Synergistic activity of Limosilactobacillus reuteri KUB-AC5 and water-based plants against Salmonella challenge in a human in vitro gut model
A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mou...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 4730 - 12 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.02.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of
L. reuteri
KUB-AC5 against
Salmonella
infection in chicken and mouse models. The probiotic activity of
L. reuteri
KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (
Ulva rigida
,
Caulerpa lentillifera
,
Wolffia globosa
, and
Gracillaria fisheri
) were screened for their ability to support the growth of
L. reuteri
KUB-AC5. Under monoculture testing,
U. rigida
exhibited the highest capacity to support the growth of
L. reuteri
KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (
p
≤ 0.05). In co-culture experiments, the synbiotic combination of
U. rigida
and
L. reuteri
KUB-AC5 demonstrated the potential to eliminate
Salmonella
Typhimurium DMST 48437 when inoculated at 10
4
CFU/mL within 9 h. The synbiotic activities of
U. rigida
and
L. reuteri
KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of
L. reuteri
KUB-AC5 and
U. rigida
showed significantly higher levels of
L. reuteri
KUB-AC5 (5.1 log copies/mL) and a reduction of
S
. Typhimurium by 0.8 log (CFU/ml) after 24 h (
p
≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (
p
≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli,
Faecalibacterium
, and
Blautia
. Our findings demonstrated that
L
.
reuteri
KUB-AC5, in combination with
U
.
rigida
, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward
Salmonella
, and the ability to modulate the gut microbiome. |
---|---|
AbstractList | A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 104 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome.A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 104 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome. A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants ( Ulva rigida , Caulerpa lentillifera , Wolffia globosa , and Gracillaria fisheri ) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid ( p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 10 4 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S . Typhimurium by 0.8 log (CFU/ml) after 24 h ( p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone ( p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium , and Blautia . Our findings demonstrated that L . reuteri KUB-AC5, in combination with U . rigida , exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella , and the ability to modulate the gut microbiome. A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 104 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome. Abstract A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 104 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome. A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 10 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome. |
ArticleNumber | 4730 |
Author | Nitisinprasert, Sunee Honwichit, Orranich Charoensiddhi, Suvimol Mok, Kevin Nielsen, Dennis Sandris Funnuam, Thanyakan Nakphaichit, Massalin |
Author_xml | – sequence: 1 givenname: Kevin surname: Mok fullname: Mok, Kevin organization: Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University – sequence: 2 givenname: Orranich surname: Honwichit fullname: Honwichit, Orranich organization: Department of Food Science and Technology, Faculty of Agro‑Industry, Kasetsart University – sequence: 3 givenname: Thanyakan surname: Funnuam fullname: Funnuam, Thanyakan organization: Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University – sequence: 4 givenname: Suvimol surname: Charoensiddhi fullname: Charoensiddhi, Suvimol organization: Department of Food Science and Technology, Faculty of Agro‑Industry, Kasetsart University – sequence: 5 givenname: Sunee surname: Nitisinprasert fullname: Nitisinprasert, Sunee organization: Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University – sequence: 6 givenname: Dennis Sandris surname: Nielsen fullname: Nielsen, Dennis Sandris email: dn@food.ku.dk organization: Department of Food Science, University of Copenhagen – sequence: 7 givenname: Massalin surname: Nakphaichit fullname: Nakphaichit, Massalin email: fagimln@ku.ac.th organization: Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Specialized Research Unit: Probiotics and Prebiotics for Health, Faculty of Agro-Industry, Kasetsart University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38413615$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us1u1DAYjFARLaUvwAFZ4sIlEDt26pxQWfFTsRKH0rP1xXayXjn2YjtF-xC8M86mhbaHRpZifZkZjyfzsjhy3umieI2r97iq-YdIMWt5WRFasrrFpGTPihNSUVaSmpCje_vj4izGbZUfRlqK2xfFcc0prhvMToo_V3unw2BiMhKBTObGpD3yPVqb0Udj88h3II21U0RBT0kHg75ffyovVgyBU-g35FHZQdQK7Sy4FBEMYFxM6ArsmE1bC0huwFrtBo2MQ4A20whu3ubTgkfDlNDolbaviuc92KjPbt-nxfWXzz9X38r1j6-Xq4t1KRnFqYS2oQwkZ5o00FMpO1w1jWypllTyJsfR404xSmjPzyWlqtIZTRtGuybHdl6fFpeLrvKwFbtgRgh74cGIw8CHQUDIiVgtNM3X57hXUneUasWVymcr0nVdrQghWevjorWbulFnmEsB7APRh1-c2YjB3whc8bZlHGeFd7cKwf-adExiNFHOuTntpyhIW-fFW15n6NtH0K2fgstZHVA1qZp2Rr25b-mfl7vfngF8AcjgYwy6F9IkSMbPDo3N1sRcMrGUTOSSiUPJxEwlj6h36k-S6oUUMzi3IPy3_QTrL-sd5lY |
CitedBy_id | crossref_primary_10_1016_j_foodchem_2025_143437 |
Cites_doi | 10.3389/fmicb.2021.716761 10.1016/j.vetmic.2019.02.003 10.3382/ps.2011-01637 10.3382/ps/pez549 10.1016/j.jff.2022.105204 10.1186/gb-2011-12-6-r60 10.1186/s40104-021-00601-2 10.1089/fpd.2014.1802 10.3748/wjg.v19.i22.3404 10.3390/biology11020294 10.1186/s13099-017-0162-4 10.1002/imt2.5 10.3109/08910609609166467 10.1016/j.crfs.2021.04.006 10.3390/jof7090748 10.3390/nu11040818 10.3920/BM2018.0034 10.1016/j.foodres.2018.11.010 10.3389/fimmu.2019.00277 10.1016/0168-1605(85)90057-1 10.1038/s41598-022-17891-9 10.3390/molecules26226802 10.3389/fendo.2020.00025 10.3390/foods7100167 10.1016/j.tifs.2017.10.002 10.1093/bioinformatics/btx012 10.1146/annurev-food-022510-133739 10.4315/jfp-21-003 10.14456/apst.2022.30 10.7717/peerj.4268 10.1016/j.jff.2021.104597 10.1038/s41575-020-0344-2 10.1038/nrgastro.2016.165 10.1016/j.genrep.2019.100536 10.4315/0362-028X-69.7.1653 10.1038/nrgastro.2017.75 10.1016/s1473-3099(21)00615-0 10.1039/C3FO60702J 10.3390/md19070358 10.1093/bioinformatics/btq461 10.1016/bs.afnr.2019.10.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-53912-5 |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_e4bac81fdceb44ed8dd45ad2bbb3d222 PMC10899581 38413615 10_1038_s41598_024_53912_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The Office of the Ministry of Higher Education, Science, Research and Innovation – fundername: Kasetsart University through the Graduate School Fellowship Program – fundername: The Thailand Science Research and Innovation through the Kasetsart University Reinventing University Program 2021 – fundername: Agro-Industrial Scholarship for International Students, Kasetsart University |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-a9645ac85e26af4ccb1066c94ec4c86391f1bd5424f87c44d0eac84654b641573 |
IEDL.DBID | DOA |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:18 EDT 2025 Thu Aug 21 18:35:00 EDT 2025 Fri Jul 11 06:26:22 EDT 2025 Wed Aug 13 05:10:26 EDT 2025 Mon Jul 21 05:52:45 EDT 2025 Tue Jul 01 00:51:29 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 21 02:38:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-a9645ac85e26af4ccb1066c94ec4c86391f1bd5424f87c44d0eac84654b641573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/e4bac81fdceb44ed8dd45ad2bbb3d222 |
PMID | 38413615 |
PQID | 2932320693 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e4bac81fdceb44ed8dd45ad2bbb3d222 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10899581 proquest_miscellaneous_2932938983 proquest_journals_2932320693 pubmed_primary_38413615 crossref_citationtrail_10_1038_s41598_024_53912_5 crossref_primary_10_1038_s41598_024_53912_5 springer_journals_10_1038_s41598_024_53912_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-27 |
PublicationDateYYYYMMDD | 2024-02-27 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Swanson (CR18) 2020; 17 Kim (CR40) 2006; 69 Wiese (CR37) 2018; 6 Edgar (CR39) 2010; 26 Charoensiddhi (CR12) 2022; 96 Reuter (CR22) 1985; 2 Guan, Yu, Feng (CR23) 2021; 26 Segata (CR42) 2011; 12 Marchello, Birkhold, Crump (CR2) 2022; 22 Jatuponwiphat (CR9) 2019; 17 Nakphaichit (CR8) 2019; 10 Charoensiddhi, Conlon, Franco, Zhang (CR13) 2017; 70 Kumari, Ahuja, Paul (CR25) 2013; 19 CR32 Namrak (CR33) 2022; 11 CR31 Charoensiddhi, Abraham, Su, Zhang (CR14) 2020; 91 Buddhasiri (CR6) 2022; 27 Nair, Venkitanarayanan, Kollanoor Johny (CR4) 2018; 7 Diotallevi (CR17) 2021; 84 Mok (CR41) 2021; 7 Akil, Ahmad, Reddy (CR1) 2014; 11 Kolida, Gibson (CR21) 2011; 2 Basu (CR44) 2017; 33 Sobanbua (CR10) 2020; 16 Naissinger da Silva, Tagliapietra, Flores, Pereira dos Santos Richards (CR35) 2021; 4 Siigur (CR30) 2009; 9 Minekus (CR34) 2014; 5 Chonsin (CR3) 2021; 84 Silva, Bernardi, Frozza (CR28) 2020 Sobanbua, Dolkittikul, Nakphaichit, Keawsompong, Nitisinprasert (CR24) 2019; 99 Campana, van Hemert, Baffone (CR36) 2017; 9 Bianchi (CR19) 2019; 120 Gonçalves, Simões, Costa, Passos, Baptista (CR16) 2022; 12 Buddhasiri (CR5) 2021; 12 Nakphaichit (CR7) 2011; 90 O'Keefe (CR27) 2016; 13 Shinde (CR20) 2019; 11 He (CR29) 2019; 230 Chen, Liu, Huang (CR43) 2022; 1 Gibson (CR11) 2017; 14 Parada Venegas (CR26) 2019 Hui (CR38) 2021; 12 Shannon, Conlon, Hayes (CR15) 2021; 19 L Akil (53912_CR1) 2014; 11 G Reuter (53912_CR22) 1985; 2 53912_CR32 53912_CR31 M Nakphaichit (53912_CR8) 2019; 10 N Segata (53912_CR42) 2011; 12 GR Gibson (53912_CR11) 2017; 14 T He (53912_CR29) 2019; 230 T Jatuponwiphat (53912_CR9) 2019; 17 F Bianchi (53912_CR19) 2019; 120 D Parada Venegas (53912_CR26) 2019 M Minekus (53912_CR34) 2014; 5 DVT Nair (53912_CR4) 2018; 7 KS Swanson (53912_CR18) 2020; 17 CS Marchello (53912_CR2) 2022; 22 M Nakphaichit (53912_CR7) 2011; 90 RC Edgar (53912_CR39) 2010; 26 S Sobanbua (53912_CR24) 2019; 99 R Campana (53912_CR36) 2017; 9 SJD O'Keefe (53912_CR27) 2016; 13 S Kolida (53912_CR21) 2011; 2 T Namrak (53912_CR33) 2022; 11 K Chonsin (53912_CR3) 2021; 84 S Charoensiddhi (53912_CR12) 2022; 96 S Buddhasiri (53912_CR6) 2022; 27 R Kumari (53912_CR25) 2013; 19 U Siigur (53912_CR30) 2009; 9 E Shannon (53912_CR15) 2021; 19 M Wiese (53912_CR37) 2018; 6 ZW Guan (53912_CR23) 2021; 26 T Shinde (53912_CR20) 2019; 11 YP Silva (53912_CR28) 2020 Y Hui (53912_CR38) 2021; 12 K Mok (53912_CR41) 2021; 7 S Charoensiddhi (53912_CR14) 2020; 91 AT Gonçalves (53912_CR16) 2022; 12 T Chen (53912_CR43) 2022; 1 S Buddhasiri (53912_CR5) 2021; 12 S Charoensiddhi (53912_CR13) 2017; 70 HJ Kim (53912_CR40) 2006; 69 S Sobanbua (53912_CR10) 2020; 16 C Diotallevi (53912_CR17) 2021; 84 M Naissinger da Silva (53912_CR35) 2021; 4 S Basu (53912_CR44) 2017; 33 |
References_xml | – volume: 12 start-page: 716761 year: 2021 ident: CR5 article-title: Anti-inflammatory effect of probiotic KUB-AC5 against infection in a mouse colitis model publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.716761 – volume: 230 start-page: 187 year: 2019 end-page: 194 ident: CR29 article-title: L531 reduces pathogen load and helps maintain short-chain fatty acid levels in the intestines of pigs challenged with Infantis publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2019.02.003 – volume: 90 start-page: 2753 year: 2011 end-page: 2765 ident: CR7 article-title: The effect of including KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens publication-title: Poult. Sci. doi: 10.3382/ps.2011-01637 – volume: 99 start-page: 526 year: 2019 ident: CR24 article-title: Antimicrobial peptide presenting potential strain-specific real time polymerase chain reaction assay for detecting the probiotic KUB-AC5 in chicken intestine publication-title: Poult. Sci. doi: 10.3382/ps/pez549 – volume: 96 year: 2022 ident: CR12 article-title: Gut microbiome modulation and gastrointestinal digestibility in vitro of polysaccharide-enriched extracts and seaweeds from and publication-title: J. Funct. Foods doi: 10.1016/j.jff.2022.105204 – volume: 12 start-page: R60 year: 2011 ident: CR42 article-title: Metagenomic biomarker discovery and explanation publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – volume: 12 start-page: 85 year: 2021 ident: CR38 article-title: Supplementation of a lacto-fermented rapeseed-seaweed blend promotes gut microbial- and gut immune-modulation in weaner piglets publication-title: J. Anim. Sci. Biotechnol. doi: 10.1186/s40104-021-00601-2 – volume: 11 start-page: 974 year: 2014 end-page: 980 ident: CR1 article-title: Effects of climate change on infections publication-title: Foodborne Pathog. Dis. doi: 10.1089/fpd.2014.1802 – volume: 19 start-page: 3404 year: 2013 end-page: 3414 ident: CR25 article-title: Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v19.i22.3404 – volume: 11 start-page: 294 year: 2022 ident: CR33 article-title: Probing genome-scale model reveals metabolic capability and essential nutrients for growth of probiotic KUB-AC5 publication-title: Biology doi: 10.3390/biology11020294 – volume: 9 start-page: 12 year: 2017 ident: CR36 article-title: Strain-specific probiotic properties of lactic acid bacteria and their interference with human intestinal pathogens invasion publication-title: Gut Pathog. doi: 10.1186/s13099-017-0162-4 – volume: 1 start-page: e5 year: 2022 ident: CR43 article-title: ImageGP: An easy-to-use data visualization web server for scientific researchers publication-title: iMeta doi: 10.1002/imt2.5 – volume: 9 start-page: 271 year: 2009 end-page: 277 ident: CR30 article-title: Effect of bacterial infection and administration of a probiotic on faecal short-chain fatty acids publication-title: Microb. Ecol. Health Dis. doi: 10.3109/08910609609166467 – volume: 4 start-page: 320 year: 2021 end-page: 325 ident: CR35 article-title: In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics publication-title: Current Res. Food Sci. doi: 10.1016/j.crfs.2021.04.006 – volume: 16 start-page: 1013 year: 2020 end-page: 1036 ident: CR10 article-title: Cloning and expression of the antimicrobial peptide from KUB-AC5 and its characterization publication-title: Int. J. Agric. Technol. – volume: 7 start-page: 748 year: 2021 ident: CR41 article-title: ITS2 sequencing and targeted meta-proteomics of infant gut mycobiome reveal the functional role of sp. during atopic dermatitis manifestation publication-title: J. Fungi doi: 10.3390/jof7090748 – volume: 11 start-page: 818 year: 2019 ident: CR20 article-title: Synbiotic supplementation containing whole plant sugar cane fibre and probiotic spores potentiates protective synergistic effects in mouse model of IBD publication-title: Nutrients doi: 10.3390/nu11040818 – volume: 10 start-page: 43 year: 2019 end-page: 54 ident: CR8 article-title: Protective effect of KUB-AC5 against challenge in chickens publication-title: Benef. Microbes doi: 10.3920/BM2018.0034 – volume: 120 start-page: 595 year: 2019 end-page: 602 ident: CR19 article-title: In vitro modulation of human gut microbiota composition and metabolites by BB-46 and a citric pectin publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.11.010 – year: 2019 ident: CR26 article-title: Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00277 – volume: 2 start-page: 55 year: 1985 end-page: 68 ident: CR22 article-title: Elective and selective media for lactic acid bacteria publication-title: Int. J. Food Microbiol. doi: 10.1016/0168-1605(85)90057-1 – volume: 12 start-page: 14836 year: 2022 ident: CR16 article-title: Modulatory effect of on European seabass gut microbiota community and its functionality publication-title: Sci. Rep. doi: 10.1038/s41598-022-17891-9 – volume: 26 start-page: 6802 year: 2021 ident: CR23 article-title: Soluble dietary fiber, one of the most important nutrients for the gut microbiota publication-title: Molecules doi: 10.3390/molecules26226802 – year: 2020 ident: CR28 article-title: The role of short-chain fatty acids from gut microbiota in gut-brain communication publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.00025 – volume: 7 start-page: 167 year: 2018 ident: CR4 article-title: Antibiotic-resistant in the food supply and the potential role of antibiotic alternatives for control publication-title: Foods doi: 10.3390/foods7100167 – volume: 70 start-page: 20 year: 2017 end-page: 33 ident: CR13 article-title: The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.10.002 – volume: 33 start-page: 1545 year: 2017 end-page: 1553 ident: CR44 article-title: Sparse network modeling and metscape-based visualization methods for the analysis of large-scale metabolomics data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx012 – volume: 2 start-page: 373 year: 2011 end-page: 393 ident: CR21 article-title: Synbiotics in health and disease publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-022510-133739 – ident: CR31 – volume: 84 start-page: 2174 year: 2021 end-page: 2184 ident: CR3 article-title: Prevalence and multidrug resistance of in swine production chain in a Central Province, Thailand publication-title: J. Food Prot. doi: 10.4315/jfp-21-003 – volume: 27 start-page: 28 year: 2022 ident: CR6 article-title: Probiotic KUB-AC5 inhibits growth of clinical Typhimurium isolates publication-title: Asia-Pac. J. Sci. Technol. doi: 10.14456/apst.2022.30 – ident: CR32 – volume: 6 year: 2018 ident: CR37 article-title: CoMiniGut-a small volume in vitro colon model for the screening of gut microbial fermentation processes publication-title: PeerJ doi: 10.7717/peerj.4268 – volume: 84 year: 2021 ident: CR17 article-title: Measuring the effect of Mankai® ( ) on the gut microbiota and its metabolic output using an in vitro colon model publication-title: J. Funct. Foods doi: 10.1016/j.jff.2021.104597 – volume: 17 start-page: 687 year: 2020 end-page: 701 ident: CR18 article-title: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-0344-2 – volume: 13 start-page: 691 year: 2016 end-page: 706 ident: CR27 article-title: Diet, microorganisms and their metabolites, and colon cancer publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.165 – volume: 17 start-page: 100536 year: 2019 ident: CR9 article-title: Comparative genome analysis reveals metabolic traits associated with probiotics properties in KUB-AC5 publication-title: Gene Rep. doi: 10.1016/j.genrep.2019.100536 – volume: 69 start-page: 1653 year: 2006 end-page: 1661 ident: CR40 article-title: Identification of Serovar Typhimurium using specific PCR primers obtained by comparative genomics in Salmonella Serovars publication-title: J. Food Prot. doi: 10.4315/0362-028X-69.7.1653 – volume: 14 start-page: 491 year: 2017 end-page: 502 ident: CR11 article-title: Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.75 – volume: 22 start-page: 692 year: 2022 end-page: 705 ident: CR2 article-title: Complications and mortality of non-typhoidal invasive disease: A global systematic review and meta-analysis publication-title: Lancet Infect. Dis. doi: 10.1016/s1473-3099(21)00615-0 – volume: 5 start-page: 1113 year: 2014 end-page: 1124 ident: CR34 article-title: A standardised static in vitro digestion method suitable for food: An international consensus publication-title: Food Funct. doi: 10.1039/C3FO60702J – volume: 19 start-page: 358 year: 2021 ident: CR15 article-title: Seaweed components as potential modulators of the gut microbiota publication-title: Marine Drugs doi: 10.3390/md19070358 – volume: 26 start-page: 2460 year: 2010 end-page: 2461 ident: CR39 article-title: Search and clustering orders of magnitude faster than BLAST publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 91 start-page: 97 year: 2020 end-page: 156 ident: CR14 article-title: Seaweed and seaweed-derived metabolites as prebiotics publication-title: Adv. Food Nutr. Res. doi: 10.1016/bs.afnr.2019.10.001 – ident: 53912_CR32 – volume: 33 start-page: 1545 year: 2017 ident: 53912_CR44 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx012 – volume: 120 start-page: 595 year: 2019 ident: 53912_CR19 publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.11.010 – volume: 12 start-page: 716761 year: 2021 ident: 53912_CR5 publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.716761 – volume: 91 start-page: 97 year: 2020 ident: 53912_CR14 publication-title: Adv. Food Nutr. Res. doi: 10.1016/bs.afnr.2019.10.001 – volume: 17 start-page: 100536 year: 2019 ident: 53912_CR9 publication-title: Gene Rep. doi: 10.1016/j.genrep.2019.100536 – volume: 26 start-page: 6802 year: 2021 ident: 53912_CR23 publication-title: Molecules doi: 10.3390/molecules26226802 – volume: 69 start-page: 1653 year: 2006 ident: 53912_CR40 publication-title: J. Food Prot. doi: 10.4315/0362-028X-69.7.1653 – volume: 4 start-page: 320 year: 2021 ident: 53912_CR35 publication-title: Current Res. Food Sci. doi: 10.1016/j.crfs.2021.04.006 – volume: 14 start-page: 491 year: 2017 ident: 53912_CR11 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.75 – volume: 90 start-page: 2753 year: 2011 ident: 53912_CR7 publication-title: Poult. Sci. doi: 10.3382/ps.2011-01637 – volume: 7 start-page: 167 year: 2018 ident: 53912_CR4 publication-title: Foods doi: 10.3390/foods7100167 – volume: 19 start-page: 358 year: 2021 ident: 53912_CR15 publication-title: Marine Drugs doi: 10.3390/md19070358 – volume: 2 start-page: 373 year: 2011 ident: 53912_CR21 publication-title: Annu. Rev. Food Sci. Technol. doi: 10.1146/annurev-food-022510-133739 – volume: 2 start-page: 55 year: 1985 ident: 53912_CR22 publication-title: Int. J. Food Microbiol. doi: 10.1016/0168-1605(85)90057-1 – volume: 1 start-page: e5 year: 2022 ident: 53912_CR43 publication-title: iMeta doi: 10.1002/imt2.5 – volume: 70 start-page: 20 year: 2017 ident: 53912_CR13 publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.10.002 – year: 2019 ident: 53912_CR26 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00277 – volume: 12 start-page: 14836 year: 2022 ident: 53912_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-022-17891-9 – volume: 7 start-page: 748 year: 2021 ident: 53912_CR41 publication-title: J. Fungi doi: 10.3390/jof7090748 – volume: 10 start-page: 43 year: 2019 ident: 53912_CR8 publication-title: Benef. Microbes doi: 10.3920/BM2018.0034 – volume: 12 start-page: R60 year: 2011 ident: 53912_CR42 publication-title: Genome Biol. doi: 10.1186/gb-2011-12-6-r60 – year: 2020 ident: 53912_CR28 publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.00025 – volume: 11 start-page: 818 year: 2019 ident: 53912_CR20 publication-title: Nutrients doi: 10.3390/nu11040818 – volume: 11 start-page: 294 year: 2022 ident: 53912_CR33 publication-title: Biology doi: 10.3390/biology11020294 – volume: 6 year: 2018 ident: 53912_CR37 publication-title: PeerJ doi: 10.7717/peerj.4268 – volume: 19 start-page: 3404 year: 2013 ident: 53912_CR25 publication-title: World J. Gastroenterol. doi: 10.3748/wjg.v19.i22.3404 – ident: 53912_CR31 – volume: 9 start-page: 271 year: 2009 ident: 53912_CR30 publication-title: Microb. Ecol. Health Dis. doi: 10.3109/08910609609166467 – volume: 9 start-page: 12 year: 2017 ident: 53912_CR36 publication-title: Gut Pathog. doi: 10.1186/s13099-017-0162-4 – volume: 27 start-page: 28 year: 2022 ident: 53912_CR6 publication-title: Asia-Pac. J. Sci. Technol. doi: 10.14456/apst.2022.30 – volume: 26 start-page: 2460 year: 2010 ident: 53912_CR39 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq461 – volume: 84 start-page: 2174 year: 2021 ident: 53912_CR3 publication-title: J. Food Prot. doi: 10.4315/jfp-21-003 – volume: 17 start-page: 687 year: 2020 ident: 53912_CR18 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/s41575-020-0344-2 – volume: 13 start-page: 691 year: 2016 ident: 53912_CR27 publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2016.165 – volume: 12 start-page: 85 year: 2021 ident: 53912_CR38 publication-title: J. Anim. Sci. Biotechnol. doi: 10.1186/s40104-021-00601-2 – volume: 96 year: 2022 ident: 53912_CR12 publication-title: J. Funct. Foods doi: 10.1016/j.jff.2022.105204 – volume: 84 year: 2021 ident: 53912_CR17 publication-title: J. Funct. Foods doi: 10.1016/j.jff.2021.104597 – volume: 99 start-page: 526 year: 2019 ident: 53912_CR24 publication-title: Poult. Sci. doi: 10.3382/ps/pez549 – volume: 230 start-page: 187 year: 2019 ident: 53912_CR29 publication-title: Vet. Microbiol. doi: 10.1016/j.vetmic.2019.02.003 – volume: 5 start-page: 1113 year: 2014 ident: 53912_CR34 publication-title: Food Funct. doi: 10.1039/C3FO60702J – volume: 11 start-page: 974 year: 2014 ident: 53912_CR1 publication-title: Foodborne Pathog. Dis. doi: 10.1089/fpd.2014.1802 – volume: 22 start-page: 692 year: 2022 ident: 53912_CR2 publication-title: Lancet Infect. Dis. doi: 10.1016/s1473-3099(21)00615-0 – volume: 16 start-page: 1013 year: 2020 ident: 53912_CR10 publication-title: Int. J. Agric. Technol. |
SSID | ssj0000529419 |
Score | 2.4449017 |
Snippet | A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits... Abstract A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4730 |
SubjectTerms | 631/326/2565/2134 631/326/2565/2142 631/326/2565/855 Acetates Acetic acid Animal models Animals Butyric acid Carbohydrates Caulerpa Dietary fiber Dietary supplements Edible Seaweeds Humanities and Social Sciences Humans Intestinal microflora Limosilactobacillus reuteri Mice Microbiomes Microorganisms Monoculture multidisciplinary Organic acids Pathogenicity Pathogens Prebiotics Probiotics Probiotics - pharmacology Propionates Propionic acid Salmonella Salmonella typhimurium Science Science (multidisciplinary) Synbiotics Ulva |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaytYztxTmh3xWrF67JU6i3yK91IUVLSVmh_BP-ZGSfNqjz2ViVuOp0Ze754PPMR8pZbUYlUSGalyJl00rAiNZI5bwtemTTwyEXw9Vt2PpefFmoxbritx2OVuzUxLtS-c7hHfgRhCYL_LCvEh9UPhqxRmF0dKTRukzvYugyPdOWLfNpjwSyW5MVYKzMT-mgN8QprylLJlCiQBmAvHsW2_f_Cmn8fmfwjbxrD0dkDcn_EkfR4MPxDciu0j8jdgVny6jH5dXGFRX2xCzPF2gWkiKBdRb-AbdZ1gyw71ri6abZr2gfkdajp5_kJOz5V1LSe_gQM2jOMcZ6uGjwsQ83S1AAm6YVpQBl4aoq6HRULrVtqaCT8w4_wa31Hl9sNjUw7T8j87OP303M2Mi8wpyTfMFNkUhmnVUgzU0nnLLw5Zq6QwUmnAdTwiluvZCornTsp_QzWb42t2WwGGs7FU3LQgiTPCc2lAxSUKRG8htH4PlYFeBTALqVUFRLCd_ov3diWHNkxmjKmx4UuB5uVYLMy2qxUCXk3fWc1NOW4cfQJmnUaiQ2144WuX5bj_CyDBKVrXoGBrZQgq_egAZ9aa4UHDJWQw51TlOMsX5fXPpmQN9NtmJ-YdDFt6LbDmAJQoYYxzwYfmiQRGiAEQMqE6D3v2hN1_05bX8Ye4BzTtUrzhLzfOeK1XP_XxYub_8ZLci_FuYEl-_khOdj02_AKQNfGvo4z6zdbVCsm priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXxJtAQUbiBoE6HifOAaG2oqqAcikr9RbZjrONFGVLdlft_gj-MzNOsmhh4cRtlUyyo3lkPsue-Rh7JaysZCIhtiCzGByYOE8MxK60uahM4kXgIjj9mp5M4NO5Ot9hI93RYMD51qUd8UlNuubt9ffVB0z4933LuH43xyJEjWIJxErmNNv_BruJlSmjRD0d4H4_6zvJQeRD78z2RzfqUxjjvw17_nmE8rd91FCeju-yOwOu5Ad9INxjO769z271TJOrB-zH2Yqa_MJUZk69DEQZwWcV_4K-mtcNse5Y4-qmWc5554nnoeafJ4fxwZHipi35FWLSLqaaV_LLhg7PcDM1NYJLfmYajGU6RcXdSM3C65YbHggA6Sf-Wzfj0-WCB-adh2xy_PHb0Uk8MDHEToFYxCZPQRmnlU9SU4FzFleSqcvBO3AaQY6ohC0VJFDpzAGU-_g91zSqzaZo4Uw-YrstavKE8QwcoqJUSV9qlKb1WeXxVQjDlFKVj5gY7V-4YUw5sWU0Rdgul7rofVagz4rgs0JF7PX6mct-SMc_pQ_JrWtJGrAdLsy6aTHka-EBja5FhQ62AKhrWaIFysRaK0vEVBHbG4OiGIO2QOiEAHU_zWXEXq5vY77SJoxp_WzZy-SIEjXKPO5jaK2J1AgpEGJGTG9E14aqm3fa-iLMBBe0fau0iNibMRB_6fV3Wzz9H7Z4xm4nlEHU6J_tsd1Ft_TPEaot7IuQfz8B-Ws8qA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG7WFcGL-N7oKi140-B0ujrpHHcHl8XXZR3YW-hXxkDILJkZZH-E_9mqTjIyugrehqSSKaqq019SVV8x9lpYWctMQmpBFik4MGmZGUidt6WoTRZEnEXw-Ut-voAPl-rygGVTL0ws2o-UlvExPVWHvVvjRkPNYBmkSpbE33-L3SbqdorqeT7ffVehzBWIcuyPmUl9w6V7e1Ck6r8JX_5ZJvlbrjRuQWf32b0RO_KTQdsH7CB0D9mdYZrk9SP24-KaGvki8zKnfgUaC8FXNf-E_lg3LU3WscY1bbtd8z7QLIeGf1ycpidzxU3n-XfEnX1K-5rnVy0VyHCzNA0CSH5hWoxXqpTibhq_wpuOGx6H_NFP_Ld-xZfbDY_TdR6zxdn7r_PzdJy2kDoFYpOaMgdlnFYhy00Nzll8W8xdCcGB0whkRC2sV5BBrQsH4Gf4zNZEx2ZztHAhn7DDDjU5YrwAh8gnVzJ4jdL0DlYHvBVCLaVUHRImJvtXbqQip4kYbRVT4lJXg88q9FkVfVaphL3ZXXM1EHH8U_qU3LqTJBLteGDVL6sxqKoAaHQtanSwBUBdvUcL-MxaKz3ipoQdT0FRjSt7XSE8QhA6y0uZsFe707gmKdFiurDaDjIlIkGNMk-HGNppIjXCBoSRCdN70bWn6v6ZrvkWeb8FpWiVFgl7OwXiL73-botn_yf-nN3NaK1Q235xzA43_Ta8QOC1sS_jSvsJp-cpAA priority: 102 providerName: Springer Nature |
Title | Synergistic activity of Limosilactobacillus reuteri KUB-AC5 and water-based plants against Salmonella challenge in a human in vitro gut model |
URI | https://link.springer.com/article/10.1038/s41598-024-53912-5 https://www.ncbi.nlm.nih.gov/pubmed/38413615 https://www.proquest.com/docview/2932320693 https://www.proquest.com/docview/2932938983 https://pubmed.ncbi.nlm.nih.gov/PMC10899581 https://doaj.org/article/e4bac81fdceb44ed8dd45ad2bbb3d222 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgERIXxJvAUhmJG0S7jseJc2yrXa0Ku0KUSr1FtuMskaJ01YfQ_gj-MzNOWrY8L1yaKpmk05lx5rPsmY-xN8LKSiYSYgsyi8GBifPEQOxKm4vKJF4ELoLzi_RsBpO5mt-g-qI9YV174M5wRx6scVpUpfMWwJe6LEGZMrHWyhKTG719MefdmEx1Xb2THETeV8kcS320wkxF1WQJxErmRACwl4lCw_7focxfN0v-tGIaEtHpA3a_R5B82Gn-kN3y7SN2t-OUvH7Mvk2vqZwv9F_mVLVA5BB8UfEP6JVV3RC_Dv7Xumk2K770xOhQ8_ezUTwcK27akn9F9LmMKbuV_KqhbTLcXJoaYSSfmgajlvZLcbclYeF1yw0PVH_0FX9tueCXmzUPHDtP2Oz05PP4LO45F2KnQKxjk6doXqeVT1JTgXMW54ypy8E7cBrhjKiELRUkUOnMAZTH-ObW1JTNpmjhTD5lBy1q8pzxDBzin1RJdBpK00ys8vgoBFxKqcpHTGztX7i-ITnxYjRFWBiXuuh8VqDPiuCzQkXs7e6eq64dx1-lR-TWnSS10g4nMMCKPsCKfwVYxA63QVH043tVIEhCKHqc5jJir3eXcWTScotp_WLTyeSIBzXKPOtiaKeJ1AgeEExGTO9F156q-1fa-kvo_i1ooVZpEbF320D8odefbfHif9jiJbuX0Aiikv7skB2slxv_CkHZ2g7Y7WyeDdid4XAyneBxdHLx8ROeHafjQRib-HkO-jsOPzwB |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDsZA4wETxCtju3UeUBoHZs62lWIrdLeMttxSqQo7XrR1B_BX-E3ck4uncplb3uLGsc59Tk-53OOfT5C3jHDUx5w4RvBO76wQvtRoIVvExOxVAeOlVwEJ8OwNxJfz-X5FvnVnIXBbZWNTywddTKx-I18D8ISBP92GPHP00sfWaMwu9pQaFRm0XerK1iyzT8dfwH9vg-Co8Ozg55fswr4Vgq28HUUCqmtki4IdSqsNbAqCm0knBVWQcBmKTOJFIFIVccKkbTBNyksO2ZCiHYdDv3eIduCw1KmRba7h8Nv39dfdTBvJlhUn85pc7U3h2fwFFsgfAl9w8pvIwKWRAH_Qrd_b9L8I1NbBsCjh-RBjVzpfmVqj8iWKx6TuxWX5eoJ-Xm6wmOEZd1niqclkJSCTlI6AGuYZzny-hhtszxfzunMIZNERvujrr9_IKkuEnoFqHfmY1RN6DTH7TlUj3UG8JWe6hyGH_dpUduQv9CsoJqWFIN4CW-bTeh4uaAlt89TMroVrTwjrQIkeUFoR1jAXaHkLlHQGleAqYOuAOhJKVPnEdaMf2zrQujIx5HHZUKeq7jSWQw6i0udxdIjH9bPTKsyIDe27qJa1y2xhHf5w2Q2jmuPEDsBg65YCgo2QoCsSQIjkATGGJ4AavPIbmMUce1X5vH1LPDI2_Vt8AiY5tGFmyyrNhHgUAVtnlc2tJaEKwAtAGI9ojasa0PUzTtF9qOsOs4wQSwV88jHxhCv5fr_WOzc_DfekHu9s5NBPDge9l-S-wHOEywY0NklrcVs6V4B5FuY1_U8o-Titqf2byVfaNk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE0StYztxHhDahWqjY0IalfaW2Y5TIkVp6UVTfwR_iF_HOU7SqVz2treocRzX5_Y5xz4fIW-Y4QWPuAiN4EkorNBhGmkR2tykrNCRY56L4MtJfDgSn8_k2Rb51Z2FwW2VnU_0jjqfWPxG3oOwBMG_H6e8V7TbIr4eDD5Of4TIIIWZ1o5Oo1GRoVtdwPJt_uHoAGT9NooGn77tH4Ytw0BopWCLUKexkNoq6aJYF8JaAyuk2KbCWWEVBG9WMJNLEYlCJVaIvA9-SmEJMhND5Es49HuD3Ey4ZGhjyVmy_r6DGTTB0vacTp-r3hyewPNskQgl9AxrwI1Y6CkD_oVz_96u-UfO1ofCwT1yt8WwdLdRuvtky9UPyK2G1XL1kPw8XeGBQl8BmuK5CaSnoJOCHoNezMsKGX6MtmVVLed05pBToqTD0V64uy-prnN6Afh3FmJ8zem0wo06VI91CUCWnuoKJh93bFHb0cDQsqaaerJBvIS3zSZ0vFxQz_LziIyuRSaPyXYNI3lKaCIsILBYcpcraI1rwcJBVwD5pJSFCwjr5j-zbUl0ZOaoMp-a5yprZJaBzDIvs0wG5N36mWlTEOTK1nso1nVLLObtf5jMxlnrGzInYNIVK0DARggYa57DDOSRMYbngN8CstMpRdZ6mHl2aQ8Beb2-Db4BEz66dpNl0yYFRKqgzZNGh9Yj4QrgC8DZgKgN7doY6uaduvzu648zTBVLxQLyvlPEy3H9fy6eXf03XpHbYNDZ8dHJ8Dm5E6GZYOWAZIdsL2ZL9wKw38K89EZGyfl1W_Vv5TdrqQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+activity+of+Limosilactobacillus+reuteri+KUB-AC5+and+water-based+plants+against+Salmonella+challenge+in+a+human+in+vitro+gut+model&rft.jtitle=Scientific+reports&rft.au=Kevin+Mok&rft.au=Orranich+Honwichit&rft.au=Thanyakan+Funnuam&rft.au=Suvimol+Charoensiddhi&rft.date=2024-02-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41598-024-53912-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e4bac81fdceb44ed8dd45ad2bbb3d222 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |