Benefits and limits of biological nitrification inhibitors for plant nitrogen uptake and the environment
Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what con...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 15027 - 13 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention. |
---|---|
AbstractList | Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention. Abstract Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial–temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant’s life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil–plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention. Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention.Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the form of nitrate. Ammonium is oxidized to nitrate by nitrifiers, but roots can release biological nitrification inhibitors (BNIs). Under what conditions does root-exudation of BNIs facilitate nitrogen N uptake and reduce pollution by N loss to the environment? We modeled the spatial-temporal dynamics of nitrifiers, ammonium, nitrate, and BNIs around a root and simulated root N uptake and net rhizosphere N loss over the plant's life cycle. We determined the sensitivity of N uptake and loss to variations in the parameter values, testing a broad range of soil-plant-microbial conditions, including concentrations, diffusion, sorption, nitrification, population growth, and uptake kinetics. An increase in BNI exudation reduces net N loss and, under most conditions, increases plant N uptake. BNIs decrease uptake in the case of (1) low ammonium concentrations, (2) high ammonium adsorption to the soil, (3) rapid nitrate- or slow ammonium uptake by the plant, and (4) a slowly growing or (5) fast-declining nitrifier population. Bactericidal inhibitors facilitate uptake more than bacteriostatic ones. Some nitrification, however, is necessary to maximize uptake by both ammonium and nitrate transporter systems. An increase in BNI exudation should be co-selected with improved ammonium uptake. BNIs can reduce N uptake, which may explain why not all species exude BNIs but have a generally positive effect on the environment by increasing rhizosphere N retention. |
ArticleNumber | 15027 |
Author | Postma, Johannes A. Kuppe, Christian W. |
Author_xml | – sequence: 1 givenname: Christian W. orcidid: 0000-0002-1837-759X surname: Kuppe fullname: Kuppe, Christian W. email: c.kuppe@fz-juelich.de organization: Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, Faculty 1, RWTH Aachen University – sequence: 2 givenname: Johannes A. orcidid: 0000-0002-5222-6648 surname: Postma fullname: Postma, Johannes A. organization: Institute of Bio- and Geosciences-Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38951138$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJFYsMmYF8_Eq8QrXhUqsQG1padXM94yNiD7anE3-NmSmm7qL3wlX3O8X2cl81RiAGb5jUl7ylhw4fMqVBDR4B3UgDvO3jWnADhogMGcHQvPm7Oct6QugQoTtWL5pgNSlDKhpNmfY4BnS-5NWFqZ7-9CaNrrY9zXPnRzG3wJXlXw-JjaH1Ye-tLTLl1MbW72YSyQOIKQ7vfFfMLF62yxhbDtU8xbDGUV81zZ-aMZ7fnafPzy-cfF9-6q-9fLy8-XXWj4LR0xgHj1AoppFEjg8kxZQ1KIBIFs9OkQDJipOvRqkEhcBBAJiIckT1Rhp02lwfdKZqN3iW_NemPjsbr5SKmlTap-HFGzewI1Brbc8U5mtGwgTKkdQ90cravWh8PWru93eI01jKSmR-IPnwJfq1X8VpTCrTnjFSFd7cKKf7eYy566_OIc-0axn3WjPS8BzkwVaFvH0E3cZ9C7dWCAia5kBX15n5Kd7n8m2gFwAEwpphzQncHoUTfOEcfnKOrc_TiHA2VNDwijb4s865l-flpKjtQc_0nrDD9T_sJ1l9-mtjI |
CitedBy_id | crossref_primary_10_1007_s12088_025_01462_3 |
Cites_doi | 10.1007/s00374-020-01538-w 10.1073/pnas.0903694106 10.1007/s11104-022-05609-9 10.3389/fmicb.2019.00772 10.1146/annurev.mi.33.100179.001521 10.1093/aob/mci216 10.1016/j.agee.2022.108089 10.1111/1462-2920.14905 10.1016/j.ecoenv.2021.112338 10.1039/f19837901765 10.1016/S0960-8524(99)90068-8 10.1073/pnas.2106595118 10.1007/s10021-019-00365-x 10.1093/jxb/ers342 10.1137/S1064827594276424 10.1111/ppl.13300 10.1016/j.soilbio.2015.02.028 10.1111/pce.14285 10.1007/s11104-021-05201-7 10.1086/665997 10.1007/s11104-016-2822-4 10.4141/cjss70-017 10.1038/s41598-023-39720-3 10.1007/s11104-006-9156-6 10.1016/S0038-0717(00)00209-1 10.1128/AEM.70.2.1008-1016.2004 10.1016/j.rsci.2023.09.002 10.1111/j.1365-2435.2008.01476.x 10.1021/acs.est.0c05732 10.1016/j.envpol.2020.114821 10.1101/2023.05.31.543046 10.1111/nph.18807 10.3389/fmicb.2022.962146 10.1111/gcb.12802 10.1111/j.1469-8137.2008.02576.x 10.1016/j.apsoil.2022.104412 10.1111/j.1574-6941.2006.00170.x 10.1007/s11104-012-1419-9 10.1093/femsre/fuaa037 10.1016/j.soilbio.2018.11.008 10.1111/j.1365-2389.1981.tb01702.x 10.1007/s00374-021-01577-x 10.1046/j.0028-646X.2001.00320.x 10.1073/pnas.2107576118 10.1038/nplants.2017.74 10.1111/aab.12045 10.1007/s11104-006-9159-3 10.1007/s10661-017-6022-3 10.1016/0038-0717(95)00119-0 10.3389/fpls.2022.1067498 10.1016/j.envpol.2021.118499 10.1016/j.rhisph.2021.100352 10.1016/0038-0717(86)90076-3 10.1016/S0065-2911(08)60112-5 10.1111/nph.14057 10.1016/j.tplants.2017.05.004 10.1007/s00374-020-01533-1 10.1007/s11104-019-03933-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-65247-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_3bc21bab74944eaca3813e1e1e81dfb7 PMC11217430 38951138 10_1038_s41598_024_65247_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Root2Res Project, which has received funding from the European Union’s Horizon Europe research and innovation programme grantid: Grant Agreement No. 101060124 – fundername: Forschungszentrum Jülich GmbH (4205) – fundername: Helmholtz Association (POF IV: 2171, Biological and environmental resources for sustainable use) |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-af2341b5656a9c32df39bae6206e53bdd92630a6f7eb989e242520d05f06709a3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:51 EDT 2025 Thu Aug 21 18:32:32 EDT 2025 Thu Jul 10 18:44:03 EDT 2025 Wed Aug 13 11:33:32 EDT 2025 Thu Apr 03 07:04:35 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Tue Jul 01 01:02:02 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Rhizosphere model Bacteria N leaching BNI exudation NUE |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-af2341b5656a9c32df39bae6206e53bdd92630a6f7eb989e242520d05f06709a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1837-759X 0000-0002-5222-6648 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-65247-2 |
PMID | 38951138 |
PQID | 3074236456 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3bc21bab74944eaca3813e1e1e81dfb7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11217430 proquest_miscellaneous_3074726839 proquest_journals_3074236456 pubmed_primary_38951138 crossref_primary_10_1038_s41598_024_65247_2 crossref_citationtrail_10_1038_s41598_024_65247_2 springer_journals_10_1038_s41598_024_65247_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | O’SullivanCAFilleryIRPRoperMMRichardsRAIdentification of several wheat landraces with biological nitrification inhibition capacityPlant Soil2016404617410.1007/s11104-016-2822-4 Lopez, G. et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci.13, (2023). MyroldDDTiedjeJMSimultaneous estimation of several nitrogen cycle rates using 15N: Theory and applicationSoil Biol. Biochem.1986185595681:CAS:528:DyaL2sXotlCqug%3D%3D10.1016/0038-0717(86)90076-3 OwenAGJonesDLCompetition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisitionSoil Biol. Biochem.2001336516571:CAS:528:DC%2BD3MXis1aksLo%3D10.1016/S0038-0717(00)00209-1 LuYEffects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soilsSoil Biol. Biochem.201912948591:CAS:528:DC%2BC1cXit1ymu7%2FJ10.1016/j.soilbio.2018.11.008 ShenJMaximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of ChinaJ. Exp. Bot.201364118111921:CAS:528:DC%2BC3sXktFKru7o%3D2325527910.1093/jxb/ers342 SubbaraoGVEnlisting wild grass genes to combat nitrification in wheat farming: A nature-based solutionProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXhvFert7bO34426500853637010.1073/pnas.2106595118 OtakaJSubbaraoGVOnoHYoshihashiTBiological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudatesBiol. Fertil. Soils2022582512641:CAS:528:DC%2BB3MXhsFGqsb7F10.1007/s00374-021-01577-x ZakirHAKMDetection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor)New Phytol.20081804424511:CAS:528:DC%2BD1cXhtlKru73P1865721410.1111/j.1469-8137.2008.02576.x ChenSRice genotype affects nitrification inhibition in the rhizospherePlant Soil202248135481:CAS:528:DC%2BB38XhvFaru7fN10.1007/s11104-022-05609-9 SubbaraoGVBiological nitrification inhibition (BNI) activity in sorghum and its characterizationPlant Soil20133662432591:CAS:528:DC%2BC3sXmtlCntrc%3D10.1007/s11104-012-1419-9 LanTSynergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat systemAppl. Soil Ecol.202217410.1016/j.apsoil.2022.104412 EgenolfKRhizosphere pH and cation-anion balance determine the exudation of nitrification inhibitor 3-epi-brachialactone suggesting release via secondary transportPhysiol. Plant.20211721161231:CAS:528:DC%2BB3MXhtlWnur8%3D3328012410.1111/ppl.13300 CoskunDBrittoDTShiWKronzuckerHJHow plant root exudates shape the nitrogen cycleTrends Plant Sci.2017226616731:CAS:528:DC%2BC2sXptlShsrc%3D2860141910.1016/j.tplants.2017.05.004 KuppeCWSchnepfAvon LieresEWattMPostmaJARhizosphere models: Their concepts and application to plant-soil ecosystemsPlant Soil202247417551:CAS:528:DC%2BB38XhtVGiu7nF10.1007/s11104-021-05201-7 BoudsocqSPlant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning?Am. Nat.201218060691:STN:280:DC%2BC38npsFGgsQ%3D%3D2267365110.1086/665997 ZhangXLuYYangTKronzuckerHJShiWFactors influencing the release of the biological nitrification inhibitor 1,9-decanediol from rice (Oryza sativa L.) rootsPlant Soil20194362532651:CAS:528:DC%2BC1MXlvVGhsr4%3D10.1007/s11104-019-03933-1 QiaoCHow inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen inputGlob. Change Biol.201521124912572015GCBio..21.1249Q10.1111/gcb.12802 OkanoYApplication of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soilAppl. Environ. Microbiol.200470100810162004ApEnM..70.1008O1:CAS:528:DC%2BD2cXhs1Cgsrc%3D1476658334891010.1128/AEM.70.2.1008-1016.2004 Kaur-Bhambra, J., Rajakulendran, J. E., Bodington, D., Jaspars, M. & Gubry-Rangin, C. Rice biological nitrification inhibition efficiency depends on plant genotype exudation rate. bioRxiv 2023.05.31.543046; https://doi.org/10.1101/2023.05.31.543046 (2023). BeeckmanFAnnettaLCorrochano-MonsalveMBeeckmanTMotteHEnhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibitionTrends Microbiol.202311 DongweiDPotential secretory transporters and biosynthetic precursors of biological nitrification inhibitor 1,9-decanediol in rice as revealed by transcriptome and metabolome analysesRice Sci.2024318710210.1016/j.rsci.2023.09.002 NardiPBiological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applicationsFEMS Microbiol. Rev.2020448749081:CAS:528:DC%2BB3MXhtlWgur7K3278558410.1093/femsre/fuaa037 BelserLWPopulation ecology of nitrifying bacteriaAnnu. Rev. Microbiol.1979333093331:STN:280:DyaL3c%2FktFWqtw%3D%3D38692510.1146/annurev.mi.33.100179.001521 AndrewsMRavenJALeaPJDo plants need nitrate? The mechanisms by which nitrogen form affects plantsAnn. Appl. Biol.20131631741991:CAS:528:DC%2BC3sXhs1KrsL%2FI10.1111/aab.12045 Kaur-BhambraJWardakDLRProsserJIGubry-RanginCRevisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising culturesBiol. Fertil. Soils2022582412491:CAS:528:DC%2BB3MXis1Kit7o%3D10.1007/s00374-020-01533-1 KuppeCWKirkGJDWissuwaMPostmaJARice increases phosphorus uptake in strongly sorbing soils by intra-root facilitationPlant Cell Environ.2022458848991:CAS:528:DC%2BB38XkvFWitb4%3D3513797610.1111/pce.14285 LaffiteABiological inhibition of soil nitrification by forest tree species affects Nitrobacter populationsEnviron. Microbiol.202022114111531:CAS:528:DC%2BB3cXktVGitr8%3D3186782110.1111/1462-2920.14905 Lei, J. et al. A meta-analysis to examine whether nitrification inhibitors work through selectively inhibiting ammonia-oxidizing bacteria. Front. Microbiol.13, (2022). LiYZhangYChapmanSJYaoHBiological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaeaBiol. Fertil. Soils2021573994071:CAS:528:DC%2BB3MXis1Kjtrw%3D10.1007/s00374-020-01538-w SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol.20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057 McLarenADTemporal and vectorial reactions of nitrogen in soil: A reviewCan. J. Soil. Sci.197050971091:CAS:528:DyaE3cXkslKitLc%3D10.4141/cjss70-017 KonaréSEffects of mineral nitrogen partitioning on tree-grass coexistence in West African savannasEcosystems2019221676169010.1007/s10021-019-00365-x ZhangJMüllerCCaiZHeterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soilsSoil Biol. Biochem.2015841992091:CAS:528:DC%2BC2MXktlSkur4%3D10.1016/j.soilbio.2015.02.028 WangXEffects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A reviewEcotoxicol. Environ. Saf.20212201:CAS:528:DC%2BB3MXhtFSku77L3401563210.1016/j.ecoenv.2021.112338 ShipleyBVuT-TDry matter content as a measure of dry matter concentration in plants and their partsNew Phytol.200215335936410.1046/j.0028-646X.2001.00320.x SubbaraoGVSearchingerTDA “more ammonium solution” to mitigate nitrogen pollution and boost crop yieldsProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXht1eht7fE34039714817921510.1073/pnas.2107576118 ShampineLFReicheltMWThe MATLAB ODE suiteSIAM J. Sci. Comput.199718122143337410.1137/S1064827594276424 HashitaniTTanakaKMeasurements of self-diffusion coefficients of the nitrate ion in aqueous solutions of potassium nitrate and calcium nitrateJ. Chem. Soc. Faraday Trans.19837917651:CAS:528:DyaL3sXlvVWrt7g%3D10.1039/f19837901765 Upadhyayl, R. K., Patra, D. D. & Tewari, S. K. Natural nitrification inhibitors for higher nitrogen use efficiency, crop yield, and for curtailing global warming. 6 (2011). KirkGJDKronzuckerHJThe potential for nitrification and nitrate uptake in the rhizosphere of Wetland plants: A modelling studyAnn. Bot.2005966396461:CAS:528:DC%2BD2MXhtFGitLbN16024557424703110.1093/aob/mci216 KuppeCWRhizosphere models and their application to resource uptake efficiency2023RWTH Aachen University LanTBiological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice croppingEnviron. Pollut.20222931:CAS:528:DC%2BB3MXisFagsLbO3479391510.1016/j.envpol.2021.118499 MohantySRNitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soilsFront. Microbiol.201910110.3389/fmicb.2019.00772 BarracloughPBTinkerPBThe determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk densityJ. Soil Sci.1981322252361:CAS:528:DyaL3MXltFeqtb4%3D10.1111/j.1365-2389.1981.tb01702.x PetroliCDGenetic variation among elite inbred lines suggests potential to breed for BNI-capacity in maizeSci. Rep.202313134222023NatSR..1313422P1:CAS:528:DC%2BB3sXhslCgtr7E375918911043545010.1038/s41598-023-39720-3 HwangSHanakiKEffects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide productionBioresour. Technol.2000711591651:CAS:528:DyaK1MXntlOitr0%3D10.1016/S0960-8524(99)90068-8 BoudsocqSLataJCMathieuJAbbadieLBarotSModelling approach to analyse the effects of nitrification inhibition on primary productionFunct. Ecol.20092322023010.1111/j.1365-2435.2008.01476.x SubbaraoGVWangHYItoONakaharaKBerryWLNH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola rootsPlant Soil20072902452571:CAS:528:DC%2BD2sXnsFyhsQ%3D%3D10.1007/s11104-006-9156-6 SubbaraoGVBiological nitrification inhibition (BNI)—is it a widespread phenomenon? CW Kuppe (65247_CR30) 2022; 45 KD Balkos (65247_CR43) 2010; 33 65247_CR35 A Laffite (65247_CR15) 2020; 22 65247_CR7 65247_CR32 J Kaur-Bhambra (65247_CR3) 2022; 58 65247_CR1 DD Myrold (65247_CR36) 1986; 18 HAKM Zakir (65247_CR17) 2008; 180 GJD Kirk (65247_CR26) 2005; 96 O Højberg (65247_CR37) 1996; 28 S Konaré (65247_CR28) 2019; 22 CA O’Sullivan (65247_CR16) 2016; 404 F Beeckman (65247_CR23) 2023; 1 AD McLaren (65247_CR31) 1970; 50 B Shipley (65247_CR34) 2002; 153 LW Belser (65247_CR64) 1979; 33 D Dongwei (65247_CR56) 2024; 31 QQ Jiang (65247_CR63) 1999; 16 S Boudsocq (65247_CR27) 2009; 23 X Zhang (65247_CR46) 2019; 436 P Nardi (65247_CR12) 2020; 44 GV Subbarao (65247_CR45) 2007; 290 PB Barraclough (65247_CR58) 1981; 32 L Sun (65247_CR19) 2016; 212 GV Subbarao (65247_CR14) 2021; 118 C Qiao (65247_CR53) 2015; 21 J Zhang (65247_CR29) 2015; 84 J Geets (65247_CR65) 2006; 58 65247_CR55 GV Subbarao (65247_CR6) 2013; 366 65247_CR13 C Kabala (65247_CR61) 2017; 189 65247_CR51 I Jáuregui (65247_CR48) 2023; 238 T Lan (65247_CR52) 2022; 174 S Hwang (65247_CR57) 2000; 71 AG Owen (65247_CR60) 2001; 33 65247_CR10 J Otaka (65247_CR20) 2022; 58 GV Subbarao (65247_CR18) 2009; 106 EE Woodward (65247_CR9) 2021; 55 Y Li (65247_CR11) 2021; 57 CD Petroli (65247_CR44) 2023; 13 S Chen (65247_CR21) 2022; 481 J Shen (65247_CR8) 2013; 64 CW Kuppe (65247_CR33) 2023 Y Okano (65247_CR62) 2004; 70 Y Lu (65247_CR50) 2019; 129 GV Subbarao (65247_CR22) 2021; 118 X Wang (65247_CR4) 2021; 220 CW Kuppe (65247_CR40) 2021; 18 Y Yao (65247_CR54) 2020; 264 T Lan (65247_CR41) 2022; 293 K Egenolf (65247_CR47) 2021; 172 X Yu (65247_CR5) 2022; 338 CW Kuppe (65247_CR25) 2022; 474 T Hashitani (65247_CR59) 1983; 79 D Coskun (65247_CR24) 2017; 22 M Andrews (65247_CR2) 2013; 163 SR Mohanty (65247_CR38) 2019; 10 S Boudsocq (65247_CR42) 2012; 180 LF Shampine (65247_CR39) 1997; 18 GV Subbarao (65247_CR49) 2007; 294 |
References_xml | – reference: ZhangJMüllerCCaiZHeterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soilsSoil Biol. Biochem.2015841992091:CAS:528:DC%2BC2MXktlSkur4%3D10.1016/j.soilbio.2015.02.028 – reference: KabalaCKarczewskaAGałkaBCuskeMSowińskiJSeasonal dynamics of nitrate and ammonium ion concentrations in soil solutions collected using MacroRhizon suction cupsEnviron. Monit. Assess201718930428567506548772610.1007/s10661-017-6022-3 – reference: YuXKeitelCZhangYWangeciANDijkstraFAGlobal meta-analysis of nitrogen fertilizer use efficiency in rice, wheat and maizeAgric. Ecosyst. Environ.20223381:CAS:528:DC%2BB38Xit1Cmsr%2FL10.1016/j.agee.2022.108089 – reference: ShipleyBVuT-TDry matter content as a measure of dry matter concentration in plants and their partsNew Phytol.200215335936410.1046/j.0028-646X.2001.00320.x – reference: CoskunDBrittoDTShiWKronzuckerHJHow plant root exudates shape the nitrogen cycleTrends Plant Sci.2017226616731:CAS:528:DC%2BC2sXptlShsrc%3D2860141910.1016/j.tplants.2017.05.004 – reference: BarracloughPBTinkerPBThe determination of ionic diffusion coefficients in field soils. I. Diffusion coefficients in sieved soils in relation to water content and bulk densityJ. Soil Sci.1981322252361:CAS:528:DyaL3MXltFeqtb4%3D10.1111/j.1365-2389.1981.tb01702.x – reference: GeetsJBoonNVerstraeteWStrategies of aerobic ammonia-oxidizing bacteria for coping with nutrient and oxygen fluctuationsFEMS Microbiol. Ecol.2006581131:CAS:528:DC%2BD28XhtVOmtrbF1695890310.1111/j.1574-6941.2006.00170.x – reference: LanTSynergistic effects of biological nitrification inhibitor, urease inhibitor, and biochar on NH3 volatilization, N leaching, and nitrogen use efficiency in a calcareous soil–wheat systemAppl. Soil Ecol.202217410.1016/j.apsoil.2022.104412 – reference: Kaur-Bhambra, J., Rajakulendran, J. E., Bodington, D., Jaspars, M. & Gubry-Rangin, C. Rice biological nitrification inhibition efficiency depends on plant genotype exudation rate. bioRxiv 2023.05.31.543046; https://doi.org/10.1101/2023.05.31.543046 (2023). – reference: WoodwardEEEdwardsTMGivensCEKolpinDWHladikMLWidespread use of the nitrification inhibitor nitrapyrin: Assessing benefits and costs to agriculture, ecosystems, and environmental healthEnviron. Sci. Technol.202155134513532021EnST...55.1345W1:CAS:528:DC%2BB3MXosFyhsA%3D%3D3343319510.1021/acs.est.0c05732 – reference: KirkGJDKronzuckerHJThe potential for nitrification and nitrate uptake in the rhizosphere of Wetland plants: A modelling studyAnn. Bot.2005966396461:CAS:528:DC%2BD2MXhtFGitLbN16024557424703110.1093/aob/mci216 – reference: LanTBiological nitrification inhibitor co-application with urease inhibitor or biochar yield different synergistic interaction effects on NH3 volatilization, N leaching, and N use efficiency in a calcareous soil under rice croppingEnviron. Pollut.20222931:CAS:528:DC%2BB3MXisFagsLbO3479391510.1016/j.envpol.2021.118499 – reference: Lei, J. et al. A meta-analysis to examine whether nitrification inhibitors work through selectively inhibiting ammonia-oxidizing bacteria. Front. Microbiol.13, (2022). – reference: ZakirHAKMDetection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl) propionate, responsible for biological nitrification inhibition by sorghum (Sorghum bicolor)New Phytol.20081804424511:CAS:528:DC%2BD1cXhtlKru73P1865721410.1111/j.1469-8137.2008.02576.x – reference: PetroliCDGenetic variation among elite inbred lines suggests potential to breed for BNI-capacity in maizeSci. Rep.202313134222023NatSR..1313422P1:CAS:528:DC%2BB3sXhslCgtr7E375918911043545010.1038/s41598-023-39720-3 – reference: Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants3, nplants201774 (2017). – reference: O’SullivanCAFilleryIRPRoperMMRichardsRAIdentification of several wheat landraces with biological nitrification inhibition capacityPlant Soil2016404617410.1007/s11104-016-2822-4 – reference: SubbaraoGVWangHYItoONakaharaKBerryWLNH4+ triggers the synthesis and release of biological nitrification inhibition compounds in Brachiaria humidicola rootsPlant Soil20072902452571:CAS:528:DC%2BD2sXnsFyhsQ%3D%3D10.1007/s11104-006-9156-6 – reference: YaoYZengKSongYBiological nitrification inhibitor for reducing N2O and NH3 emissions simultaneously under root zone fertilization in a Chinese rice fieldEnviron. Pollut.20202641:CAS:528:DC%2BB3cXhtVSjt7%2FN3255985910.1016/j.envpol.2020.114821 – reference: EgenolfKRhizosphere pH and cation-anion balance determine the exudation of nitrification inhibitor 3-epi-brachialactone suggesting release via secondary transportPhysiol. Plant.20211721161231:CAS:528:DC%2BB3MXhtlWnur8%3D3328012410.1111/ppl.13300 – reference: WangXEffects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A reviewEcotoxicol. Environ. Saf.20212201:CAS:528:DC%2BB3MXhtFSku77L3401563210.1016/j.ecoenv.2021.112338 – reference: Kaur-BhambraJWardakDLRProsserJIGubry-RanginCRevisiting plant biological nitrification inhibition efficiency using multiple archaeal and bacterial ammonia-oxidising culturesBiol. Fertil. Soils2022582412491:CAS:528:DC%2BB3MXis1Kit7o%3D10.1007/s00374-020-01533-1 – reference: McLarenADTemporal and vectorial reactions of nitrogen in soil: A reviewCan. J. Soil. Sci.197050971091:CAS:528:DyaE3cXkslKitLc%3D10.4141/cjss70-017 – reference: BeeckmanFAnnettaLCorrochano-MonsalveMBeeckmanTMotteHEnhancing agroecosystem nitrogen management: microbial insights for improved nitrification inhibitionTrends Microbiol.202311 – reference: MohantySRNitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soilsFront. Microbiol.201910110.3389/fmicb.2019.00772 – reference: SunLLuYYuFKronzuckerHJShiWBiological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiencyNew Phytol.20162126466561:CAS:528:DC%2BC28Xhs1GqsrjF2729263010.1111/nph.14057 – reference: Upadhyayl, R. K., Patra, D. D. & Tewari, S. K. Natural nitrification inhibitors for higher nitrogen use efficiency, crop yield, and for curtailing global warming. 6 (2011). – reference: OkanoYApplication of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soilAppl. Environ. Microbiol.200470100810162004ApEnM..70.1008O1:CAS:528:DC%2BD2cXhs1Cgsrc%3D1476658334891010.1128/AEM.70.2.1008-1016.2004 – reference: SubbaraoGVEnlisting wild grass genes to combat nitrification in wheat farming: A nature-based solutionProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXhvFert7bO34426500853637010.1073/pnas.2106595118 – reference: AndrewsMRavenJALeaPJDo plants need nitrate? The mechanisms by which nitrogen form affects plantsAnn. Appl. Biol.20131631741991:CAS:528:DC%2BC3sXhs1KrsL%2FI10.1111/aab.12045 – reference: Lopez, G. et al. Nutrient deficiency effects on root architecture and root-to-shoot ratio in arable crops. Front. Plant Sci.13, (2023). – reference: HashitaniTTanakaKMeasurements of self-diffusion coefficients of the nitrate ion in aqueous solutions of potassium nitrate and calcium nitrateJ. Chem. Soc. Faraday Trans.19837917651:CAS:528:DyaL3sXlvVWrt7g%3D10.1039/f19837901765 – reference: Hawkesford, M. et al. Chapter 6 - Functions of macronutrients. in Marschner’s Mineral Nutrition of Higher Plants (Third Edition) (ed. Marschner, P.) 135–189 (Academic Press, San Diego, 2012). – reference: ShenJMaximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of ChinaJ. Exp. Bot.201364118111921:CAS:528:DC%2BC3sXktFKru7o%3D2325527910.1093/jxb/ers342 – reference: BoudsocqSPlant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning?Am. Nat.201218060691:STN:280:DC%2BC38npsFGgsQ%3D%3D2267365110.1086/665997 – reference: KuppeCWHuberGPostmaJAComparison of numerical methods for radial solute transport to simulate uptake by plant rootsRhizosphere20211810.1016/j.rhisph.2021.100352 – reference: LiYZhangYChapmanSJYaoHBiological nitrification inhibition by sorghum root exudates impacts ammonia-oxidizing bacteria but not ammonia-oxidizing archaeaBiol. Fertil. Soils2021573994071:CAS:528:DC%2BB3MXis1Kjtrw%3D10.1007/s00374-020-01538-w – reference: ChenSRice genotype affects nitrification inhibition in the rhizospherePlant Soil202248135481:CAS:528:DC%2BB38XhvFaru7fN10.1007/s11104-022-05609-9 – reference: SubbaraoGVBiological nitrification inhibition (BNI)—is it a widespread phenomenon?Plant Soil20072945181:CAS:528:DC%2BD2sXltlaqsr8%3D10.1007/s11104-006-9159-3 – reference: LuYEffects of the biological nitrification inhibitor 1,9-decanediol on nitrification and ammonia oxidizers in three agricultural soilsSoil Biol. Biochem.201912948591:CAS:528:DC%2BC1cXit1ymu7%2FJ10.1016/j.soilbio.2018.11.008 – reference: HwangSHanakiKEffects of oxygen concentration and moisture content of refuse on nitrification, denitrification and nitrous oxide productionBioresour. Technol.2000711591651:CAS:528:DyaK1MXntlOitr0%3D10.1016/S0960-8524(99)90068-8 – reference: QiaoCHow inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen inputGlob. Change Biol.201521124912572015GCBio..21.1249Q10.1111/gcb.12802 – reference: SubbaraoGVBiological nitrification inhibition (BNI) activity in sorghum and its characterizationPlant Soil20133662432591:CAS:528:DC%2BC3sXmtlCntrc%3D10.1007/s11104-012-1419-9 – reference: KonaréSEffects of mineral nitrogen partitioning on tree-grass coexistence in West African savannasEcosystems2019221676169010.1007/s10021-019-00365-x – reference: HøjbergOBinnerupSJSørensenJPotential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphereSoil Biol. Biochem.199628475410.1016/0038-0717(95)00119-0 – reference: KuppeCWSchnepfAvon LieresEWattMPostmaJARhizosphere models: Their concepts and application to plant-soil ecosystemsPlant Soil202247417551:CAS:528:DC%2BB38XhtVGiu7nF10.1007/s11104-021-05201-7 – reference: Barber, S. A. Soil Nutrient Bioavailability: A Mechanistic Approach. (John Wiley & Sons, 1995). – reference: LaffiteABiological inhibition of soil nitrification by forest tree species affects Nitrobacter populationsEnviron. Microbiol.202022114111531:CAS:528:DC%2BB3cXktVGitr8%3D3186782110.1111/1462-2920.14905 – reference: BoudsocqSLataJCMathieuJAbbadieLBarotSModelling approach to analyse the effects of nitrification inhibition on primary productionFunct. Ecol.20092322023010.1111/j.1365-2435.2008.01476.x – reference: OwenAGJonesDLCompetition for amino acids between wheat roots and rhizosphere microorganisms and the role of amino acids in plant N acquisitionSoil Biol. Biochem.2001336516571:CAS:528:DC%2BD3MXis1aksLo%3D10.1016/S0038-0717(00)00209-1 – reference: DongweiDPotential secretory transporters and biosynthetic precursors of biological nitrification inhibitor 1,9-decanediol in rice as revealed by transcriptome and metabolome analysesRice Sci.2024318710210.1016/j.rsci.2023.09.002 – reference: SubbaraoGVSearchingerTDA “more ammonium solution” to mitigate nitrogen pollution and boost crop yieldsProc. Natl. Acad. Sci.20211181:CAS:528:DC%2BB3MXht1eht7fE34039714817921510.1073/pnas.2107576118 – reference: JiangQQBakkenLRComparison of Nitrosospira strains isolated from terrestrial environmentsFEMS Microbiol. Ecol.1999161 – reference: JáureguiIVega-MasIDelaplacePVanderschurenHThonarCAn optimized hydroponic pipeline for large-scale identification of wheat genotypes with resilient biological nitrification inhibition activityNew Phytol.2023238171117213676492310.1111/nph.18807 – reference: KuppeCWRhizosphere models and their application to resource uptake efficiency2023RWTH Aachen University – reference: MyroldDDTiedjeJMSimultaneous estimation of several nitrogen cycle rates using 15N: Theory and applicationSoil Biol. Biochem.1986185595681:CAS:528:DyaL2sXotlCqug%3D%3D10.1016/0038-0717(86)90076-3 – reference: BelserLWPopulation ecology of nitrifying bacteriaAnnu. Rev. Microbiol.1979333093331:STN:280:DyaL3c%2FktFWqtw%3D%3D38692510.1146/annurev.mi.33.100179.001521 – reference: SubbaraoGVEvidence for biological nitrification inhibition in Brachiaria pasturesPNAS200910617302173072009PNAS..10617302S1:CAS:528:DC%2BD1MXhs1WktrjE19805171275240110.1073/pnas.0903694106 – reference: BalkosKDBrittoDTKronzuckerHJOptimization of ammonium acquisition and metabolism by potassium in rice (Oryza sativa L. cv. IR-72)Plant Cell Environ.20103323341:CAS:528:DC%2BC3cXhtlOqsLg%3D19781010 – reference: Prosser, J. I. Autotrophic Nitrification in Bacteria. in Advances in Microbial Physiology (eds. Rose, A. H. & Tempest, D. W.) vol. 30 125–181 (Academic Press, 1990). – reference: NardiPBiological nitrification inhibition in the rhizosphere: determining interactions and impact on microbially mediated processes and potential applicationsFEMS Microbiol. Rev.2020448749081:CAS:528:DC%2BB3MXhtlWgur7K3278558410.1093/femsre/fuaa037 – reference: KuppeCWKirkGJDWissuwaMPostmaJARice increases phosphorus uptake in strongly sorbing soils by intra-root facilitationPlant Cell Environ.2022458848991:CAS:528:DC%2BB38XkvFWitb4%3D3513797610.1111/pce.14285 – reference: OtakaJSubbaraoGVOnoHYoshihashiTBiological nitrification inhibition in maize—isolation and identification of hydrophobic inhibitors from root exudatesBiol. Fertil. Soils2022582512641:CAS:528:DC%2BB3MXhsFGqsb7F10.1007/s00374-021-01577-x – reference: ZhangXLuYYangTKronzuckerHJShiWFactors influencing the release of the biological nitrification inhibitor 1,9-decanediol from rice (Oryza sativa L.) rootsPlant Soil20194362532651:CAS:528:DC%2BC1MXlvVGhsr4%3D10.1007/s11104-019-03933-1 – reference: ShampineLFReicheltMWThe MATLAB ODE suiteSIAM J. Sci. Comput.199718122143337410.1137/S1064827594276424 – volume: 57 start-page: 399 year: 2021 ident: 65247_CR11 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-020-01538-w – volume: 106 start-page: 17302 year: 2009 ident: 65247_CR18 publication-title: PNAS doi: 10.1073/pnas.0903694106 – volume: 481 start-page: 35 year: 2022 ident: 65247_CR21 publication-title: Plant Soil doi: 10.1007/s11104-022-05609-9 – volume: 10 start-page: 1 year: 2019 ident: 65247_CR38 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.00772 – volume: 33 start-page: 309 year: 1979 ident: 65247_CR64 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.33.100179.001521 – volume: 96 start-page: 639 year: 2005 ident: 65247_CR26 publication-title: Ann. Bot. doi: 10.1093/aob/mci216 – volume: 338 year: 2022 ident: 65247_CR5 publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2022.108089 – volume: 22 start-page: 1141 year: 2020 ident: 65247_CR15 publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14905 – ident: 65247_CR1 – volume: 220 year: 2021 ident: 65247_CR4 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112338 – volume: 79 start-page: 1765 year: 1983 ident: 65247_CR59 publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/f19837901765 – volume: 71 start-page: 159 year: 2000 ident: 65247_CR57 publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(99)90068-8 – volume: 118 year: 2021 ident: 65247_CR14 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2106595118 – volume: 22 start-page: 1676 year: 2019 ident: 65247_CR28 publication-title: Ecosystems doi: 10.1007/s10021-019-00365-x – volume: 64 start-page: 1181 year: 2013 ident: 65247_CR8 publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers342 – volume: 18 start-page: 1 year: 1997 ident: 65247_CR39 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827594276424 – volume: 172 start-page: 116 year: 2021 ident: 65247_CR47 publication-title: Physiol. Plant. doi: 10.1111/ppl.13300 – volume: 84 start-page: 199 year: 2015 ident: 65247_CR29 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.02.028 – volume: 45 start-page: 884 year: 2022 ident: 65247_CR30 publication-title: Plant Cell Environ. doi: 10.1111/pce.14285 – volume: 474 start-page: 17 year: 2022 ident: 65247_CR25 publication-title: Plant Soil doi: 10.1007/s11104-021-05201-7 – volume-title: Rhizosphere models and their application to resource uptake efficiency year: 2023 ident: 65247_CR33 – ident: 65247_CR35 – volume: 180 start-page: 60 year: 2012 ident: 65247_CR42 publication-title: Am. Nat. doi: 10.1086/665997 – volume: 404 start-page: 61 year: 2016 ident: 65247_CR16 publication-title: Plant Soil doi: 10.1007/s11104-016-2822-4 – volume: 50 start-page: 97 year: 1970 ident: 65247_CR31 publication-title: Can. J. Soil. Sci. doi: 10.4141/cjss70-017 – volume: 1 start-page: 1 year: 2023 ident: 65247_CR23 publication-title: Trends Microbiol. – volume: 13 start-page: 13422 year: 2023 ident: 65247_CR44 publication-title: Sci. Rep. doi: 10.1038/s41598-023-39720-3 – volume: 290 start-page: 245 year: 2007 ident: 65247_CR45 publication-title: Plant Soil doi: 10.1007/s11104-006-9156-6 – volume: 33 start-page: 651 year: 2001 ident: 65247_CR60 publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(00)00209-1 – volume: 70 start-page: 1008 year: 2004 ident: 65247_CR62 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.70.2.1008-1016.2004 – volume: 31 start-page: 87 year: 2024 ident: 65247_CR56 publication-title: Rice Sci. doi: 10.1016/j.rsci.2023.09.002 – volume: 23 start-page: 220 year: 2009 ident: 65247_CR27 publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2008.01476.x – volume: 16 start-page: 1 year: 1999 ident: 65247_CR63 publication-title: FEMS Microbiol. Ecol. – volume: 55 start-page: 1345 year: 2021 ident: 65247_CR9 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c05732 – volume: 264 year: 2020 ident: 65247_CR54 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114821 – ident: 65247_CR51 doi: 10.1101/2023.05.31.543046 – volume: 238 start-page: 1711 year: 2023 ident: 65247_CR48 publication-title: New Phytol. doi: 10.1111/nph.18807 – ident: 65247_CR10 doi: 10.3389/fmicb.2022.962146 – volume: 21 start-page: 1249 year: 2015 ident: 65247_CR53 publication-title: Glob. Change Biol. doi: 10.1111/gcb.12802 – ident: 65247_CR7 – volume: 180 start-page: 442 year: 2008 ident: 65247_CR17 publication-title: New Phytol. doi: 10.1111/j.1469-8137.2008.02576.x – volume: 174 year: 2022 ident: 65247_CR52 publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2022.104412 – volume: 58 start-page: 1 year: 2006 ident: 65247_CR65 publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2006.00170.x – volume: 366 start-page: 243 year: 2013 ident: 65247_CR6 publication-title: Plant Soil doi: 10.1007/s11104-012-1419-9 – volume: 44 start-page: 874 year: 2020 ident: 65247_CR12 publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuaa037 – volume: 129 start-page: 48 year: 2019 ident: 65247_CR50 publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.11.008 – volume: 32 start-page: 225 year: 1981 ident: 65247_CR58 publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1981.tb01702.x – volume: 58 start-page: 251 year: 2022 ident: 65247_CR20 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-021-01577-x – volume: 153 start-page: 359 year: 2002 ident: 65247_CR34 publication-title: New Phytol. doi: 10.1046/j.0028-646X.2001.00320.x – volume: 118 year: 2021 ident: 65247_CR22 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2107576118 – volume: 33 start-page: 23 year: 2010 ident: 65247_CR43 publication-title: Plant Cell Environ. – ident: 65247_CR13 doi: 10.1038/nplants.2017.74 – volume: 163 start-page: 174 year: 2013 ident: 65247_CR2 publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12045 – volume: 294 start-page: 5 year: 2007 ident: 65247_CR49 publication-title: Plant Soil doi: 10.1007/s11104-006-9159-3 – volume: 189 start-page: 304 year: 2017 ident: 65247_CR61 publication-title: Environ. Monit. Assess doi: 10.1007/s10661-017-6022-3 – volume: 28 start-page: 47 year: 1996 ident: 65247_CR37 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(95)00119-0 – ident: 65247_CR55 doi: 10.3389/fpls.2022.1067498 – volume: 293 year: 2022 ident: 65247_CR41 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.118499 – volume: 18 year: 2021 ident: 65247_CR40 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100352 – volume: 18 start-page: 559 year: 1986 ident: 65247_CR36 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(86)90076-3 – ident: 65247_CR32 doi: 10.1016/S0065-2911(08)60112-5 – volume: 212 start-page: 646 year: 2016 ident: 65247_CR19 publication-title: New Phytol. doi: 10.1111/nph.14057 – volume: 22 start-page: 661 year: 2017 ident: 65247_CR24 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.05.004 – volume: 58 start-page: 241 year: 2022 ident: 65247_CR3 publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-020-01533-1 – volume: 436 start-page: 253 year: 2019 ident: 65247_CR46 publication-title: Plant Soil doi: 10.1007/s11104-019-03933-1 |
SSID | ssj0000529419 |
Score | 2.4497595 |
Snippet | Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is in the... Abstract Plant growth and high yields are secured by intensive use of nitrogen (N) fertilizer, which, however, pollutes the environment, especially when N is... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 15027 |
SubjectTerms | 631/449 631/449/1870 631/449/711 704/158/1745 Ammonium Ammonium Compounds - metabolism Bacteria Bacteriostats BNI exudation Environmental effects Environmental impact Fertilizers Humanities and Social Sciences Inhibitors multidisciplinary N leaching Nitrates Nitrates - metabolism Nitrification Nitrogen Nitrogen - metabolism NUE Plant growth Plant Roots - metabolism Plants - metabolism Pollution control Population decline Population growth Rhizosphere Rhizosphere model Science Science (multidisciplinary) Sensitivity analysis Soil - chemistry Soil Microbiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB6hlZC4IN4EFmQkbhBt4lfiI4tYrThwYqW9WXZiqxFVWm3Tw_57Zuy0tDwvKLfEiax5eD7HM98AvK1MRNgQfelwc1DKzvPSBcNLqaoqKFoSY0qQ_aIvr-Tna3V90OqLcsIyPXAW3JnwHa-98400UuIq4TDEiFDjhUgr-lRHjjHvYDOVWb25kbWZq2Qq0Z5tMFJRNRmXpVac6AmOIlEi7P8dyvw1WfKnE9MUiC4ewP0ZQbIPeeYP4U4YH8Hd3FPy9jEsznH1isO0YW7s2ZLqlzZsFVlmWyKVMPTiG8oQSkphw7gY_EBNdxgCWLZeoqzTkBXaFtuuJ_ctpG8hVGQHdXFP4Ori09ePl-XcTqHslKyn0kWOIcsTgnOmE7yPwngXNK90UML3veFaVE7HJnjTmkCbEV71lYpUy2OceAon42oMz4E1nnfKxVr7IKRqjBdeGe1QwZ3znZAF1DvR2m7mGqeWF0ubzrxFa7M6LKrDJnVYXsC7_TvrzLTx19HnpLH9SGLJTjfQduxsO_ZftlPA6U7fdnbdjRX0t4AOZ3UBb_aP0enoJMWNYbXNYxquEVwW8Cybx34miAARxIq2gPbIcI6mevxkHBaJ2BuxL20QqwLe72zsx7z-LIsX_0MWL-EeJ-dImcincDLdbMMrxFuTf51c6zu7Wydz priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k3agozEDaImfiU-oRZRVRw4UWlvlp3YbMQq2W6yh_77zjjZtMuj2tvGu3L8zXg-e16EfMx0ANoQXGrhcJCKyrHUes1SIbPMS9wSQwyQ_aEuLsX3hVxMF279FFa52xPjRl13Fd6Rn3A8xKHPTH1ZX6XYNQq9q1MLjYfkEZYuQ6kuFsV8x4JeLJHrKVcm4-VJD_YKc8qYSJVkWKRgzx7Fsv3_4pp_h0z-4TeN5uj8GXk68Uh6OgL_nDzw7QvyeOwsef2SLM9gDwvN0FPb1nSFWUw97QIday4hMBR0eYNxQhEa2rTLxjXYeocCjaXrFax4HNKBhNHterC_ffwvIIz0TnbcK3J5_u3n14t0aqqQVlLkQ2oDA8PlkMdZXXFWB66d9Yplykvu6lozxTOrQuGdLrXHIwnL6kwGzOjRlr8mB23X-reEFo5V0oZcOc-FLLTjTmplAebKuoqLhOS7pTXVVHEcG1-sTPR889KMcBiAw0Q4DEvIp_k367Hexr2jzxCxeSTWyo5fdJtfZlI9w13FcmddIbQQYGcskBTuc_gAVw-uSMjxDm8zKXBvbsUtIR_mx6B66E-xre-245iCKaCYCXkzisc8E-CBQGV5mZByT3D2prr_pG2Wsbw3MGA8JmYJ-byTsdt5_X8tDu9_jSPyhKHYx0jjY3IwbLb-HfCpwb2PSnMD7LQd2w priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuqDwbWpCRuEFE4lfi4xZRVXvgApV6s-zEZiNWyWo3e-DfM-M8YKEgodySSWR5ZjyfMzOfCXmT6QCwIbjUwuYgFZVjqfWapUJmmZe4JIZYIPtJXd-I5a28PSJs6oWJRfuR0jIu01N12PsdBBpsBmMiVZIhu8A9coJU7WDbJ4vF8vNy_rOCuSuR67FDJuPlHS8fRKFI1n8XwvyzUPK3bGkMQlen5OGIHuliGO8jcuTbx-T-cJ7k9ydkdQkrV2j6HbVtTdfYu7SjXaAD0xKqg4IHb7E6KCqENu2qcQ0euEMBvNLNGuY5inRgV3S_6e03H78FMJH-0hP3lNxcffzy4Todj1JIKynyPrWBQbhyiN6srjirA9fOesUy5SV3da2Z4plVofBOl9rjRoRldSYD9vFoy5-R47Zr_RmhhWOVtCFXznMhC-24k1pZUG5lXcVFQvJpak018ozjcRdrE_PdvDSDOgyow0R1GJaQt_M7m4Fl45_Sl6ixWRIZsuONbvvVjBZjuKtY7qwrhBYCoosFaMJ9Dhcg9OCKhFxM-jaj2-4Mxz8FmJhVCXk9PwaHwyyKbX23H2QKpgBYJuT5YB7zSAD9AYDlZULKA8M5GOrhk7ZZRVJvwL24OcwS8m6ysZ_j-vtcvPg_8XPygKEbxHrjC3Lcb_f-JaCq3r0a3egH_ggdEA priority: 102 providerName: Springer Nature |
Title | Benefits and limits of biological nitrification inhibitors for plant nitrogen uptake and the environment |
URI | https://link.springer.com/article/10.1038/s41598-024-65247-2 https://www.ncbi.nlm.nih.gov/pubmed/38951138 https://www.proquest.com/docview/3074236456 https://www.proquest.com/docview/3074726839 https://pubmed.ncbi.nlm.nih.gov/PMC11217430 https://doaj.org/article/3bc21bab74944eaca3813e1e1e81dfb7 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB_uA8EX8dvVs0TwTVe3STbbPIi05Y6j4CFqoW9Lsk2ui2Vb2y14_70z2W21WgXZh4Uku4TMTOaXj_kNwMtEe4QN3sYGFwexLCyPjdM8lmmSuJSmRB8uyF6py7EcTdLJEWzTHbUDuD64tKN8UuPV_M33bzfv0eDfNSHjvbdrdEIUKMZlrFJOzAPHcIqeKaOMBh9auN9wfXMtQ64PImGPEUzwNo7m8G_2fFWg9D-EQ_-8TvnbmWpwVRd34U6LMVm_UYp7cOSq-3CryTp58wBmA5zffFmvmammbE4RTmu28KzhYyKhMbTzFd0hCmJjZTUrbUlpeRhCXLacozRCkwVqH9ssa_PVhX8hmGS_RM49hPHF-ZfhZdwmXIiLVHbr2HiOTs0SxjO6EHzqhbbGKZ4olwo7nWquRGKUz5zVPe1oucKTaZJ6ivbRRjyCk2pRuSfAMsuL1Piusk7INNNW2FQrgypQGFsIGUF3O7R50bKRU1KMeR5OxUUvb8SRozjyII6cR_Bq982y4eL4Z-sBSWzXkni0Q8FidZ23ZpkLW_CuNTaTWkr0QQYBjHBdfBDHe5tFcLaVd77VzVzQfgId36oIXuyq0SzprMVUbrFp2mRcIfyM4HGjHrueIEZEmCt6EfT2FGevq_s1VTkL1N-IjmkJmUTweqtjP_v197F4-l8j9wxuc7KCcCn5DE7q1cY9R-hV2w4cZ5OsA6f9_ujzCN-D86uPn7B0qIadsJ3RCRb3A5LBLJQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImtpOsDwhRoNrS0lMr7c3Yic2uWCXLPoT6p_iNzDjJluXRW5Vb4o28ntc3mRfAi0R5hA3exgadg1iWlsfGKR7LLElcRirRhwTZ43x4Kj-NstEW_OxrYSitsteJQVFXTUnfyHcFOXEUM8vfzr7HNDWKoqv9CI2WLQ7d2Q902RZvDj4gfV9yvv_x5P0w7qYKxGUm02VsPEfNbQnIGFUKXnmhrHE5T3KXCVtViuciMbkvnFUD5QiT86RKMk8lLcoIfO8VuIqGNyFnrxgV6286FDWTqepqcxIx2F2gfaQaNi7jPOPUFGHD_oUxAf_Ctn-naP4Rpw3mb_8W3OxwK3vXMtpt2HL1HbjWTrI8uwvjPdSZfrJcMFNXbEpVUwvWeNb2eCJGYKg75pSXFFiBTerxxE5o1A9D2MxmU6RwWNIgR7PVbGm-ufAuBKjst2q8e3B6Kcd9H7brpnYPgRWWl5nxaW6dkFmhrLCZyg2yVWlsKWQEaX-0uuw6nNOgjakOkXYx0C05NJJDB3JoHsGr9W9mbX-PC1fvEcXWK6k3d7jRzL_qTtS1sCVPrbGFVFKiXTMIioRL8ULfwNsigp2e3rpTGAt9zt4RPF8_RlGn-I2pXbNq1xQ8R0gbwYOWPdY7QdyJ0FkMIhhsMM7GVjef1JNxaCeOiJvc0iSC1z2Pne_r_2fx6OK_8QyuD08-H-mjg-PDx3CDkwiELOcd2F7OV-4JYrmlfRoEiMGXy5bYXy6kWa4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiGcxFFgkOIEVe3dtZw8IEdqqpSiqEJV6M7v2LomI7JCHUP8av46ZtZ0SHr1VucUby9n5ZvYbzwvgRaQc0gZnQo3OQSgLw0NtFQ9lEkU2IZPofILsKD08lR_OkrMt-NnVwlBaZWcTvaEu64LekfcFOXEUM0v7rk2LONk7eDv7HtIEKYq0duM0Gogc2_Mf6L4t3hztoaxfcn6w__n9YdhOGAiLRMbLUDuOVtwQqdGqELx0QhltUx6lNhGmLBVPRaRTl1mjBsoSP-dRGSWOyluUFnjfa7CdkVfUg-3h_ujk0_oND8XQZKzaSp1IDPoLPC2poo3LME04tUjYOA390IB_Md2_Ezb_iNr6w_DgNtxqWSx718DuDmzZ6i5cb-Zant-D8RAtqJssF0xXJZtSDdWC1Y41HZ8IFgwtyZyylDww2KQaT8yEBv8wJNFsNkV5-yU14putZkv9zfp7IV1lv9Xm3YfTK9nwB9Cr6so-BJYZXiTaxamxQiaZMsIkKtUIskKbQsgA4m5r86Ltd05jN6a5j7uLQd6II0dx5F4cOQ_g1fo3s6bbx6WrhySx9Urq1O2_qOdf81bxc2EKHhttMqmkxFNOI0USNsYPegrOZAHsdvLOW_OxyC_AHsDz9WVUfIrm6MrWq2ZNxlMkuAHsNPBYPwmyUCTSYhDAYAM4G4-6eaWajH1zceTf5KRGAbzuMHbxXP_fi0eX_41ncAO1Nf94NDp-DDc5aYBPed6F3nK-sk-Q2C3N01aDGHy5aqX9BUzwX0k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benefits+and+limits+of+biological+nitrification+inhibitors+for+plant+nitrogen+uptake+and+the+environment&rft.jtitle=Scientific+reports&rft.au=Kuppe%2C+Christian+W.&rft.au=Postma%2C+Johannes+A.&rft.date=2024-07-01&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-65247-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_65247_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |