Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity

The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 7664 - 20
Main Authors Ren, Lulu, Wan, Jianqin, Li, Xiaoyan, Yao, Jie, Ma, Yan, Meng, Fanchao, Zheng, Shusen, Han, Weidong, Wang, Hangxiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers. Mitochondria disruption can elicit immune responses. Here the authors report the design and characterization of mitochondria targeting drug-free nanoassemblies promoting immunogenic cell death and anti-tumor immune responses in preclinical models.
AbstractList The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.Mitochondria disruption can elicit immune responses. Here the authors report the design and characterization of mitochondria targeting drug-free nanoassemblies promoting immunogenic cell death and anti-tumor immune responses in preclinical models.
The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers. Mitochondria disruption can elicit immune responses. Here the authors report the design and characterization of mitochondria targeting drug-free nanoassemblies promoting immunogenic cell death and anti-tumor immune responses in preclinical models.
The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.
The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.
Abstract The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade (ICB) therapy. Thus, developing feasible therapeutic strategies that trigger inflammatory responses in the TME could improve the ICB efficacy. Mitochondria play an essential role in inflammation regulation and tumor immunogenicity induction. Herein, we report the discovery and characterization of a class of small molecules that can recapitulate aqueous self-assembly behavior, specifically target cellular organelles (e.g., mitochondria), and invigorate tumor cell immunogenicity. Mechanistically, this nanoassembly platform dynamically rewires mitochondria, induces endoplasmic reticulum stress, and causes apoptosis/paraptosis-associated immunogenic cell death. After treatment, stressed and dying tumor cells can act as prophylactic or therapeutic cancer vaccines. In preclinical mouse models of cancers with intrinsic or acquired resistance to PD-1 blockade, the local administration of nanoassemblies inflames the immunologically silent TME and synergizes with ICB therapy, generating potent antitumor immunity. This chemically programmed small-molecule immune enhancer acts distinctly from regular cytotoxic therapeutics and offers a promising strategy for synchronous and dynamic tailoring of innate immunity to achieve traceless cancer therapy and overcome immunosuppression in cancers.
ArticleNumber 7664
Author Wan, Jianqin
Yao, Jie
Meng, Fanchao
Han, Weidong
Zheng, Shusen
Wang, Hangxiang
Ren, Lulu
Li, Xiaoyan
Ma, Yan
Author_xml – sequence: 1
  givenname: Lulu
  surname: Ren
  fullname: Ren, Lulu
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory
– sequence: 2
  givenname: Jianqin
  surname: Wan
  fullname: Wan, Jianqin
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine
– sequence: 3
  givenname: Xiaoyan
  surname: Li
  fullname: Li, Xiaoyan
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Department of Chemical Engineering, Zhejiang University
– sequence: 4
  givenname: Jie
  surname: Yao
  fullname: Yao, Jie
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Department of Chemical Engineering, Zhejiang University
– sequence: 5
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine
– sequence: 6
  givenname: Fanchao
  surname: Meng
  fullname: Meng, Fanchao
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine
– sequence: 7
  givenname: Shusen
  orcidid: 0000-0003-1459-8261
  surname: Zheng
  fullname: Zheng, Shusen
  email: shusenzheng@zju.edu.cn
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine
– sequence: 8
  givenname: Weidong
  surname: Han
  fullname: Han, Weidong
  email: hanwd@zjcc.org.cn
  organization: Department of Colorectal Medical Oncology, Zhejiang Cancer Hospital
– sequence: 9
  givenname: Hangxiang
  orcidid: 0000-0001-6370-9728
  surname: Wang
  fullname: Wang, Hangxiang
  email: wanghx@zju.edu.cn
  organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory, Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39227567$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhE_AzTlYIVTwqFbGBtXVt38x45NiDnVDNvycz00LbRb3xlf2doyP7vKxOYopYVa8peU8J7z4UQUWrGsJEI2kvZLN7Vp0xImhDFeMn9-bT6qKUDVkW72knxIvqlPeMKdmqswq--ynZdYouewh1xhuffVzVN35a12WEEJoxBbRzwNrledUMGbGOEBOUgqMJHks9x4BQ1ssEcfIWosVc-3Gco592r6rnA4SCF7f7efXry-efl9-a6x9fry4_XTdWCjo1YF3LZO-cAeUIMa0bXEuolM5RyYxkQIntFXTSAHInuJKdVIZxsXADdPy8ujr6ugQbvc1-hLzTCbw-HKS80pCXdAG17YiBdug7QnrhegrG0M6plplh6HqUi9fHo9d2NiM6i3HKEB6YPryJfq1X6Y-mlCtG5D7Nu1uHnH7PWCY9-mIxBIiY5qI5JUS2lKp-Qd8-QjdpznF5qwPFpSJiT725H-lflruvXIDuCNicSsk4aOsnmHzaJ_RBU6L3xdHH4uilOPpQHL1bpOyR9M79SRE_isp23xjM_2M_ofoLVJHYcw
CitedBy_id crossref_primary_10_1186_s12943_024_02166_w
crossref_primary_10_1186_s12951_025_03322_0
crossref_primary_10_3390_ijms252111478
crossref_primary_10_1515_oncologie_2024_0596
Cites_doi 10.1016/j.cmet.2016.06.007
10.1126/scitranslmed.aba6110
10.1073/pnas.97.26.14376
10.1038/nrm2434
10.1038/ncb3056
10.1016/j.cmet.2021.05.016
10.1038/s41467-021-23324-4
10.1038/s41586-020-2078-2
10.1038/nrneph.2014.67
10.1016/j.ccell.2018.03.005
10.1016/j.cell.2019.08.012
10.1038/sj.cdd.4400476
10.1038/nature09973
10.1016/j.cell.2020.02.041
10.2174/138161209789909692
10.1182/blood-2018-11-844548
10.1016/j.immuni.2015.02.002
10.1016/j.cmet.2020.07.001
10.1038/nature14156
10.1038/s41586-021-03269-w
10.1093/annonc/mdz003
10.1016/j.cell.2005.08.032
10.1038/nature00858
10.1038/nature01627
10.1038/nrc3380
10.1016/j.cell.2016.05.035
10.1038/s41577-021-00540-z
10.1158/0008-5472.CAN-10-2833
10.1016/j.jconrel.2020.08.043
10.1016/j.devcel.2007.11.019
10.1002/adfm.201501953
10.1016/j.ccell.2022.08.016
10.1016/j.ccell.2020.03.017
10.1126/science.1059108
10.1016/j.bcp.2006.05.017
10.1038/nri3399
10.1126/science.aao4227
10.1038/nature08296
10.1016/j.ccell.2021.08.005
10.1038/s41586-019-1498-3
10.1038/nm1523
10.1158/0008-5472.CAN-07-1622
10.1146/annurev-immunol-032712-100008
10.1038/nri.2016.107
10.1016/j.cub.2005.10.041
10.1158/0008-5472.CAN-17-0984
10.1038/s41586-023-06050-3
10.1001/jamaoncol.2020.0504
10.1038/ni.3704
10.1002/adma.201904914
10.1038/nrc3245
10.1038/s41467-017-02424-0
10.1038/s41568-020-0281-y
10.1158/0008-5472.CAN-14-3525
10.1038/s41565-022-01296-w
10.1016/j.immuni.2015.11.024
10.1038/onc.2009.356
10.1038/s41573-018-0007-y
10.1016/j.cub.2020.01.031
10.1016/j.biocel.2009.04.010
10.1016/j.cell.2016.07.002
10.1126/science.aaa6204
10.1186/1471-2164-15-190
10.1158/0008-5472.CAN-11-0950
10.1002/adhm.202301693
10.1016/j.molcel.2019.09.030
10.1016/j.ccell.2015.03.001
10.1038/ni.1980
10.3389/fphys.2017.00887
10.1016/j.nantod.2020.101030
10.1158/0008-5472.CAN-23-3511
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-51945-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 20
ExternalDocumentID oai_doaj_org_article_c80ba6f980094d91abb18d762bff89e5
PMC11372058
39227567
10_1038_s41467_024_51945_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82273490, 82073296 and 81773193
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82273490, 82073296 and 81773193
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
AARCD
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-acd6259ddba7d00b6dfd60155dd152b52a10c97a85bae3d4375857b234fd6fa83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:09 EDT 2025
Thu Aug 21 18:35:39 EDT 2025
Fri Jul 11 15:31:06 EDT 2025
Wed Aug 13 09:29:13 EDT 2025
Tue Aug 12 01:36:23 EDT 2025
Tue Jul 01 02:37:31 EDT 2025
Thu Apr 24 23:02:29 EDT 2025
Fri Feb 21 02:37:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-acd6259ddba7d00b6dfd60155dd152b52a10c97a85bae3d4375857b234fd6fa83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6370-9728
0000-0003-1459-8261
OpenAccessLink https://www.proquest.com/docview/3100357049?pq-origsite=%requestingapplication%
PMID 39227567
PQID 3100357049
PQPubID 546298
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_c80ba6f980094d91abb18d762bff89e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11372058
proquest_miscellaneous_3100561179
proquest_journals_3100357049
pubmed_primary_39227567
crossref_citationtrail_10_1038_s41467_024_51945_y
crossref_primary_10_1038_s41467_024_51945_y
springer_journals_10_1038_s41467_024_51945_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-03
PublicationDateYYYYMMDD 2024-09-03
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fitzgerald, Kagan (CR47) 2020; 180
Sun (CR48) 2021; 39
West (CR61) 2015; 520
Wang (CR22) 2017; 77
Dierge (CR29) 2021; 33
Albrengues (CR51) 2018; 361
Fridman, Pages, Sautes-Fridman, Galon (CR3) 2012; 12
Zappasodi, Merghoub, Wolchok (CR6) 2018; 33
Chen (CR20) 2019; 31
Ran (CR50) 2015; 75
Tesniere (CR46) 2010; 29
Ron-Harel (CR65) 2016; 24
Efremova (CR52) 2018; 9
Galluzzi, Buque, Kepp, Zitvogel, Kroemer (CR67) 2017; 17
Inagi, Ishimoto, Nangaku (CR42) 2014; 10
Mills, Kelly, O’Neill (CR16) 2017; 18
Obeid (CR44) 2007; 67
Buck (CR64) 2016; 166
Elliott (CR39) 2009; 461
CR8
Cassidy-Stone (CR27) 2008; 14
Lang (CR35) 2017; 8
Jaillon (CR59) 2020; 20
Schoenfeld, Hellmann (CR53) 2020; 37
Yu (CR17) 2023; 12
Davidson (CR57) 2021; 21
Jin (CR7) 2023; 18
Fucikova (CR45) 2011; 71
Oresta (CR12) 2021; 13
Hsu (CR49) 2011; 71
Alissafi (CR63) 2020; 32
Gebhardt, Nemeth, Angel, Hess (CR70) 2006; 72
Kroemer, Galluzzi, Kepp, Zitvogel (CR10) 2013; 31
Sperandio, de Belle, Bredesen (CR30) 2000; 97
West (CR62) 2011; 472
Topalian, Drake, Pardoll (CR1) 2015; 27
Paggio (CR25) 2019; 572
Xie (CR24) 2020; 328
Weinberg, Sena, Chandel (CR15) 2015; 42
Wozny (CR40) 2023; 618
Krysko (CR9) 2012; 12
Andreatta (CR56) 2021; 12
LeBleu (CR26) 2014; 16
Harel (CR18) 2019; 179
Mandula (CR31) 2022; 40
Scaffidi, Misteli, Bianchi (CR38) 2002; 418
Corcoran, Grothey (CR54) 2020; 6
Cassetta, Pollard (CR58) 2020; 30
Ow, Green, Hao, Mak (CR34) 2008; 9
Guo (CR32) 2003; 423
Vyas, Zaganjor, Haigis (CR14) 2016; 166
Porter, Jänicke (CR36) 1999; 6
Galon, Bruni (CR5) 2019; 18
Giese, Hind, Huttenlocher (CR68) 2019; 133
Gardai (CR37) 2005; 123
Guo (CR43) 2020; 579
Kolaczkowska, Kubes (CR69) 2013; 13
Cha, Chan, Li, Hsu, Hung (CR71) 2019; 76
Obeid (CR11) 2007; 13
Wang (CR21) 2015; 25
CR23
Tigano, Vargas, Tremblay-Belzile, Fu, Sfeir (CR19) 2021; 591
Castle (CR55) 2014; 15
Borcoman (CR2) 2019; 30
Pfirschke (CR13) 2016; 44
Rohrbach (CR66) 2009; 15
Wei (CR33) 2001; 292
Giorgi, De Stefani, Bononi, Rizzuto, Pinton (CR41) 2009; 41
Nakahira (CR60) 2011; 12
Joyce, Fearon (CR4) 2015; 348
Arnoult (CR28) 2005; 15
HX Wang (51945_CR21) 2015; 25
C Chen (51945_CR20) 2019; 31
A Cassidy-Stone (51945_CR27) 2008; 14
EL Mills (51945_CR16) 2017; 18
A Tesniere (51945_CR46) 2010; 29
JA Joyce (51945_CR4) 2015; 348
B Guo (51945_CR32) 2003; 423
SJ Gardai (51945_CR37) 2005; 123
T Alissafi (51945_CR63) 2020; 32
S Ran (51945_CR50) 2015; 75
R Zappasodi (51945_CR6) 2018; 33
51945_CR8
L Galluzzi (51945_CR67) 2017; 17
MD Buck (51945_CR64) 2016; 166
J Fucikova (51945_CR45) 2011; 71
HY Xie (51945_CR24) 2020; 328
AJ Schoenfeld (51945_CR53) 2020; 37
P Scaffidi (51945_CR38) 2002; 418
MR Wozny (51945_CR40) 2023; 618
SL Topalian (51945_CR1) 2015; 27
RYC Hsu (51945_CR49) 2011; 71
WH Fridman (51945_CR3) 2012; 12
M Obeid (51945_CR44) 2007; 67
HX Wang (51945_CR22) 2017; 77
J Galon (51945_CR5) 2019; 18
E Dierge (51945_CR29) 2021; 33
JK Mandula (51945_CR31) 2022; 40
C Gebhardt (51945_CR70) 2006; 72
YP Ow (51945_CR34) 2008; 9
AG Porter (51945_CR36) 1999; 6
KA Fitzgerald (51945_CR47) 2020; 180
SE Weinberg (51945_CR15) 2015; 42
RB Corcoran (51945_CR54) 2020; 6
K Nakahira (51945_CR60) 2011; 12
E Borcoman (51945_CR2) 2019; 30
A Paggio (51945_CR25) 2019; 572
X Guo (51945_CR43) 2020; 579
S Lang (51945_CR35) 2017; 8
R Inagi (51945_CR42) 2014; 10
E Kolaczkowska (51945_CR69) 2013; 13
C Pfirschke (51945_CR13) 2016; 44
S Jaillon (51945_CR59) 2020; 20
AP West (51945_CR61) 2015; 520
51945_CR23
MR Elliott (51945_CR39) 2009; 461
J Albrengues (51945_CR51) 2018; 361
M Harel (51945_CR18) 2019; 179
M Efremova (51945_CR52) 2018; 9
S Rohrbach (51945_CR66) 2009; 15
K Yu (51945_CR17) 2023; 12
D Arnoult (51945_CR28) 2005; 15
L Cassetta (51945_CR58) 2020; 30
DV Krysko (51945_CR9) 2012; 12
JH Cha (51945_CR71) 2019; 76
M Tigano (51945_CR19) 2021; 591
MC Wei (51945_CR33) 2001; 292
LJ Sun (51945_CR48) 2021; 39
M Obeid (51945_CR11) 2007; 13
N Ron-Harel (51945_CR65) 2016; 24
S Sperandio (51945_CR30) 2000; 97
C Giorgi (51945_CR41) 2009; 41
VS LeBleu (51945_CR26) 2014; 16
AP West (51945_CR62) 2011; 472
JC Castle (51945_CR55) 2014; 15
G Kroemer (51945_CR10) 2013; 31
S Vyas (51945_CR14) 2016; 166
MA Giese (51945_CR68) 2019; 133
S Davidson (51945_CR57) 2021; 21
SM Jin (51945_CR7) 2023; 18
B Oresta (51945_CR12) 2021; 13
M Andreatta (51945_CR56) 2021; 12
References_xml – volume: 24
  start-page: 104
  year: 2016
  end-page: 117
  ident: CR65
  article-title: Mitochondrial biogenesis and proteome remodeling promote one-carbon metabolism for T cell activation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.007
– volume: 13
  start-page: eaba6110
  year: 2021
  ident: CR12
  article-title: Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aba6110
– volume: 97
  start-page: 14376
  year: 2000
  end-page: 14381
  ident: CR30
  article-title: An alternative, nonapoptotic form of programmed cell death
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.26.14376
– volume: 9
  start-page: 532
  year: 2008
  end-page: 542
  ident: CR34
  article-title: Cytochrome c: functions beyond respiration
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2434
– volume: 16
  start-page: 1125
  year: 2014
  end-page: 1125
  ident: CR26
  article-title: PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis (vol 16, pg 992, 2014)
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3056
– volume: 33
  start-page: 1701
  year: 2021
  end-page: 1715.e1705
  ident: CR29
  article-title: Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.05.016
– volume: 12
  year: 2021
  ident: CR56
  article-title: Interpretation of T cell states from single-cell transcriptomics data using reference atlases
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23324-4
– volume: 579
  start-page: 427
  year: 2020
  end-page: 432
  ident: CR43
  article-title: Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway
  publication-title: Nature
  doi: 10.1038/s41586-020-2078-2
– volume: 10
  start-page: 369
  year: 2014
  end-page: 378
  ident: CR42
  article-title: Proteostasis in endoplasmic reticulum-new mechanisms in kidney disease
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2014.67
– volume: 33
  start-page: 581
  year: 2018
  end-page: 598
  ident: CR6
  article-title: Emerging concepts for immune checkpoint blockade-based combination therapies
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.005
– ident: CR8
– volume: 179
  start-page: 236
  year: 2019
  end-page: 250.e218
  ident: CR18
  article-title: Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.012
– volume: 6
  start-page: 99
  year: 1999
  end-page: 104
  ident: CR36
  article-title: Emerging roles of caspase-3 in apoptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4400476
– volume: 472
  start-page: 476
  year: 2011
  end-page: U543
  ident: CR62
  article-title: TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
  publication-title: Nature
  doi: 10.1038/nature09973
– volume: 180
  start-page: 1044
  year: 2020
  end-page: 1066
  ident: CR47
  article-title: Toll-like receptors and the control of immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.041
– volume: 15
  start-page: 4103
  year: 2009
  end-page: 4116
  ident: CR66
  article-title: Effects of dietary polyunsaturated fatty acids on mitochondria
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209789909692
– volume: 133
  start-page: 2159
  year: 2019
  end-page: 2167
  ident: CR68
  article-title: Neutrophil plasticity in the tumor microenvironment
  publication-title: Blood
  doi: 10.1182/blood-2018-11-844548
– volume: 42
  start-page: 406
  year: 2015
  end-page: 417
  ident: CR15
  article-title: Mitochondria in the regulation of innate and adaptive immunity
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.002
– volume: 32
  start-page: 591
  year: 2020
  end-page: 604.e597
  ident: CR63
  article-title: Mitochondrial oxidative damage underlies regulatory T cell defects in autoimmunity
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.07.001
– volume: 520
  start-page: 553
  year: 2015
  end-page: 557
  ident: CR61
  article-title: Mitochondrial DNA stress primes the antiviral innate immune response
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 591
  start-page: 477
  year: 2021
  end-page: 481
  ident: CR19
  article-title: Nuclear sensing of breaks in mitochondrial DNA enhances immune surveillance
  publication-title: Nature
  doi: 10.1038/s41586-021-03269-w
– volume: 30
  start-page: 385
  year: 2019
  end-page: 396
  ident: CR2
  article-title: Novel patterns of response under immunotherapy
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz003
– volume: 123
  start-page: 321
  year: 2005
  end-page: 334
  ident: CR37
  article-title: Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.032
– volume: 418
  start-page: 191
  year: 2002
  end-page: 195
  ident: CR38
  article-title: Release of chromatin protein HMGB1 by necrotic cells triggers inflammation
  publication-title: Nature
  doi: 10.1038/nature00858
– volume: 423
  start-page: 456
  year: 2003
  end-page: 461
  ident: CR32
  article-title: Humanin peptide suppresses apoptosis by interfering with Bax activation
  publication-title: Nature
  doi: 10.1038/nature01627
– volume: 12
  start-page: 860
  year: 2012
  end-page: 875
  ident: CR9
  article-title: Immunogenic cell death and DAMPs in cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3380
– volume: 166
  start-page: 63
  year: 2016
  end-page: 76
  ident: CR64
  article-title: Mitochondrial dynamics controls T cell fate through metabolic programming
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.035
– volume: 21
  start-page: 704
  year: 2021
  end-page: 717
  ident: CR57
  article-title: Fibroblasts as immune regulators in infection, inflammation and cancer
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00540-z
– volume: 71
  start-page: 1989
  year: 2011
  end-page: 1998
  ident: CR49
  article-title: LPS-induced TLR4 signaling in human colorectal cancer cells increases β1 integrin-mediated cell adhesion and liver metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2833
– volume: 328
  start-page: 237
  year: 2020
  end-page: 250
  ident: CR24
  article-title: Target-oriented delivery of self-assembled immunosuppressant cocktails prolongs allogeneic orthotopic liver transplant survival
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.08.043
– volume: 14
  start-page: 193
  year: 2008
  end-page: 204
  ident: CR27
  article-title: Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.11.019
– volume: 25
  start-page: 4956
  year: 2015
  end-page: 4965
  ident: CR21
  article-title: Self-assembling prodrugs by precise programming of molecular structures that contribute distinct stability, pharmacokinetics, and antitumor efficacy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501953
– volume: 40
  start-page: 1145
  year: 2022
  end-page: 1160.e1149
  ident: CR31
  article-title: Ablation of the endoplasmic reticulum stress kinase PERK induces paraptosis and type I interferon to promote anti-tumor T cell responses
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.08.016
– volume: 37
  start-page: 443
  year: 2020
  end-page: 455
  ident: CR53
  article-title: Acquired resistance to immune checkpoint inhibitors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.03.017
– volume: 292
  start-page: 727
  year: 2001
  end-page: 730
  ident: CR33
  article-title: Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death
  publication-title: Science
  doi: 10.1126/science.1059108
– volume: 72
  start-page: 1622
  year: 2006
  end-page: 1631
  ident: CR70
  article-title: S100A8 and S100A9 in inflammation and cancer
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.05.017
– volume: 13
  start-page: 159
  year: 2013
  end-page: 175
  ident: CR69
  article-title: Neutrophil recruitment and function in health and inflammation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3399
– volume: 361
  year: 2018
  ident: CR51
  article-title: Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice
  publication-title: Science
  doi: 10.1126/science.aao4227
– volume: 461
  start-page: 282
  year: 2009
  end-page: U165
  ident: CR39
  article-title: Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance
  publication-title: Nature
  doi: 10.1038/nature08296
– volume: 39
  start-page: 1361
  year: 2021
  end-page: 1374
  ident: CR48
  article-title: Activating a collaborative innate-adaptive immune response to control metastasis
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2021.08.005
– volume: 572
  start-page: 609
  year: 2019
  end-page: 613
  ident: CR25
  article-title: Identification of an ATP-sensitive potassium channel in mitochondria
  publication-title: Nature
  doi: 10.1038/s41586-019-1498-3
– volume: 13
  start-page: 54
  year: 2007
  end-page: 61
  ident: CR11
  article-title: Calreticulin exposure dictates the immunogenicity of cancer cell death
  publication-title: Nat. Med.
  doi: 10.1038/nm1523
– volume: 67
  start-page: 7941
  year: 2007
  end-page: 7944
  ident: CR44
  article-title: Leveraging the immune system during chemotherapy: moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-1622
– volume: 31
  start-page: 51
  year: 2013
  end-page: 72
  ident: CR10
  article-title: Immunogenic cell death in cancer therapy
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-100008
– volume: 17
  start-page: 97
  year: 2017
  end-page: 111
  ident: CR67
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.107
– volume: 15
  start-page: 2112
  year: 2005
  end-page: 2118
  ident: CR28
  article-title: Bax/Bak-dependent release promotes of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.10.041
– volume: 77
  start-page: 6963
  year: 2017
  end-page: 6974
  ident: CR22
  article-title: New generation nanomedicines constructed from self-assembling small-molecule prodrugs alleviate cancer drug toxicity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0984
– volume: 618
  start-page: 188
  year: 2023
  end-page: 192
  ident: CR40
  article-title: In situ architecture of the ER-mitochondria encounter structure
  publication-title: Nature
  doi: 10.1038/s41586-023-06050-3
– volume: 6
  start-page: 823
  year: 2020
  end-page: 824
  ident: CR54
  article-title: Efficacy of immunotherapy in microsatellite-stable or mismatch repair proficient colorectal cancer-fact or fiction?
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.0504
– volume: 18
  start-page: 488
  year: 2017
  end-page: 498
  ident: CR16
  article-title: Mitochondria are the powerhouses of immunity
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3704
– volume: 31
  year: 2019
  ident: CR20
  article-title: Massively evoking immunogenic cell death by focused mitochondrial oxidative stress using an AIE luminogen with a twisted molecular structure
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904914
– volume: 12
  start-page: 298
  year: 2012
  end-page: 306
  ident: CR3
  article-title: The immune contexture in human tumours: impact on clinical outcome
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3245
– volume: 9
  year: 2018
  ident: CR52
  article-title: Targeting immune checkpoints potentiates immunoediting and changes the dynamics of tumor evolution
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02424-0
– ident: CR23
– volume: 20
  start-page: 485
  year: 2020
  end-page: 503
  ident: CR59
  article-title: Neutrophil diversity and plasticity in tumour progression and therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-020-0281-y
– volume: 75
  start-page: 2405
  year: 2015
  end-page: 2410
  ident: CR50
  article-title: The role of TLR4 in chemotherapy-driven metastasis
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3525
– volume: 18
  start-page: 390
  year: 2023
  end-page: 402
  ident: CR7
  article-title: A nanoadjuvant that dynamically coordinates innate immune stimuli activation enhances cancer immunotherapy and reduces immune cell exhaustion
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01296-w
– volume: 44
  start-page: 343
  year: 2016
  end-page: 354
  ident: CR13
  article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.024
– volume: 29
  start-page: 482
  year: 2010
  end-page: 491
  ident: CR46
  article-title: Immunogenic death of colon cancer cells treated with oxaliplatin
  publication-title: Oncogene
  doi: 10.1038/onc.2009.356
– volume: 18
  start-page: 197
  year: 2019
  end-page: 218
  ident: CR5
  article-title: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-018-0007-y
– volume: 30
  start-page: R246
  year: 2020
  end-page: R248
  ident: CR58
  article-title: Tumor-associated macrophages
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.01.031
– volume: 41
  start-page: 1817
  year: 2009
  end-page: 1827
  ident: CR41
  article-title: Structural and functional link between the mitochondrial network and the endoplasmic reticulum
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.04.010
– volume: 166
  start-page: 555
  year: 2016
  end-page: 566
  ident: CR14
  article-title: Mitochondria and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– volume: 348
  start-page: 74
  year: 2015
  end-page: 80
  ident: CR4
  article-title: T cell exclusion, immune privilege, and the tumor microenvironment
  publication-title: Science
  doi: 10.1126/science.aaa6204
– volume: 15
  year: 2014
  ident: CR55
  article-title: Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-15-190
– volume: 71
  start-page: 4821
  year: 2011
  end-page: 4833
  ident: CR45
  article-title: Human tumor cells killed by anthracyclines induce a tumor-specific immune response
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-0950
– volume: 12
  year: 2023
  ident: CR17
  article-title: A mitochondria-targeted NIR-II AIEgen induced pyroptosis for enhanced tumor immunotherapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202301693
– volume: 76
  start-page: 359
  year: 2019
  end-page: 370
  ident: CR71
  article-title: Mechanisms controlling PD-L1 expression in cancer
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.030
– volume: 27
  start-page: 450
  year: 2015
  end-page: 461
  ident: CR1
  article-title: Immune checkpoint blockade: a common denominator approach to cancer therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 12
  start-page: 222
  year: 2011
  end-page: 230
  ident: CR60
  article-title: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1980
– volume: 8
  start-page: 887
  year: 2017
  ident: CR35
  article-title: An update on Sec61 channel functions, mechanisms, and related diseases
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00887
– volume: 39
  start-page: 1361
  year: 2021
  ident: 51945_CR48
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2021.08.005
– volume: 76
  start-page: 359
  year: 2019
  ident: 51945_CR71
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.09.030
– volume: 292
  start-page: 727
  year: 2001
  ident: 51945_CR33
  publication-title: Science
  doi: 10.1126/science.1059108
– volume: 133
  start-page: 2159
  year: 2019
  ident: 51945_CR68
  publication-title: Blood
  doi: 10.1182/blood-2018-11-844548
– volume: 32
  start-page: 591
  year: 2020
  ident: 51945_CR63
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.07.001
– volume: 361
  year: 2018
  ident: 51945_CR51
  publication-title: Science
  doi: 10.1126/science.aao4227
– volume: 44
  start-page: 343
  year: 2016
  ident: 51945_CR13
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.024
– volume: 21
  start-page: 704
  year: 2021
  ident: 51945_CR57
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-021-00540-z
– volume: 42
  start-page: 406
  year: 2015
  ident: 51945_CR15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.002
– volume: 30
  start-page: R246
  year: 2020
  ident: 51945_CR58
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.01.031
– volume: 77
  start-page: 6963
  year: 2017
  ident: 51945_CR22
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0984
– volume: 18
  start-page: 390
  year: 2023
  ident: 51945_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01296-w
– volume: 179
  start-page: 236
  year: 2019
  ident: 51945_CR18
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.012
– volume: 461
  start-page: 282
  year: 2009
  ident: 51945_CR39
  publication-title: Nature
  doi: 10.1038/nature08296
– volume: 13
  start-page: 54
  year: 2007
  ident: 51945_CR11
  publication-title: Nat. Med.
  doi: 10.1038/nm1523
– volume: 17
  start-page: 97
  year: 2017
  ident: 51945_CR67
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.107
– volume: 6
  start-page: 823
  year: 2020
  ident: 51945_CR54
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.0504
– volume: 31
  year: 2019
  ident: 51945_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904914
– volume: 123
  start-page: 321
  year: 2005
  ident: 51945_CR37
  publication-title: Cell
  doi: 10.1016/j.cell.2005.08.032
– volume: 572
  start-page: 609
  year: 2019
  ident: 51945_CR25
  publication-title: Nature
  doi: 10.1038/s41586-019-1498-3
– volume: 13
  start-page: eaba6110
  year: 2021
  ident: 51945_CR12
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aba6110
– volume: 579
  start-page: 427
  year: 2020
  ident: 51945_CR43
  publication-title: Nature
  doi: 10.1038/s41586-020-2078-2
– volume: 67
  start-page: 7941
  year: 2007
  ident: 51945_CR44
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-1622
– volume: 14
  start-page: 193
  year: 2008
  ident: 51945_CR27
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2007.11.019
– volume: 180
  start-page: 1044
  year: 2020
  ident: 51945_CR47
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.041
– volume: 13
  start-page: 159
  year: 2013
  ident: 51945_CR69
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3399
– volume: 520
  start-page: 553
  year: 2015
  ident: 51945_CR61
  publication-title: Nature
  doi: 10.1038/nature14156
– volume: 12
  year: 2023
  ident: 51945_CR17
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202301693
– volume: 472
  start-page: 476
  year: 2011
  ident: 51945_CR62
  publication-title: Nature
  doi: 10.1038/nature09973
– volume: 29
  start-page: 482
  year: 2010
  ident: 51945_CR46
  publication-title: Oncogene
  doi: 10.1038/onc.2009.356
– volume: 27
  start-page: 450
  year: 2015
  ident: 51945_CR1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.03.001
– volume: 423
  start-page: 456
  year: 2003
  ident: 51945_CR32
  publication-title: Nature
  doi: 10.1038/nature01627
– volume: 618
  start-page: 188
  year: 2023
  ident: 51945_CR40
  publication-title: Nature
  doi: 10.1038/s41586-023-06050-3
– volume: 12
  start-page: 298
  year: 2012
  ident: 51945_CR3
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3245
– volume: 75
  start-page: 2405
  year: 2015
  ident: 51945_CR50
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-3525
– volume: 9
  year: 2018
  ident: 51945_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02424-0
– volume: 16
  start-page: 1125
  year: 2014
  ident: 51945_CR26
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3056
– volume: 12
  start-page: 222
  year: 2011
  ident: 51945_CR60
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1980
– volume: 31
  start-page: 51
  year: 2013
  ident: 51945_CR10
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-032712-100008
– volume: 20
  start-page: 485
  year: 2020
  ident: 51945_CR59
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-020-0281-y
– volume: 591
  start-page: 477
  year: 2021
  ident: 51945_CR19
  publication-title: Nature
  doi: 10.1038/s41586-021-03269-w
– volume: 41
  start-page: 1817
  year: 2009
  ident: 51945_CR41
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2009.04.010
– volume: 72
  start-page: 1622
  year: 2006
  ident: 51945_CR70
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2006.05.017
– volume: 166
  start-page: 63
  year: 2016
  ident: 51945_CR64
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.035
– volume: 12
  year: 2021
  ident: 51945_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23324-4
– volume: 8
  start-page: 887
  year: 2017
  ident: 51945_CR35
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00887
– volume: 15
  start-page: 2112
  year: 2005
  ident: 51945_CR28
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2005.10.041
– volume: 6
  start-page: 99
  year: 1999
  ident: 51945_CR36
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4400476
– volume: 18
  start-page: 197
  year: 2019
  ident: 51945_CR5
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-018-0007-y
– volume: 71
  start-page: 4821
  year: 2011
  ident: 51945_CR45
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-0950
– volume: 348
  start-page: 74
  year: 2015
  ident: 51945_CR4
  publication-title: Science
  doi: 10.1126/science.aaa6204
– volume: 18
  start-page: 488
  year: 2017
  ident: 51945_CR16
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3704
– volume: 15
  start-page: 4103
  year: 2009
  ident: 51945_CR66
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/138161209789909692
– volume: 71
  start-page: 1989
  year: 2011
  ident: 51945_CR49
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2833
– volume: 33
  start-page: 1701
  year: 2021
  ident: 51945_CR29
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2021.05.016
– volume: 33
  start-page: 581
  year: 2018
  ident: 51945_CR6
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.005
– ident: 51945_CR23
  doi: 10.1016/j.nantod.2020.101030
– volume: 24
  start-page: 104
  year: 2016
  ident: 51945_CR65
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.007
– volume: 25
  start-page: 4956
  year: 2015
  ident: 51945_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501953
– volume: 418
  start-page: 191
  year: 2002
  ident: 51945_CR38
  publication-title: Nature
  doi: 10.1038/nature00858
– volume: 15
  year: 2014
  ident: 51945_CR55
  publication-title: BMC Genom.
  doi: 10.1186/1471-2164-15-190
– volume: 97
  start-page: 14376
  year: 2000
  ident: 51945_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.97.26.14376
– volume: 9
  start-page: 532
  year: 2008
  ident: 51945_CR34
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2434
– volume: 37
  start-page: 443
  year: 2020
  ident: 51945_CR53
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.03.017
– volume: 166
  start-page: 555
  year: 2016
  ident: 51945_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2016.07.002
– ident: 51945_CR8
  doi: 10.1158/0008-5472.CAN-23-3511
– volume: 328
  start-page: 237
  year: 2020
  ident: 51945_CR24
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.08.043
– volume: 12
  start-page: 860
  year: 2012
  ident: 51945_CR9
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3380
– volume: 40
  start-page: 1145
  year: 2022
  ident: 51945_CR31
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2022.08.016
– volume: 10
  start-page: 369
  year: 2014
  ident: 51945_CR42
  publication-title: Nat. Rev. Nephrol.
  doi: 10.1038/nrneph.2014.67
– volume: 30
  start-page: 385
  year: 2019
  ident: 51945_CR2
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdz003
SSID ssj0000391844
Score 2.4823117
Snippet The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint blockade...
Abstract The immunosuppressive tumor microenvironment (TME) remains a major obstacle to tumor control and causes suboptimal responses to immune checkpoint...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7664
SubjectTerms 631/154/152
631/67/1059/153
631/67/1059/2325
639/166/985
692/4028/67/1059
Animal models
Animals
Antitumor activity
Apoptosis
Apoptosis - drug effects
Cancer therapies
Cancer vaccines
Cancer Vaccines - administration & dosage
Cancer Vaccines - immunology
Cell culture
Cell death
Cell Line, Tumor
Cytotoxicity
Drug development
Endoplasmic reticulum
Endoplasmic Reticulum Stress - drug effects
Endoplasmic Reticulum Stress - immunology
Female
Humanities and Social Sciences
Humans
Immune checkpoint inhibitors
Immune Checkpoint Inhibitors - pharmacology
Immune response
Immunity
Immunity (Disease)
Immunogenic Cell Death - drug effects
Immunogenicity
Immunosuppression
Immunosuppressive agents
Immunotherapy - methods
Innate immunity
Mice
Mice, Inbred C57BL
Mitochondria
Mitochondria - drug effects
Mitochondria - metabolism
multidisciplinary
Nanoparticles - chemistry
Neoplasms - drug therapy
Neoplasms - immunology
Organelles
PD-1 protein
Science
Science (multidisciplinary)
Self-assembly
Therapy
Tumor cells
Tumor microenvironment
Tumor Microenvironment - drug effects
Tumor Microenvironment - immunology
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejMNhlbOs-vHVDg902UduSLPm4lZZS6E4r9CYkS1oDiVPshJH_fu9JTtbs87JbiJUg3ufv-Um_R8i7zsXKt7VkpdcNEy4q5jrpWB0V0t1E32i84Hz5uTm_EhfX8vrOqC88E5bpgbPgjjtdOtvEVuMZON9W1rlKe3BhF6NuQ2IvhZx3p5hKMZi3ULqI6ZZMyfXxKFJMgJTEALQIyTZ7mSgR9v8OZf56WPKnjmlKRGePyMMJQdKPeeePyb3QPyH380zJzSGxl-CjENN6j6ZFh_Bthv9D8YUrHRd2PmeLPBI3UD-sv7I4hEB72y8BRoeFA0w60nU_D3a8gU8geAyUXRjoLF0lWW2ekquz0y8n52yao8A6KaoVs53HKsd7Z5UvS9d4UAFiJe8heztZ26rsWmW1dDZwLzjWEMrVHFUVrebPyEG_7MMLQnUdAB_qhnPhhFMeoqOCEgUUy7XovChItZWp6SaScZx1MTep2c21yXowoAeT9GA2BXm_-81tptj46-pPqKrdSqTHTl-A0ZjJaMy_jKYgR1tFm8lnR4OtDi4VlEwFebt7DN6GLRTbh-U6rwHECVGsIM-zXex2AkgTufRVQfSexextdf9JP7tJjN5VhcOCpC7Ih61x_djXn2Xx8n_I4hV5UKNXYJOMH5GD1bAOrwFordyb5FPfAb3zJvU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZtSqGXkvQVt2lxobdWxLYkSz6FtiSEQnpqYG9CLycLu3Zq7xL232dG9jpsH7kZWzay5qFPM9I3hHxyts59VQiaeVVSbmtJrROWFrVEupvalwoPOF_8LM8v-Y-ZmI0Bt37cVrn1idFR-9ZhjPwYA9FMSAC0Jze_KVaNwuzqWELjMXmC1GW4pUvO5BRjQfZzxfl4ViZj6rjn0TPAxEQBunBBNzvzUaTt_xfW_HvL5B950zgdne2T5yOOTL8Ogj8gj0LzgjwdKktuXhJzAZYKnq3xqGBpF27n-J0Uw65pvzSLBV0OhXFD6rv1Fa27ENLGNC2A6bC0gEz7dN0sgumv4QqGH92lC106jwdKVptX5PLs9Nf3czpWU6BO8HxFjfO41vHeGumzzJYeBIGIyXuYw60oTJ65SholrAnMc4YrCWkLhgKrjWKvyV7TNuGQpKoIgBJVyRi33EoPPlLCQgXEyxR3nick346pdiPVOFa8WOiY8mZKD3LQIAcd5aA3Cfk8vXMzEG082PobimpqiSTZ8UbbXenR5rRTmTVlXSncPumr3FibKw_e39a1qoJIyNFW0Hq03F7f61lCPk6PweYwkWKa0K6HNoA7wZcl5M2gF1NPAG8io75MiNrRmJ2u7j5p5teR1zvPsWSQUAn5slWu-379fyzePvwb78izAvUdk2DsiOytunV4D0BqZT9Ea7kDqUwd0A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRV802DbJE36qIvHIZxPHtxbSJr0bmG3e7S7yP73zqQfsnoKvpV2UkLmI79kkt8AvKtdk_uqkCzzumTCNYq5WjpWNIrobhpfarrgfP6tPLsQXy_l5REU012YeGg_UlrGMD2dDvvYi-jSOKMwxBxCsv0duEvU7WTVi3Ix76sQ47kWYrwfk3F9S9ODOShS9d-GL_88JvlbrjROQacP4cGIHdNPQ28fwVFoH8O9oZrk_gnYc_ROjGatJ6NKu_BjSf9Jaas17dd2tWLroRhuSH23u2JNF0La2naDADqsHaLRPt21q2D7a3zCIacQWYcuXcZLJNv9U7g4_fJ9ccbGCgqsliLfMlt7Wt9476zyWeZKj4NPKMl7nLedLGye1ZWyWjobuBecVg_KFZyU1FjNn8Fxu2nDC0h1ERAZ6pJz4YRTHuOiwsUJqpRrUXuRQD6NqalHenGqcrEyMc3NtRn0YFAPJurB7BN4P7e5Gcg1_in9mVQ1SxIxdnyx6a7MaCim1pmzZVNpOjLpq9w6l2uPEd81ja6CTOBkUrQZvbU3lOTgUuFiKYG382f0M0qe2DZsdoMMYk2MXwk8H-xi7gliTGLRVwnoA4s56Orhl3Z5Hbm885zKBEmdwIfJuH716-9j8fL_xF_B_YLsnxJh_ASOt90uvEYwtXVvovf8BDGmHD4
  priority: 102
  providerName: Springer Nature
Title Mitochondrial rewiring with small-molecule drug-free nanoassemblies unleashes anticancer immunity
URI https://link.springer.com/article/10.1038/s41467-024-51945-y
https://www.ncbi.nlm.nih.gov/pubmed/39227567
https://www.proquest.com/docview/3100357049
https://www.proquest.com/docview/3100561179
https://pubmed.ncbi.nlm.nih.gov/PMC11372058
https://doaj.org/article/c80ba6f980094d91abb18d762bff89e5
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dj5NAEJ_cR0x8MX6Lng0mvukqsAu7PBjTa65emvRi1CZ9I7vsctekpUrbKP-9M0BrqtX4AgQWsuxvZuc3DDsD8DI3RWjTKGaBVQkTppDM5LFhUSEp3U1hE0ULnMdXyeVEjKbx9Ai25Y66AVwddO2ontSkmr_58a1-jwr_rl0yrt6uRKPuaG0Y8hERs_oYTtEySVLUcUf3m5mZp-jQUKA5CkTI0Hbzbh3N4cfs2aompf8hHvrn75S_xVQbUzW8C3c6jun3W6G4B0euvA-32qqT9QPQY9RifPHSkvD5lfs-o-f49EnWXy30fM4WbdFc59tqc82Kyjm_1OUSibZbGGStK39Tzp1e3eARQkNTae4qf9YsNlnXD2EyvPgyuGRdpQWWxyJcM51b8oOsNVraIDCJRZCITVmL9t3EkQ6DPJVaxUY7bgUnL0OaiBOYhVb8EZyUy9I9AV9FDhmkSjgXRhhpcf6U6MQg9FyJ3AoPwu2YZnmXhpyqYcyzJhzOVdbikCEOWYNDVnvwanfP1zYJxz9bnxNUu5aUQLs5sayus04fs1wFRidFqujXSpuG2phQWbQMpihU6mIPzrZAZ1uhzCgYwmOJTpUHL3aXUR8pyKJLt9y0bZCT4jznweNWLnY9QS5K2falB2pPYva6un-lnN00Ob_DkMoJxcqD11vh-tWvv4_F0__o5zO4HZHQU5SMn8HJutq458i01qYHx3IqcauGH3pw2u-PPo9wf35x9fETnh0kg17zDaPXqNlPm6Ar7g
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCawmsRN7Dwjxqra021Mr7c3YsdOutJstya6q_VP8Rmby2Gp59NZblHijWc83M1889gzAm9wWsRskKYucypiwhWQ2Ty1LCknlbgqXKTrgPDrKhifi-zgdb8Gv_iwMbavsfWLjqN08pzXyXVqI5qlEQvvx_CejrlGUXe1baLSwOPCrC_xkqz_sf0X9vk2SvW_HX4as6yrA8lTEC2ZyR5zfOWukiyKbORSImINzGMtsmpg4ygfSqNQaz53gxKilTTgJXhjF8b034CYG3ogsSo7lek2Hqq0rIbqzORFXu7VoPBEGQoZUSaRstRH_mjYB_-K2f2_R_CNP24S_vXtwt-Ot4acWaPdhy5cP4FbbyXL1EMwIPQN60tIRoMPKX0zoPSEt84b1zEynbNY24vWhq5anrKi8D0tTzpG8-5lFJlyHy3LqTX2GV6hucs-5r8JJc4BlsXoEJ9cyz49hu5yX_imEKvHISlXGubDCSoc-WeKHEcKJK5E7EUDcz6nOu9Lm1GFjqpsUO1e61YNGPehGD3oVwLv1b87bwh5Xjv5MqlqPpKLczY15dao7G9e5iqzJioGi7ZpuEBtrY-Uw2tiiUAOfBrDTK1p3nqLWl7gO4PX6Mdo4JW5M6efLdgzyXPSdATxpcbGWBPktVfCXAagNxGyIuvmknJw1dcTjmFoUpSqA9z24LuX6_1w8u_pvvILbw-PRoT7cPzp4DncSwj4l4PgObC-qpX-BJG5hXzaWE8KP6zbV3_MxW28
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaxNYjv2HhACyqqltOJApb0FO3balXazJdlVtX-NX8dMHlstj956ixIncjzfzHz22DMAr3JbxG6YSBY5nTJhC8VsLi1LCkXpbgqXajrgfHiU7h2LL2M53oJf_VkY2lbZ28TGULt5TmvkA1qI5lIhoR0U3baIb7uj92c_GVWQokhrX06jhciBX53j9K1-t7-Lsn6dJKPP3z_tsa7CAMuliBfM5I74v3PWKBdFNnXYOWIRzqFfszIxcZQPldHSGs-d4MSulU04_URhNMfvXoPrisuYdEyN1Xp9hzKvayG6czoR14NaNFYJnSJD2iQkW234wqZkwL947t_bNf-I2TaucHQHbnccNvzQgu4ubPnyHtxoq1qu7oM5RCuBVrV0BO6w8ucT-k5IS75hPTPTKZu1RXl96KrlCSsq78PSlHMk8n5mkRXX4bKcelOf4hWKnkx17qtw0hxmWawewPGVjPND2C7npX8MoU48MlSdci6ssMqhfVY4SUJocS1yJwKI-zHN8i7NOVXbmGZNuJ3rrJVDhnLIGjlkqwDerN85a5N8XNr6I4lq3ZISdDc35tVJ1ul7luvImrQYatq66YaxsTbWDj2PLQo99DKAnV7QWWc16uwC4wG8XD9Gfacgjin9fNm2Qc6LdjSARy0u1j1BrkvZ_FUAegMxG13dfFJOTpuc4nFM5YqkDuBtD66Lfv1_LJ5c_hsv4CYqafZ1_-jgKdxKCPoUi-M7sL2olv4Z8rmFfd4oTgg_rlpTfwMQAF-l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondrial+rewiring+with+small-molecule+drug-free+nanoassemblies+unleashes+anticancer+immunity&rft.jtitle=Nature+communications&rft.au=Ren%2C+Lulu&rft.au=Wan%2C+Jianqin&rft.au=Li%2C+Xiaoyan&rft.au=Yao%2C+Jie&rft.date=2024-09-03&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=7664&rft_id=info:doi/10.1038%2Fs41467-024-51945-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon