Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new c...
Saved in:
Published in | Bioactive materials Vol. 20; pp. 404 - 417 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.02.2023
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Schematic illustration of the sysnthesis of carrier-free nanoprodrugs for p53-mutated tumor therapy by co-delivering zinc-manganese dual ions and ROS to modulate Mutp53 degradation and WTp53 activation. [Display omitted]
•Demonstrate the efficacy of multifunctional nanoparticles in degrading mutant p53 while activating wide-type p53.•Develop “carrier-free nanoprodrug” for pH-induced delivery of dual ions (Zn2+, Mn2+) and H2O2 with reduced side effects.•Readily extend the simple, green, yet efficient synthesis route to other ion-doped metal peroxide nanoparticles. |
---|---|
AbstractList | Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (
i.e
., Mn-ZnO
2
nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn
2+
and H
2
O
2
from Mn-ZnO
2
NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn
2+
and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both
in vitro
and
in vivo
results demonstrated that pH-responsive decomposition of Mn-ZnO
2
NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (
i.e
., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO
2
NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Schematic illustration of the sysnthesis of carrier-free nanoprodrugs for p53-mutated tumor therapy by co-delivering zinc-manganese dual ions and ROS to modulate Mutp53 degradation and WTp53 activation.
Image 1
•
Demonstrate the efficacy of multifunctional nanoparticles in degrading mutant p53 while activating wide-type p53.
•
Develop “carrier-free nanoprodrug” for pH-induced delivery of dual ions (Zn
2+
, Mn
2+
) and H
2
O
2
with reduced side effects.
•
Readily extend the simple, green, yet efficient synthesis route to other ion-doped metal peroxide nanoparticles. Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug ( ., Mn-ZnO nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn and H O from Mn-ZnO NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both and results demonstrated that pH-responsive decomposition of Mn-ZnO NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions ( ., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Schematic illustration of the sysnthesis of carrier-free nanoprodrugs for p53-mutated tumor therapy by co-delivering zinc-manganese dual ions and ROS to modulate Mutp53 degradation and WTp53 activation. [Display omitted] •Demonstrate the efficacy of multifunctional nanoparticles in degrading mutant p53 while activating wide-type p53.•Develop “carrier-free nanoprodrug” for pH-induced delivery of dual ions (Zn2+, Mn2+) and H2O2 with reduced side effects.•Readily extend the simple, green, yet efficient synthesis route to other ion-doped metal peroxide nanoparticles. |
Author | Shao, Xinyue An, Hailong Qu, Chang Song, Guoqiang Wang, Hongjun Wang, Jinping Shi, Donghong Jia, Ran Sun, Jingyu |
Author_xml | – sequence: 1 givenname: Jinping surname: Wang fullname: Wang, Jinping organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 2 givenname: Chang surname: Qu fullname: Qu, Chang organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 3 givenname: Xinyue surname: Shao fullname: Shao, Xinyue organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 4 givenname: Guoqiang surname: Song fullname: Song, Guoqiang organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 5 givenname: Jingyu surname: Sun fullname: Sun, Jingyu organization: Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States – sequence: 6 givenname: Donghong surname: Shi fullname: Shi, Donghong organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 7 givenname: Ran surname: Jia fullname: Jia, Ran organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 8 givenname: Hailong surname: An fullname: An, Hailong email: hailong_an@hebut.edu.cn organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China – sequence: 9 givenname: Hongjun surname: Wang fullname: Wang, Hongjun email: hongjun.wang@stevens.edu organization: Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35784636$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstqHDEQFMEhdhz_QqJjLrORZjQPHRIwi5MYDIY8IDfRK7XWWmakjaRZ2Hx95Kxt7Fx8kUSrq4qurtfkyAePhLzjbMEZ7z5sFisXQOcJ8qJmdb1g3YKx9gU5qUVbV1zKX0eP3sfkLKUNY4z35WD9K3LctP0guqY7IXEJMTqMlY2I1IMP2xhMnNfUhki3bVNNc4aMhuZ5KpV8gxG2e7pzQHXweo4RfaYGR7fDuKfB0j_O62oCvwaPCamZYaQu-ETBG_rt-vsb8tLCmPDs7j4lPz9f_Fh-ra6uv1wuz68q3QqeK0CUK5Q9mkHqDoVdCdEI7FZ9q62F2vaItUTJOVgGYjCsb7TmhkNnpBR9c0ouD7wmwEZto5sg7lUAp_4VQlwriNnpERVvG2F133KrUSBjA9MCJOus4LJpDRSuTweu7bya0Ogyc4TxCenTH-9u1DrslKz5UHwvBO_vCGL4PWPKanJJ4zgWk8KcVN0NLWsGXvROydvHWg8i90srDR8PDTqGlCJapV3ZUfG4SLtRcaZuc6I26iEn6jYninWq5KTg-__w9xLPI88PSCx725XYqKQdeo3GRdS5GOue5fgLehTf9A |
CitedBy_id | crossref_primary_10_3389_fbioe_2025_1550089 crossref_primary_10_1002_adma_202412227 crossref_primary_10_1002_advs_202308051 crossref_primary_10_1002_smll_202411193 crossref_primary_10_1007_s11696_025_03984_y crossref_primary_10_3389_fphar_2023_1208740 crossref_primary_10_1002_cplu_202300624 crossref_primary_10_1021_acsnano_3c01215 crossref_primary_10_1002_advs_202500825 crossref_primary_10_3390_pharmaceutics15092337 crossref_primary_10_1080_17425247_2023_2292678 crossref_primary_10_3389_fphar_2023_1215995 crossref_primary_10_3389_fgene_2022_1037716 crossref_primary_10_3390_v15020404 crossref_primary_10_1039_D2BM01460B crossref_primary_10_34133_bmr_0158 crossref_primary_10_1002_smll_202207077 crossref_primary_10_1002_mco2_683 |
Cites_doi | 10.1016/j.abb.2007.02.033 10.1002/adma.201606681 10.1146/annurev-nutr-071714-034419 10.1093/nsr/nwx062 10.1016/j.cell.2004.11.004 10.1016/j.jphotochem.2017.03.027 10.7150/thno.42981 10.3390/ijms20246197 10.1016/j.actbio.2015.02.002 10.1016/j.jmb.2017.03.030 10.1038/cdd.2017.169 10.1038/ncb2641 10.1038/sj.onc.1209735 10.1038/s41467-018-03599-w 10.1002/viw2.18 10.3727/096504017X14841698396784 10.1021/jp0676843 10.1038/35094077 10.1039/C4TB00454J 10.1016/j.ejphar.2009.08.031 10.1073/pnas.97.8.4174 10.1016/j.ejca.2017.06.023 10.1111/php.13020 10.1002/advs.201900835 10.1021/jacs.9b03457 10.1038/nature01368 10.1038/s41419-021-03463-8 10.1016/j.mito.2004.11.001 10.1002/adma.201905271 10.1016/j.ejmech.2021.113636 10.1158/0008-5472.CAN-13-1079 10.7150/thno.39831 10.1038/ncb3427 10.1158/0008-5472.CAN-15-0563 10.1016/j.ccr.2014.01.021 10.1016/j.bbamcr.2016.11.023 10.1021/jp063338+ 10.1016/j.cell.2009.11.026 10.1038/ncomms7907 10.1042/BSR20181345 10.1038/nature11412 10.1046/j.1471-4159.2002.00802.x 10.1021/acsnano.9b05836 10.1016/0003-9861(74)90148-9 10.1002/anie.200604775 10.1038/cr.2012.58 10.1038/nrc3711 10.1002/anie.201805664 10.1002/anie.201712027 10.1038/s41467-018-05798-x 10.1158/1541-7786.MCR-10-0534 10.1126/science.1192912 10.1016/S0169-409X(02)00180-1 10.1038/nrurol.2013.43 10.1074/mcp.M115.055723 10.1016/j.jconrel.2018.06.012 10.1016/j.biomaterials.2021.120720 10.1093/hmg/ddu609 10.1021/jp808714v 10.1002/adfm.202001994 10.1002/smll.201902118 10.1073/pnas.95.8.4607 10.1126/science.281.5383.1677 10.1021/jp9036028 |
ContentType | Journal Article |
Copyright | 2022 The Authors 2022 The Authors. 2022 The Authors 2022 |
Copyright_xml | – notice: 2022 The Authors – notice: 2022 The Authors. – notice: 2022 The Authors 2022 |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2022.06.005 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 417 |
ExternalDocumentID | oai_doaj_org_article_1534fc751fce4e0080c4a906f41935da PMC9218170 35784636 10_1016_j_bioactmat_2022_06_005 S2452199X22002729 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR067859 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM 7X8 5PM |
ID | FETCH-LOGICAL-c541t-aee9be97ed89c6e4fb4434e6b75cffa2f7ee29e911af0a48d073cc1d1a6d99473 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:20:23 EDT 2025 Thu Aug 21 18:23:43 EDT 2025 Fri Jul 11 03:06:45 EDT 2025 Wed Feb 19 01:28:18 EST 2025 Thu Apr 24 23:07:36 EDT 2025 Tue Jul 01 02:11:30 EDT 2025 Tue May 16 22:35:34 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reactive oxygen species p53-mutated tumor therapy Mn-ZnO2 nanoparticle Wild-type p53 protein Carrier-free nanoprodrug |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2022 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-aee9be97ed89c6e4fb4434e6b75cffa2f7ee29e911af0a48d073cc1d1a6d99473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/1534fc751fce4e0080c4a906f41935da |
PMID | 35784636 |
PQID | 2685038119 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1534fc751fce4e0080c4a906f41935da pubmedcentral_primary_oai_pubmedcentral_nih_gov_9218170 proquest_miscellaneous_2685038119 pubmed_primary_35784636 crossref_citationtrail_10_1016_j_bioactmat_2022_06_005 crossref_primary_10_1016_j_bioactmat_2022_06_005 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2022_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2023 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Greenwald, Choe, McGuire, Conover (bib30) 2003; 55 Türkyılmaz, Güy, Özacar (bib33) 2017; 341 Patricia, Muller, Karen, Vousden (bib5) 2014; 25 Guo, Peng (bib59) 2013; 9 Muller, Caswell, Doyle, Iwanicki, Tan, Karim, Lukashchuk, Gillespie, Ludwig, Gosselin, Cromer, Brugge, Sansom, Norman, Vousden (bib14) 2009; 139 Lin, Wang, Song, Liu, Zhu, Dai, Shen, Tian, Song, Wang, Tang, Yu, Zhou, Yang, Huang, Niu, Yang, Chen, Chen (bib22) 2019; 9 Hui, Zheng, Yan, Bargonetti, Foster (bib49) 2006; 25 Franklin, Costello (bib54) 2007; 463 Liu, McDonnell, Montes de Oca Luna, Kapoor, Mims, El-Naggar, Lozano (bib13) 2000; 97 Chang, Wang, Wang, Shu, Ding, Li, Pang, Cui, Hou, Lin (bib28) 2019; 31 Tidball, Bryan, Uhouse, Kumar, Aboud, Feist, Ess, Neely, Aschner, Bowman (bib24) 2015; 24 Lin, Yang, Zhou, Yang, Jacobson, Liu, Yang, Niu, Song, Yang, Chen (bib37) 2017; 29 Kozlov, Waardenberg, Engholm-Keller, Arthur, Graham, Lavin (bib61) 2016; 15 Han, Chen, Zhao, Zha, Ke, Wang, Ge (bib66) 2018; 284 Duffy, Synnott, Crown (bib6) 2017; 83 Cheng, Yan, Chen, Zhuo, Feng, Li, Feng, Yan (bib39) 2009; 113 Zhang, Ye, Li, Xia, Wang, Feng, Zhang (bib32) 2019; 6 Chen, Lu, Wang, Kroner, Paul, Fecht, Bednarcik, Stahl, Zhang, Wiedwald, Kaiser, Ziemann, Kikegawa, Wu, Jiang (bib38) 2009; 113 Canman Christine, Lim, Cimprich Karlene, Taya, Tamai, Sakaguchi, Appella, Kastan Michael, Siliciano Janet (bib63) 1998; 281 Dineley, Richards, Votyakova, Reynolds (bib56) 2005; 5 Fu, Hu, Qi, He, Jiang, Jiang, He, Qu, Lin, Huang (bib47) 2019; 13 Kleiner (bib55) 1974; 165 Aubrey, Kelly, Janic, Herold, Strasser (bib1) 2018; 25 He, Qin, Jiang, Jiang, Lei, Lin, Zhu, Qu, Huang (bib46) 2020; 10 Shen, Liu, Yang, Xun, Wei, Zeng (bib64) 2017; 25 Bakkenist, Kastan (bib62) 2003; 421 Stein, Rotter, Aloni-Grinstein (bib11) 2019; 20 Zhang, Zhou, Hong, van den Heuvel, Prabhu, Warfel, Kline, Dicker, Kopelovich, El-Deiry (bib16) 2015; 75 Meng, Li, Faust, Konst, Lee (bib42) 2015; 17 Guo, Kozlov, Lavin Martin, Person Maria, Paull Tanya (bib27) 2010; 330 (bib7) 2012; 490 Padmanabhan, Candelaria, Wong, Nikolai, Lonard, O'Malley, Richards (bib19) 2018; 9 Shen, Mamat, Zhang, Cao, Hood, Figueroa-Cosme, Xia (bib40) 2019; 15 Clement, Long, Ramalingam, Halliwell (bib41) 2002; 81 Lin, Huang, Song, Ou, Wang, Deng, Tian, Liu, Wang, Liu, Yu, Zhou, Wang, Niu, Yang, Chen (bib51) 2019; 141 Horning, Caito, Tipps, Bowman, Aschner (bib25) 2015; 35 Shen, Jia, Mo, Liang, Chen (bib58) 2021; 223 Parrales, Ranjan, Iyer, Padhye, Weir, Roy, Iwakuma (bib18) 2016; 18 Liu, Zhang, Bu (bib29) 2020; 1 Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang, Niu, Yang, Chen (bib45) 2018; 57 Bullock, Fersht (bib8) 2001; 1 Olive, Tuveson, Ruhe, Yin, Willis, Bronson, Crowley, Jacks (bib10) 2004; 119 Wang, Zhang, Ju, Liu, Cao, Chen, Ren, Qu (bib52) 2018; 9 Lai, Chang, Wen, Hsu (bib26) 2009; 623 Yue, Zhao, Xu, Zheng, Feng, Hu (bib15) 2017; 429 Qian, Zhang, Wei, Yao, Yi, Zhang, Ding, Huang, Wang, Song, Zhong, Yang, Gao, Zhou, Wen, Zhang (bib23) 2020; 30 Foggetti, Ottaggio, Russo, Mazzitelli, Monti, Degan, Miele, Fronza, Menichini (bib21) 2019; 39 Zhu, Zhao, Chen, Shi (bib35) 2007; 111 Feng, Dong, Tao, Zhang, Liu (bib43) 2018; 5 Tang, Liu, He, Bu (bib48) 2019; 58 Kolenko, Teper, Kutikov, Uzzo (bib53) 2013; 10 Bresolí-Obach, Busto-Moner, Muller, Reina, Nonell (bib57) 2018; 94 Noh, Kwon, Han, Park, Yang, Cho, Yoo, Khang, Lee (bib50) 2015; 6 Sigal, Rotter (bib12) 2000; 60 Bieging, Mello, Attardi (bib3) 2014; 14 Mallette, Richard (bib60) 2012; 22 Muller, Vousden (bib9) 2013; 15 Li, Marchenko, Schulz, Fischer, Velasco-Hernandez, Talos, Moll (bib17) 2011; 9 Wang, Simpson, Brown (bib4) 2015; 75 Borodko, Habas, Koebel, Yang, Frei, Somorjai (bib36) 2006; 110 Nowag, Frangville, Multhaup, Marty, Mingotaud, Haag (bib31) 2014; 2 Hobbs, Monsky, Yuan, Roberts, Griffith, Torchilin, Jain (bib65) 1998; 95 Foggetti, Ottaggio, Russo, Monti, Degan, Fronza, Menichini (bib20) 2017; 1864 Na, Lee, An, Park, Park, Lee, Nam, Kim, Kim, Kim, Lim, Kim, Kim, Hyeon (bib44) 2007; 46 Zhang, Huang, Wang, Cao, Zhang, Wei, Ding, Song, Chen, Qian, Zhong, Liu, Wang, Zhang, Jiang, Zeng, Yao, Wen (bib34) 2021; 271 Hao, Chen, Liao, Huang, Gan, Larisch, Zeng, Lu, Zhou (bib2) 2021; 12 Bieging (10.1016/j.bioactmat.2022.06.005_bib3) 2014; 14 Clement (10.1016/j.bioactmat.2022.06.005_bib41) 2002; 81 Sigal (10.1016/j.bioactmat.2022.06.005_bib12) 2000; 60 Borodko (10.1016/j.bioactmat.2022.06.005_bib36) 2006; 110 Padmanabhan (10.1016/j.bioactmat.2022.06.005_bib19) 2018; 9 Zhu (10.1016/j.bioactmat.2022.06.005_bib35) 2007; 111 Bullock (10.1016/j.bioactmat.2022.06.005_bib8) 2001; 1 Yue (10.1016/j.bioactmat.2022.06.005_bib15) 2017; 429 Muller (10.1016/j.bioactmat.2022.06.005_bib9) 2013; 15 Nowag (10.1016/j.bioactmat.2022.06.005_bib31) 2014; 2 Olive (10.1016/j.bioactmat.2022.06.005_bib10) 2004; 119 Lin (10.1016/j.bioactmat.2022.06.005_bib22) 2019; 9 Shen (10.1016/j.bioactmat.2022.06.005_bib58) 2021; 223 Aubrey (10.1016/j.bioactmat.2022.06.005_bib1) 2018; 25 Han (10.1016/j.bioactmat.2022.06.005_bib66) 2018; 284 Tidball (10.1016/j.bioactmat.2022.06.005_bib24) 2015; 24 Kozlov (10.1016/j.bioactmat.2022.06.005_bib61) 2016; 15 Lin (10.1016/j.bioactmat.2022.06.005_bib45) 2018; 57 Greenwald (10.1016/j.bioactmat.2022.06.005_bib30) 2003; 55 Mallette (10.1016/j.bioactmat.2022.06.005_bib60) 2012; 22 Lai (10.1016/j.bioactmat.2022.06.005_bib26) 2009; 623 Dineley (10.1016/j.bioactmat.2022.06.005_bib56) 2005; 5 Chen (10.1016/j.bioactmat.2022.06.005_bib38) 2009; 113 Liu (10.1016/j.bioactmat.2022.06.005_bib13) 2000; 97 Hui (10.1016/j.bioactmat.2022.06.005_bib49) 2006; 25 Horning (10.1016/j.bioactmat.2022.06.005_bib25) 2015; 35 Bresolí-Obach (10.1016/j.bioactmat.2022.06.005_bib57) 2018; 94 Lin (10.1016/j.bioactmat.2022.06.005_bib51) 2019; 141 Muller (10.1016/j.bioactmat.2022.06.005_bib14) 2009; 139 Parrales (10.1016/j.bioactmat.2022.06.005_bib18) 2016; 18 Guo (10.1016/j.bioactmat.2022.06.005_bib27) 2010; 330 Tang (10.1016/j.bioactmat.2022.06.005_bib48) 2019; 58 Noh (10.1016/j.bioactmat.2022.06.005_bib50) 2015; 6 Zhang (10.1016/j.bioactmat.2022.06.005_bib34) 2021; 271 He (10.1016/j.bioactmat.2022.06.005_bib46) 2020; 10 Na (10.1016/j.bioactmat.2022.06.005_bib44) 2007; 46 Qian (10.1016/j.bioactmat.2022.06.005_bib23) 2020; 30 Feng (10.1016/j.bioactmat.2022.06.005_bib43) 2018; 5 Chang (10.1016/j.bioactmat.2022.06.005_bib28) 2019; 31 Shen (10.1016/j.bioactmat.2022.06.005_bib40) 2019; 15 Wang (10.1016/j.bioactmat.2022.06.005_bib4) 2015; 75 Duffy (10.1016/j.bioactmat.2022.06.005_bib6) 2017; 83 Shen (10.1016/j.bioactmat.2022.06.005_bib64) 2017; 25 Lin (10.1016/j.bioactmat.2022.06.005_bib37) 2017; 29 Hao (10.1016/j.bioactmat.2022.06.005_bib2) 2021; 12 Li (10.1016/j.bioactmat.2022.06.005_bib17) 2011; 9 Foggetti (10.1016/j.bioactmat.2022.06.005_bib21) 2019; 39 Guo (10.1016/j.bioactmat.2022.06.005_bib59) 2013; 9 Zhang (10.1016/j.bioactmat.2022.06.005_bib32) 2019; 6 Meng (10.1016/j.bioactmat.2022.06.005_bib42) 2015; 17 Canman Christine (10.1016/j.bioactmat.2022.06.005_bib63) 1998; 281 Kleiner (10.1016/j.bioactmat.2022.06.005_bib55) 1974; 165 (10.1016/j.bioactmat.2022.06.005_bib7) 2012; 490 Liu (10.1016/j.bioactmat.2022.06.005_bib29) 2020; 1 Türkyılmaz (10.1016/j.bioactmat.2022.06.005_bib33) 2017; 341 Wang (10.1016/j.bioactmat.2022.06.005_bib52) 2018; 9 Patricia (10.1016/j.bioactmat.2022.06.005_bib5) 2014; 25 Cheng (10.1016/j.bioactmat.2022.06.005_bib39) 2009; 113 Hobbs (10.1016/j.bioactmat.2022.06.005_bib65) 1998; 95 Bakkenist (10.1016/j.bioactmat.2022.06.005_bib62) 2003; 421 Kolenko (10.1016/j.bioactmat.2022.06.005_bib53) 2013; 10 Fu (10.1016/j.bioactmat.2022.06.005_bib47) 2019; 13 Franklin (10.1016/j.bioactmat.2022.06.005_bib54) 2007; 463 Stein (10.1016/j.bioactmat.2022.06.005_bib11) 2019; 20 Foggetti (10.1016/j.bioactmat.2022.06.005_bib20) 2017; 1864 Zhang (10.1016/j.bioactmat.2022.06.005_bib16) 2015; 75 |
References_xml | – volume: 9 start-page: 7200 year: 2019 end-page: 7209 ident: bib22 article-title: Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy publication-title: Theranostics – volume: 113 start-page: 1320 year: 2009 end-page: 1324 ident: bib38 article-title: Synthesis, thermal stability and properties of ZnO publication-title: J. Phys. Chem. C – volume: 95 start-page: 4607 year: 1998 ident: bib65 article-title: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment publication-title: Proc. Natl. Acad. Sci. USA – volume: 22 start-page: 1221 year: 2012 end-page: 1223 ident: bib60 article-title: K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites publication-title: Cell Res. – volume: 341 start-page: 39 year: 2017 end-page: 50 ident: bib33 article-title: Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals publication-title: J. Photochem. Photobiol., A – volume: 75 start-page: 3842 year: 2015 ident: bib16 article-title: Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53 publication-title: Cancer Res. – volume: 25 start-page: 304 year: 2014 end-page: 317 ident: bib5 article-title: Mutant p53 in cancer: new functions and therapeutic opportunities publication-title: Cancer Cell – volume: 81 start-page: 414 year: 2002 end-page: 421 ident: bib41 article-title: The cytotoxicity of dopamine may be an artefact of cell culture publication-title: J. Neurochem. – volume: 10 start-page: 2453 year: 2020 end-page: 2462 ident: bib46 article-title: Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy publication-title: Theranostics – volume: 29 year: 2017 ident: bib37 article-title: Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform publication-title: Adv. Mater. – volume: 25 start-page: 1141 year: 2017 end-page: 1152 ident: bib64 article-title: Betulinic acid inhibits cell proliferation in human oral squamous cell carcinoma via modulating ROS-regulated p53 signaling publication-title: Oncol. Res. – volume: 5 start-page: 269 year: 2018 end-page: 286 ident: bib43 article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics publication-title: Natl. Sci. Rev. – volume: 24 start-page: 1929 year: 2015 end-page: 1944 ident: bib24 article-title: A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease publication-title: Hum. Mol. Genet. – volume: 139 start-page: 1327 year: 2009 end-page: 1341 ident: bib14 article-title: Mutant p53 drives invasion by promoting integrin recycling publication-title: Cell – volume: 9 start-page: 6 year: 2013 end-page: 11 ident: bib59 article-title: MG132, a proteasome inhibitor, induces apoptosis in tumor cells, Asia-pac publication-title: J. Clin. Oncol. – volume: 463 start-page: 211 year: 2007 end-page: 217 ident: bib54 article-title: Zinc as an anti-tumor agent in prostate cancer and in other cancers publication-title: Arch. Biochem. Biophys. – volume: 6 start-page: 6907 year: 2015 ident: bib50 article-title: Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death publication-title: Nat. Commun. – volume: 271 year: 2021 ident: bib34 article-title: Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8 publication-title: Biomaterials – volume: 15 start-page: 1032 year: 2016 end-page: 1047 ident: bib61 article-title: Reactive oxygen species (ROS)-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large-scale phosphoproteomics screen publication-title: Mol. Cell. Proteomics – volume: 9 start-page: 3334 year: 2018 ident: bib52 article-title: Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors publication-title: Nat. Commun. – volume: 17 start-page: 160 year: 2015 end-page: 169 ident: bib42 article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety publication-title: Acta Biomater. – volume: 119 start-page: 847 year: 2004 end-page: 860 ident: bib10 article-title: Mutant p53 gain of function in two mouse models of li-fraumeni syndrome publication-title: Cell – volume: 10 start-page: 219 year: 2013 end-page: 226 ident: bib53 article-title: Zinc and zinc transporters in prostate carcinogenesis publication-title: Nat. Rev. Urol. – volume: 55 start-page: 217 year: 2003 end-page: 250 ident: bib30 article-title: Effective drug delivery by PEGylated drug conjugates publication-title: Adv. Drug Deliv. Rev. – volume: 623 start-page: 1 year: 2009 end-page: 9 ident: bib26 article-title: Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells publication-title: Eur. J. Pharmacol. – volume: 490 start-page: 61 year: 2012 end-page: 70 ident: bib7 article-title: Nature comprehensive molecular portraits of human breast tumours publication-title: Nature – volume: 1864 start-page: 382 year: 2017 end-page: 392 ident: bib20 article-title: Gambogic acid counteracts mutant p53 stability by inducing autophagy publication-title: Biochim. Biophys. Acta Mol. Cell Res. – volume: 15 start-page: 2 year: 2013 end-page: 8 ident: bib9 article-title: p53 mutations in cancer publication-title: Nat. Cell Biol. – volume: 9 start-page: 1270 year: 2018 ident: bib19 article-title: USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells publication-title: Nat. Commun. – volume: 39 year: 2019 ident: bib21 article-title: Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival publication-title: Biosci. Rep. – volume: 35 start-page: 71 year: 2015 end-page: 108 ident: bib25 article-title: Manganese is essential for neuronal health publication-title: Annu. Rev. Nutr. – volume: 6 year: 2019 ident: bib32 article-title: Cytomembrane-mediated transport of metal ions with biological specificity publication-title: Adv. Sci. – volume: 113 start-page: 13630 year: 2009 end-page: 13635 ident: bib39 article-title: Soft-template synthesis and characterization of ZnO publication-title: J. Phys. Chem. C – volume: 141 start-page: 9937 year: 2019 end-page: 9945 ident: bib51 article-title: Synthesis of copper peroxide nanodots for H publication-title: J. Am. Chem. Soc. – volume: 97 start-page: 4174 year: 2000 ident: bib13 article-title: High metastatic potential in mice inheriting a targeted p53 missense mutation publication-title: Proc. Natl. Acad. Sci. USA – volume: 110 start-page: 23052 year: 2006 end-page: 23059 ident: bib36 article-title: Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV−Raman and FTIR publication-title: J. Phys. Chem. B – volume: 31 year: 2019 ident: bib28 article-title: A multifunctional cascade bioreactor based on hollow-structured Cu publication-title: Adv. Mater. – volume: 46 start-page: 5397 year: 2007 end-page: 5401 ident: bib44 article-title: Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles publication-title: Angew. Chem., Int. Ed. Engl. – volume: 14 start-page: 359 year: 2014 end-page: 370 ident: bib3 article-title: Unravelling mechanisms of p53-mediated tumour suppression publication-title: Nat. Rev. Cancer – volume: 1 start-page: e18 year: 2020 ident: bib29 article-title: Bioactive nanomaterials for ion-interference therapy publication-title: View – volume: 421 start-page: 499 year: 2003 end-page: 506 ident: bib62 article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation publication-title: Nature – volume: 30 year: 2020 ident: bib23 article-title: Enhancing chemotherapy of p53-mutated cancer through ubiquitination-dependent proteasomal degradation of mutant p53 proteins by engineered ZnFe-4 nanoparticles publication-title: Adv. Funct. Mater. – volume: 281 start-page: 1677 year: 1998 end-page: 1679 ident: bib63 article-title: Activation of the atm kinase by ionizing radiation and phosphorylation of p53 publication-title: Science – volume: 57 start-page: 4902 year: 2018 end-page: 4906 ident: bib45 article-title: Simultaneous fenton-like ion delivery and glutathione depletion by MnO publication-title: Angew. Chem., Int. Ed. Engl. – volume: 20 year: 2019 ident: bib11 article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis publication-title: Int. J. Mol. Sci. – volume: 13 start-page: 13985 year: 2019 end-page: 13994 ident: bib47 article-title: Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy publication-title: ACS Nano – volume: 9 start-page: 577 year: 2011 ident: bib17 article-title: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells publication-title: Mol. Cancer Res. – volume: 60 start-page: 6788 year: 2000 ident: bib12 article-title: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome publication-title: Cancer Res. – volume: 94 start-page: 1143 year: 2018 end-page: 1150 ident: bib57 article-title: NanoDCFH-DA: a silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species publication-title: Photochem. Photobiol. – volume: 25 start-page: 104 year: 2018 end-page: 113 ident: bib1 article-title: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? publication-title: Cell Death Differ. – volume: 284 start-page: 15 year: 2018 end-page: 25 ident: bib66 article-title: Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles publication-title: J. Contr. Release – volume: 12 start-page: 204 year: 2021 ident: bib2 article-title: p53 induces ARTS to promote mitochondrial apoptosis publication-title: Cell Death Dis. – volume: 223 year: 2021 ident: bib58 article-title: Chemodynamic therapy agents Cu(II) complexes of quinoline derivatives induced ER stress and mitochondria-mediated apoptosis in SK-OV-3 cells publication-title: Eur. J. Med. Chem. – volume: 429 start-page: 1595 year: 2017 end-page: 1606 ident: bib15 article-title: Mutant p53 in cancer: accumulation, gain-of-function, and therapy publication-title: J. Mol. Biol. – volume: 18 start-page: 1233 year: 2016 end-page: 1243 ident: bib18 article-title: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway publication-title: Nat. Cell Biol. – volume: 15 year: 2019 ident: bib40 article-title: Synthesis of CaO publication-title: Small – volume: 83 start-page: 258 year: 2017 end-page: 265 ident: bib6 article-title: Mutant p53 as a target for cancer treatment publication-title: Eur. J. Cancer – volume: 2 start-page: 3915 year: 2014 end-page: 3918 ident: bib31 article-title: Biocompatible, hyperbranched nanocarriers for the transport and release of copper ions publication-title: J. Mater. Chem. B – volume: 25 start-page: 7305 year: 2006 end-page: 7310 ident: bib49 article-title: Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D publication-title: Oncogene – volume: 330 start-page: 517 year: 2010 end-page: 521 ident: bib27 article-title: ATM activation by oxidative stress publication-title: Science – volume: 1 start-page: 68 year: 2001 end-page: 76 ident: bib8 article-title: Rescuing the function of mutant p53 publication-title: Nat. Rev. Cancer – volume: 111 start-page: 5281 year: 2007 end-page: 5285 ident: bib35 article-title: A simple one-pot self-assembly route to nanoporous and monodispersed Fe publication-title: J. Phys. Chem. C – volume: 165 start-page: 121 year: 1974 end-page: 125 ident: bib55 article-title: The effect of Zn publication-title: Arch. Biochem. Biophys. – volume: 58 start-page: 946 year: 2019 end-page: 956 ident: bib48 article-title: Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions publication-title: Angew. Chem., Int. Ed. Engl. – volume: 75 start-page: 5001 year: 2015 ident: bib4 article-title: p53: protection against tumor growth beyond effects on cell cycle and apoptosis publication-title: Cancer Res. – volume: 5 start-page: 55 year: 2005 end-page: 65 ident: bib56 article-title: Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria publication-title: Mitochondrion – volume: 463 start-page: 211 issue: 2 year: 2007 ident: 10.1016/j.bioactmat.2022.06.005_bib54 article-title: Zinc as an anti-tumor agent in prostate cancer and in other cancers publication-title: Arch. Biochem. Biophys. doi: 10.1016/j.abb.2007.02.033 – volume: 29 issue: 21 year: 2017 ident: 10.1016/j.bioactmat.2022.06.005_bib37 article-title: Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform publication-title: Adv. Mater. doi: 10.1002/adma.201606681 – volume: 35 start-page: 71 issue: 1 year: 2015 ident: 10.1016/j.bioactmat.2022.06.005_bib25 article-title: Manganese is essential for neuronal health publication-title: Annu. Rev. Nutr. doi: 10.1146/annurev-nutr-071714-034419 – volume: 5 start-page: 269 issue: 2 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib43 article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx062 – volume: 119 start-page: 847 issue: 6 year: 2004 ident: 10.1016/j.bioactmat.2022.06.005_bib10 article-title: Mutant p53 gain of function in two mouse models of li-fraumeni syndrome publication-title: Cell doi: 10.1016/j.cell.2004.11.004 – volume: 341 start-page: 39 year: 2017 ident: 10.1016/j.bioactmat.2022.06.005_bib33 article-title: Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals publication-title: J. Photochem. Photobiol., A doi: 10.1016/j.jphotochem.2017.03.027 – volume: 10 start-page: 2453 issue: 6 year: 2020 ident: 10.1016/j.bioactmat.2022.06.005_bib46 article-title: Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy publication-title: Theranostics doi: 10.7150/thno.42981 – volume: 20 issue: 24 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib11 article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20246197 – volume: 17 start-page: 160 year: 2015 ident: 10.1016/j.bioactmat.2022.06.005_bib42 article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.02.002 – volume: 429 start-page: 1595 issue: 11 year: 2017 ident: 10.1016/j.bioactmat.2022.06.005_bib15 article-title: Mutant p53 in cancer: accumulation, gain-of-function, and therapy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.03.030 – volume: 25 start-page: 104 issue: 1 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib1 article-title: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? publication-title: Cell Death Differ. doi: 10.1038/cdd.2017.169 – volume: 15 start-page: 2 issue: 1 year: 2013 ident: 10.1016/j.bioactmat.2022.06.005_bib9 article-title: p53 mutations in cancer publication-title: Nat. Cell Biol. doi: 10.1038/ncb2641 – volume: 25 start-page: 7305 issue: 55 year: 2006 ident: 10.1016/j.bioactmat.2022.06.005_bib49 article-title: Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D publication-title: Oncogene doi: 10.1038/sj.onc.1209735 – volume: 9 start-page: 1270 issue: 1 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib19 article-title: USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells publication-title: Nat. Commun. doi: 10.1038/s41467-018-03599-w – volume: 1 start-page: e18 issue: 2 year: 2020 ident: 10.1016/j.bioactmat.2022.06.005_bib29 article-title: Bioactive nanomaterials for ion-interference therapy publication-title: View doi: 10.1002/viw2.18 – volume: 25 start-page: 1141 issue: 7 year: 2017 ident: 10.1016/j.bioactmat.2022.06.005_bib64 article-title: Betulinic acid inhibits cell proliferation in human oral squamous cell carcinoma via modulating ROS-regulated p53 signaling publication-title: Oncol. Res. doi: 10.3727/096504017X14841698396784 – volume: 111 start-page: 5281 issue: 14 year: 2007 ident: 10.1016/j.bioactmat.2022.06.005_bib35 article-title: A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property publication-title: J. Phys. Chem. C doi: 10.1021/jp0676843 – volume: 1 start-page: 68 issue: 1 year: 2001 ident: 10.1016/j.bioactmat.2022.06.005_bib8 article-title: Rescuing the function of mutant p53 publication-title: Nat. Rev. Cancer doi: 10.1038/35094077 – volume: 2 start-page: 3915 issue: 25 year: 2014 ident: 10.1016/j.bioactmat.2022.06.005_bib31 article-title: Biocompatible, hyperbranched nanocarriers for the transport and release of copper ions publication-title: J. Mater. Chem. B doi: 10.1039/C4TB00454J – volume: 623 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.bioactmat.2022.06.005_bib26 article-title: Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2009.08.031 – volume: 97 start-page: 4174 issue: 8 year: 2000 ident: 10.1016/j.bioactmat.2022.06.005_bib13 article-title: High metastatic potential in mice inheriting a targeted p53 missense mutation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.97.8.4174 – volume: 83 start-page: 258 year: 2017 ident: 10.1016/j.bioactmat.2022.06.005_bib6 article-title: Mutant p53 as a target for cancer treatment publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2017.06.023 – volume: 94 start-page: 1143 issue: 6 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib57 article-title: NanoDCFH-DA: a silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species publication-title: Photochem. Photobiol. doi: 10.1111/php.13020 – volume: 6 issue: 17 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib32 article-title: Cytomembrane-mediated transport of metal ions with biological specificity publication-title: Adv. Sci. doi: 10.1002/advs.201900835 – volume: 141 start-page: 9937 issue: 25 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib51 article-title: Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03457 – volume: 421 start-page: 499 issue: 6922 year: 2003 ident: 10.1016/j.bioactmat.2022.06.005_bib62 article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation publication-title: Nature doi: 10.1038/nature01368 – volume: 12 start-page: 204 issue: 2 year: 2021 ident: 10.1016/j.bioactmat.2022.06.005_bib2 article-title: p53 induces ARTS to promote mitochondrial apoptosis publication-title: Cell Death Dis. doi: 10.1038/s41419-021-03463-8 – volume: 5 start-page: 55 issue: 1 year: 2005 ident: 10.1016/j.bioactmat.2022.06.005_bib56 article-title: Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria publication-title: Mitochondrion doi: 10.1016/j.mito.2004.11.001 – volume: 31 issue: 51 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib28 article-title: A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy publication-title: Adv. Mater. doi: 10.1002/adma.201905271 – volume: 223 year: 2021 ident: 10.1016/j.bioactmat.2022.06.005_bib58 article-title: Chemodynamic therapy agents Cu(II) complexes of quinoline derivatives induced ER stress and mitochondria-mediated apoptosis in SK-OV-3 cells publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2021.113636 – volume: 75 start-page: 3842 issue: 18 year: 2015 ident: 10.1016/j.bioactmat.2022.06.005_bib16 article-title: Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1079 – volume: 9 start-page: 7200 issue: 24 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib22 article-title: Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy publication-title: Theranostics doi: 10.7150/thno.39831 – volume: 18 start-page: 1233 issue: 11 year: 2016 ident: 10.1016/j.bioactmat.2022.06.005_bib18 article-title: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway publication-title: Nat. Cell Biol. doi: 10.1038/ncb3427 – volume: 75 start-page: 5001 issue: 23 year: 2015 ident: 10.1016/j.bioactmat.2022.06.005_bib4 article-title: p53: protection against tumor growth beyond effects on cell cycle and apoptosis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-0563 – volume: 25 start-page: 304 issue: 3 year: 2014 ident: 10.1016/j.bioactmat.2022.06.005_bib5 article-title: Mutant p53 in cancer: new functions and therapeutic opportunities publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.01.021 – volume: 1864 start-page: 382 issue: 2 year: 2017 ident: 10.1016/j.bioactmat.2022.06.005_bib20 article-title: Gambogic acid counteracts mutant p53 stability by inducing autophagy publication-title: Biochim. Biophys. Acta Mol. Cell Res. doi: 10.1016/j.bbamcr.2016.11.023 – volume: 110 start-page: 23052 issue: 46 year: 2006 ident: 10.1016/j.bioactmat.2022.06.005_bib36 article-title: Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV−Raman and FTIR publication-title: J. Phys. Chem. B doi: 10.1021/jp063338+ – volume: 139 start-page: 1327 issue: 7 year: 2009 ident: 10.1016/j.bioactmat.2022.06.005_bib14 article-title: Mutant p53 drives invasion by promoting integrin recycling publication-title: Cell doi: 10.1016/j.cell.2009.11.026 – volume: 6 start-page: 6907 issue: 1 year: 2015 ident: 10.1016/j.bioactmat.2022.06.005_bib50 article-title: Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death publication-title: Nat. Commun. doi: 10.1038/ncomms7907 – volume: 39 issue: 2 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib21 article-title: Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival publication-title: Biosci. Rep. doi: 10.1042/BSR20181345 – volume: 490 start-page: 61 issue: 7418 year: 2012 ident: 10.1016/j.bioactmat.2022.06.005_bib7 article-title: Nature comprehensive molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/nature11412 – volume: 81 start-page: 414 issue: 3 year: 2002 ident: 10.1016/j.bioactmat.2022.06.005_bib41 article-title: The cytotoxicity of dopamine may be an artefact of cell culture publication-title: J. Neurochem. doi: 10.1046/j.1471-4159.2002.00802.x – volume: 13 start-page: 13985 issue: 12 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib47 article-title: Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy publication-title: ACS Nano doi: 10.1021/acsnano.9b05836 – volume: 165 start-page: 121 issue: 1 year: 1974 ident: 10.1016/j.bioactmat.2022.06.005_bib55 article-title: The effect of Zn2+ ions on mitochondrial electron transport publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(74)90148-9 – volume: 46 start-page: 5397 issue: 28 year: 2007 ident: 10.1016/j.bioactmat.2022.06.005_bib44 article-title: Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.200604775 – volume: 22 start-page: 1221 issue: 8 year: 2012 ident: 10.1016/j.bioactmat.2022.06.005_bib60 article-title: K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites publication-title: Cell Res. doi: 10.1038/cr.2012.58 – volume: 14 start-page: 359 issue: 5 year: 2014 ident: 10.1016/j.bioactmat.2022.06.005_bib3 article-title: Unravelling mechanisms of p53-mediated tumour suppression publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3711 – volume: 9 start-page: 6 issue: 1 year: 2013 ident: 10.1016/j.bioactmat.2022.06.005_bib59 article-title: MG132, a proteasome inhibitor, induces apoptosis in tumor cells, Asia-pac publication-title: J. Clin. Oncol. – volume: 58 start-page: 946 issue: 4 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib48 article-title: Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201805664 – volume: 57 start-page: 4902 issue: 18 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib45 article-title: Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201712027 – volume: 9 start-page: 3334 issue: 1 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib52 article-title: Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors publication-title: Nat. Commun. doi: 10.1038/s41467-018-05798-x – volume: 9 start-page: 577 issue: 5 year: 2011 ident: 10.1016/j.bioactmat.2022.06.005_bib17 article-title: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-10-0534 – volume: 330 start-page: 517 issue: 6003 year: 2010 ident: 10.1016/j.bioactmat.2022.06.005_bib27 article-title: ATM activation by oxidative stress publication-title: Science doi: 10.1126/science.1192912 – volume: 55 start-page: 217 issue: 2 year: 2003 ident: 10.1016/j.bioactmat.2022.06.005_bib30 article-title: Effective drug delivery by PEGylated drug conjugates publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(02)00180-1 – volume: 10 start-page: 219 issue: 4 year: 2013 ident: 10.1016/j.bioactmat.2022.06.005_bib53 article-title: Zinc and zinc transporters in prostate carcinogenesis publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2013.43 – volume: 15 start-page: 1032 issue: 3 year: 2016 ident: 10.1016/j.bioactmat.2022.06.005_bib61 article-title: Reactive oxygen species (ROS)-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large-scale phosphoproteomics screen publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M115.055723 – volume: 284 start-page: 15 year: 2018 ident: 10.1016/j.bioactmat.2022.06.005_bib66 article-title: Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2018.06.012 – volume: 271 year: 2021 ident: 10.1016/j.bioactmat.2022.06.005_bib34 article-title: Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120720 – volume: 24 start-page: 1929 issue: 7 year: 2015 ident: 10.1016/j.bioactmat.2022.06.005_bib24 article-title: A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddu609 – volume: 113 start-page: 1320 issue: 4 year: 2009 ident: 10.1016/j.bioactmat.2022.06.005_bib38 article-title: Synthesis, thermal stability and properties of ZnO2 nanoparticles publication-title: J. Phys. Chem. C doi: 10.1021/jp808714v – volume: 30 issue: 40 year: 2020 ident: 10.1016/j.bioactmat.2022.06.005_bib23 article-title: Enhancing chemotherapy of p53-mutated cancer through ubiquitination-dependent proteasomal degradation of mutant p53 proteins by engineered ZnFe-4 nanoparticles publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001994 – volume: 60 start-page: 6788 issue: 24 year: 2000 ident: 10.1016/j.bioactmat.2022.06.005_bib12 article-title: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome publication-title: Cancer Res. – volume: 15 issue: 36 year: 2019 ident: 10.1016/j.bioactmat.2022.06.005_bib40 article-title: Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent publication-title: Small doi: 10.1002/smll.201902118 – volume: 95 start-page: 4607 issue: 8 year: 1998 ident: 10.1016/j.bioactmat.2022.06.005_bib65 article-title: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.95.8.4607 – volume: 281 start-page: 1677 issue: 5383 year: 1998 ident: 10.1016/j.bioactmat.2022.06.005_bib63 article-title: Activation of the atm kinase by ionizing radiation and phosphorylation of p53 publication-title: Science doi: 10.1126/science.281.5383.1677 – volume: 113 start-page: 13630 issue: 31 year: 2009 ident: 10.1016/j.bioactmat.2022.06.005_bib39 article-title: Soft-template synthesis and characterization of ZnO2 and ZnO hollow spheres publication-title: J. Phys. Chem. C doi: 10.1021/jp9036028 |
SSID | ssj0001700007 |
Score | 2.39087 |
Snippet | Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 404 |
SubjectTerms | Carrier-free nanoprodrug Mn-ZnO2 nanoparticle p53-mutated tumor therapy Reactive oxygen species Wild-type p53 protein |
Title | Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS |
URI | https://dx.doi.org/10.1016/j.bioactmat.2022.06.005 https://www.ncbi.nlm.nih.gov/pubmed/35784636 https://www.proquest.com/docview/2685038119 https://pubmed.ncbi.nlm.nih.gov/PMC9218170 https://doaj.org/article/1534fc751fce4e0080c4a906f41935da |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIF5LoTIS14g8bGfNrRSqCvGQKJX2Zjn2uKTqJlVIkMqvZybOrjZw2AtXJ45sz9jzjfL5G8ZeY1DTOeQ-qYRzmKBYm1hXqEQqj-ijKl2AkW3xRZ1diI8rudop9UWcsCgPHBfuDe5IEVwps-BAAAEcJ6xOVRAIPaQfoRHGvJ1k6iqKwlD0o8pyQubEpljNyF1V3VrXIybEDDHPRwVPKmC3E5pGBf9ZhPoXgf5NpNyJTKcP2P0JUvLjOJWH7A40j1h3YjsqRpeEDoA3tmnpqOyGS44old_IIlkPhDM974c1tsR7WLf8V205psguyjZxD9dE3LjlbeC_68Yla9tcWqpayekSFyen5bbx_NvX88fs4vTD95OzZKqvkDgpsj6xALoCXYJfaqdAhEqIQoCqSulCsHkoAXINeBzakFqx9HgcOJf5zCqvtSiLJ-ygaRt4xjjaVGKuCGnurUhBLJ3OVVXh4eFTBUovmNosrXGT-DjVwLg2G5bZldnaxJBNzMi3kwuWbjveRP2N_V3eke22r5OA9tiAbmUmtzL73GrB3m4sbyYsEjEGfqreP4JXG18xuFvpFwxaph1-mlwtSX8ny3BFnkbf2Y6TdIdIvm3ByplXzSYyf9LUP0ZFcE1ArUyf_4-ZH7J7OJUiMtNfsIO-G-AlAq--OmJ3j99__nR-NO61P3bWL38 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier-free+nanoprodrug+for+p53-mutated+tumor+therapy+via+concurrent+delivery+of+zinc-manganese+dual+ions+and+ROS&rft.jtitle=Bioactive+materials&rft.au=Jinping+Wang&rft.au=Chang+Qu&rft.au=Xinyue+Shao&rft.au=Guoqiang+Song&rft.date=2023-02-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=20&rft.spage=404&rft.epage=417&rft_id=info:doi/10.1016%2Fj.bioactmat.2022.06.005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1534fc751fce4e0080c4a906f41935da |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |