9nKTyzURSV6IC-bShdUX93LdqJw_J4bXY5hFZruoqPCFUcQUZkIt5AYUs81BbxqFAPm5hU-d0PiJq2Hfje050lOY4NQP47cRcMJlBk0HNZMBkI8IWQ886YpCrDHo7GNf85eUGDrCrDF8bHML0oaZp-2MOOQYbkfVFNwQJ_PNjq1DPG4McSBqpJ-XlzzDwXKWhvIV5HnfOtngxppHITaun_7f-l2RlcrC3a3a393eekTvQo1oAPFsjy7Nv8_Ac8ruZe9F-T5R8ve4P-DdECGRL |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+antibacterial+activity+of+clove+oil%2Fchitosan+nanoparticles+embedded+gelatin+nanofibers+against+Escherichia+coli+O157%3AH7+biofilms+on+cucumber&rft.jtitle=International+journal+of+food+microbiology&rft.au=Cui%2C+Haiying&rft.au=Bai%2C+Mei&rft.au=Rashed%2C+Marwan+M+A&rft.au=Lin%2C+Lin&rft.date=2018-02-02&rft.issn=1879-3460&rft.eissn=1879-3460&rft.volume=266&rft.spage=69&rft_id=info:doi/10.1016%2Fj.ijfoodmicro.2017.11.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1605&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1605&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1605&client=summon |