Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS

Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new c...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 20; pp. 404 - 417
Main Authors Wang, Jinping, Qu, Chang, Shao, Xinyue, Song, Guoqiang, Sun, Jingyu, Shi, Donghong, Jia, Ran, An, Hailong, Wang, Hongjun
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.02.2023
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Schematic illustration of the sysnthesis of carrier-free nanoprodrugs for p53-mutated tumor therapy by co-delivering zinc-manganese dual ions and ROS to modulate Mutp53 degradation and WTp53 activation. [Display omitted] •Demonstrate the efficacy of multifunctional nanoparticles in degrading mutant p53 while activating wide-type p53.•Develop “carrier-free nanoprodrug” for pH-induced delivery of dual ions (Zn2+, Mn2+) and H2O2 with reduced side effects.•Readily extend the simple, green, yet efficient synthesis route to other ion-doped metal peroxide nanoparticles.
AbstractList Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug ( i.e ., Mn-ZnO 2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn 2+ and H 2 O 2 from Mn-ZnO 2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn 2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO 2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions ( i.e ., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO 2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Schematic illustration of the sysnthesis of carrier-free nanoprodrugs for p53-mutated tumor therapy by co-delivering zinc-manganese dual ions and ROS to modulate Mutp53 degradation and WTp53 activation. Image 1 • Demonstrate the efficacy of multifunctional nanoparticles in degrading mutant p53 while activating wide-type p53. • Develop “carrier-free nanoprodrug” for pH-induced delivery of dual ions (Zn 2+ , Mn 2+ ) and H 2 O 2 with reduced side effects. • Readily extend the simple, green, yet efficient synthesis route to other ion-doped metal peroxide nanoparticles.
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug ( ., Mn-ZnO nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn and H O from Mn-ZnO NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both and results demonstrated that pH-responsive decomposition of Mn-ZnO NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions ( ., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy.
Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein (WTp53). In this regard, inducing Mutp53 degradation while activating WTp53 is a viable strategy for precise anti-tumor therapy. Herein, a new carrier-free nanoprodrug (i.e., Mn-ZnO2 nanoparticles) was developed for concurrent delivery of dual Zn-Mn ions and reactive oxygen species (ROS) within tumor to regulate the p53 protein for high anti-tumor efficacy. In response to the mild tumor acidic environment, the released Zn2+ and H2O2 from Mn-ZnO2 NPs induced ubiquitination-mediated proteasomal degradation of Mutp53, while the liberative Mn2+ and increased ROS level activated the ATM-p53-Bax pathway to elevate WTp53 level. Both in vitro and in vivo results demonstrated that pH-responsive decomposition of Mn-ZnO2 NPs could effectively elevate the intracellular dual Zn-Mn ions and ROS level and subsequently generate the cytotoxic hydroxyl radical (•OH) through the Fenton-like reaction. With the integration of multiple functions (i.e., carrier-free ion and ROS delivery, tumor accumulation, p53 protein modulation, toxic •OH generation, and pH-activated MRI contrast) in a single nanosystem, Mn-ZnO2 NPs demonstrate its superiority as a promising nanotherapeutics for p53-mutated tumor therapy. Schematic illustration of the sysnthesis of carrier-free nanoprodrugs for p53-mutated tumor therapy by co-delivering zinc-manganese dual ions and ROS to modulate Mutp53 degradation and WTp53 activation. [Display omitted] •Demonstrate the efficacy of multifunctional nanoparticles in degrading mutant p53 while activating wide-type p53.•Develop “carrier-free nanoprodrug” for pH-induced delivery of dual ions (Zn2+, Mn2+) and H2O2 with reduced side effects.•Readily extend the simple, green, yet efficient synthesis route to other ion-doped metal peroxide nanoparticles.
Author Shao, Xinyue
An, Hailong
Qu, Chang
Song, Guoqiang
Wang, Hongjun
Wang, Jinping
Shi, Donghong
Jia, Ran
Sun, Jingyu
Author_xml – sequence: 1
  givenname: Jinping
  surname: Wang
  fullname: Wang, Jinping
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 2
  givenname: Chang
  surname: Qu
  fullname: Qu, Chang
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 3
  givenname: Xinyue
  surname: Shao
  fullname: Shao, Xinyue
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 4
  givenname: Guoqiang
  surname: Song
  fullname: Song, Guoqiang
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 5
  givenname: Jingyu
  surname: Sun
  fullname: Sun, Jingyu
  organization: Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
– sequence: 6
  givenname: Donghong
  surname: Shi
  fullname: Shi, Donghong
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 7
  givenname: Ran
  surname: Jia
  fullname: Jia, Ran
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 8
  givenname: Hailong
  surname: An
  fullname: An, Hailong
  email: hailong_an@hebut.edu.cn
  organization: Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
– sequence: 9
  givenname: Hongjun
  surname: Wang
  fullname: Wang, Hongjun
  email: hongjun.wang@stevens.edu
  organization: Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35784636$$D View this record in MEDLINE/PubMed
BookMark eNqFUstqHDEQFMEhdhz_QqJjLrORZjQPHRIwi5MYDIY8IDfRK7XWWmakjaRZ2Hx95Kxt7Fx8kUSrq4qurtfkyAePhLzjbMEZ7z5sFisXQOcJ8qJmdb1g3YKx9gU5qUVbV1zKX0eP3sfkLKUNY4z35WD9K3LctP0guqY7IXEJMTqMlY2I1IMP2xhMnNfUhki3bVNNc4aMhuZ5KpV8gxG2e7pzQHXweo4RfaYGR7fDuKfB0j_O62oCvwaPCamZYaQu-ETBG_rt-vsb8tLCmPDs7j4lPz9f_Fh-ra6uv1wuz68q3QqeK0CUK5Q9mkHqDoVdCdEI7FZ9q62F2vaItUTJOVgGYjCsb7TmhkNnpBR9c0ouD7wmwEZto5sg7lUAp_4VQlwriNnpERVvG2F133KrUSBjA9MCJOus4LJpDRSuTweu7bya0Ogyc4TxCenTH-9u1DrslKz5UHwvBO_vCGL4PWPKanJJ4zgWk8KcVN0NLWsGXvROydvHWg8i90srDR8PDTqGlCJapV3ZUfG4SLtRcaZuc6I26iEn6jYninWq5KTg-__w9xLPI88PSCx725XYqKQdeo3GRdS5GOue5fgLehTf9A
CitedBy_id crossref_primary_10_3389_fbioe_2025_1550089
crossref_primary_10_1002_adma_202412227
crossref_primary_10_1002_advs_202308051
crossref_primary_10_1002_smll_202411193
crossref_primary_10_1007_s11696_025_03984_y
crossref_primary_10_3389_fphar_2023_1208740
crossref_primary_10_1002_cplu_202300624
crossref_primary_10_1021_acsnano_3c01215
crossref_primary_10_1002_advs_202500825
crossref_primary_10_3390_pharmaceutics15092337
crossref_primary_10_1080_17425247_2023_2292678
crossref_primary_10_3389_fphar_2023_1215995
crossref_primary_10_3389_fgene_2022_1037716
crossref_primary_10_3390_v15020404
crossref_primary_10_1039_D2BM01460B
crossref_primary_10_34133_bmr_0158
crossref_primary_10_1002_smll_202207077
crossref_primary_10_1002_mco2_683
Cites_doi 10.1016/j.abb.2007.02.033
10.1002/adma.201606681
10.1146/annurev-nutr-071714-034419
10.1093/nsr/nwx062
10.1016/j.cell.2004.11.004
10.1016/j.jphotochem.2017.03.027
10.7150/thno.42981
10.3390/ijms20246197
10.1016/j.actbio.2015.02.002
10.1016/j.jmb.2017.03.030
10.1038/cdd.2017.169
10.1038/ncb2641
10.1038/sj.onc.1209735
10.1038/s41467-018-03599-w
10.1002/viw2.18
10.3727/096504017X14841698396784
10.1021/jp0676843
10.1038/35094077
10.1039/C4TB00454J
10.1016/j.ejphar.2009.08.031
10.1073/pnas.97.8.4174
10.1016/j.ejca.2017.06.023
10.1111/php.13020
10.1002/advs.201900835
10.1021/jacs.9b03457
10.1038/nature01368
10.1038/s41419-021-03463-8
10.1016/j.mito.2004.11.001
10.1002/adma.201905271
10.1016/j.ejmech.2021.113636
10.1158/0008-5472.CAN-13-1079
10.7150/thno.39831
10.1038/ncb3427
10.1158/0008-5472.CAN-15-0563
10.1016/j.ccr.2014.01.021
10.1016/j.bbamcr.2016.11.023
10.1021/jp063338+
10.1016/j.cell.2009.11.026
10.1038/ncomms7907
10.1042/BSR20181345
10.1038/nature11412
10.1046/j.1471-4159.2002.00802.x
10.1021/acsnano.9b05836
10.1016/0003-9861(74)90148-9
10.1002/anie.200604775
10.1038/cr.2012.58
10.1038/nrc3711
10.1002/anie.201805664
10.1002/anie.201712027
10.1038/s41467-018-05798-x
10.1158/1541-7786.MCR-10-0534
10.1126/science.1192912
10.1016/S0169-409X(02)00180-1
10.1038/nrurol.2013.43
10.1074/mcp.M115.055723
10.1016/j.jconrel.2018.06.012
10.1016/j.biomaterials.2021.120720
10.1093/hmg/ddu609
10.1021/jp808714v
10.1002/adfm.202001994
10.1002/smll.201902118
10.1073/pnas.95.8.4607
10.1126/science.281.5383.1677
10.1021/jp9036028
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors.
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors.
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2022.06.005
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 417
ExternalDocumentID oai_doaj_org_article_1534fc751fce4e0080c4a906f41935da
PMC9218170
35784636
10_1016_j_bioactmat_2022_06_005
S2452199X22002729
Genre Journal Article
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR067859
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
7X8
5PM
ID FETCH-LOGICAL-c541t-aee9be97ed89c6e4fb4434e6b75cffa2f7ee29e911af0a48d073cc1d1a6d99473
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:20:23 EDT 2025
Thu Aug 21 18:23:43 EDT 2025
Fri Jul 11 03:06:45 EDT 2025
Wed Feb 19 01:28:18 EST 2025
Thu Apr 24 23:07:36 EDT 2025
Tue Jul 01 02:11:30 EDT 2025
Tue May 16 22:35:34 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reactive oxygen species
p53-mutated tumor therapy
Mn-ZnO2 nanoparticle
Wild-type p53 protein
Carrier-free nanoprodrug
Language English
License This is an open access article under the CC BY-NC-ND license.
2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-aee9be97ed89c6e4fb4434e6b75cffa2f7ee29e911af0a48d073cc1d1a6d99473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/1534fc751fce4e0080c4a906f41935da
PMID 35784636
PQID 2685038119
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_1534fc751fce4e0080c4a906f41935da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9218170
proquest_miscellaneous_2685038119
pubmed_primary_35784636
crossref_citationtrail_10_1016_j_bioactmat_2022_06_005
crossref_primary_10_1016_j_bioactmat_2022_06_005
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2022_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2023
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Greenwald, Choe, McGuire, Conover (bib30) 2003; 55
Türkyılmaz, Güy, Özacar (bib33) 2017; 341
Patricia, Muller, Karen, Vousden (bib5) 2014; 25
Guo, Peng (bib59) 2013; 9
Muller, Caswell, Doyle, Iwanicki, Tan, Karim, Lukashchuk, Gillespie, Ludwig, Gosselin, Cromer, Brugge, Sansom, Norman, Vousden (bib14) 2009; 139
Lin, Wang, Song, Liu, Zhu, Dai, Shen, Tian, Song, Wang, Tang, Yu, Zhou, Yang, Huang, Niu, Yang, Chen, Chen (bib22) 2019; 9
Hui, Zheng, Yan, Bargonetti, Foster (bib49) 2006; 25
Franklin, Costello (bib54) 2007; 463
Liu, McDonnell, Montes de Oca Luna, Kapoor, Mims, El-Naggar, Lozano (bib13) 2000; 97
Chang, Wang, Wang, Shu, Ding, Li, Pang, Cui, Hou, Lin (bib28) 2019; 31
Tidball, Bryan, Uhouse, Kumar, Aboud, Feist, Ess, Neely, Aschner, Bowman (bib24) 2015; 24
Lin, Yang, Zhou, Yang, Jacobson, Liu, Yang, Niu, Song, Yang, Chen (bib37) 2017; 29
Kozlov, Waardenberg, Engholm-Keller, Arthur, Graham, Lavin (bib61) 2016; 15
Han, Chen, Zhao, Zha, Ke, Wang, Ge (bib66) 2018; 284
Duffy, Synnott, Crown (bib6) 2017; 83
Cheng, Yan, Chen, Zhuo, Feng, Li, Feng, Yan (bib39) 2009; 113
Zhang, Ye, Li, Xia, Wang, Feng, Zhang (bib32) 2019; 6
Chen, Lu, Wang, Kroner, Paul, Fecht, Bednarcik, Stahl, Zhang, Wiedwald, Kaiser, Ziemann, Kikegawa, Wu, Jiang (bib38) 2009; 113
Canman Christine, Lim, Cimprich Karlene, Taya, Tamai, Sakaguchi, Appella, Kastan Michael, Siliciano Janet (bib63) 1998; 281
Dineley, Richards, Votyakova, Reynolds (bib56) 2005; 5
Fu, Hu, Qi, He, Jiang, Jiang, He, Qu, Lin, Huang (bib47) 2019; 13
Kleiner (bib55) 1974; 165
Aubrey, Kelly, Janic, Herold, Strasser (bib1) 2018; 25
He, Qin, Jiang, Jiang, Lei, Lin, Zhu, Qu, Huang (bib46) 2020; 10
Shen, Liu, Yang, Xun, Wei, Zeng (bib64) 2017; 25
Bakkenist, Kastan (bib62) 2003; 421
Stein, Rotter, Aloni-Grinstein (bib11) 2019; 20
Zhang, Zhou, Hong, van den Heuvel, Prabhu, Warfel, Kline, Dicker, Kopelovich, El-Deiry (bib16) 2015; 75
Meng, Li, Faust, Konst, Lee (bib42) 2015; 17
Guo, Kozlov, Lavin Martin, Person Maria, Paull Tanya (bib27) 2010; 330
(bib7) 2012; 490
Padmanabhan, Candelaria, Wong, Nikolai, Lonard, O'Malley, Richards (bib19) 2018; 9
Shen, Mamat, Zhang, Cao, Hood, Figueroa-Cosme, Xia (bib40) 2019; 15
Clement, Long, Ramalingam, Halliwell (bib41) 2002; 81
Lin, Huang, Song, Ou, Wang, Deng, Tian, Liu, Wang, Liu, Yu, Zhou, Wang, Niu, Yang, Chen (bib51) 2019; 141
Horning, Caito, Tipps, Bowman, Aschner (bib25) 2015; 35
Shen, Jia, Mo, Liang, Chen (bib58) 2021; 223
Parrales, Ranjan, Iyer, Padhye, Weir, Roy, Iwakuma (bib18) 2016; 18
Liu, Zhang, Bu (bib29) 2020; 1
Lin, Song, Song, Ke, Liu, Zhou, Shen, Li, Yang, Tang, Niu, Yang, Chen (bib45) 2018; 57
Bullock, Fersht (bib8) 2001; 1
Olive, Tuveson, Ruhe, Yin, Willis, Bronson, Crowley, Jacks (bib10) 2004; 119
Wang, Zhang, Ju, Liu, Cao, Chen, Ren, Qu (bib52) 2018; 9
Lai, Chang, Wen, Hsu (bib26) 2009; 623
Yue, Zhao, Xu, Zheng, Feng, Hu (bib15) 2017; 429
Qian, Zhang, Wei, Yao, Yi, Zhang, Ding, Huang, Wang, Song, Zhong, Yang, Gao, Zhou, Wen, Zhang (bib23) 2020; 30
Foggetti, Ottaggio, Russo, Mazzitelli, Monti, Degan, Miele, Fronza, Menichini (bib21) 2019; 39
Zhu, Zhao, Chen, Shi (bib35) 2007; 111
Feng, Dong, Tao, Zhang, Liu (bib43) 2018; 5
Tang, Liu, He, Bu (bib48) 2019; 58
Kolenko, Teper, Kutikov, Uzzo (bib53) 2013; 10
Bresolí-Obach, Busto-Moner, Muller, Reina, Nonell (bib57) 2018; 94
Noh, Kwon, Han, Park, Yang, Cho, Yoo, Khang, Lee (bib50) 2015; 6
Sigal, Rotter (bib12) 2000; 60
Bieging, Mello, Attardi (bib3) 2014; 14
Mallette, Richard (bib60) 2012; 22
Muller, Vousden (bib9) 2013; 15
Li, Marchenko, Schulz, Fischer, Velasco-Hernandez, Talos, Moll (bib17) 2011; 9
Wang, Simpson, Brown (bib4) 2015; 75
Borodko, Habas, Koebel, Yang, Frei, Somorjai (bib36) 2006; 110
Nowag, Frangville, Multhaup, Marty, Mingotaud, Haag (bib31) 2014; 2
Hobbs, Monsky, Yuan, Roberts, Griffith, Torchilin, Jain (bib65) 1998; 95
Foggetti, Ottaggio, Russo, Monti, Degan, Fronza, Menichini (bib20) 2017; 1864
Na, Lee, An, Park, Park, Lee, Nam, Kim, Kim, Kim, Lim, Kim, Kim, Hyeon (bib44) 2007; 46
Zhang, Huang, Wang, Cao, Zhang, Wei, Ding, Song, Chen, Qian, Zhong, Liu, Wang, Zhang, Jiang, Zeng, Yao, Wen (bib34) 2021; 271
Hao, Chen, Liao, Huang, Gan, Larisch, Zeng, Lu, Zhou (bib2) 2021; 12
Bieging (10.1016/j.bioactmat.2022.06.005_bib3) 2014; 14
Clement (10.1016/j.bioactmat.2022.06.005_bib41) 2002; 81
Sigal (10.1016/j.bioactmat.2022.06.005_bib12) 2000; 60
Borodko (10.1016/j.bioactmat.2022.06.005_bib36) 2006; 110
Padmanabhan (10.1016/j.bioactmat.2022.06.005_bib19) 2018; 9
Zhu (10.1016/j.bioactmat.2022.06.005_bib35) 2007; 111
Bullock (10.1016/j.bioactmat.2022.06.005_bib8) 2001; 1
Yue (10.1016/j.bioactmat.2022.06.005_bib15) 2017; 429
Muller (10.1016/j.bioactmat.2022.06.005_bib9) 2013; 15
Nowag (10.1016/j.bioactmat.2022.06.005_bib31) 2014; 2
Olive (10.1016/j.bioactmat.2022.06.005_bib10) 2004; 119
Lin (10.1016/j.bioactmat.2022.06.005_bib22) 2019; 9
Shen (10.1016/j.bioactmat.2022.06.005_bib58) 2021; 223
Aubrey (10.1016/j.bioactmat.2022.06.005_bib1) 2018; 25
Han (10.1016/j.bioactmat.2022.06.005_bib66) 2018; 284
Tidball (10.1016/j.bioactmat.2022.06.005_bib24) 2015; 24
Kozlov (10.1016/j.bioactmat.2022.06.005_bib61) 2016; 15
Lin (10.1016/j.bioactmat.2022.06.005_bib45) 2018; 57
Greenwald (10.1016/j.bioactmat.2022.06.005_bib30) 2003; 55
Mallette (10.1016/j.bioactmat.2022.06.005_bib60) 2012; 22
Lai (10.1016/j.bioactmat.2022.06.005_bib26) 2009; 623
Dineley (10.1016/j.bioactmat.2022.06.005_bib56) 2005; 5
Chen (10.1016/j.bioactmat.2022.06.005_bib38) 2009; 113
Liu (10.1016/j.bioactmat.2022.06.005_bib13) 2000; 97
Hui (10.1016/j.bioactmat.2022.06.005_bib49) 2006; 25
Horning (10.1016/j.bioactmat.2022.06.005_bib25) 2015; 35
Bresolí-Obach (10.1016/j.bioactmat.2022.06.005_bib57) 2018; 94
Lin (10.1016/j.bioactmat.2022.06.005_bib51) 2019; 141
Muller (10.1016/j.bioactmat.2022.06.005_bib14) 2009; 139
Parrales (10.1016/j.bioactmat.2022.06.005_bib18) 2016; 18
Guo (10.1016/j.bioactmat.2022.06.005_bib27) 2010; 330
Tang (10.1016/j.bioactmat.2022.06.005_bib48) 2019; 58
Noh (10.1016/j.bioactmat.2022.06.005_bib50) 2015; 6
Zhang (10.1016/j.bioactmat.2022.06.005_bib34) 2021; 271
He (10.1016/j.bioactmat.2022.06.005_bib46) 2020; 10
Na (10.1016/j.bioactmat.2022.06.005_bib44) 2007; 46
Qian (10.1016/j.bioactmat.2022.06.005_bib23) 2020; 30
Feng (10.1016/j.bioactmat.2022.06.005_bib43) 2018; 5
Chang (10.1016/j.bioactmat.2022.06.005_bib28) 2019; 31
Shen (10.1016/j.bioactmat.2022.06.005_bib40) 2019; 15
Wang (10.1016/j.bioactmat.2022.06.005_bib4) 2015; 75
Duffy (10.1016/j.bioactmat.2022.06.005_bib6) 2017; 83
Shen (10.1016/j.bioactmat.2022.06.005_bib64) 2017; 25
Lin (10.1016/j.bioactmat.2022.06.005_bib37) 2017; 29
Hao (10.1016/j.bioactmat.2022.06.005_bib2) 2021; 12
Li (10.1016/j.bioactmat.2022.06.005_bib17) 2011; 9
Foggetti (10.1016/j.bioactmat.2022.06.005_bib21) 2019; 39
Guo (10.1016/j.bioactmat.2022.06.005_bib59) 2013; 9
Zhang (10.1016/j.bioactmat.2022.06.005_bib32) 2019; 6
Meng (10.1016/j.bioactmat.2022.06.005_bib42) 2015; 17
Canman Christine (10.1016/j.bioactmat.2022.06.005_bib63) 1998; 281
Kleiner (10.1016/j.bioactmat.2022.06.005_bib55) 1974; 165
(10.1016/j.bioactmat.2022.06.005_bib7) 2012; 490
Liu (10.1016/j.bioactmat.2022.06.005_bib29) 2020; 1
Türkyılmaz (10.1016/j.bioactmat.2022.06.005_bib33) 2017; 341
Wang (10.1016/j.bioactmat.2022.06.005_bib52) 2018; 9
Patricia (10.1016/j.bioactmat.2022.06.005_bib5) 2014; 25
Cheng (10.1016/j.bioactmat.2022.06.005_bib39) 2009; 113
Hobbs (10.1016/j.bioactmat.2022.06.005_bib65) 1998; 95
Bakkenist (10.1016/j.bioactmat.2022.06.005_bib62) 2003; 421
Kolenko (10.1016/j.bioactmat.2022.06.005_bib53) 2013; 10
Fu (10.1016/j.bioactmat.2022.06.005_bib47) 2019; 13
Franklin (10.1016/j.bioactmat.2022.06.005_bib54) 2007; 463
Stein (10.1016/j.bioactmat.2022.06.005_bib11) 2019; 20
Foggetti (10.1016/j.bioactmat.2022.06.005_bib20) 2017; 1864
Zhang (10.1016/j.bioactmat.2022.06.005_bib16) 2015; 75
References_xml – volume: 9
  start-page: 7200
  year: 2019
  end-page: 7209
  ident: bib22
  article-title: Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy
  publication-title: Theranostics
– volume: 113
  start-page: 1320
  year: 2009
  end-page: 1324
  ident: bib38
  article-title: Synthesis, thermal stability and properties of ZnO
  publication-title: J. Phys. Chem. C
– volume: 95
  start-page: 4607
  year: 1998
  ident: bib65
  article-title: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 1221
  year: 2012
  end-page: 1223
  ident: bib60
  article-title: K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites
  publication-title: Cell Res.
– volume: 341
  start-page: 39
  year: 2017
  end-page: 50
  ident: bib33
  article-title: Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals
  publication-title: J. Photochem. Photobiol., A
– volume: 75
  start-page: 3842
  year: 2015
  ident: bib16
  article-title: Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53
  publication-title: Cancer Res.
– volume: 25
  start-page: 304
  year: 2014
  end-page: 317
  ident: bib5
  article-title: Mutant p53 in cancer: new functions and therapeutic opportunities
  publication-title: Cancer Cell
– volume: 81
  start-page: 414
  year: 2002
  end-page: 421
  ident: bib41
  article-title: The cytotoxicity of dopamine may be an artefact of cell culture
  publication-title: J. Neurochem.
– volume: 10
  start-page: 2453
  year: 2020
  end-page: 2462
  ident: bib46
  article-title: Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy
  publication-title: Theranostics
– volume: 29
  year: 2017
  ident: bib37
  article-title: Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform
  publication-title: Adv. Mater.
– volume: 25
  start-page: 1141
  year: 2017
  end-page: 1152
  ident: bib64
  article-title: Betulinic acid inhibits cell proliferation in human oral squamous cell carcinoma via modulating ROS-regulated p53 signaling
  publication-title: Oncol. Res.
– volume: 5
  start-page: 269
  year: 2018
  end-page: 286
  ident: bib43
  article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics
  publication-title: Natl. Sci. Rev.
– volume: 24
  start-page: 1929
  year: 2015
  end-page: 1944
  ident: bib24
  article-title: A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease
  publication-title: Hum. Mol. Genet.
– volume: 139
  start-page: 1327
  year: 2009
  end-page: 1341
  ident: bib14
  article-title: Mutant p53 drives invasion by promoting integrin recycling
  publication-title: Cell
– volume: 9
  start-page: 6
  year: 2013
  end-page: 11
  ident: bib59
  article-title: MG132, a proteasome inhibitor, induces apoptosis in tumor cells, Asia-pac
  publication-title: J. Clin. Oncol.
– volume: 463
  start-page: 211
  year: 2007
  end-page: 217
  ident: bib54
  article-title: Zinc as an anti-tumor agent in prostate cancer and in other cancers
  publication-title: Arch. Biochem. Biophys.
– volume: 6
  start-page: 6907
  year: 2015
  ident: bib50
  article-title: Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death
  publication-title: Nat. Commun.
– volume: 271
  year: 2021
  ident: bib34
  article-title: Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8
  publication-title: Biomaterials
– volume: 15
  start-page: 1032
  year: 2016
  end-page: 1047
  ident: bib61
  article-title: Reactive oxygen species (ROS)-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large-scale phosphoproteomics screen
  publication-title: Mol. Cell. Proteomics
– volume: 9
  start-page: 3334
  year: 2018
  ident: bib52
  article-title: Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors
  publication-title: Nat. Commun.
– volume: 17
  start-page: 160
  year: 2015
  end-page: 169
  ident: bib42
  article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety
  publication-title: Acta Biomater.
– volume: 119
  start-page: 847
  year: 2004
  end-page: 860
  ident: bib10
  article-title: Mutant p53 gain of function in two mouse models of li-fraumeni syndrome
  publication-title: Cell
– volume: 10
  start-page: 219
  year: 2013
  end-page: 226
  ident: bib53
  article-title: Zinc and zinc transporters in prostate carcinogenesis
  publication-title: Nat. Rev. Urol.
– volume: 55
  start-page: 217
  year: 2003
  end-page: 250
  ident: bib30
  article-title: Effective drug delivery by PEGylated drug conjugates
  publication-title: Adv. Drug Deliv. Rev.
– volume: 623
  start-page: 1
  year: 2009
  end-page: 9
  ident: bib26
  article-title: Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells
  publication-title: Eur. J. Pharmacol.
– volume: 490
  start-page: 61
  year: 2012
  end-page: 70
  ident: bib7
  article-title: Nature comprehensive molecular portraits of human breast tumours
  publication-title: Nature
– volume: 1864
  start-page: 382
  year: 2017
  end-page: 392
  ident: bib20
  article-title: Gambogic acid counteracts mutant p53 stability by inducing autophagy
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
– volume: 15
  start-page: 2
  year: 2013
  end-page: 8
  ident: bib9
  article-title: p53 mutations in cancer
  publication-title: Nat. Cell Biol.
– volume: 9
  start-page: 1270
  year: 2018
  ident: bib19
  article-title: USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells
  publication-title: Nat. Commun.
– volume: 39
  year: 2019
  ident: bib21
  article-title: Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival
  publication-title: Biosci. Rep.
– volume: 35
  start-page: 71
  year: 2015
  end-page: 108
  ident: bib25
  article-title: Manganese is essential for neuronal health
  publication-title: Annu. Rev. Nutr.
– volume: 6
  year: 2019
  ident: bib32
  article-title: Cytomembrane-mediated transport of metal ions with biological specificity
  publication-title: Adv. Sci.
– volume: 113
  start-page: 13630
  year: 2009
  end-page: 13635
  ident: bib39
  article-title: Soft-template synthesis and characterization of ZnO
  publication-title: J. Phys. Chem. C
– volume: 141
  start-page: 9937
  year: 2019
  end-page: 9945
  ident: bib51
  article-title: Synthesis of copper peroxide nanodots for H
  publication-title: J. Am. Chem. Soc.
– volume: 97
  start-page: 4174
  year: 2000
  ident: bib13
  article-title: High metastatic potential in mice inheriting a targeted p53 missense mutation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 110
  start-page: 23052
  year: 2006
  end-page: 23059
  ident: bib36
  article-title: Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV−Raman and FTIR
  publication-title: J. Phys. Chem. B
– volume: 31
  year: 2019
  ident: bib28
  article-title: A multifunctional cascade bioreactor based on hollow-structured Cu
  publication-title: Adv. Mater.
– volume: 46
  start-page: 5397
  year: 2007
  end-page: 5401
  ident: bib44
  article-title: Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 14
  start-page: 359
  year: 2014
  end-page: 370
  ident: bib3
  article-title: Unravelling mechanisms of p53-mediated tumour suppression
  publication-title: Nat. Rev. Cancer
– volume: 1
  start-page: e18
  year: 2020
  ident: bib29
  article-title: Bioactive nanomaterials for ion-interference therapy
  publication-title: View
– volume: 421
  start-page: 499
  year: 2003
  end-page: 506
  ident: bib62
  article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation
  publication-title: Nature
– volume: 30
  year: 2020
  ident: bib23
  article-title: Enhancing chemotherapy of p53-mutated cancer through ubiquitination-dependent proteasomal degradation of mutant p53 proteins by engineered ZnFe-4 nanoparticles
  publication-title: Adv. Funct. Mater.
– volume: 281
  start-page: 1677
  year: 1998
  end-page: 1679
  ident: bib63
  article-title: Activation of the atm kinase by ionizing radiation and phosphorylation of p53
  publication-title: Science
– volume: 57
  start-page: 4902
  year: 2018
  end-page: 4906
  ident: bib45
  article-title: Simultaneous fenton-like ion delivery and glutathione depletion by MnO
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 20
  year: 2019
  ident: bib11
  article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 13985
  year: 2019
  end-page: 13994
  ident: bib47
  article-title: Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy
  publication-title: ACS Nano
– volume: 9
  start-page: 577
  year: 2011
  ident: bib17
  article-title: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells
  publication-title: Mol. Cancer Res.
– volume: 60
  start-page: 6788
  year: 2000
  ident: bib12
  article-title: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome
  publication-title: Cancer Res.
– volume: 94
  start-page: 1143
  year: 2018
  end-page: 1150
  ident: bib57
  article-title: NanoDCFH-DA: a silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species
  publication-title: Photochem. Photobiol.
– volume: 25
  start-page: 104
  year: 2018
  end-page: 113
  ident: bib1
  article-title: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?
  publication-title: Cell Death Differ.
– volume: 284
  start-page: 15
  year: 2018
  end-page: 25
  ident: bib66
  article-title: Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles
  publication-title: J. Contr. Release
– volume: 12
  start-page: 204
  year: 2021
  ident: bib2
  article-title: p53 induces ARTS to promote mitochondrial apoptosis
  publication-title: Cell Death Dis.
– volume: 223
  year: 2021
  ident: bib58
  article-title: Chemodynamic therapy agents Cu(II) complexes of quinoline derivatives induced ER stress and mitochondria-mediated apoptosis in SK-OV-3 cells
  publication-title: Eur. J. Med. Chem.
– volume: 429
  start-page: 1595
  year: 2017
  end-page: 1606
  ident: bib15
  article-title: Mutant p53 in cancer: accumulation, gain-of-function, and therapy
  publication-title: J. Mol. Biol.
– volume: 18
  start-page: 1233
  year: 2016
  end-page: 1243
  ident: bib18
  article-title: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway
  publication-title: Nat. Cell Biol.
– volume: 15
  year: 2019
  ident: bib40
  article-title: Synthesis of CaO
  publication-title: Small
– volume: 83
  start-page: 258
  year: 2017
  end-page: 265
  ident: bib6
  article-title: Mutant p53 as a target for cancer treatment
  publication-title: Eur. J. Cancer
– volume: 2
  start-page: 3915
  year: 2014
  end-page: 3918
  ident: bib31
  article-title: Biocompatible, hyperbranched nanocarriers for the transport and release of copper ions
  publication-title: J. Mater. Chem. B
– volume: 25
  start-page: 7305
  year: 2006
  end-page: 7310
  ident: bib49
  article-title: Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D
  publication-title: Oncogene
– volume: 330
  start-page: 517
  year: 2010
  end-page: 521
  ident: bib27
  article-title: ATM activation by oxidative stress
  publication-title: Science
– volume: 1
  start-page: 68
  year: 2001
  end-page: 76
  ident: bib8
  article-title: Rescuing the function of mutant p53
  publication-title: Nat. Rev. Cancer
– volume: 111
  start-page: 5281
  year: 2007
  end-page: 5285
  ident: bib35
  article-title: A simple one-pot self-assembly route to nanoporous and monodispersed Fe
  publication-title: J. Phys. Chem. C
– volume: 165
  start-page: 121
  year: 1974
  end-page: 125
  ident: bib55
  article-title: The effect of Zn
  publication-title: Arch. Biochem. Biophys.
– volume: 58
  start-page: 946
  year: 2019
  end-page: 956
  ident: bib48
  article-title: Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 75
  start-page: 5001
  year: 2015
  ident: bib4
  article-title: p53: protection against tumor growth beyond effects on cell cycle and apoptosis
  publication-title: Cancer Res.
– volume: 5
  start-page: 55
  year: 2005
  end-page: 65
  ident: bib56
  article-title: Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria
  publication-title: Mitochondrion
– volume: 463
  start-page: 211
  issue: 2
  year: 2007
  ident: 10.1016/j.bioactmat.2022.06.005_bib54
  article-title: Zinc as an anti-tumor agent in prostate cancer and in other cancers
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2007.02.033
– volume: 29
  issue: 21
  year: 2017
  ident: 10.1016/j.bioactmat.2022.06.005_bib37
  article-title: Yolk–shell nanostructure: an ideal architecture to achieve harmonious integration of magnetic-plasmonic hybrid theranostic platform
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606681
– volume: 35
  start-page: 71
  issue: 1
  year: 2015
  ident: 10.1016/j.bioactmat.2022.06.005_bib25
  article-title: Manganese is essential for neuronal health
  publication-title: Annu. Rev. Nutr.
  doi: 10.1146/annurev-nutr-071714-034419
– volume: 5
  start-page: 269
  issue: 2
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib43
  article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx062
– volume: 119
  start-page: 847
  issue: 6
  year: 2004
  ident: 10.1016/j.bioactmat.2022.06.005_bib10
  article-title: Mutant p53 gain of function in two mouse models of li-fraumeni syndrome
  publication-title: Cell
  doi: 10.1016/j.cell.2004.11.004
– volume: 341
  start-page: 39
  year: 2017
  ident: 10.1016/j.bioactmat.2022.06.005_bib33
  article-title: Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: the synergistic/antagonistic effect between ZnO and metals
  publication-title: J. Photochem. Photobiol., A
  doi: 10.1016/j.jphotochem.2017.03.027
– volume: 10
  start-page: 2453
  issue: 6
  year: 2020
  ident: 10.1016/j.bioactmat.2022.06.005_bib46
  article-title: Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy
  publication-title: Theranostics
  doi: 10.7150/thno.42981
– volume: 20
  issue: 24
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib11
  article-title: Gain-of-function mutant p53: all the roads lead to tumorigenesis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20246197
– volume: 17
  start-page: 160
  year: 2015
  ident: 10.1016/j.bioactmat.2022.06.005_bib42
  article-title: Hydrogen peroxide generation and biocompatibility of hydrogel-bound mussel adhesive moiety
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.02.002
– volume: 429
  start-page: 1595
  issue: 11
  year: 2017
  ident: 10.1016/j.bioactmat.2022.06.005_bib15
  article-title: Mutant p53 in cancer: accumulation, gain-of-function, and therapy
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.03.030
– volume: 25
  start-page: 104
  issue: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib1
  article-title: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2017.169
– volume: 15
  start-page: 2
  issue: 1
  year: 2013
  ident: 10.1016/j.bioactmat.2022.06.005_bib9
  article-title: p53 mutations in cancer
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2641
– volume: 25
  start-page: 7305
  issue: 55
  year: 2006
  ident: 10.1016/j.bioactmat.2022.06.005_bib49
  article-title: Mutant p53 in MDA-MB-231 breast cancer cells is stabilized by elevated phospholipase D activity and contributes to survival signals generated by phospholipase D
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1209735
– volume: 9
  start-page: 1270
  issue: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib19
  article-title: USP15-dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03599-w
– volume: 1
  start-page: e18
  issue: 2
  year: 2020
  ident: 10.1016/j.bioactmat.2022.06.005_bib29
  article-title: Bioactive nanomaterials for ion-interference therapy
  publication-title: View
  doi: 10.1002/viw2.18
– volume: 25
  start-page: 1141
  issue: 7
  year: 2017
  ident: 10.1016/j.bioactmat.2022.06.005_bib64
  article-title: Betulinic acid inhibits cell proliferation in human oral squamous cell carcinoma via modulating ROS-regulated p53 signaling
  publication-title: Oncol. Res.
  doi: 10.3727/096504017X14841698396784
– volume: 111
  start-page: 5281
  issue: 14
  year: 2007
  ident: 10.1016/j.bioactmat.2022.06.005_bib35
  article-title: A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0676843
– volume: 1
  start-page: 68
  issue: 1
  year: 2001
  ident: 10.1016/j.bioactmat.2022.06.005_bib8
  article-title: Rescuing the function of mutant p53
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/35094077
– volume: 2
  start-page: 3915
  issue: 25
  year: 2014
  ident: 10.1016/j.bioactmat.2022.06.005_bib31
  article-title: Biocompatible, hyperbranched nanocarriers for the transport and release of copper ions
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C4TB00454J
– volume: 623
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.bioactmat.2022.06.005_bib26
  article-title: Emodin induces a reactive oxygen species-dependent and ATM-p53-Bax mediated cytotoxicity in lung cancer cells
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2009.08.031
– volume: 97
  start-page: 4174
  issue: 8
  year: 2000
  ident: 10.1016/j.bioactmat.2022.06.005_bib13
  article-title: High metastatic potential in mice inheriting a targeted p53 missense mutation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.97.8.4174
– volume: 83
  start-page: 258
  year: 2017
  ident: 10.1016/j.bioactmat.2022.06.005_bib6
  article-title: Mutant p53 as a target for cancer treatment
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2017.06.023
– volume: 94
  start-page: 1143
  issue: 6
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib57
  article-title: NanoDCFH-DA: a silica-based nanostructured fluorogenic probe for the detection of reactive oxygen species
  publication-title: Photochem. Photobiol.
  doi: 10.1111/php.13020
– volume: 6
  issue: 17
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib32
  article-title: Cytomembrane-mediated transport of metal ions with biological specificity
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900835
– volume: 141
  start-page: 9937
  issue: 25
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib51
  article-title: Synthesis of copper peroxide nanodots for H2O2 self-supplying chemodynamic therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03457
– volume: 421
  start-page: 499
  issue: 6922
  year: 2003
  ident: 10.1016/j.bioactmat.2022.06.005_bib62
  article-title: DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation
  publication-title: Nature
  doi: 10.1038/nature01368
– volume: 12
  start-page: 204
  issue: 2
  year: 2021
  ident: 10.1016/j.bioactmat.2022.06.005_bib2
  article-title: p53 induces ARTS to promote mitochondrial apoptosis
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-021-03463-8
– volume: 5
  start-page: 55
  issue: 1
  year: 2005
  ident: 10.1016/j.bioactmat.2022.06.005_bib56
  article-title: Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria
  publication-title: Mitochondrion
  doi: 10.1016/j.mito.2004.11.001
– volume: 31
  issue: 51
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib28
  article-title: A multifunctional cascade bioreactor based on hollow-structured Cu2MoS4 for synergetic cancer chemo-dynamic therapy/starvation therapy/phototherapy/immunotherapy with remarkably enhanced efficacy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905271
– volume: 223
  year: 2021
  ident: 10.1016/j.bioactmat.2022.06.005_bib58
  article-title: Chemodynamic therapy agents Cu(II) complexes of quinoline derivatives induced ER stress and mitochondria-mediated apoptosis in SK-OV-3 cells
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2021.113636
– volume: 75
  start-page: 3842
  issue: 18
  year: 2015
  ident: 10.1016/j.bioactmat.2022.06.005_bib16
  article-title: Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1079
– volume: 9
  start-page: 7200
  issue: 24
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib22
  article-title: Cooperation of endogenous and exogenous reactive oxygen species induced by zinc peroxide nanoparticles to enhance oxidative stress-based cancer therapy
  publication-title: Theranostics
  doi: 10.7150/thno.39831
– volume: 18
  start-page: 1233
  issue: 11
  year: 2016
  ident: 10.1016/j.bioactmat.2022.06.005_bib18
  article-title: DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3427
– volume: 75
  start-page: 5001
  issue: 23
  year: 2015
  ident: 10.1016/j.bioactmat.2022.06.005_bib4
  article-title: p53: protection against tumor growth beyond effects on cell cycle and apoptosis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-0563
– volume: 25
  start-page: 304
  issue: 3
  year: 2014
  ident: 10.1016/j.bioactmat.2022.06.005_bib5
  article-title: Mutant p53 in cancer: new functions and therapeutic opportunities
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2014.01.021
– volume: 1864
  start-page: 382
  issue: 2
  year: 2017
  ident: 10.1016/j.bioactmat.2022.06.005_bib20
  article-title: Gambogic acid counteracts mutant p53 stability by inducing autophagy
  publication-title: Biochim. Biophys. Acta Mol. Cell Res.
  doi: 10.1016/j.bbamcr.2016.11.023
– volume: 110
  start-page: 23052
  issue: 46
  year: 2006
  ident: 10.1016/j.bioactmat.2022.06.005_bib36
  article-title: Probing the interaction of poly(vinylpyrrolidone) with platinum nanocrystals by UV−Raman and FTIR
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063338+
– volume: 139
  start-page: 1327
  issue: 7
  year: 2009
  ident: 10.1016/j.bioactmat.2022.06.005_bib14
  article-title: Mutant p53 drives invasion by promoting integrin recycling
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.026
– volume: 6
  start-page: 6907
  issue: 1
  year: 2015
  ident: 10.1016/j.bioactmat.2022.06.005_bib50
  article-title: Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7907
– volume: 39
  issue: 2
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib21
  article-title: Autophagy induced by SAHA affects mutant P53 degradation and cancer cell survival
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20181345
– volume: 490
  start-page: 61
  issue: 7418
  year: 2012
  ident: 10.1016/j.bioactmat.2022.06.005_bib7
  article-title: Nature comprehensive molecular portraits of human breast tumours
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 81
  start-page: 414
  issue: 3
  year: 2002
  ident: 10.1016/j.bioactmat.2022.06.005_bib41
  article-title: The cytotoxicity of dopamine may be an artefact of cell culture
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2002.00802.x
– volume: 13
  start-page: 13985
  issue: 12
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib47
  article-title: Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b05836
– volume: 165
  start-page: 121
  issue: 1
  year: 1974
  ident: 10.1016/j.bioactmat.2022.06.005_bib55
  article-title: The effect of Zn2+ ions on mitochondrial electron transport
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(74)90148-9
– volume: 46
  start-page: 5397
  issue: 28
  year: 2007
  ident: 10.1016/j.bioactmat.2022.06.005_bib44
  article-title: Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.200604775
– volume: 22
  start-page: 1221
  issue: 8
  year: 2012
  ident: 10.1016/j.bioactmat.2022.06.005_bib60
  article-title: K48-linked ubiquitination and protein degradation regulate 53BP1 recruitment at DNA damage sites
  publication-title: Cell Res.
  doi: 10.1038/cr.2012.58
– volume: 14
  start-page: 359
  issue: 5
  year: 2014
  ident: 10.1016/j.bioactmat.2022.06.005_bib3
  article-title: Unravelling mechanisms of p53-mediated tumour suppression
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3711
– volume: 9
  start-page: 6
  issue: 1
  year: 2013
  ident: 10.1016/j.bioactmat.2022.06.005_bib59
  article-title: MG132, a proteasome inhibitor, induces apoptosis in tumor cells, Asia-pac
  publication-title: J. Clin. Oncol.
– volume: 58
  start-page: 946
  issue: 4
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib48
  article-title: Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201805664
– volume: 57
  start-page: 4902
  issue: 18
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib45
  article-title: Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201712027
– volume: 9
  start-page: 3334
  issue: 1
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib52
  article-title: Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05798-x
– volume: 9
  start-page: 577
  issue: 5
  year: 2011
  ident: 10.1016/j.bioactmat.2022.06.005_bib17
  article-title: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells
  publication-title: Mol. Cancer Res.
  doi: 10.1158/1541-7786.MCR-10-0534
– volume: 330
  start-page: 517
  issue: 6003
  year: 2010
  ident: 10.1016/j.bioactmat.2022.06.005_bib27
  article-title: ATM activation by oxidative stress
  publication-title: Science
  doi: 10.1126/science.1192912
– volume: 55
  start-page: 217
  issue: 2
  year: 2003
  ident: 10.1016/j.bioactmat.2022.06.005_bib30
  article-title: Effective drug delivery by PEGylated drug conjugates
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(02)00180-1
– volume: 10
  start-page: 219
  issue: 4
  year: 2013
  ident: 10.1016/j.bioactmat.2022.06.005_bib53
  article-title: Zinc and zinc transporters in prostate carcinogenesis
  publication-title: Nat. Rev. Urol.
  doi: 10.1038/nrurol.2013.43
– volume: 15
  start-page: 1032
  issue: 3
  year: 2016
  ident: 10.1016/j.bioactmat.2022.06.005_bib61
  article-title: Reactive oxygen species (ROS)-activated ATM-dependent phosphorylation of cytoplasmic substrates identified by large-scale phosphoproteomics screen
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M115.055723
– volume: 284
  start-page: 15
  year: 2018
  ident: 10.1016/j.bioactmat.2022.06.005_bib66
  article-title: Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2018.06.012
– volume: 271
  year: 2021
  ident: 10.1016/j.bioactmat.2022.06.005_bib34
  article-title: Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.120720
– volume: 24
  start-page: 1929
  issue: 7
  year: 2015
  ident: 10.1016/j.bioactmat.2022.06.005_bib24
  article-title: A novel manganese-dependent ATM-p53 signaling pathway is selectively impaired in patient-based neuroprogenitor and murine striatal models of Huntington's disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddu609
– volume: 113
  start-page: 1320
  issue: 4
  year: 2009
  ident: 10.1016/j.bioactmat.2022.06.005_bib38
  article-title: Synthesis, thermal stability and properties of ZnO2 nanoparticles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp808714v
– volume: 30
  issue: 40
  year: 2020
  ident: 10.1016/j.bioactmat.2022.06.005_bib23
  article-title: Enhancing chemotherapy of p53-mutated cancer through ubiquitination-dependent proteasomal degradation of mutant p53 proteins by engineered ZnFe-4 nanoparticles
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001994
– volume: 60
  start-page: 6788
  issue: 24
  year: 2000
  ident: 10.1016/j.bioactmat.2022.06.005_bib12
  article-title: Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome
  publication-title: Cancer Res.
– volume: 15
  issue: 36
  year: 2019
  ident: 10.1016/j.bioactmat.2022.06.005_bib40
  article-title: Synthesis of CaO2 nanocrystals and their spherical aggregates with uniform sizes for use as a biodegradable bacteriostatic agent
  publication-title: Small
  doi: 10.1002/smll.201902118
– volume: 95
  start-page: 4607
  issue: 8
  year: 1998
  ident: 10.1016/j.bioactmat.2022.06.005_bib65
  article-title: Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.95.8.4607
– volume: 281
  start-page: 1677
  issue: 5383
  year: 1998
  ident: 10.1016/j.bioactmat.2022.06.005_bib63
  article-title: Activation of the atm kinase by ionizing radiation and phosphorylation of p53
  publication-title: Science
  doi: 10.1126/science.281.5383.1677
– volume: 113
  start-page: 13630
  issue: 31
  year: 2009
  ident: 10.1016/j.bioactmat.2022.06.005_bib39
  article-title: Soft-template synthesis and characterization of ZnO2 and ZnO hollow spheres
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9036028
SSID ssj0001700007
Score 2.39087
Snippet Human cancers typically express a high level of tumor-promoting mutant p53 protein (Mutp53) with a minimal level of tumor-suppressing wild-type p53 protein...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 404
SubjectTerms Carrier-free nanoprodrug
Mn-ZnO2 nanoparticle
p53-mutated tumor therapy
Reactive oxygen species
Wild-type p53 protein
Title Carrier-free nanoprodrug for p53-mutated tumor therapy via concurrent delivery of zinc-manganese dual ions and ROS
URI https://dx.doi.org/10.1016/j.bioactmat.2022.06.005
https://www.ncbi.nlm.nih.gov/pubmed/35784636
https://www.proquest.com/docview/2685038119
https://pubmed.ncbi.nlm.nih.gov/PMC9218170
https://doaj.org/article/1534fc751fce4e0080c4a906f41935da
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIF5LoTIS14g8bGfNrRSqCvGQKJX2Zjn2uKTqJlVIkMqvZybOrjZw2AtXJ45sz9jzjfL5G8ZeY1DTOeQ-qYRzmKBYm1hXqEQqj-ijKl2AkW3xRZ1diI8rudop9UWcsCgPHBfuDe5IEVwps-BAAAEcJ6xOVRAIPaQfoRHGvJ1k6iqKwlD0o8pyQubEpljNyF1V3VrXIybEDDHPRwVPKmC3E5pGBf9ZhPoXgf5NpNyJTKcP2P0JUvLjOJWH7A40j1h3YjsqRpeEDoA3tmnpqOyGS44old_IIlkPhDM974c1tsR7WLf8V205psguyjZxD9dE3LjlbeC_68Yla9tcWqpayekSFyen5bbx_NvX88fs4vTD95OzZKqvkDgpsj6xALoCXYJfaqdAhEqIQoCqSulCsHkoAXINeBzakFqx9HgcOJf5zCqvtSiLJ-ygaRt4xjjaVGKuCGnurUhBLJ3OVVXh4eFTBUovmNosrXGT-DjVwLg2G5bZldnaxJBNzMi3kwuWbjveRP2N_V3eke22r5OA9tiAbmUmtzL73GrB3m4sbyYsEjEGfqreP4JXG18xuFvpFwxaph1-mlwtSX8ny3BFnkbf2Y6TdIdIvm3ByplXzSYyf9LUP0ZFcE1ArUyf_4-ZH7J7OJUiMtNfsIO-G-AlAq--OmJ3j99__nR-NO61P3bWL38
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carrier-free+nanoprodrug+for+p53-mutated+tumor+therapy+via+concurrent+delivery+of+zinc-manganese+dual+ions+and+ROS&rft.jtitle=Bioactive+materials&rft.au=Jinping+Wang&rft.au=Chang+Qu&rft.au=Xinyue+Shao&rft.au=Guoqiang+Song&rft.date=2023-02-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=20&rft.spage=404&rft.epage=417&rft_id=info:doi/10.1016%2Fj.bioactmat.2022.06.005&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1534fc751fce4e0080c4a906f41935da
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon