Benefits and limits of biological nitrification inhibitors for plant nitrogen uptake and the environment

Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what con...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 15027 - 13
Main Authors Kuppe, Christian W., Postma, Johannes A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.
AbstractList Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.
Abstract Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.
Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.
ArticleNumber 15027
Author Postma, Johannes A.
Kuppe, Christian W.
Author_xml – sequence: 1
  givenname: Christian W.
  orcidid: 0000-0002-1837-759X
  surname: Kuppe
  fullname: Kuppe, Christian W.
  email: c.kuppe@fz-juelich.de
  organization: Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Faculty 1, RWTH Aachen University
– sequence: 2
  givenname: Johannes A.
  orcidid: 0000-0002-5222-6648
  surname: Postma
  fullname: Postma, Johannes A.
  organization: Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38951138$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJFYsMmYF8_Eq8QrXhUqsQG1padXM94yNiD7anE3-NmSmm7qL3wlX3O8X2cl81RiAGb5jUl7ylhw4fMqVBDR4B3UgDvO3jWnADhogMGcHQvPm7Oct6QugQoTtWL5pgNSlDKhpNmfY4BnS-5NWFqZ7-9CaNrrY9zXPnRzG3wJXlXw-JjaH1Ye-tLTLl1MbW72YSyQOIKQ7vfFfMLF62yxhbDtU8xbDGUV81zZ-aMZ7fnafPzy-cfF9-6q-9fLy8-XXWj4LR0xgHj1AoppFEjg8kxZQ1KIBIFs9OkQDJipOvRqkEhcBBAJiIckT1Rhp02lwfdKZqN3iW_NemPjsbr5SKmlTap-HFGzewI1Brbc8U5mtGwgTKkdQ90cravWh8PWru93eI01jKSmR-IPnwJfq1X8VpTCrTnjFSFd7cKKf7eYy566_OIc-0axn3WjPS8BzkwVaFvH0E3cZ9C7dWCAia5kBX15n5Kd7n8m2gFwAEwpphzQncHoUTfOEcfnKOrc_TiHA2VNDwijb4s865l-flpKjtQc_0nrDD9T_sJ1l9-mtjI
CitedBy_id crossref_primary_10_1007_s12088_025_01462_3
Cites_doi 10.1007/s00374-020-01538-w
10.1073/pnas.0903694106
10.1007/s11104-022-05609-9
10.3389/fmicb.2019.00772
10.1146/annurev.mi.33.100179.001521
10.1093/aob/mci216
10.1016/j.agee.2022.108089
10.1111/1462-2920.14905
10.1016/j.ecoenv.2021.112338
10.1039/f19837901765
10.1016/S0960-8524(99)90068-8
10.1073/pnas.2106595118
10.1007/s10021-019-00365-x
10.1093/jxb/ers342
10.1137/S1064827594276424
10.1111/ppl.13300
10.1016/j.soilbio.2015.02.028
10.1111/pce.14285
10.1007/s11104-021-05201-7
10.1086/665997
10.1007/s11104-016-2822-4
10.4141/cjss70-017
10.1038/s41598-023-39720-3
10.1007/s11104-006-9156-6
10.1016/S0038-0717(00)00209-1
10.1128/AEM.70.2.1008-1016.2004
10.1016/j.rsci.2023.09.002
10.1111/j.1365-2435.2008.01476.x
10.1021/acs.est.0c05732
10.1016/j.envpol.2020.114821
10.1101/2023.05.31.543046
10.1111/nph.18807
10.3389/fmicb.2022.962146
10.1111/gcb.12802
10.1111/j.1469-8137.2008.02576.x
10.1016/j.apsoil.2022.104412
10.1111/j.1574-6941.2006.00170.x
10.1007/s11104-012-1419-9
10.1093/femsre/fuaa037
10.1016/j.soilbio.2018.11.008
10.1111/j.1365-2389.1981.tb01702.x
10.1007/s00374-021-01577-x
10.1046/j.0028-646X.2001.00320.x
10.1073/pnas.2107576118
10.1038/nplants.2017.74
10.1111/aab.12045
10.1007/s11104-006-9159-3
10.1007/s10661-017-6022-3
10.1016/0038-0717(95)00119-0
10.3389/fpls.2022.1067498
10.1016/j.envpol.2021.118499
10.1016/j.rhisph.2021.100352
10.1016/0038-0717(86)90076-3
10.1016/S0065-2911(08)60112-5
10.1111/nph.14057
10.1016/j.tplants.2017.05.004
10.1007/s00374-020-01533-1
10.1007/s11104-019-03933-1
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-65247-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_3bc21bab74944eaca3813e1e1e81dfb7
PMC11217430
38951138
10_1038_s41598_024_65247_2
Genre Journal Article
GrantInformation_xml – fundername: Root2Res Project, which has received funding from the European Union’s Horizon Europe research and innovation programme
  grantid: Grant Agreement No. 101060124
– fundername: Forschungszentrum Jülich GmbH (4205)
– fundername: Helmholtz Association (POF IV: 2171, Biological and environmental resources for sustainable use)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-af2341b5656a9c32df39bae6206e53bdd92630a6f7eb989e242520d05f06709a3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:51 EDT 2025
Thu Aug 21 18:32:32 EDT 2025
Thu Jul 10 18:44:03 EDT 2025
Wed Aug 13 11:33:32 EDT 2025
Thu Apr 03 07:04:35 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Tue Jul 01 01:02:02 EDT 2025
Fri Feb 21 02:39:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Rhizosphere model
Bacteria
N leaching
BNI exudation
NUE
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-af2341b5656a9c32df39bae6206e53bdd92630a6f7eb989e242520d05f06709a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1837-759X
0000-0002-5222-6648
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-65247-2
PMID 38951138
PQID 3074236456
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_3bc21bab74944eaca3813e1e1e81dfb7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217430
proquest_miscellaneous_3074726839
proquest_journals_3074236456
pubmed_primary_38951138
crossref_primary_10_1038_s41598_024_65247_2
crossref_citationtrail_10_1038_s41598_024_65247_2
springer_journals_10_1038_s41598_024_65247_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References O’SullivanCAFilleryIRPRoperMMRichardsRAIdentification of several wheat landraces with biological nitrification inhibition capacityPlant Soil2016404617410.1007/s11104-016-2822-4
Lopez, G. et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci.13, (2023).
MyroldDDTiedjeJMSimultaneous estimation of several nitrogen cycle rates using 15N: Theory and applicationSoil Biol. Biochem.1986185595681:CAS:528:DyaL2sXotlCqug%3D%3D10.1016/0038-0717(86)90076-3
OwenAGJonesDLCompetition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisitionSoil Biol. Biochem.2001336516571:CAS:528:DC%2BD3MXis1aksLo%3D10.1016/S0038-0717(00)00209-1
LuYEffects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soilsSoil Biol. Biochem.201912948591:CAS:528:DC%2BC1cXit1ymu7%2FJ10.1016/j.soilbio.2018.11.008
ShenJMaximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of ChinaJ. Exp. Bot.201364118111921:CAS:528:DC%2BC3sXktFKru7o%3D2325527910.1093/jxb/ers342
SubbaraoGVEnlisting wild grass genes to combat nitrification in wheat farming: A nature-based solutionProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXhvFert7bO34426500853637010.1073/pnas.2106595118
OtakaJSubbaraoGVOnoHYoshihashiTBiological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudatesBiol. Fertil. Soils2022582512641:CAS:528:DC%2BB3MXhsFGqsb7F10.1007/s00374-021-01577-x
ZakirHAKMDetection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor)New Phytol.20081804424511:CAS:528:DC%2BD1cXhtlKru73P1865721410.1111/j.1469-8137.2008.02576.x
ChenSRice genotype affects nitrification inhibition in the rhizospherePlant Soil202248135481:CAS:528:DC%2BB38XhvFaru7fN10.1007/s11104-022-05609-9
SubbaraoGVBiological nitrification inhibition (BNI) activity in sorghum and its characterizationPlant Soil20133662432591:CAS:528:DC%2BC3sXmtlCntrc%3D10.1007/s11104-012-1419-9
LanTSynergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat systemAppl. Soil Ecol.202217410.1016/j.apsoil.2022.104412
EgenolfKRhizosphere pH and cation-anion balance determine the exudation of nitrification inhibitor 3-epi-brachialactone suggesting release via secondary transportPhysiol. Plant.20211721161231:CAS:528:DC%2BB3MXhtlWnur8%3D3328012410.1111/ppl.13300
CoskunDBrittoDTShiWKronzuckerHJHow plant root exudates shape the nitrogen cycleTrends Plant Sci.2017226616731:CAS:528:DC%2BC2sXptlShsrc%3D2860141910.1016/j.tplants.2017.05.004
KuppeCWSchnepfAvon LieresEWattMPostmaJARhizosphere models: Their concepts and application to plant-soil ecosystemsPlant Soil202247417551:CAS:528:DC%2BB38XhtVGiu7nF10.1007/s11104-021-05201-7
BoudsocqSPlant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning?Am. Nat.201218060691:STN:280:DC%2BC38npsFGgsQ%3D%3D2267365110.1086/665997
ZhangXLuYYangTKronzuckerHJShiWFactors influencing the release of the biological nitrification inhibitor 1,9-decanediol from rice (Oryza sativa L.) rootsPlant Soil20194362532651:CAS:528:DC%2BC1MXlvVGhsr4%3D10.1007/s11104-019-03933-1
QiaoCHow inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen inputGlob. Change Biol.201521124912572015GCBio..21.1249Q10.1111/gcb.12802
OkanoYApplication of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soilAppl. Environ. Microbiol.200470100810162004ApEnM..70.1008O1:CAS:528:DC%2BD2cXhs1Cgsrc%3D1476658334891010.1128/AEM.70.2.1008-1016.2004
Kaur-Bhambra, J., Rajakulendran, J. E., Bodington, D., Jaspars, M. & Gubry-Rangin, C. Rice biological nitrification inhibition efficiency depends on plant genotype exudation rate. bioRxiv 2023.05.31.543046; https://doi.org/10.1101/2023.05.31.543046 (2023).
BeeckmanFAnnettaLCorrochano-MonsalveMBeeckmanTMotteHEnhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibitionTrends Microbiol.202311
DongweiDPotential secretory transporters and biosynthetic precursors of biological nitrification inhibitor 1,9-decanediol in rice as revealed by transcriptome and metabolome analysesRice Sci.2024318710210.1016/j.rsci.2023.09.002
NardiPBiological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applicationsFEMS Microbiol. Rev.2020448749081:CAS:528:DC%2BB3MXhtlWgur7K3278558410.1093/femsre/fuaa037
BelserLWPopulation ecology of nitrifying bacteriaAnnu. Rev. Microbiol.1979333093331:STN:280:DyaL3c%2FktFWqtw%3D%3D38692510.1146/annurev.mi.33.100179.001521
AndrewsMRavenJALeaPJDo plants need nitrate? The mechanisms by which nitrogen form affects plantsAnn. Appl. Biol.20131631741991:CAS:528:DC%2BC3sXhs1KrsL%2FI10.1111/aab.12045
Kaur-BhambraJWardakDLRProsserJIGubry-RanginCRevisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising culturesBiol. Fertil. Soils2022582412491:CAS:528:DC%2BB3MXis1Kit7o%3D10.1007/s00374-020-01533-1
KuppeCWKirkGJDWissuwaMPostmaJARice increases phosphorus uptake in strongly sorbing soils by intra-root facilitationPlant Cell Environ.2022458848991:CAS:528:DC%2BB38XkvFWitb4%3D3513797610.1111/pce.14285
LaffiteABiological inhibition of soil nitrification by forest tree species affects Nitrobacter populationsEnviron. Microbiol.202022114111531:CAS:528:DC%2BB3cXktVGitr8%3D3186782110.1111/1462-2920.14905
Lei, J. et al. A meta-analysis to examine whether nitrification inhibitors work through selectively inhibiting ammonia-oxidizing bacteria. Front. Microbiol.13, (2022).
LiYZhangYChapmanSJYaoHBiological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaeaBiol. Fertil. Soils2021573994071:CAS:528:DC%2BB3MXis1Kjtrw%3D10.1007/s00374-020-01538-w
SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol.20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057
McLarenADTemporal and vectorial reactions of nitrogen in soil: A reviewCan. J. Soil. Sci.197050971091:CAS:528:DyaE3cXkslKitLc%3D10.4141/cjss70-017
KonaréSEffects of mineral nitrogen partitioning on tree-grass coexistence in West African savannasEcosystems2019221676169010.1007/s10021-019-00365-x
ZhangJMüllerCCaiZHeterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soilsSoil Biol. Biochem.2015841992091:CAS:528:DC%2BC2MXktlSkur4%3D10.1016/j.soilbio.2015.02.028
WangXEffects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A reviewEcotoxicol. Environ. Saf.20212201:CAS:528:DC%2BB3MXhtFSku77L3401563210.1016/j.ecoenv.2021.112338
ShipleyBVuT-TDry matter content as a measure of dry matter concentration in plants and their partsNew Phytol.200215335936410.1046/j.0028-646X.2001.00320.x
SubbaraoGVSearchingerTDA “more ammonium solution” to mitigate nitrogen pollution and boost crop yieldsProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXht1eht7fE34039714817921510.1073/pnas.2107576118
ShampineLFReicheltMWThe MATLAB ODE suiteSIAM J. Sci. Comput.199718122143337410.1137/S1064827594276424
HashitaniTTanakaKMeasurements of self-diffusion coefficients of the nitrate ion in aqueous solutions of potassium nitrate and calcium nitrateJ. Chem. Soc. Faraday Trans.19837917651:CAS:528:DyaL3sXlvVWrt7g%3D10.1039/f19837901765
Upadhyayl, R. K., Patra, D. D. & Tewari, S. K. Natural nitrification inhibitors for higher nitrogen use efficiency, crop yield, and for curtailing global warming. 6 (2011).
KirkGJDKronzuckerHJThe potential for nitrification and nitrate uptake in the rhizosphere of Wetland plants: A modelling studyAnn. Bot.2005966396461:CAS:528:DC%2BD2MXhtFGitLbN16024557424703110.1093/aob/mci216
KuppeCWRhizosphere models and their application to resource uptake efficiency2023RWTH Aachen University
LanTBiological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice croppingEnviron. Pollut.20222931:CAS:528:DC%2BB3MXisFagsLbO3479391510.1016/j.envpol.2021.118499
MohantySRNitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soilsFront. Microbiol.201910110.3389/fmicb.2019.00772
BarracloughPBTinkerPBThe determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk densityJ. Soil Sci.1981322252361:CAS:528:DyaL3MXltFeqtb4%3D10.1111/j.1365-2389.1981.tb01702.x
PetroliCDGenetic variation among elite inbred lines suggests potential to breed for BNI-capacity in maizeSci. Rep.202313134222023NatSR..1313422P1:CAS:528:DC%2BB3sXhslCgtr7E375918911043545010.1038/s41598-023-39720-3
HwangSHanakiKEffects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide productionBioresour. Technol.2000711591651:CAS:528:DyaK1MXntlOitr0%3D10.1016/S0960-8524(99)90068-8
BoudsocqSLataJCMathieuJAbbadieLBarotSModelling approach to analyse the effects of nitrification inhibition on primary productionFunct. Ecol.20092322023010.1111/j.1365-2435.2008.01476.x
SubbaraoGVWangHYItoONakaharaKBerryWLNH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola rootsPlant Soil20072902452571:CAS:528:DC%2BD2sXnsFyhsQ%3D%3D10.1007/s11104-006-9156-6
SubbaraoGVBiological nitrification inhibition (BNI)—is it a widespread phenomenon?
CW Kuppe (65247_CR30) 2022; 45
KD Balkos (65247_CR43) 2010; 33
65247_CR35
A Laffite (65247_CR15) 2020; 22
65247_CR7
65247_CR32
J Kaur-Bhambra (65247_CR3) 2022; 58
65247_CR1
DD Myrold (65247_CR36) 1986; 18
HAKM Zakir (65247_CR17) 2008; 180
GJD Kirk (65247_CR26) 2005; 96
O Højberg (65247_CR37) 1996; 28
S Konaré (65247_CR28) 2019; 22
CA O’Sullivan (65247_CR16) 2016; 404
F Beeckman (65247_CR23) 2023; 1
AD McLaren (65247_CR31) 1970; 50
B Shipley (65247_CR34) 2002; 153
LW Belser (65247_CR64) 1979; 33
D Dongwei (65247_CR56) 2024; 31
QQ Jiang (65247_CR63) 1999; 16
S Boudsocq (65247_CR27) 2009; 23
X Zhang (65247_CR46) 2019; 436
P Nardi (65247_CR12) 2020; 44
GV Subbarao (65247_CR45) 2007; 290
PB Barraclough (65247_CR58) 1981; 32
L Sun (65247_CR19) 2016; 212
GV Subbarao (65247_CR14) 2021; 118
C Qiao (65247_CR53) 2015; 21
J Zhang (65247_CR29) 2015; 84
J Geets (65247_CR65) 2006; 58
65247_CR55
GV Subbarao (65247_CR6) 2013; 366
65247_CR13
C Kabala (65247_CR61) 2017; 189
65247_CR51
I Jáuregui (65247_CR48) 2023; 238
T Lan (65247_CR52) 2022; 174
S Hwang (65247_CR57) 2000; 71
AG Owen (65247_CR60) 2001; 33
65247_CR10
J Otaka (65247_CR20) 2022; 58
GV Subbarao (65247_CR18) 2009; 106
EE Woodward (65247_CR9) 2021; 55
Y Li (65247_CR11) 2021; 57
CD Petroli (65247_CR44) 2023; 13
S Chen (65247_CR21) 2022; 481
J Shen (65247_CR8) 2013; 64
CW Kuppe (65247_CR33) 2023
Y Okano (65247_CR62) 2004; 70
Y Lu (65247_CR50) 2019; 129
GV Subbarao (65247_CR22) 2021; 118
X Wang (65247_CR4) 2021; 220
CW Kuppe (65247_CR40) 2021; 18
Y Yao (65247_CR54) 2020; 264
T Lan (65247_CR41) 2022; 293
K Egenolf (65247_CR47) 2021; 172
X Yu (65247_CR5) 2022; 338
CW Kuppe (65247_CR25) 2022; 474
T Hashitani (65247_CR59) 1983; 79
D Coskun (65247_CR24) 2017; 22
M Andrews (65247_CR2) 2013; 163
SR Mohanty (65247_CR38) 2019; 10
S Boudsocq (65247_CR42) 2012; 180
LF Shampine (65247_CR39) 1997; 18
GV Subbarao (65247_CR49) 2007; 294
References_xml – reference: ZhangJMüllerCCaiZHeterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soilsSoil Biol. Biochem.2015841992091:CAS:528:DC%2BC2MXktlSkur4%3D10.1016/j.soilbio.2015.02.028
– reference: KabalaCKarczewskaAGałkaBCuskeMSowińskiJSeasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cupsEnviron. Monit. Assess201718930428567506548772610.1007/s10661-017-6022-3
– reference: YuXKeitelCZhangYWangeciANDijkstraFAGlobal meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maizeAgric. Ecosyst. Environ.20223381:CAS:528:DC%2BB38Xit1Cmsr%2FL10.1016/j.agee.2022.108089
– reference: ShipleyBVuT-TDry matter content as a measure of dry matter concentration in plants and their partsNew Phytol.200215335936410.1046/j.0028-646X.2001.00320.x
– reference: CoskunDBrittoDTShiWKronzuckerHJHow plant root exudates shape the nitrogen cycleTrends Plant Sci.2017226616731:CAS:528:DC%2BC2sXptlShsrc%3D2860141910.1016/j.tplants.2017.05.004
– reference: BarracloughPBTinkerPBThe determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk densityJ. Soil Sci.1981322252361:CAS:528:DyaL3MXltFeqtb4%3D10.1111/j.1365-2389.1981.tb01702.x
– reference: GeetsJBoonNVerstraeteWStrategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuationsFEMS Microbiol. Ecol.2006581131:CAS:528:DC%2BD28XhtVOmtrbF1695890310.1111/j.1574-6941.2006.00170.x
– reference: LanTSynergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat systemAppl. Soil Ecol.202217410.1016/j.apsoil.2022.104412
– reference: Kaur-Bhambra, J., Rajakulendran, J. E., Bodington, D., Jaspars, M. & Gubry-Rangin, C. Rice biological nitrification inhibition efficiency depends on plant genotype exudation rate. bioRxiv 2023.05.31.543046; https://doi.org/10.1101/2023.05.31.543046 (2023).
– reference: WoodwardEEEdwardsTMGivensCEKolpinDWHladikMLWidespread use of the nitrification inhibitor nitrapyrin: Assessing benefits and costs to agriculture, ecosystems, and environmental healthEnviron. Sci. Technol.202155134513532021EnST...55.1345W1:CAS:528:DC%2BB3MXosFyhsA%3D%3D3343319510.1021/acs.est.0c05732
– reference: KirkGJDKronzuckerHJThe potential for nitrification and nitrate uptake in the rhizosphere of Wetland plants: A modelling studyAnn. Bot.2005966396461:CAS:528:DC%2BD2MXhtFGitLbN16024557424703110.1093/aob/mci216
– reference: LanTBiological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice croppingEnviron. Pollut.20222931:CAS:528:DC%2BB3MXisFagsLbO3479391510.1016/j.envpol.2021.118499
– reference: Lei, J. et al. A meta-analysis to examine whether nitrification inhibitors work through selectively inhibiting ammonia-oxidizing bacteria. Front. Microbiol.13, (2022).
– reference: ZakirHAKMDetection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor)New Phytol.20081804424511:CAS:528:DC%2BD1cXhtlKru73P1865721410.1111/j.1469-8137.2008.02576.x
– reference: PetroliCDGenetic variation among elite inbred lines suggests potential to breed for BNI-capacity in maizeSci. Rep.202313134222023NatSR..1313422P1:CAS:528:DC%2BB3sXhslCgtr7E375918911043545010.1038/s41598-023-39720-3
– reference: Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants3, nplants201774 (2017).
– reference: O’SullivanCAFilleryIRPRoperMMRichardsRAIdentification of several wheat landraces with biological nitrification inhibition capacityPlant Soil2016404617410.1007/s11104-016-2822-4
– reference: SubbaraoGVWangHYItoONakaharaKBerryWLNH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola rootsPlant Soil20072902452571:CAS:528:DC%2BD2sXnsFyhsQ%3D%3D10.1007/s11104-006-9156-6
– reference: YaoYZengKSongYBiological nitrification inhibitor for reducing N2O and NH3 emissions simultaneously under root zone fertilization in a Chinese rice fieldEnviron. Pollut.20202641:CAS:528:DC%2BB3cXhtVSjt7%2FN3255985910.1016/j.envpol.2020.114821
– reference: EgenolfKRhizosphere pH and cation-anion balance determine the exudation of nitrification inhibitor 3-epi-brachialactone suggesting release via secondary transportPhysiol. Plant.20211721161231:CAS:528:DC%2BB3MXhtlWnur8%3D3328012410.1111/ppl.13300
– reference: WangXEffects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A reviewEcotoxicol. Environ. Saf.20212201:CAS:528:DC%2BB3MXhtFSku77L3401563210.1016/j.ecoenv.2021.112338
– reference: Kaur-BhambraJWardakDLRProsserJIGubry-RanginCRevisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising culturesBiol. Fertil. Soils2022582412491:CAS:528:DC%2BB3MXis1Kit7o%3D10.1007/s00374-020-01533-1
– reference: McLarenADTemporal and vectorial reactions of nitrogen in soil: A reviewCan. J. Soil. Sci.197050971091:CAS:528:DyaE3cXkslKitLc%3D10.4141/cjss70-017
– reference: BeeckmanFAnnettaLCorrochano-MonsalveMBeeckmanTMotteHEnhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibitionTrends Microbiol.202311
– reference: MohantySRNitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soilsFront. Microbiol.201910110.3389/fmicb.2019.00772
– reference: SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol.20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057
– reference: Upadhyayl, R. K., Patra, D. D. & Tewari, S. K. Natural nitrification inhibitors for higher nitrogen use efficiency, crop yield, and for curtailing global warming. 6 (2011).
– reference: OkanoYApplication of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soilAppl. Environ. Microbiol.200470100810162004ApEnM..70.1008O1:CAS:528:DC%2BD2cXhs1Cgsrc%3D1476658334891010.1128/AEM.70.2.1008-1016.2004
– reference: SubbaraoGVEnlisting wild grass genes to combat nitrification in wheat farming: A nature-based solutionProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXhvFert7bO34426500853637010.1073/pnas.2106595118
– reference: AndrewsMRavenJALeaPJDo plants need nitrate? The mechanisms by which nitrogen form affects plantsAnn. Appl. Biol.20131631741991:CAS:528:DC%2BC3sXhs1KrsL%2FI10.1111/aab.12045
– reference: Lopez, G. et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci.13, (2023).
– reference: HashitaniTTanakaKMeasurements of self-diffusion coefficients of the nitrate ion in aqueous solutions of potassium nitrate and calcium nitrateJ. Chem. Soc. Faraday Trans.19837917651:CAS:528:DyaL3sXlvVWrt7g%3D10.1039/f19837901765
– reference: Hawkesford, M. et al. Chapter 6 - Functions of macronutrients. in Marschner’s Mineral Nutrition of Higher Plants (Third Edition) (ed. Marschner, P.) 135–189 (Academic Press, San Diego, 2012).
– reference: ShenJMaximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of ChinaJ. Exp. Bot.201364118111921:CAS:528:DC%2BC3sXktFKru7o%3D2325527910.1093/jxb/ers342
– reference: BoudsocqSPlant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning?Am. Nat.201218060691:STN:280:DC%2BC38npsFGgsQ%3D%3D2267365110.1086/665997
– reference: KuppeCWHuberGPostmaJAComparison of numerical methods for radial solute transport to simulate uptake by plant rootsRhizosphere20211810.1016/j.rhisph.2021.100352
– reference: LiYZhangYChapmanSJYaoHBiological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaeaBiol. Fertil. Soils2021573994071:CAS:528:DC%2BB3MXis1Kjtrw%3D10.1007/s00374-020-01538-w
– reference: ChenSRice genotype affects nitrification inhibition in the rhizospherePlant Soil202248135481:CAS:528:DC%2BB38XhvFaru7fN10.1007/s11104-022-05609-9
– reference: SubbaraoGVBiological nitrification inhibition (BNI)—is it a widespread phenomenon?Plant Soil20072945181:CAS:528:DC%2BD2sXltlaqsr8%3D10.1007/s11104-006-9159-3
– reference: LuYEffects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soilsSoil Biol. Biochem.201912948591:CAS:528:DC%2BC1cXit1ymu7%2FJ10.1016/j.soilbio.2018.11.008
– reference: HwangSHanakiKEffects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide productionBioresour. Technol.2000711591651:CAS:528:DyaK1MXntlOitr0%3D10.1016/S0960-8524(99)90068-8
– reference: QiaoCHow inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen inputGlob. Change Biol.201521124912572015GCBio..21.1249Q10.1111/gcb.12802
– reference: SubbaraoGVBiological nitrification inhibition (BNI) activity in sorghum and its characterizationPlant Soil20133662432591:CAS:528:DC%2BC3sXmtlCntrc%3D10.1007/s11104-012-1419-9
– reference: KonaréSEffects of mineral nitrogen partitioning on tree-grass coexistence in West African savannasEcosystems2019221676169010.1007/s10021-019-00365-x
– reference: HøjbergOBinnerupSJSørensenJPotential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphereSoil Biol. Biochem.199628475410.1016/0038-0717(95)00119-0
– reference: KuppeCWSchnepfAvon LieresEWattMPostmaJARhizosphere models: Their concepts and application to plant-soil ecosystemsPlant Soil202247417551:CAS:528:DC%2BB38XhtVGiu7nF10.1007/s11104-021-05201-7
– reference: Barber, S. A. Soil Nutrient Bioavailability: A Mechanistic Approach. (John Wiley & Sons, 1995).
– reference: LaffiteABiological inhibition of soil nitrification by forest tree species affects Nitrobacter populationsEnviron. Microbiol.202022114111531:CAS:528:DC%2BB3cXktVGitr8%3D3186782110.1111/1462-2920.14905
– reference: BoudsocqSLataJCMathieuJAbbadieLBarotSModelling approach to analyse the effects of nitrification inhibition on primary productionFunct. Ecol.20092322023010.1111/j.1365-2435.2008.01476.x
– reference: OwenAGJonesDLCompetition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisitionSoil Biol. Biochem.2001336516571:CAS:528:DC%2BD3MXis1aksLo%3D10.1016/S0038-0717(00)00209-1
– reference: DongweiDPotential secretory transporters and biosynthetic precursors of biological nitrification inhibitor 1,9-decanediol in rice as revealed by transcriptome and metabolome analysesRice Sci.2024318710210.1016/j.rsci.2023.09.002
– reference: SubbaraoGVSearchingerTDA “more ammonium solution” to mitigate nitrogen pollution and boost crop yieldsProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXht1eht7fE34039714817921510.1073/pnas.2107576118
– reference: JiangQQBakkenLRComparison of Nitrosospira strains isolated from terrestrial environmentsFEMS Microbiol. Ecol.1999161
– reference: JáureguiIVega-MasIDelaplacePVanderschurenHThonarCAn optimized hydroponic pipeline for large-scale identification of wheat genotypes with resilient biological nitrification inhibition activityNew Phytol.2023238171117213676492310.1111/nph.18807
– reference: KuppeCWRhizosphere models and their application to resource uptake efficiency2023RWTH Aachen University
– reference: MyroldDDTiedjeJMSimultaneous estimation of several nitrogen cycle rates using 15N: Theory and applicationSoil Biol. Biochem.1986185595681:CAS:528:DyaL2sXotlCqug%3D%3D10.1016/0038-0717(86)90076-3
– reference: BelserLWPopulation ecology of nitrifying bacteriaAnnu. Rev. Microbiol.1979333093331:STN:280:DyaL3c%2FktFWqtw%3D%3D38692510.1146/annurev.mi.33.100179.001521
– reference: SubbaraoGVEvidence for biological nitrification inhibition in Brachiaria pasturesPNAS200910617302173072009PNAS..10617302S1:CAS:528:DC%2BD1MXhs1WktrjE19805171275240110.1073/pnas.0903694106
– reference: BalkosKDBrittoDTKronzuckerHJOptimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72)Plant Cell Environ.20103323341:CAS:528:DC%2BC3cXhtlOqsLg%3D19781010
– reference: Prosser, J. I. Autotrophic Nitrification in Bacteria. in Advances in Microbial Physiology (eds. Rose, A. H. & Tempest, D. W.) vol. 30 125–181 (Academic Press, 1990).
– reference: NardiPBiological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applicationsFEMS Microbiol. Rev.2020448749081:CAS:528:DC%2BB3MXhtlWgur7K3278558410.1093/femsre/fuaa037
– reference: KuppeCWKirkGJDWissuwaMPostmaJARice increases phosphorus uptake in strongly sorbing soils by intra-root facilitationPlant Cell Environ.2022458848991:CAS:528:DC%2BB38XkvFWitb4%3D3513797610.1111/pce.14285
– reference: OtakaJSubbaraoGVOnoHYoshihashiTBiological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudatesBiol. Fertil. Soils2022582512641:CAS:528:DC%2BB3MXhsFGqsb7F10.1007/s00374-021-01577-x
– reference: ZhangXLuYYangTKronzuckerHJShiWFactors influencing the release of the biological nitrification inhibitor 1,9-decanediol from rice (Oryza sativa L.) rootsPlant Soil20194362532651:CAS:528:DC%2BC1MXlvVGhsr4%3D10.1007/s11104-019-03933-1
– reference: ShampineLFReicheltMWThe MATLAB ODE suiteSIAM J. Sci. Comput.199718122143337410.1137/S1064827594276424
– volume: 57
  start-page: 399
  year: 2021
  ident: 65247_CR11
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-020-01538-w
– volume: 106
  start-page: 17302
  year: 2009
  ident: 65247_CR18
  publication-title: PNAS
  doi: 10.1073/pnas.0903694106
– volume: 481
  start-page: 35
  year: 2022
  ident: 65247_CR21
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05609-9
– volume: 10
  start-page: 1
  year: 2019
  ident: 65247_CR38
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.00772
– volume: 33
  start-page: 309
  year: 1979
  ident: 65247_CR64
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.mi.33.100179.001521
– volume: 96
  start-page: 639
  year: 2005
  ident: 65247_CR26
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mci216
– volume: 338
  year: 2022
  ident: 65247_CR5
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2022.108089
– volume: 22
  start-page: 1141
  year: 2020
  ident: 65247_CR15
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.14905
– ident: 65247_CR1
– volume: 220
  year: 2021
  ident: 65247_CR4
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112338
– volume: 79
  start-page: 1765
  year: 1983
  ident: 65247_CR59
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/f19837901765
– volume: 71
  start-page: 159
  year: 2000
  ident: 65247_CR57
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(99)90068-8
– volume: 118
  year: 2021
  ident: 65247_CR14
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2106595118
– volume: 22
  start-page: 1676
  year: 2019
  ident: 65247_CR28
  publication-title: Ecosystems
  doi: 10.1007/s10021-019-00365-x
– volume: 64
  start-page: 1181
  year: 2013
  ident: 65247_CR8
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers342
– volume: 18
  start-page: 1
  year: 1997
  ident: 65247_CR39
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827594276424
– volume: 172
  start-page: 116
  year: 2021
  ident: 65247_CR47
  publication-title: Physiol. Plant.
  doi: 10.1111/ppl.13300
– volume: 84
  start-page: 199
  year: 2015
  ident: 65247_CR29
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.02.028
– volume: 45
  start-page: 884
  year: 2022
  ident: 65247_CR30
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.14285
– volume: 474
  start-page: 17
  year: 2022
  ident: 65247_CR25
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05201-7
– volume-title: Rhizosphere models and their application to resource uptake efficiency
  year: 2023
  ident: 65247_CR33
– ident: 65247_CR35
– volume: 180
  start-page: 60
  year: 2012
  ident: 65247_CR42
  publication-title: Am. Nat.
  doi: 10.1086/665997
– volume: 404
  start-page: 61
  year: 2016
  ident: 65247_CR16
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-2822-4
– volume: 50
  start-page: 97
  year: 1970
  ident: 65247_CR31
  publication-title: Can. J. Soil. Sci.
  doi: 10.4141/cjss70-017
– volume: 1
  start-page: 1
  year: 2023
  ident: 65247_CR23
  publication-title: Trends Microbiol.
– volume: 13
  start-page: 13422
  year: 2023
  ident: 65247_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39720-3
– volume: 290
  start-page: 245
  year: 2007
  ident: 65247_CR45
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9156-6
– volume: 33
  start-page: 651
  year: 2001
  ident: 65247_CR60
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(00)00209-1
– volume: 70
  start-page: 1008
  year: 2004
  ident: 65247_CR62
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.2.1008-1016.2004
– volume: 31
  start-page: 87
  year: 2024
  ident: 65247_CR56
  publication-title: Rice Sci.
  doi: 10.1016/j.rsci.2023.09.002
– volume: 23
  start-page: 220
  year: 2009
  ident: 65247_CR27
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2008.01476.x
– volume: 16
  start-page: 1
  year: 1999
  ident: 65247_CR63
  publication-title: FEMS Microbiol. Ecol.
– volume: 55
  start-page: 1345
  year: 2021
  ident: 65247_CR9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c05732
– volume: 264
  year: 2020
  ident: 65247_CR54
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114821
– ident: 65247_CR51
  doi: 10.1101/2023.05.31.543046
– volume: 238
  start-page: 1711
  year: 2023
  ident: 65247_CR48
  publication-title: New Phytol.
  doi: 10.1111/nph.18807
– ident: 65247_CR10
  doi: 10.3389/fmicb.2022.962146
– volume: 21
  start-page: 1249
  year: 2015
  ident: 65247_CR53
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.12802
– ident: 65247_CR7
– volume: 180
  start-page: 442
  year: 2008
  ident: 65247_CR17
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2008.02576.x
– volume: 174
  year: 2022
  ident: 65247_CR52
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2022.104412
– volume: 58
  start-page: 1
  year: 2006
  ident: 65247_CR65
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2006.00170.x
– volume: 366
  start-page: 243
  year: 2013
  ident: 65247_CR6
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1419-9
– volume: 44
  start-page: 874
  year: 2020
  ident: 65247_CR12
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1093/femsre/fuaa037
– volume: 129
  start-page: 48
  year: 2019
  ident: 65247_CR50
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2018.11.008
– volume: 32
  start-page: 225
  year: 1981
  ident: 65247_CR58
  publication-title: J. Soil Sci.
  doi: 10.1111/j.1365-2389.1981.tb01702.x
– volume: 58
  start-page: 251
  year: 2022
  ident: 65247_CR20
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-021-01577-x
– volume: 153
  start-page: 359
  year: 2002
  ident: 65247_CR34
  publication-title: New Phytol.
  doi: 10.1046/j.0028-646X.2001.00320.x
– volume: 118
  year: 2021
  ident: 65247_CR22
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2107576118
– volume: 33
  start-page: 23
  year: 2010
  ident: 65247_CR43
  publication-title: Plant Cell Environ.
– ident: 65247_CR13
  doi: 10.1038/nplants.2017.74
– volume: 163
  start-page: 174
  year: 2013
  ident: 65247_CR2
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12045
– volume: 294
  start-page: 5
  year: 2007
  ident: 65247_CR49
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9159-3
– volume: 189
  start-page: 304
  year: 2017
  ident: 65247_CR61
  publication-title: Environ. Monit. Assess
  doi: 10.1007/s10661-017-6022-3
– volume: 28
  start-page: 47
  year: 1996
  ident: 65247_CR37
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(95)00119-0
– ident: 65247_CR55
  doi: 10.3389/fpls.2022.1067498
– volume: 293
  year: 2022
  ident: 65247_CR41
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.118499
– volume: 18
  year: 2021
  ident: 65247_CR40
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100352
– volume: 18
  start-page: 559
  year: 1986
  ident: 65247_CR36
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(86)90076-3
– ident: 65247_CR32
  doi: 10.1016/S0065-2911(08)60112-5
– volume: 212
  start-page: 646
  year: 2016
  ident: 65247_CR19
  publication-title: New Phytol.
  doi: 10.1111/nph.14057
– volume: 22
  start-page: 661
  year: 2017
  ident: 65247_CR24
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.05.004
– volume: 58
  start-page: 241
  year: 2022
  ident: 65247_CR3
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-020-01533-1
– volume: 436
  start-page: 253
  year: 2019
  ident: 65247_CR46
  publication-title: Plant Soil
  doi: 10.1007/s11104-019-03933-1
SSID ssj0000529419
Score 2.4497595
Snippet Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the...
Abstract Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 15027
SubjectTerms 631/449
631/449/1870
631/449/711
704/158/1745
Ammonium
Ammonium Compounds - metabolism
Bacteria
Bacteriostats
BNI exudation
Environmental effects
Environmental impact
Fertilizers
Humanities and Social Sciences
Inhibitors
multidisciplinary
N leaching
Nitrates
Nitrates - metabolism
Nitrification
Nitrogen
Nitrogen - metabolism
NUE
Plant growth
Plant Roots - metabolism
Plants - metabolism
Pollution control
Population decline
Population growth
Rhizosphere
Rhizosphere model
Science
Science (multidisciplinary)
Sensitivity analysis
Soil - chemistry
Soil Microbiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hlZC4IN4EFmQkbhBt4lfiI4tYrThwYqW9WXZiqxFVWm3Tw_57Zuy0tDwvKLfEiax5eD7HM98AvK1MRNgQfelwc1DKzvPSBcNLqaoqKFoSY0qQ_aIvr-Tna3V90OqLcsIyPXAW3JnwHa-98400UuIq4TDEiFDjhUgr-lRHjjHvYDOVWb25kbWZq2Qq0Z5tMFJRNRmXpVac6AmOIlEi7P8dyvw1WfKnE9MUiC4ewP0ZQbIPeeYP4U4YH8Hd3FPy9jEsznH1isO0YW7s2ZLqlzZsFVlmWyKVMPTiG8oQSkphw7gY_EBNdxgCWLZeoqzTkBXaFtuuJ_ctpG8hVGQHdXFP4Ori09ePl-XcTqHslKyn0kWOIcsTgnOmE7yPwngXNK90UML3veFaVE7HJnjTmkCbEV71lYpUy2OceAon42oMz4E1nnfKxVr7IKRqjBdeGe1QwZ3znZAF1DvR2m7mGqeWF0ubzrxFa7M6LKrDJnVYXsC7_TvrzLTx19HnpLH9SGLJTjfQduxsO_ZftlPA6U7fdnbdjRX0t4AOZ3UBb_aP0enoJMWNYbXNYxquEVwW8Cybx34miAARxIq2gPbIcI6mevxkHBaJ2BuxL20QqwLe72zsx7z-LIsX_0MWL-EeJ-dImcincDLdbMMrxFuTf51c6zu7Wydz
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k3agozEDaImfiU-oRZRVRw4UWlvlp3YbMQq2W6yh_77zjjZtMuj2tvGu3L8zXg-e16EfMx0ANoQXGrhcJCKyrHUes1SIbPMS9wSQwyQ_aEuLsX3hVxMF279FFa52xPjRl13Fd6Rn3A8xKHPTH1ZX6XYNQq9q1MLjYfkEZYuQ6kuFsV8x4JeLJHrKVcm4-VJD_YKc8qYSJVkWKRgzx7Fsv3_4pp_h0z-4TeN5uj8GXk68Uh6OgL_nDzw7QvyeOwsef2SLM9gDwvN0FPb1nSFWUw97QIday4hMBR0eYNxQhEa2rTLxjXYeocCjaXrFax4HNKBhNHterC_ffwvIIz0TnbcK3J5_u3n14t0aqqQVlLkQ2oDA8PlkMdZXXFWB66d9Yplykvu6lozxTOrQuGdLrXHIwnL6kwGzOjRlr8mB23X-reEFo5V0oZcOc-FLLTjTmplAebKuoqLhOS7pTXVVHEcG1-sTPR889KMcBiAw0Q4DEvIp_k367Hexr2jzxCxeSTWyo5fdJtfZlI9w13FcmddIbQQYGcskBTuc_gAVw-uSMjxDm8zKXBvbsUtIR_mx6B66E-xre-245iCKaCYCXkzisc8E-CBQGV5mZByT3D2prr_pG2Wsbw3MGA8JmYJ-byTsdt5_X8tDu9_jSPyhKHYx0jjY3IwbLb-HfCpwb2PSnMD7LQd2w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqDwbWpCRuEFE4lfi4xZRVXvgApV6s-zEZiNWyWo3e-DfM-M8YKEgodySSWR5ZjyfMzOfCXmT6QCwIbjUwuYgFZVjqfWapUJmmZe4JIZYIPtJXd-I5a28PSJs6oWJRfuR0jIu01N12PsdBBpsBmMiVZIhu8A9coJU7WDbJ4vF8vNy_rOCuSuR67FDJuPlHS8fRKFI1n8XwvyzUPK3bGkMQlen5OGIHuliGO8jcuTbx-T-cJ7k9ydkdQkrV2j6HbVtTdfYu7SjXaAD0xKqg4IHb7E6KCqENu2qcQ0euEMBvNLNGuY5inRgV3S_6e03H78FMJH-0hP3lNxcffzy4Todj1JIKynyPrWBQbhyiN6srjirA9fOesUy5SV3da2Z4plVofBOl9rjRoRldSYD9vFoy5-R47Zr_RmhhWOVtCFXznMhC-24k1pZUG5lXcVFQvJpak018ozjcRdrE_PdvDSDOgyow0R1GJaQt_M7m4Fl45_Sl6ixWRIZsuONbvvVjBZjuKtY7qwrhBYCoosFaMJ9Dhcg9OCKhFxM-jaj2-4Mxz8FmJhVCXk9PwaHwyyKbX23H2QKpgBYJuT5YB7zSAD9AYDlZULKA8M5GOrhk7ZZRVJvwL24OcwS8m6ysZ_j-vtcvPg_8XPygKEbxHrjC3Lcb_f-JaCq3r0a3egH_ggdEA
  priority: 102
  providerName: Springer Nature
Title Benefits and limits of biological nitrification inhibitors for plant nitrogen uptake and the environment
URI https://link.springer.com/article/10.1038/s41598-024-65247-2
https://www.ncbi.nlm.nih.gov/pubmed/38951138
https://www.proquest.com/docview/3074236456
https://www.proquest.com/docview/3074726839
https://pubmed.ncbi.nlm.nih.gov/PMC11217430
https://doaj.org/article/3bc21bab74944eaca3813e1e1e81dfb7
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB_uA8EX8dvVs0TwTVe3STbbPIi05Y6j4CFqoW9Lsk2ui2Vb2y14_70z2W21WgXZh4Uku4TMTOaXj_kNwMtEe4QN3sYGFwexLCyPjdM8lmmSuJSmRB8uyF6py7EcTdLJEWzTHbUDuD64tKN8UuPV_M33bzfv0eDfNSHjvbdrdEIUKMZlrFJOzAPHcIqeKaOMBh9auN9wfXMtQ64PImGPEUzwNo7m8G_2fFWg9D-EQ_-8TvnbmWpwVRd34U6LMVm_UYp7cOSq-3CryTp58wBmA5zffFmvmammbE4RTmu28KzhYyKhMbTzFd0hCmJjZTUrbUlpeRhCXLacozRCkwVqH9ssa_PVhX8hmGS_RM49hPHF-ZfhZdwmXIiLVHbr2HiOTs0SxjO6EHzqhbbGKZ4olwo7nWquRGKUz5zVPe1oucKTaZJ6ivbRRjyCk2pRuSfAMsuL1Piusk7INNNW2FQrgypQGFsIGUF3O7R50bKRU1KMeR5OxUUvb8SRozjyII6cR_Bq982y4eL4Z-sBSWzXkni0Q8FidZ23ZpkLW_CuNTaTWkr0QQYBjHBdfBDHe5tFcLaVd77VzVzQfgId36oIXuyq0SzprMVUbrFp2mRcIfyM4HGjHrueIEZEmCt6EfT2FGevq_s1VTkL1N-IjmkJmUTweqtjP_v197F4-l8j9wxuc7KCcCn5DE7q1cY9R-hV2w4cZ5OsA6f9_ujzCN-D86uPn7B0qIadsJ3RCRb3A5LBLJQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImtpOsDwhRoNrS0lMr7c3Yic2uWCXLPoT6p_iNzDjJluXRW5Vb4o28ntc3mRfAi0R5hA3exgadg1iWlsfGKR7LLElcRirRhwTZ43x4Kj-NstEW_OxrYSitsteJQVFXTUnfyHcFOXEUM8vfzr7HNDWKoqv9CI2WLQ7d2Q902RZvDj4gfV9yvv_x5P0w7qYKxGUm02VsPEfNbQnIGFUKXnmhrHE5T3KXCVtViuciMbkvnFUD5QiT86RKMk8lLcoIfO8VuIqGNyFnrxgV6286FDWTqepqcxIx2F2gfaQaNi7jPOPUFGHD_oUxAf_Ctn-naP4Rpw3mb_8W3OxwK3vXMtpt2HL1HbjWTrI8uwvjPdSZfrJcMFNXbEpVUwvWeNb2eCJGYKg75pSXFFiBTerxxE5o1A9D2MxmU6RwWNIgR7PVbGm-ufAuBKjst2q8e3B6Kcd9H7brpnYPgRWWl5nxaW6dkFmhrLCZyg2yVWlsKWQEaX-0uuw6nNOgjakOkXYx0C05NJJDB3JoHsGr9W9mbX-PC1fvEcXWK6k3d7jRzL_qTtS1sCVPrbGFVFKiXTMIioRL8ULfwNsigp2e3rpTGAt9zt4RPF8_RlGn-I2pXbNq1xQ8R0gbwYOWPdY7QdyJ0FkMIhhsMM7GVjef1JNxaCeOiJvc0iSC1z2Pne_r_2fx6OK_8QyuD08-H-mjg-PDx3CDkwiELOcd2F7OV-4JYrmlfRoEiMGXy5bYXy6kWa4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiGcxFFgkOIEVe3dtZw8IEdqqpSiqEJV6M7v2LomI7JCHUP8av46ZtZ0SHr1VucUby9n5ZvYbzwvgRaQc0gZnQo3OQSgLw0NtFQ9lEkU2IZPofILsKD08lR_OkrMt-NnVwlBaZWcTvaEu64LekfcFOXEUM0v7rk2LONk7eDv7HtIEKYq0duM0Gogc2_Mf6L4t3hztoaxfcn6w__n9YdhOGAiLRMbLUDuOVtwQqdGqELx0QhltUx6lNhGmLBVPRaRTl1mjBsoSP-dRGSWOyluUFnjfa7CdkVfUg-3h_ujk0_oND8XQZKzaSp1IDPoLPC2poo3LME04tUjYOA390IB_Md2_Ezb_iNr6w_DgNtxqWSx718DuDmzZ6i5cb-Zant-D8RAtqJssF0xXJZtSDdWC1Y41HZ8IFgwtyZyylDww2KQaT8yEBv8wJNFsNkV5-yU14putZkv9zfp7IV1lv9Xm3YfTK9nwB9Cr6so-BJYZXiTaxamxQiaZMsIkKtUIskKbQsgA4m5r86Ltd05jN6a5j7uLQd6II0dx5F4cOQ_g1fo3s6bbx6WrhySx9Urq1O2_qOdf81bxc2EKHhttMqmkxFNOI0USNsYPegrOZAHsdvLOW_OxyC_AHsDz9WVUfIrm6MrWq2ZNxlMkuAHsNPBYPwmyUCTSYhDAYAM4G4-6eaWajH1zceTf5KRGAbzuMHbxXP_fi0eX_41ncAO1Nf94NDp-DDc5aYBPed6F3nK-sk-Q2C3N01aDGHy5aqX9BUzwX0k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benefits+and+limits+of+biological+nitrification+inhibitors+for+plant+nitrogen+uptake+and+the+environment&rft.jtitle=Scientific+reports&rft.au=Kuppe%2C+Christian+W.&rft.au=Postma%2C+Johannes+A.&rft.date=2024-07-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-65247-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_65247_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon