Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity
The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mi...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 7664 - 20 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.09.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.
Mitochondria disruption can elicit immune responses. Here the authors report the design and characterization of mitochondria targeting drug-free nanoassemblies promoting immunogenic cell death and anti-tumor immune responses in preclinical models. |
---|---|
AbstractList | The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.Mitochondria disruption can elicit immune responses. Here the authors report the design and characterization of mitochondria targeting drug-free nanoassemblies promoting immunogenic cell death and anti-tumor immune responses in preclinical models. The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers. Mitochondria disruption can elicit immune responses. Here the authors report the design and characterization of mitochondria targeting drug-free nanoassemblies promoting immunogenic cell death and anti-tumor immune responses in preclinical models. The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers. The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers. Abstract The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers. |
ArticleNumber | 7664 |
Author | Wan, Jianqin Yao, Jie Meng, Fanchao Han, Weidong Zheng, Shusen Wang, Hangxiang Ren, Lulu Li, Xiaoyan Ma, Yan |
Author_xml | – sequence: 1 givenname: Lulu surname: Ren fullname: Ren, Lulu organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory – sequence: 2 givenname: Jianqin surname: Wan fullname: Wan, Jianqin organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 3 givenname: Xiaoyan surname: Li fullname: Li, Xiaoyan organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Department of Chemical Engineering, Zhejiang University – sequence: 4 givenname: Jie surname: Yao fullname: Yao, Jie organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Department of Chemical Engineering, Zhejiang University – sequence: 5 givenname: Yan surname: Ma fullname: Ma, Yan organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 6 givenname: Fanchao surname: Meng fullname: Meng, Fanchao organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 7 givenname: Shusen orcidid: 0000-0003-1459-8261 surname: Zheng fullname: Zheng, Shusen email: shusenzheng@zju.edu.cn organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 8 givenname: Weidong surname: Han fullname: Han, Weidong email: hanwd@zjcc.org.cn organization: Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital – sequence: 9 givenname: Hangxiang orcidid: 0000-0001-6370-9728 surname: Wang fullname: Wang, Hangxiang email: wanghx@zju.edu.cn organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory, Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39227567$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE_AzTlYIVTwqFbGBtXVt38x45NiDnVDNvycz00LbRb3xlf2doyP7vKxOYopYVa8peU8J7z4UQUWrGsJEI2kvZLN7Vp0xImhDFeMn9-bT6qKUDVkW72knxIvqlPeMKdmqswq--ynZdYouewh1xhuffVzVN35a12WEEJoxBbRzwNrledUMGbGOEBOUgqMJHks9x4BQ1ssEcfIWosVc-3Gco592r6rnA4SCF7f7efXry-efl9-a6x9fry4_XTdWCjo1YF3LZO-cAeUIMa0bXEuolM5RyYxkQIntFXTSAHInuJKdVIZxsXADdPy8ujr6ugQbvc1-hLzTCbw-HKS80pCXdAG17YiBdug7QnrhegrG0M6plplh6HqUi9fHo9d2NiM6i3HKEB6YPryJfq1X6Y-mlCtG5D7Nu1uHnH7PWCY9-mIxBIiY5qI5JUS2lKp-Qd8-QjdpznF5qwPFpSJiT725H-lflruvXIDuCNicSsk4aOsnmHzaJ_RBU6L3xdHH4uilOPpQHL1bpOyR9M79SRE_isp23xjM_2M_ofoLVJHYcw |
CitedBy_id | crossref_primary_10_1186_s12943_024_02166_w crossref_primary_10_1186_s12951_025_03322_0 crossref_primary_10_3390_ijms252111478 crossref_primary_10_1515_oncologie_2024_0596 |
Cites_doi | 10.1016/j.cmet.2016.06.007 10.1126/scitranslmed.aba6110 10.1073/pnas.97.26.14376 10.1038/nrm2434 10.1038/ncb3056 10.1016/j.cmet.2021.05.016 10.1038/s41467-021-23324-4 10.1038/s41586-020-2078-2 10.1038/nrneph.2014.67 10.1016/j.ccell.2018.03.005 10.1016/j.cell.2019.08.012 10.1038/sj.cdd.4400476 10.1038/nature09973 10.1016/j.cell.2020.02.041 10.2174/138161209789909692 10.1182/blood-2018-11-844548 10.1016/j.immuni.2015.02.002 10.1016/j.cmet.2020.07.001 10.1038/nature14156 10.1038/s41586-021-03269-w 10.1093/annonc/mdz003 10.1016/j.cell.2005.08.032 10.1038/nature00858 10.1038/nature01627 10.1038/nrc3380 10.1016/j.cell.2016.05.035 10.1038/s41577-021-00540-z 10.1158/0008-5472.CAN-10-2833 10.1016/j.jconrel.2020.08.043 10.1016/j.devcel.2007.11.019 10.1002/adfm.201501953 10.1016/j.ccell.2022.08.016 10.1016/j.ccell.2020.03.017 10.1126/science.1059108 10.1016/j.bcp.2006.05.017 10.1038/nri3399 10.1126/science.aao4227 10.1038/nature08296 10.1016/j.ccell.2021.08.005 10.1038/s41586-019-1498-3 10.1038/nm1523 10.1158/0008-5472.CAN-07-1622 10.1146/annurev-immunol-032712-100008 10.1038/nri.2016.107 10.1016/j.cub.2005.10.041 10.1158/0008-5472.CAN-17-0984 10.1038/s41586-023-06050-3 10.1001/jamaoncol.2020.0504 10.1038/ni.3704 10.1002/adma.201904914 10.1038/nrc3245 10.1038/s41467-017-02424-0 10.1038/s41568-020-0281-y 10.1158/0008-5472.CAN-14-3525 10.1038/s41565-022-01296-w 10.1016/j.immuni.2015.11.024 10.1038/onc.2009.356 10.1038/s41573-018-0007-y 10.1016/j.cub.2020.01.031 10.1016/j.biocel.2009.04.010 10.1016/j.cell.2016.07.002 10.1126/science.aaa6204 10.1186/1471-2164-15-190 10.1158/0008-5472.CAN-11-0950 10.1002/adhm.202301693 10.1016/j.molcel.2019.09.030 10.1016/j.ccell.2015.03.001 10.1038/ni.1980 10.3389/fphys.2017.00887 10.1016/j.nantod.2020.101030 10.1158/0008-5472.CAN-23-3511 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-51945-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_c80ba6f980094d91abb18d762bff89e5 PMC11372058 39227567 10_1038_s41467_024_51945_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82273490, 82073296 and 81773193 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82273490, 82073296 and 81773193 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT AARCD CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-acd6259ddba7d00b6dfd60155dd152b52a10c97a85bae3d4375857b234fd6fa83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:09 EDT 2025 Thu Aug 21 18:35:39 EDT 2025 Fri Jul 11 15:31:06 EDT 2025 Wed Aug 13 09:29:13 EDT 2025 Tue Aug 12 01:36:23 EDT 2025 Tue Jul 01 02:37:31 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Fri Feb 21 02:37:27 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-acd6259ddba7d00b6dfd60155dd152b52a10c97a85bae3d4375857b234fd6fa83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6370-9728 0000-0003-1459-8261 |
OpenAccessLink | https://www.proquest.com/docview/3100357049?pq-origsite=%requestingapplication% |
PMID | 39227567 |
PQID | 3100357049 |
PQPubID | 546298 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c80ba6f980094d91abb18d762bff89e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11372058 proquest_miscellaneous_3100561179 proquest_journals_3100357049 pubmed_primary_39227567 crossref_citationtrail_10_1038_s41467_024_51945_y crossref_primary_10_1038_s41467_024_51945_y springer_journals_10_1038_s41467_024_51945_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-03 |
PublicationDateYYYYMMDD | 2024-09-03 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Fitzgerald, Kagan (CR47) 2020; 180 Sun (CR48) 2021; 39 West (CR61) 2015; 520 Wang (CR22) 2017; 77 Dierge (CR29) 2021; 33 Albrengues (CR51) 2018; 361 Fridman, Pages, Sautes-Fridman, Galon (CR3) 2012; 12 Zappasodi, Merghoub, Wolchok (CR6) 2018; 33 Chen (CR20) 2019; 31 Ran (CR50) 2015; 75 Tesniere (CR46) 2010; 29 Ron-Harel (CR65) 2016; 24 Efremova (CR52) 2018; 9 Galluzzi, Buque, Kepp, Zitvogel, Kroemer (CR67) 2017; 17 Inagi, Ishimoto, Nangaku (CR42) 2014; 10 Mills, Kelly, O’Neill (CR16) 2017; 18 Obeid (CR44) 2007; 67 Buck (CR64) 2016; 166 Elliott (CR39) 2009; 461 CR8 Cassidy-Stone (CR27) 2008; 14 Lang (CR35) 2017; 8 Jaillon (CR59) 2020; 20 Schoenfeld, Hellmann (CR53) 2020; 37 Yu (CR17) 2023; 12 Davidson (CR57) 2021; 21 Jin (CR7) 2023; 18 Fucikova (CR45) 2011; 71 Oresta (CR12) 2021; 13 Hsu (CR49) 2011; 71 Alissafi (CR63) 2020; 32 Gebhardt, Nemeth, Angel, Hess (CR70) 2006; 72 Kroemer, Galluzzi, Kepp, Zitvogel (CR10) 2013; 31 Sperandio, de Belle, Bredesen (CR30) 2000; 97 West (CR62) 2011; 472 Topalian, Drake, Pardoll (CR1) 2015; 27 Paggio (CR25) 2019; 572 Xie (CR24) 2020; 328 Weinberg, Sena, Chandel (CR15) 2015; 42 Wozny (CR40) 2023; 618 Krysko (CR9) 2012; 12 Andreatta (CR56) 2021; 12 LeBleu (CR26) 2014; 16 Harel (CR18) 2019; 179 Mandula (CR31) 2022; 40 Scaffidi, Misteli, Bianchi (CR38) 2002; 418 Corcoran, Grothey (CR54) 2020; 6 Cassetta, Pollard (CR58) 2020; 30 Ow, Green, Hao, Mak (CR34) 2008; 9 Guo (CR32) 2003; 423 Vyas, Zaganjor, Haigis (CR14) 2016; 166 Porter, Jänicke (CR36) 1999; 6 Galon, Bruni (CR5) 2019; 18 Giese, Hind, Huttenlocher (CR68) 2019; 133 Gardai (CR37) 2005; 123 Guo (CR43) 2020; 579 Kolaczkowska, Kubes (CR69) 2013; 13 Cha, Chan, Li, Hsu, Hung (CR71) 2019; 76 Obeid (CR11) 2007; 13 Wang (CR21) 2015; 25 CR23 Tigano, Vargas, Tremblay-Belzile, Fu, Sfeir (CR19) 2021; 591 Castle (CR55) 2014; 15 Borcoman (CR2) 2019; 30 Pfirschke (CR13) 2016; 44 Rohrbach (CR66) 2009; 15 Wei (CR33) 2001; 292 Giorgi, De Stefani, Bononi, Rizzuto, Pinton (CR41) 2009; 41 Nakahira (CR60) 2011; 12 Joyce, Fearon (CR4) 2015; 348 Arnoult (CR28) 2005; 15 HX Wang (51945_CR21) 2015; 25 C Chen (51945_CR20) 2019; 31 A Cassidy-Stone (51945_CR27) 2008; 14 EL Mills (51945_CR16) 2017; 18 A Tesniere (51945_CR46) 2010; 29 JA Joyce (51945_CR4) 2015; 348 B Guo (51945_CR32) 2003; 423 SJ Gardai (51945_CR37) 2005; 123 T Alissafi (51945_CR63) 2020; 32 S Ran (51945_CR50) 2015; 75 R Zappasodi (51945_CR6) 2018; 33 51945_CR8 L Galluzzi (51945_CR67) 2017; 17 MD Buck (51945_CR64) 2016; 166 J Fucikova (51945_CR45) 2011; 71 HY Xie (51945_CR24) 2020; 328 AJ Schoenfeld (51945_CR53) 2020; 37 P Scaffidi (51945_CR38) 2002; 418 MR Wozny (51945_CR40) 2023; 618 SL Topalian (51945_CR1) 2015; 27 RYC Hsu (51945_CR49) 2011; 71 WH Fridman (51945_CR3) 2012; 12 M Obeid (51945_CR44) 2007; 67 HX Wang (51945_CR22) 2017; 77 J Galon (51945_CR5) 2019; 18 E Dierge (51945_CR29) 2021; 33 JK Mandula (51945_CR31) 2022; 40 C Gebhardt (51945_CR70) 2006; 72 YP Ow (51945_CR34) 2008; 9 AG Porter (51945_CR36) 1999; 6 KA Fitzgerald (51945_CR47) 2020; 180 SE Weinberg (51945_CR15) 2015; 42 RB Corcoran (51945_CR54) 2020; 6 K Nakahira (51945_CR60) 2011; 12 E Borcoman (51945_CR2) 2019; 30 A Paggio (51945_CR25) 2019; 572 X Guo (51945_CR43) 2020; 579 S Lang (51945_CR35) 2017; 8 R Inagi (51945_CR42) 2014; 10 E Kolaczkowska (51945_CR69) 2013; 13 C Pfirschke (51945_CR13) 2016; 44 S Jaillon (51945_CR59) 2020; 20 AP West (51945_CR61) 2015; 520 51945_CR23 MR Elliott (51945_CR39) 2009; 461 J Albrengues (51945_CR51) 2018; 361 M Harel (51945_CR18) 2019; 179 M Efremova (51945_CR52) 2018; 9 S Rohrbach (51945_CR66) 2009; 15 K Yu (51945_CR17) 2023; 12 D Arnoult (51945_CR28) 2005; 15 L Cassetta (51945_CR58) 2020; 30 DV Krysko (51945_CR9) 2012; 12 JH Cha (51945_CR71) 2019; 76 M Tigano (51945_CR19) 2021; 591 MC Wei (51945_CR33) 2001; 292 LJ Sun (51945_CR48) 2021; 39 M Obeid (51945_CR11) 2007; 13 N Ron-Harel (51945_CR65) 2016; 24 S Sperandio (51945_CR30) 2000; 97 C Giorgi (51945_CR41) 2009; 41 VS LeBleu (51945_CR26) 2014; 16 AP West (51945_CR62) 2011; 472 JC Castle (51945_CR55) 2014; 15 G Kroemer (51945_CR10) 2013; 31 S Vyas (51945_CR14) 2016; 166 MA Giese (51945_CR68) 2019; 133 S Davidson (51945_CR57) 2021; 21 SM Jin (51945_CR7) 2023; 18 B Oresta (51945_CR12) 2021; 13 M Andreatta (51945_CR56) 2021; 12 |
References_xml | – volume: 24 start-page: 104 year: 2016 end-page: 117 ident: CR65 article-title: Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.007 – volume: 13 start-page: eaba6110 year: 2021 ident: CR12 article-title: Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aba6110 – volume: 97 start-page: 14376 year: 2000 end-page: 14381 ident: CR30 article-title: An alternative, nonapoptotic form of programmed cell death publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.26.14376 – volume: 9 start-page: 532 year: 2008 end-page: 542 ident: CR34 article-title: Cytochrome c: functions beyond respiration publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2434 – volume: 16 start-page: 1125 year: 2014 end-page: 1125 ident: CR26 article-title: PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis (vol 16, pg 992, 2014) publication-title: Nat. Cell Biol. doi: 10.1038/ncb3056 – volume: 33 start-page: 1701 year: 2021 end-page: 1715.e1705 ident: CR29 article-title: Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.05.016 – volume: 12 year: 2021 ident: CR56 article-title: Interpretation of T cell states from single-cell transcriptomics data using reference atlases publication-title: Nat. Commun. doi: 10.1038/s41467-021-23324-4 – volume: 579 start-page: 427 year: 2020 end-page: 432 ident: CR43 article-title: Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway publication-title: Nature doi: 10.1038/s41586-020-2078-2 – volume: 10 start-page: 369 year: 2014 end-page: 378 ident: CR42 article-title: Proteostasis in endoplasmic reticulum-new mechanisms in kidney disease publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2014.67 – volume: 33 start-page: 581 year: 2018 end-page: 598 ident: CR6 article-title: Emerging concepts for immune checkpoint blockade-based combination therapies publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.005 – ident: CR8 – volume: 179 start-page: 236 year: 2019 end-page: 250.e218 ident: CR18 article-title: Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence publication-title: Cell doi: 10.1016/j.cell.2019.08.012 – volume: 6 start-page: 99 year: 1999 end-page: 104 ident: CR36 article-title: Emerging roles of caspase-3 in apoptosis publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400476 – volume: 472 start-page: 476 year: 2011 end-page: U543 ident: CR62 article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS publication-title: Nature doi: 10.1038/nature09973 – volume: 180 start-page: 1044 year: 2020 end-page: 1066 ident: CR47 article-title: Toll-like receptors and the control of immunity publication-title: Cell doi: 10.1016/j.cell.2020.02.041 – volume: 15 start-page: 4103 year: 2009 end-page: 4116 ident: CR66 article-title: Effects of dietary polyunsaturated fatty acids on mitochondria publication-title: Curr. Pharm. Des. doi: 10.2174/138161209789909692 – volume: 133 start-page: 2159 year: 2019 end-page: 2167 ident: CR68 article-title: Neutrophil plasticity in the tumor microenvironment publication-title: Blood doi: 10.1182/blood-2018-11-844548 – volume: 42 start-page: 406 year: 2015 end-page: 417 ident: CR15 article-title: Mitochondria in the regulation of innate and adaptive immunity publication-title: Immunity doi: 10.1016/j.immuni.2015.02.002 – volume: 32 start-page: 591 year: 2020 end-page: 604.e597 ident: CR63 article-title: Mitochondrial oxidative damage underlies regulatory T cell defects in autoimmunity publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.07.001 – volume: 520 start-page: 553 year: 2015 end-page: 557 ident: CR61 article-title: Mitochondrial DNA stress primes the antiviral innate immune response publication-title: Nature doi: 10.1038/nature14156 – volume: 591 start-page: 477 year: 2021 end-page: 481 ident: CR19 article-title: Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance publication-title: Nature doi: 10.1038/s41586-021-03269-w – volume: 30 start-page: 385 year: 2019 end-page: 396 ident: CR2 article-title: Novel patterns of response under immunotherapy publication-title: Ann. Oncol. doi: 10.1093/annonc/mdz003 – volume: 123 start-page: 321 year: 2005 end-page: 334 ident: CR37 article-title: Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte publication-title: Cell doi: 10.1016/j.cell.2005.08.032 – volume: 418 start-page: 191 year: 2002 end-page: 195 ident: CR38 article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation publication-title: Nature doi: 10.1038/nature00858 – volume: 423 start-page: 456 year: 2003 end-page: 461 ident: CR32 article-title: Humanin peptide suppresses apoptosis by interfering with Bax activation publication-title: Nature doi: 10.1038/nature01627 – volume: 12 start-page: 860 year: 2012 end-page: 875 ident: CR9 article-title: Immunogenic cell death and DAMPs in cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3380 – volume: 166 start-page: 63 year: 2016 end-page: 76 ident: CR64 article-title: Mitochondrial dynamics controls T cell fate through metabolic programming publication-title: Cell doi: 10.1016/j.cell.2016.05.035 – volume: 21 start-page: 704 year: 2021 end-page: 717 ident: CR57 article-title: Fibroblasts as immune regulators in infection, inflammation and cancer publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00540-z – volume: 71 start-page: 1989 year: 2011 end-page: 1998 ident: CR49 article-title: LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2833 – volume: 328 start-page: 237 year: 2020 end-page: 250 ident: CR24 article-title: Target-oriented delivery of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.08.043 – volume: 14 start-page: 193 year: 2008 end-page: 204 ident: CR27 article-title: Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.11.019 – volume: 25 start-page: 4956 year: 2015 end-page: 4965 ident: CR21 article-title: Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501953 – volume: 40 start-page: 1145 year: 2022 end-page: 1160.e1149 ident: CR31 article-title: Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.08.016 – volume: 37 start-page: 443 year: 2020 end-page: 455 ident: CR53 article-title: Acquired resistance to immune checkpoint inhibitors publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.03.017 – volume: 292 start-page: 727 year: 2001 end-page: 730 ident: CR33 article-title: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death publication-title: Science doi: 10.1126/science.1059108 – volume: 72 start-page: 1622 year: 2006 end-page: 1631 ident: CR70 article-title: S100A8 and S100A9 in inflammation and cancer publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.05.017 – volume: 13 start-page: 159 year: 2013 end-page: 175 ident: CR69 article-title: Neutrophil recruitment and function in health and inflammation publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3399 – volume: 361 year: 2018 ident: CR51 article-title: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice publication-title: Science doi: 10.1126/science.aao4227 – volume: 461 start-page: 282 year: 2009 end-page: U165 ident: CR39 article-title: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance publication-title: Nature doi: 10.1038/nature08296 – volume: 39 start-page: 1361 year: 2021 end-page: 1374 ident: CR48 article-title: Activating a collaborative innate-adaptive immune response to control metastasis publication-title: Cancer Cell doi: 10.1016/j.ccell.2021.08.005 – volume: 572 start-page: 609 year: 2019 end-page: 613 ident: CR25 article-title: Identification of an ATP-sensitive potassium channel in mitochondria publication-title: Nature doi: 10.1038/s41586-019-1498-3 – volume: 13 start-page: 54 year: 2007 end-page: 61 ident: CR11 article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death publication-title: Nat. Med. doi: 10.1038/nm1523 – volume: 67 start-page: 7941 year: 2007 end-page: 7944 ident: CR44 article-title: Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-1622 – volume: 31 start-page: 51 year: 2013 end-page: 72 ident: CR10 article-title: Immunogenic cell death in cancer therapy publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-100008 – volume: 17 start-page: 97 year: 2017 end-page: 111 ident: CR67 article-title: Immunogenic cell death in cancer and infectious disease publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.107 – volume: 15 start-page: 2112 year: 2005 end-page: 2118 ident: CR28 article-title: Bax/Bak-dependent release promotes of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.10.041 – volume: 77 start-page: 6963 year: 2017 end-page: 6974 ident: CR22 article-title: New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0984 – volume: 618 start-page: 188 year: 2023 end-page: 192 ident: CR40 article-title: In situ architecture of the ER-mitochondria encounter structure publication-title: Nature doi: 10.1038/s41586-023-06050-3 – volume: 6 start-page: 823 year: 2020 end-page: 824 ident: CR54 article-title: Efficacy of immunotherapy in microsatellite-stable or mismatch repair proficient colorectal cancer-fact or fiction? publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.0504 – volume: 18 start-page: 488 year: 2017 end-page: 498 ident: CR16 article-title: Mitochondria are the powerhouses of immunity publication-title: Nat. Immunol. doi: 10.1038/ni.3704 – volume: 31 year: 2019 ident: CR20 article-title: Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure publication-title: Adv. Mater. doi: 10.1002/adma.201904914 – volume: 12 start-page: 298 year: 2012 end-page: 306 ident: CR3 article-title: The immune contexture in human tumours: impact on clinical outcome publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3245 – volume: 9 year: 2018 ident: CR52 article-title: Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution publication-title: Nat. Commun. doi: 10.1038/s41467-017-02424-0 – ident: CR23 – volume: 20 start-page: 485 year: 2020 end-page: 503 ident: CR59 article-title: Neutrophil diversity and plasticity in tumour progression and therapy publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-0281-y – volume: 75 start-page: 2405 year: 2015 end-page: 2410 ident: CR50 article-title: The role of TLR4 in chemotherapy-driven metastasis publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3525 – volume: 18 start-page: 390 year: 2023 end-page: 402 ident: CR7 article-title: A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01296-w – volume: 44 start-page: 343 year: 2016 end-page: 354 ident: CR13 article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy publication-title: Immunity doi: 10.1016/j.immuni.2015.11.024 – volume: 29 start-page: 482 year: 2010 end-page: 491 ident: CR46 article-title: Immunogenic death of colon cancer cells treated with oxaliplatin publication-title: Oncogene doi: 10.1038/onc.2009.356 – volume: 18 start-page: 197 year: 2019 end-page: 218 ident: CR5 article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-018-0007-y – volume: 30 start-page: R246 year: 2020 end-page: R248 ident: CR58 article-title: Tumor-associated macrophages publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.01.031 – volume: 41 start-page: 1817 year: 2009 end-page: 1827 ident: CR41 article-title: Structural and functional link between the mitochondrial network and the endoplasmic reticulum publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.04.010 – volume: 166 start-page: 555 year: 2016 end-page: 566 ident: CR14 article-title: Mitochondria and cancer publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – volume: 348 start-page: 74 year: 2015 end-page: 80 ident: CR4 article-title: T cell exclusion, immune privilege, and the tumor microenvironment publication-title: Science doi: 10.1126/science.aaa6204 – volume: 15 year: 2014 ident: CR55 article-title: Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma publication-title: BMC Genom. doi: 10.1186/1471-2164-15-190 – volume: 71 start-page: 4821 year: 2011 end-page: 4833 ident: CR45 article-title: Human tumor cells killed by anthracyclines induce a tumor-specific immune response publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0950 – volume: 12 year: 2023 ident: CR17 article-title: A mitochondria-targeted NIR-II AIEgen induced pyroptosis for enhanced tumor immunotherapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202301693 – volume: 76 start-page: 359 year: 2019 end-page: 370 ident: CR71 article-title: Mechanisms controlling PD-L1 expression in cancer publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.030 – volume: 27 start-page: 450 year: 2015 end-page: 461 ident: CR1 article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.03.001 – volume: 12 start-page: 222 year: 2011 end-page: 230 ident: CR60 article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome publication-title: Nat. Immunol. doi: 10.1038/ni.1980 – volume: 8 start-page: 887 year: 2017 ident: CR35 article-title: An update on Sec61 channel functions, mechanisms, and related diseases publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00887 – volume: 39 start-page: 1361 year: 2021 ident: 51945_CR48 publication-title: Cancer Cell doi: 10.1016/j.ccell.2021.08.005 – volume: 76 start-page: 359 year: 2019 ident: 51945_CR71 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.09.030 – volume: 292 start-page: 727 year: 2001 ident: 51945_CR33 publication-title: Science doi: 10.1126/science.1059108 – volume: 133 start-page: 2159 year: 2019 ident: 51945_CR68 publication-title: Blood doi: 10.1182/blood-2018-11-844548 – volume: 32 start-page: 591 year: 2020 ident: 51945_CR63 publication-title: Cell Metab. doi: 10.1016/j.cmet.2020.07.001 – volume: 361 year: 2018 ident: 51945_CR51 publication-title: Science doi: 10.1126/science.aao4227 – volume: 44 start-page: 343 year: 2016 ident: 51945_CR13 publication-title: Immunity doi: 10.1016/j.immuni.2015.11.024 – volume: 21 start-page: 704 year: 2021 ident: 51945_CR57 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-021-00540-z – volume: 42 start-page: 406 year: 2015 ident: 51945_CR15 publication-title: Immunity doi: 10.1016/j.immuni.2015.02.002 – volume: 30 start-page: R246 year: 2020 ident: 51945_CR58 publication-title: Curr. Biol. doi: 10.1016/j.cub.2020.01.031 – volume: 77 start-page: 6963 year: 2017 ident: 51945_CR22 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0984 – volume: 18 start-page: 390 year: 2023 ident: 51945_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01296-w – volume: 179 start-page: 236 year: 2019 ident: 51945_CR18 publication-title: Cell doi: 10.1016/j.cell.2019.08.012 – volume: 461 start-page: 282 year: 2009 ident: 51945_CR39 publication-title: Nature doi: 10.1038/nature08296 – volume: 13 start-page: 54 year: 2007 ident: 51945_CR11 publication-title: Nat. Med. doi: 10.1038/nm1523 – volume: 17 start-page: 97 year: 2017 ident: 51945_CR67 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.107 – volume: 6 start-page: 823 year: 2020 ident: 51945_CR54 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.0504 – volume: 31 year: 2019 ident: 51945_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201904914 – volume: 123 start-page: 321 year: 2005 ident: 51945_CR37 publication-title: Cell doi: 10.1016/j.cell.2005.08.032 – volume: 572 start-page: 609 year: 2019 ident: 51945_CR25 publication-title: Nature doi: 10.1038/s41586-019-1498-3 – volume: 13 start-page: eaba6110 year: 2021 ident: 51945_CR12 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aba6110 – volume: 579 start-page: 427 year: 2020 ident: 51945_CR43 publication-title: Nature doi: 10.1038/s41586-020-2078-2 – volume: 67 start-page: 7941 year: 2007 ident: 51945_CR44 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-1622 – volume: 14 start-page: 193 year: 2008 ident: 51945_CR27 publication-title: Dev. Cell doi: 10.1016/j.devcel.2007.11.019 – volume: 180 start-page: 1044 year: 2020 ident: 51945_CR47 publication-title: Cell doi: 10.1016/j.cell.2020.02.041 – volume: 13 start-page: 159 year: 2013 ident: 51945_CR69 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3399 – volume: 520 start-page: 553 year: 2015 ident: 51945_CR61 publication-title: Nature doi: 10.1038/nature14156 – volume: 12 year: 2023 ident: 51945_CR17 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202301693 – volume: 472 start-page: 476 year: 2011 ident: 51945_CR62 publication-title: Nature doi: 10.1038/nature09973 – volume: 29 start-page: 482 year: 2010 ident: 51945_CR46 publication-title: Oncogene doi: 10.1038/onc.2009.356 – volume: 27 start-page: 450 year: 2015 ident: 51945_CR1 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.03.001 – volume: 423 start-page: 456 year: 2003 ident: 51945_CR32 publication-title: Nature doi: 10.1038/nature01627 – volume: 618 start-page: 188 year: 2023 ident: 51945_CR40 publication-title: Nature doi: 10.1038/s41586-023-06050-3 – volume: 12 start-page: 298 year: 2012 ident: 51945_CR3 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3245 – volume: 75 start-page: 2405 year: 2015 ident: 51945_CR50 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-3525 – volume: 9 year: 2018 ident: 51945_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02424-0 – volume: 16 start-page: 1125 year: 2014 ident: 51945_CR26 publication-title: Nat. Cell Biol. doi: 10.1038/ncb3056 – volume: 12 start-page: 222 year: 2011 ident: 51945_CR60 publication-title: Nat. Immunol. doi: 10.1038/ni.1980 – volume: 31 start-page: 51 year: 2013 ident: 51945_CR10 publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev-immunol-032712-100008 – volume: 20 start-page: 485 year: 2020 ident: 51945_CR59 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-020-0281-y – volume: 591 start-page: 477 year: 2021 ident: 51945_CR19 publication-title: Nature doi: 10.1038/s41586-021-03269-w – volume: 41 start-page: 1817 year: 2009 ident: 51945_CR41 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2009.04.010 – volume: 72 start-page: 1622 year: 2006 ident: 51945_CR70 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2006.05.017 – volume: 166 start-page: 63 year: 2016 ident: 51945_CR64 publication-title: Cell doi: 10.1016/j.cell.2016.05.035 – volume: 12 year: 2021 ident: 51945_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23324-4 – volume: 8 start-page: 887 year: 2017 ident: 51945_CR35 publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00887 – volume: 15 start-page: 2112 year: 2005 ident: 51945_CR28 publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.10.041 – volume: 6 start-page: 99 year: 1999 ident: 51945_CR36 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400476 – volume: 18 start-page: 197 year: 2019 ident: 51945_CR5 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-018-0007-y – volume: 71 start-page: 4821 year: 2011 ident: 51945_CR45 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-0950 – volume: 348 start-page: 74 year: 2015 ident: 51945_CR4 publication-title: Science doi: 10.1126/science.aaa6204 – volume: 18 start-page: 488 year: 2017 ident: 51945_CR16 publication-title: Nat. Immunol. doi: 10.1038/ni.3704 – volume: 15 start-page: 4103 year: 2009 ident: 51945_CR66 publication-title: Curr. Pharm. Des. doi: 10.2174/138161209789909692 – volume: 71 start-page: 1989 year: 2011 ident: 51945_CR49 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2833 – volume: 33 start-page: 1701 year: 2021 ident: 51945_CR29 publication-title: Cell Metab. doi: 10.1016/j.cmet.2021.05.016 – volume: 33 start-page: 581 year: 2018 ident: 51945_CR6 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.005 – ident: 51945_CR23 doi: 10.1016/j.nantod.2020.101030 – volume: 24 start-page: 104 year: 2016 ident: 51945_CR65 publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.007 – volume: 25 start-page: 4956 year: 2015 ident: 51945_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501953 – volume: 418 start-page: 191 year: 2002 ident: 51945_CR38 publication-title: Nature doi: 10.1038/nature00858 – volume: 15 year: 2014 ident: 51945_CR55 publication-title: BMC Genom. doi: 10.1186/1471-2164-15-190 – volume: 97 start-page: 14376 year: 2000 ident: 51945_CR30 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.97.26.14376 – volume: 9 start-page: 532 year: 2008 ident: 51945_CR34 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2434 – volume: 37 start-page: 443 year: 2020 ident: 51945_CR53 publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.03.017 – volume: 166 start-page: 555 year: 2016 ident: 51945_CR14 publication-title: Cell doi: 10.1016/j.cell.2016.07.002 – ident: 51945_CR8 doi: 10.1158/0008-5472.CAN-23-3511 – volume: 328 start-page: 237 year: 2020 ident: 51945_CR24 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.08.043 – volume: 12 start-page: 860 year: 2012 ident: 51945_CR9 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3380 – volume: 40 start-page: 1145 year: 2022 ident: 51945_CR31 publication-title: Cancer Cell doi: 10.1016/j.ccell.2022.08.016 – volume: 10 start-page: 369 year: 2014 ident: 51945_CR42 publication-title: Nat. Rev. Nephrol. doi: 10.1038/nrneph.2014.67 – volume: 30 start-page: 385 year: 2019 ident: 51945_CR2 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdz003 |
SSID | ssj0000391844 |
Score | 2.4823117 |
Snippet | The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade... Abstract The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7664 |
SubjectTerms | 631/154/152 631/67/1059/153 631/67/1059/2325 639/166/985 692/4028/67/1059 Animal models Animals Antitumor activity Apoptosis Apoptosis - drug effects Cancer therapies Cancer vaccines Cancer Vaccines - administration & dosage Cancer Vaccines - immunology Cell culture Cell death Cell Line, Tumor Cytotoxicity Drug development Endoplasmic reticulum Endoplasmic Reticulum Stress - drug effects Endoplasmic Reticulum Stress - immunology Female Humanities and Social Sciences Humans Immune checkpoint inhibitors Immune Checkpoint Inhibitors - pharmacology Immune response Immunity Immunity (Disease) Immunogenic Cell Death - drug effects Immunogenicity Immunosuppression Immunosuppressive agents Immunotherapy - methods Innate immunity Mice Mice, Inbred C57BL Mitochondria Mitochondria - drug effects Mitochondria - metabolism multidisciplinary Nanoparticles - chemistry Neoplasms - drug therapy Neoplasms - immunology Organelles PD-1 protein Science Science (multidisciplinary) Self-assembly Therapy Tumor cells Tumor microenvironment Tumor Microenvironment - drug effects Tumor Microenvironment - immunology Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejMNhlbOs-vHVDg902UduSLPm4lZZS6E4r9CYkS1oDiVPshJH_fu9JTtbs87JbiJUg3ufv-Um_R8i7zsXKt7VkpdcNEy4q5jrpWB0V0t1E32i84Hz5uTm_EhfX8vrOqC88E5bpgbPgjjtdOtvEVuMZON9W1rlKe3BhF6NuQ2IvhZx3p5hKMZi3ULqI6ZZMyfXxKFJMgJTEALQIyTZ7mSgR9v8OZf56WPKnjmlKRGePyMMJQdKPeeePyb3QPyH380zJzSGxl-CjENN6j6ZFh_Bthv9D8YUrHRd2PmeLPBI3UD-sv7I4hEB72y8BRoeFA0w60nU_D3a8gU8geAyUXRjoLF0lWW2ekquz0y8n52yao8A6KaoVs53HKsd7Z5UvS9d4UAFiJe8heztZ26rsWmW1dDZwLzjWEMrVHFUVrebPyEG_7MMLQnUdAB_qhnPhhFMeoqOCEgUUy7XovChItZWp6SaScZx1MTep2c21yXowoAeT9GA2BXm_-81tptj46-pPqKrdSqTHTl-A0ZjJaMy_jKYgR1tFm8lnR4OtDi4VlEwFebt7DN6GLRTbh-U6rwHECVGsIM-zXex2AkgTufRVQfSexextdf9JP7tJjN5VhcOCpC7Ih61x_djXn2Xx8n_I4hV5UKNXYJOMH5GD1bAOrwFordyb5FPfAb3zJvU priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkvQVt2lxobdWxLYkSz6FtiSEQnpqYG9CLycLu3Zq7xL232dG9jpsH7kZWzay5qFPM9I3hHxyts59VQiaeVVSbmtJrROWFrVEupvalwoPOF_8LM8v-Y-ZmI0Bt37cVrn1idFR-9ZhjPwYA9FMSAC0Jze_KVaNwuzqWELjMXmC1GW4pUvO5BRjQfZzxfl4ViZj6rjn0TPAxEQBunBBNzvzUaTt_xfW_HvL5B950zgdne2T5yOOTL8Ogj8gj0LzgjwdKktuXhJzAZYKnq3xqGBpF27n-J0Uw65pvzSLBV0OhXFD6rv1Fa27ENLGNC2A6bC0gEz7dN0sgumv4QqGH92lC106jwdKVptX5PLs9Nf3czpWU6BO8HxFjfO41vHeGumzzJYeBIGIyXuYw60oTJ65SholrAnMc4YrCWkLhgKrjWKvyV7TNuGQpKoIgBJVyRi33EoPPlLCQgXEyxR3nick346pdiPVOFa8WOiY8mZKD3LQIAcd5aA3Cfk8vXMzEG082PobimpqiSTZ8UbbXenR5rRTmTVlXSncPumr3FibKw_e39a1qoJIyNFW0Hq03F7f61lCPk6PweYwkWKa0K6HNoA7wZcl5M2gF1NPAG8io75MiNrRmJ2u7j5p5teR1zvPsWSQUAn5slWu-379fyzePvwb78izAvUdk2DsiOytunV4D0BqZT9Ea7kDqUwd0A priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRV802DbJE36qIvHIZxPHtxbSJr0bmG3e7S7yP73zqQfsnoKvpV2UkLmI79kkt8AvKtdk_uqkCzzumTCNYq5WjpWNIrobhpfarrgfP6tPLsQXy_l5REU012YeGg_UlrGMD2dDvvYi-jSOKMwxBxCsv0duEvU7WTVi3Ix76sQ47kWYrwfk3F9S9ODOShS9d-GL_88JvlbrjROQacP4cGIHdNPQ28fwVFoH8O9oZrk_gnYc_ROjGatJ6NKu_BjSf9Jaas17dd2tWLroRhuSH23u2JNF0La2naDADqsHaLRPt21q2D7a3zCIacQWYcuXcZLJNv9U7g4_fJ9ccbGCgqsliLfMlt7Wt9476zyWeZKj4NPKMl7nLedLGye1ZWyWjobuBecVg_KFZyU1FjNn8Fxu2nDC0h1ERAZ6pJz4YRTHuOiwsUJqpRrUXuRQD6NqalHenGqcrEyMc3NtRn0YFAPJurB7BN4P7e5Gcg1_in9mVQ1SxIxdnyx6a7MaCim1pmzZVNpOjLpq9w6l2uPEd81ja6CTOBkUrQZvbU3lOTgUuFiKYG382f0M0qe2DZsdoMMYk2MXwk8H-xi7gliTGLRVwnoA4s56Orhl3Z5Hbm885zKBEmdwIfJuH716-9j8fL_xF_B_YLsnxJh_ASOt90uvEYwtXVvovf8BDGmHD4 priority: 102 providerName: Springer Nature |
Title | Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity |
URI | https://link.springer.com/article/10.1038/s41467-024-51945-y https://www.ncbi.nlm.nih.gov/pubmed/39227567 https://www.proquest.com/docview/3100357049 https://www.proquest.com/docview/3100561179 https://pubmed.ncbi.nlm.nih.gov/PMC11372058 https://doaj.org/article/c80ba6f980094d91abb18d762bff89e5 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj5NAEJ_cR0x8MX6Lng0mvukqsAu7PBjTa65emvRi1CZ9I7vsctekpUrbKP-9M0BrqtX4AgQWsuxvZuc3DDsD8DI3RWjTKGaBVQkTppDM5LFhUSEp3U1hE0ULnMdXyeVEjKbx9Ai25Y66AVwddO2ontSkmr_58a1-jwr_rl0yrt6uRKPuaG0Y8hERs_oYTtEySVLUcUf3m5mZp-jQUKA5CkTI0Hbzbh3N4cfs2aompf8hHvrn75S_xVQbUzW8C3c6jun3W6G4B0euvA-32qqT9QPQY9RifPHSkvD5lfs-o-f49EnWXy30fM4WbdFc59tqc82Kyjm_1OUSibZbGGStK39Tzp1e3eARQkNTae4qf9YsNlnXD2EyvPgyuGRdpQWWxyJcM51b8oOsNVraIDCJRZCITVmL9t3EkQ6DPJVaxUY7bgUnL0OaiBOYhVb8EZyUy9I9AV9FDhmkSjgXRhhpcf6U6MQg9FyJ3AoPwu2YZnmXhpyqYcyzJhzOVdbikCEOWYNDVnvwanfP1zYJxz9bnxNUu5aUQLs5sayus04fs1wFRidFqujXSpuG2phQWbQMpihU6mIPzrZAZ1uhzCgYwmOJTpUHL3aXUR8pyKJLt9y0bZCT4jznweNWLnY9QS5K2falB2pPYva6un-lnN00Ob_DkMoJxcqD11vh-tWvv4_F0__o5zO4HZHQU5SMn8HJutq458i01qYHx3IqcauGH3pw2u-PPo9wf35x9fETnh0kg17zDaPXqNlPm6Ar7g |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmsRN7Dwjxqra021Mr7c3YsdOutJstya6q_VP8Rmby2Gp59NZblHijWc83M1889gzAm9wWsRskKYucypiwhWQ2Ty1LCknlbgqXKTrgPDrKhifi-zgdb8Gv_iwMbavsfWLjqN08pzXyXVqI5qlEQvvx_CejrlGUXe1baLSwOPCrC_xkqz_sf0X9vk2SvW_HX4as6yrA8lTEC2ZyR5zfOWukiyKbORSImINzGMtsmpg4ygfSqNQaz53gxKilTTgJXhjF8b034CYG3ogsSo7lek2Hqq0rIbqzORFXu7VoPBEGQoZUSaRstRH_mjYB_-K2f2_R_CNP24S_vXtwt-Ot4acWaPdhy5cP4FbbyXL1EMwIPQN60tIRoMPKX0zoPSEt84b1zEynbNY24vWhq5anrKi8D0tTzpG8-5lFJlyHy3LqTX2GV6hucs-5r8JJc4BlsXoEJ9cyz49hu5yX_imEKvHISlXGubDCSoc-WeKHEcKJK5E7EUDcz6nOu9Lm1GFjqpsUO1e61YNGPehGD3oVwLv1b87bwh5Xjv5MqlqPpKLczY15dao7G9e5iqzJioGi7ZpuEBtrY-Uw2tiiUAOfBrDTK1p3nqLWl7gO4PX6Mdo4JW5M6efLdgzyXPSdATxpcbGWBPktVfCXAagNxGyIuvmknJw1dcTjmFoUpSqA9z24LuX6_1w8u_pvvILbw-PRoT7cPzp4DncSwj4l4PgObC-qpX-BJG5hXzaWE8KP6zbV3_MxW28 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaxNYjv2HhACyqqltOJApb0FO3balXazJdlVtX-NX8dMHlstj956ixIncjzfzHz22DMAr3JbxG6YSBY5nTJhC8VsLi1LCkXpbgqXajrgfHiU7h2LL2M53oJf_VkY2lbZ28TGULt5TmvkA1qI5lIhoR0U3baIb7uj92c_GVWQokhrX06jhciBX53j9K1-t7-Lsn6dJKPP3z_tsa7CAMuliBfM5I74v3PWKBdFNnXYOWIRzqFfszIxcZQPldHSGs-d4MSulU04_URhNMfvXoPrisuYdEyN1Xp9hzKvayG6czoR14NaNFYJnSJD2iQkW234wqZkwL947t_bNf-I2TaucHQHbnccNvzQgu4ubPnyHtxoq1qu7oM5RCuBVrV0BO6w8ucT-k5IS75hPTPTKZu1RXl96KrlCSsq78PSlHMk8n5mkRXX4bKcelOf4hWKnkx17qtw0hxmWawewPGVjPND2C7npX8MoU48MlSdci6ssMqhfVY4SUJocS1yJwKI-zHN8i7NOVXbmGZNuJ3rrJVDhnLIGjlkqwDerN85a5N8XNr6I4lq3ZISdDc35tVJ1ul7luvImrQYatq66YaxsTbWDj2PLQo99DKAnV7QWWc16uwC4wG8XD9Gfacgjin9fNm2Qc6LdjSARy0u1j1BrkvZ_FUAegMxG13dfFJOTpuc4nFM5YqkDuBtD66Lfv1_LJ5c_hsv4CYqafZ1_-jgKdxKCPoUi-M7sL2olv4Z8rmFfd4oTgg_rlpTfwMQAF-l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+rewiring+with+small-molecule+drug-free+nanoassemblies+unleashes+anticancer+immunity&rft.jtitle=Nature+communications&rft.au=Ren%2C+Lulu&rft.au=Wan%2C+Jianqin&rft.au=Li%2C+Xiaoyan&rft.au=Yao%2C+Jie&rft.date=2024-09-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7664&rft_id=info:doi/10.1038%2Fs41467-024-51945-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |