Electrochemical-repaired porous graphene membranes for precise ion-ion separation
The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 4006 - 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.05.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li
+
/Mg
2+
selectivity from zero-dimensional pores reaching 300 with a high Li
+
ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.
The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li
+
/Mg
2+
separation performance. |
---|---|
AbstractList | The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li /Mg selectivity from zero-dimensional pores reaching 300 with a high Li ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li+/Mg2+ separation performance. The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li + /Mg 2+ selectivity from zero-dimensional pores reaching 300 with a high Li + ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li + /Mg 2+ selectivity from zero-dimensional pores reaching 300 with a high Li + ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li + /Mg 2+ separation performance. Abstract The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. |
ArticleNumber | 4006 |
Author | Agrawal, Kumar Varoon Zhao, Kangning Chevalier, Mojtaba Shi, Wenxiong Shen, Yueqing Zhou, Zongyao Song, Shuqing Hsu, Kuang-Jung Chi, Heng-Yu |
Author_xml | – sequence: 1 givenname: Zongyao surname: Zhou fullname: Zhou, Zongyao organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology – sequence: 2 givenname: Kangning orcidid: 0000-0003-2916-4386 surname: Zhao fullname: Zhao, Kangning organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Heng-Yu surname: Chi fullname: Chi, Heng-Yu organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Yueqing surname: Shen fullname: Shen, Yueqing organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Shuqing orcidid: 0000-0002-3514-3760 surname: Song fullname: Song, Shuqing organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 6 givenname: Kuang-Jung surname: Hsu fullname: Hsu, Kuang-Jung organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 7 givenname: Mojtaba orcidid: 0000-0003-2183-9377 surname: Chevalier fullname: Chevalier, Mojtaba organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 8 givenname: Wenxiong orcidid: 0000-0002-7969-3780 surname: Shi fullname: Shi, Wenxiong organization: Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology – sequence: 9 givenname: Kumar Varoon orcidid: 0000-0002-5170-6412 surname: Agrawal fullname: Agrawal, Kumar Varoon email: kumar.agrawal@epfl.ch organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38740849$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWhSbf5Az0UQy-5uNGXLflUSkjSQKAUcheyPNrVYlvuyFvov692naRJDhEjNEjvvRnNzAdyNMYRCPnE6FdGhb5IkslalZTLUmrJmrJ-R045laxkioujZ_4JOUtpS_MSDdNSvicnQitJtWxOya-rHtyM0W1gCM72JcJkA0JXTBHjLhVrtNMGRigGGFq0I6TCRywmBBcSFCGOZd5FyjS0c3Y_kmNv-wRnD-eK3F9f3V_-KO9-3txefr8rXSXZXNqqFV7KbLSlyleM-o5ZrijIpuHesc5CJVitfasFcMVEp6VzzkMjVeXEitwusl20WzNhGCz-NdEGc7iIuDYW5-B6MHv51jrBta9yOGW7TilNWVMpV3e1z1rfFq1p1w7QORhntP0L0ZcvY9iYdfxjGKMN41RlhfMHBYy_d5BmM4TkoO9zwXIVjaBV7hKtqc7QL6-g27jDMZfqgBJU7G1FPj9P6SmXx85lAF8ADmNKCP4JwqjZT4hZJsTkCTGHCTF1JulXJBfmQ9fyt0L_NlUs1JTjjGvA_2m_wfoHpCPP2g |
CitedBy_id | crossref_primary_10_1016_j_watres_2025_123291 crossref_primary_10_1016_j_desal_2025_118684 crossref_primary_10_1063_5_0241089 crossref_primary_10_1016_j_ces_2025_121499 crossref_primary_10_1016_j_jhazmat_2025_137770 crossref_primary_10_1016_j_seppur_2025_132666 crossref_primary_10_1038_s43586_024_00344_0 crossref_primary_10_1016_j_seppur_2025_132019 |
Cites_doi | 10.1021/jacs.1c00575 10.1038/s41563-020-0634-7 10.1002/anie.202200321 10.1126/sciadv.abf0116 10.1038/nnano.2015.158 10.1038/nnano.2017.72 10.1039/C9EE01238A 10.1002/adma.201300839 10.1038/nature24044 10.1021/ja4117268 10.1002/smll.201601253 10.1016/j.cjche.2022.01.027 10.1073/pnas.2111360118 10.1126/science.1249097 10.1038/s41467-018-02941-6 10.1002/adma.202108940 10.1021/nl801457b 10.1002/adma.201700277 10.1021/acsnano.8b09761 10.1021/acs.nanolett.7b00442 10.1038/s44221-022-00010-3 10.1038/s41893-022-00870-3 10.1038/s41467-023-37932-9 10.1002/adfm.202003979 10.1038/nnano.2010.132 10.1126/science.1171245 10.1126/science.1236686 10.1038/nnano.2012.162 10.1016/j.memsci.2020.118050 10.1038/s41565-023-01337-y 10.1039/C4CS00423J 10.1126/science.aar2009 10.1021/acsnano.1c03194 10.1021/acs.nanolett.8b01904 10.1038/s41467-020-17373-4 10.1021/acsami.8b00846 10.1016/j.memsci.2020.118745 10.1021/acs.jpclett.5b00914 10.1038/s41467-018-04904-3 10.1038/s44221-022-00006-z 10.1126/sciadv.abg6263 10.1038/nnano.2017.21 10.1021/acsnano.0c05649 10.1126/science.aau5321 10.1002/adfm.202108672 10.1021/ct700301q 10.1038/nnano.2015.37 10.1107/S0907444904011679 10.1021/acs.jpclett.5b01895 10.1021/jacsau.1c00570 10.1038/s41467-020-19182-1 10.1021/acsnano.0c10451 10.1021/acsnano.0c06944 10.1038/s41467-023-39533-y 10.1021/acs.nanolett.0c01934 10.1002/adma.202104404 10.1038/nature05545 10.1021/acsnano.2c12774 10.1016/0008-6223(76)90009-9 10.1002/jcc.20090 10.1038/s41565-021-00933-0 10.1002/adma.201804977 10.1039/C7CS00181A 10.1016/j.desal.2020.114311 10.1016/j.matt.2021.03.017 10.1002/adma.202206627 10.1016/j.memsci.2020.118273 10.1002/adma.202201472 10.1039/D2TA02178A 10.1021/acsnano.1c02927 10.1016/j.micromeso.2011.08.020 10.1038/s41563-019-0536-8 10.1038/s41586-023-05888-x 10.1063/1.5035295 10.1021/jacsau.3c00395 10.1063/1.4776707 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-48419-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_07f5bac328f54407add77801957c6d6f PMC11091207 38740849 10_1038_s41467_024_48419_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement N° 101034260. |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-a5b3f44f440b07f510fd1a270e4992fc1dae53168fb83e2713d84cccfe9475c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:22 EDT 2025 Thu Aug 21 18:35:41 EDT 2025 Fri Jul 11 07:29:42 EDT 2025 Wed Aug 13 09:51:06 EDT 2025 Thu Apr 03 06:51:55 EDT 2025 Tue Jul 01 02:11:07 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 21 02:37:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-a5b3f44f440b07f510fd1a270e4992fc1dae53168fb83e2713d84cccfe9475c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2916-4386 0000-0002-3514-3760 0000-0003-2183-9377 0000-0002-7969-3780 0000-0002-5170-6412 |
OpenAccessLink | https://www.nature.com/articles/s41467-024-48419-6 |
PMID | 38740849 |
PQID | 3054303303 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_07f5bac328f54407add77801957c6d6f pubmedcentral_primary_oai_pubmedcentral_nih_gov_11091207 proquest_miscellaneous_3054840608 proquest_journals_3054303303 pubmed_primary_38740849 crossref_primary_10_1038_s41467_024_48419_6 crossref_citationtrail_10_1038_s41467_024_48419_6 springer_journals_10_1038_s41467_024_48419_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-13 |
PublicationDateYYYYMMDD | 2024-05-13 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DuChanois (CR1) 2023; 1 He (CR27) 2019; 12 Li (CR32) 2009; 324 Li (CR17) 2013; 342 Sheng (CR63) 2021; 33 Goutham (CR42) 2023; 18 Surwade (CR50) 2015; 10 Kidambi (CR18) 2018; 30 Rezaei, Villalobos, Hsu, Agrawal (CR47) 2022; 61 Fan (CR60) 2023; 17 Wang (CR2) 2023; 14 Meyer (CR35) 2007; 446 Huang (CR12) 2018; 9 Kidambi (CR25) 2017; 29 Kaplan (CR26) 2017; 46 Dai (CR5) 2023; 1 He (CR28) 2020; 30 Willems, Rycroft, Kazi, Meza, Haranczyk (CR73) 2012; 149 Bunch (CR38) 2008; 8 Gao (CR37) 2019; 13 CR3 CR6 Wang (CR24) 2015; 10 Cheng (CR31) 2020; 20 Deng, Wang, An, Li, Hu (CR62) 2020; 479 Koenig, Wang, Pellegrino, Bunch (CR21) 2012; 7 CR8 Kidambi (CR9) 2018; 10 Huang, Zhang, Li, Shi (CR39) 2015; 6 CR46 Song, Yu, Ham, Kim (CR67) 2018; 18 Jang, Bakli, Chakraborty, Karnik (CR30) 2022; 34 Lee (CR36) 2021; 618 Wang (CR71) 2020; 11 Oostenbrink, Villa, Mark, Van Gunsteren (CR75) 2004; 25 Hsu (CR29) 2021; 15 Shen (CR14) 2021; 7 Lu (CR43) 2020; 19 Tan (CR65) 2020; 19 Moreno (CR23) 2018; 360 Abraham (CR66) 2017; 12 Ren (CR72) 2015; 6 Celebi (CR16) 2014; 344 Guo (CR58) 2020; 14 Chen (CR41) 2017; 550 Zhang (CR44) 2021; 15 Biederman, Miles, Vastola, Walker (CR48) 1976; 14 Zhou, Hu, Wang, Mi (CR33) 2020; 611 Kang (CR69) 2023; 14 Yang (CR10) 2019; 364 Wang (CR22) 2017; 12 Zhu (CR34) 2016; 12 Lu, Liu, Wang, Zhang (CR59) 2022; 10 Zhou (CR56) 2020; 11 Li (CR61) 2020; 604 Qian (CR68) 2021; 143 Wang (CR4) 2022; 5 Zhou, Li, Rehman, Lai (CR55) 2022; 45 Zhu (CR70) 2020; 14 Huang (CR52) 2021; 7 Cheng, Iyengar, Karnik (CR11) 2021; 16 Wang (CR40) 2018; 9 Lu (CR13) 2021; 118 Liu, Jin, Xu (CR20) 2015; 44 Zhou (CR54) 2022; 32 Wang, Williams, Boutilier, Kidambi, Karnik (CR15) 2017; 17 Huang (CR45) 2022; 34 Gu (CR57) 2013; 25 Zhou (CR53) 2021; 15 Li (CR49) 2022; 2 Bing (CR64) 2021; 4 Yamada (CR51) 2014; 136 Schüttelkopf, Van Aalten (CR76) 2004; 60 Yuan (CR19) 2022; 34 Bae (CR7) 2010; 5 Hess, Kutzner, Van Der Spoel, Lindahl (CR74) 2008; 4 S Huang (48419_CR45) 2022; 34 M Wang (48419_CR4) 2022; 5 S Huang (48419_CR52) 2021; 7 X Li (48419_CR32) 2009; 324 JC Meyer (48419_CR35) 2007; 446 Y Yamada (48419_CR51) 2014; 136 Y Lu (48419_CR59) 2022; 10 L Wang (48419_CR22) 2017; 12 J-h Song (48419_CR67) 2018; 18 L Shen (48419_CR14) 2021; 7 G Liu (48419_CR20) 2015; 44 D Guo (48419_CR58) 2020; 14 48419_CR6 48419_CR8 Z Yuan (48419_CR19) 2022; 34 PR Kidambi (48419_CR9) 2018; 10 J Abraham (48419_CR66) 2017; 12 S Bae (48419_CR7) 2010; 5 D Jang (48419_CR30) 2022; 34 L Chen (48419_CR41) 2017; 550 Z Zhou (48419_CR55) 2022; 45 C Oostenbrink (48419_CR75) 2004; 25 M Zhang (48419_CR44) 2021; 15 TF Willems (48419_CR73) 2012; 149 J Zhu (48419_CR70) 2020; 14 K Celebi (48419_CR16) 2014; 344 R Wang (48419_CR2) 2023; 14 S Gao (48419_CR37) 2019; 13 R Dai (48419_CR5) 2023; 1 SP Koenig (48419_CR21) 2012; 7 CE Ren (48419_CR72) 2015; 6 PR Kidambi (48419_CR25) 2017; 29 G He (48419_CR27) 2019; 12 J Li (48419_CR61) 2020; 604 PR Kidambi (48419_CR18) 2018; 30 J Lu (48419_CR43) 2020; 19 Y Lu (48419_CR13) 2021; 118 S Goutham (48419_CR42) 2023; 18 Y Kang (48419_CR69) 2023; 14 B Hess (48419_CR74) 2008; 4 L Huang (48419_CR39) 2015; 6 S Bing (48419_CR64) 2021; 4 W-C Lee (48419_CR36) 2021; 618 Z Zhou (48419_CR56) 2020; 11 F Sheng (48419_CR63) 2021; 33 C Cheng (48419_CR11) 2021; 16 C Gu (48419_CR57) 2013; 25 RM DuChanois (48419_CR1) 2023; 1 P Cheng (48419_CR31) 2020; 20 L Wang (48419_CR24) 2015; 10 Z Zhou (48419_CR33) 2020; 611 JS Bunch (48419_CR38) 2008; 8 C Moreno (48419_CR23) 2018; 360 P Wang (48419_CR40) 2018; 9 Y Qian (48419_CR68) 2021; 143 Z Zhou (48419_CR54) 2022; 32 48419_CR3 L Wang (48419_CR15) 2017; 17 H Fan (48419_CR60) 2023; 17 48419_CR46 G He (48419_CR28) 2020; 30 J Wang (48419_CR71) 2020; 11 Y Yang (48419_CR10) 2019; 364 Y Zhu (48419_CR34) 2016; 12 D Biederman (48419_CR48) 1976; 14 Z Zhou (48419_CR53) 2021; 15 K-J Hsu (48419_CR29) 2021; 15 S Li (48419_CR49) 2022; 2 S Huang (48419_CR12) 2018; 9 AW Schüttelkopf (48419_CR76) 2004; 60 M Rezaei (48419_CR47) 2022; 61 L Deng (48419_CR62) 2020; 479 SP Surwade (48419_CR50) 2015; 10 H Li (48419_CR17) 2013; 342 A Kaplan (48419_CR26) 2017; 46 R Tan (48419_CR65) 2020; 19 |
References_xml | – volume: 143 start-page: 5080 year: 2021 end-page: 5090 ident: CR68 article-title: Enhanced ion sieving of graphene oxide membranes via surface amine functionalization publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00575 – volume: 19 start-page: 767 year: 2020 end-page: 774 ident: CR43 article-title: Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks publication-title: Nat. Mater. doi: 10.1038/s41563-020-0634-7 – volume: 61 start-page: e202200321 year: 2022 ident: CR47 article-title: Demonstrating and unraveling a controlled nanometer‐scale expansion of the vacancy defects in graphene by CO2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200321 – volume: 7 year: 2021 ident: CR52 article-title: Millisecond lattice gasification for high-density CO2-and O2-sieving nanopores in single-layer graphene publication-title: Sci. Adv. doi: 10.1126/sciadv.abf0116 – volume: 10 start-page: 785 year: 2015 end-page: 790 ident: CR24 article-title: Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.158 – volume: 12 start-page: 509 year: 2017 end-page: 522 ident: CR22 article-title: Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.72 – volume: 12 start-page: 3305 year: 2019 end-page: 3312 ident: CR27 article-title: High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01238A – volume: 25 start-page: 3443 year: 2013 end-page: 3448 ident: CR57 article-title: Electrochemical route to fabricate film‐like conjugated microporous polymers and application for organic electronics publication-title: Adv. Mater. doi: 10.1002/adma.201300839 – volume: 550 start-page: 380 year: 2017 end-page: 383 ident: CR41 article-title: Ion sieving in graphene oxide membranes via cationic control of interlayer spacing publication-title: Nature doi: 10.1038/nature24044 – volume: 136 start-page: 2232 year: 2014 end-page: 2235 ident: CR51 article-title: Subnanometer vacancy defects introduced on graphene by oxygen gas publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4117268 – volume: 12 start-page: 5034 year: 2016 end-page: 5041 ident: CR34 article-title: Single‐walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high‐flux and high‐rejection desalination publication-title: Small doi: 10.1002/smll.201601253 – volume: 45 start-page: 1 year: 2022 end-page: 14 ident: CR55 article-title: Conjugated microporous polymer membranes for chemical separations publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2022.01.027 – volume: 118 year: 2021 ident: CR13 article-title: Monolayer graphene membranes for molecular separation in high-temperature harsh organic solvents publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2111360118 – ident: CR8 – volume: 344 start-page: 289 year: 2014 end-page: 292 ident: CR16 article-title: Ultimate permeation across atomically thin porous graphene publication-title: Science doi: 10.1126/science.1249097 – volume: 9 year: 2018 ident: CR40 article-title: Ultrafast ion sieving using nanoporous polymeric membranes publication-title: Nat. Commun. doi: 10.1038/s41467-018-02941-6 – volume: 34 start-page: 2108940 year: 2022 ident: CR30 article-title: Molecular self‐assembly enables tuning of nanopores in atomically thin graphene membranes for highly selective transport publication-title: Adv. Mater. doi: 10.1002/adma.202108940 – volume: 8 start-page: 2458 year: 2008 end-page: 2462 ident: CR38 article-title: Impermeable atomic membranes from graphene sheets publication-title: Nano Lett. doi: 10.1021/nl801457b – volume: 29 year: 2017 ident: CR25 article-title: Nanoporous atomically thin graphene membranes for desalting and dialysis applications publication-title: Adv. Mater. doi: 10.1002/adma.201700277 – ident: CR46 – volume: 13 start-page: 5278 year: 2019 end-page: 5290 ident: CR37 article-title: Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving publication-title: ACS Nano doi: 10.1021/acsnano.8b09761 – volume: 17 start-page: 3081 year: 2017 end-page: 3088 ident: CR15 article-title: Single-layer graphene membranes withstand ultrahigh applied pressure publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00442 – volume: 1 start-page: 281 year: 2023 end-page: 290 ident: CR5 article-title: Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification publication-title: Nat. Water doi: 10.1038/s44221-022-00010-3 – volume: 5 start-page: 518 year: 2022 end-page: 526 ident: CR4 article-title: Ultrafast seawater desalination with covalent organic framework membranes publication-title: Nat. Sustain. doi: 10.1038/s41893-022-00870-3 – volume: 14 year: 2023 ident: CR2 article-title: Pyro-layered heterostructured nanosheet membrane for hydrogen separation publication-title: Nat. Commun. doi: 10.1038/s41467-023-37932-9 – volume: 30 year: 2020 ident: CR28 article-title: Synergistic CO2‐sieving from polymer with intrinsic microporosity masking nanoporous single‐layer graphene publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003979 – volume: 5 start-page: 574 year: 2010 end-page: 578 ident: CR7 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 324 start-page: 1312 year: 2009 end-page: 1314 ident: CR32 article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils publication-title: science doi: 10.1126/science.1171245 – volume: 342 start-page: 95 year: 2013 end-page: 98 ident: CR17 article-title: Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation publication-title: Science doi: 10.1126/science.1236686 – volume: 7 start-page: 728 year: 2012 end-page: 732 ident: CR21 article-title: Selective molecular sieving through porous graphene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.162 – volume: 604 start-page: 118050 year: 2020 ident: CR61 article-title: Fabrication and characterization of carbon nanotubes-based porous composite forward osmosis membrane: flux performance, separation mechanism, and potential application publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118050 – volume: 18 start-page: 596 year: 2023 end-page: 601 ident: CR42 article-title: Beyond steric selectivity of ions using ångström-scale capillaries publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01337-y – volume: 44 start-page: 5016 year: 2015 end-page: 5030 ident: CR20 article-title: Graphene-based membranes publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00423J – volume: 360 start-page: 199 year: 2018 end-page: 203 ident: CR23 article-title: Bottom-up synthesis of multifunctional nanoporous graphene publication-title: Science doi: 10.1126/science.aar2009 – volume: 15 start-page: 11970 year: 2021 end-page: 11980 ident: CR53 article-title: Precise sub-angstrom ion separation using conjugated microporous polymer membranes publication-title: Acs Nano doi: 10.1021/acsnano.1c03194 – volume: 18 start-page: 5506 year: 2018 end-page: 5513 ident: CR67 article-title: Tunable ion sieving of graphene membranes through the control of nitrogen-bonding configuration publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01904 – volume: 11 year: 2020 ident: CR71 article-title: Ion sieving by a two-dimensional Ti3C2T x alginate lamellar membrane with stable interlayer spacing publication-title: Nat. Commun. doi: 10.1038/s41467-020-17373-4 – volume: 10 start-page: 10369 year: 2018 end-page: 10378 ident: CR9 article-title: A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting publication-title: ACS Appl. Mater. interfaces doi: 10.1021/acsami.8b00846 – volume: 618 year: 2021 ident: CR36 article-title: Centimeter-scale gas-sieving nanoporous single-layer graphene membrane publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118745 – volume: 6 start-page: 2806 year: 2015 end-page: 2815 ident: CR39 article-title: Graphene-based membranes for molecular separation publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00914 – volume: 9 year: 2018 ident: CR12 article-title: Single-layer graphene membranes by crack-free transfer for gas mixture separation publication-title: Nat. Commun. doi: 10.1038/s41467-018-04904-3 – volume: 1 start-page: 37 year: 2023 end-page: 46 ident: CR1 article-title: Prospects of metal recovery from wastewater and brine publication-title: Nat. Water doi: 10.1038/s44221-022-00006-z – volume: 7 year: 2021 ident: CR14 article-title: Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration publication-title: Sci. Adv. doi: 10.1126/sciadv.abg6263 – volume: 12 start-page: 546 year: 2017 end-page: 550 ident: CR66 article-title: Tunable sieving of ions using graphene oxide membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.21 – volume: 14 start-page: 15306 year: 2020 end-page: 15316 ident: CR70 article-title: Precisely tunable ion sieving with an Al13–Ti3C2T x lamellar membrane by controlling interlayer spacing publication-title: ACS Nano doi: 10.1021/acsnano.0c05649 – volume: 364 start-page: 1057 year: 2019 end-page: 1062 ident: CR10 article-title: Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration publication-title: Science doi: 10.1126/science.aau5321 – volume: 32 year: 2022 ident: CR54 article-title: Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108672 – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: CR74 article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 10 start-page: 459 year: 2015 end-page: 464 ident: CR50 article-title: Water desalination using nanoporous single-layer graphene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.37 – volume: 60 start-page: 1355 year: 2004 end-page: 1363 ident: CR76 article-title: PRODRG: a tool for high-throughput crystallography of protein–ligand complexes publication-title: Acta Crystallogr. Sect. D: Biol. Crystallogr. doi: 10.1107/S0907444904011679 – volume: 6 start-page: 4026 year: 2015 end-page: 4031 ident: CR72 article-title: Charge-and size-selective ion sieving through Ti3C2T x MXene membranes publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01895 – ident: CR6 – volume: 2 start-page: 723 year: 2022 end-page: 730 ident: CR49 article-title: Structure evolution of graphitic surface upon oxidation: insights by scanning tunneling microscopy publication-title: JACS Au doi: 10.1021/jacsau.1c00570 – volume: 11 year: 2020 ident: CR56 article-title: Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving publication-title: Nat. Commun. doi: 10.1038/s41467-020-19182-1 – volume: 15 start-page: 5209 year: 2021 end-page: 5220 ident: CR44 article-title: Designing biomimic two-dimensional ionic transport channels for efficient ion sieving publication-title: ACS nano doi: 10.1021/acsnano.0c10451 – volume: 14 start-page: 17163 year: 2020 end-page: 17173 ident: CR58 article-title: Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li–S batteries publication-title: ACS Nano doi: 10.1021/acsnano.0c06944 – volume: 14 year: 2023 ident: CR69 article-title: Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving publication-title: Nat. Commun. doi: 10.1038/s41467-023-39533-y – volume: 20 start-page: 5951 year: 2020 end-page: 5959 ident: CR31 article-title: Facile size-selective defect sealing in large-area atomically thin graphene membranes for sub-nanometer scale separations publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01934 – volume: 33 year: 2021 ident: CR63 article-title: Efficient ion sieving in covalent organic framework membranes with sub‐2‐nanometer channels publication-title: Adv. Mater. doi: 10.1002/adma.202104404 – volume: 446 start-page: 60 year: 2007 end-page: 63 ident: CR35 article-title: The structure of suspended graphene sheets publication-title: Nature doi: 10.1038/nature05545 – volume: 17 start-page: 7584 year: 2023 end-page: 7594 ident: CR60 article-title: Pore-in-pore engineering in a covalent organic framework membrane for gas separation publication-title: ACS Nano doi: 10.1021/acsnano.2c12774 – volume: 14 start-page: 351 year: 1976 end-page: 356 ident: CR48 article-title: Carbon-carbon dioxide reaction: kinetics at low pressures and hydrogen inhibition publication-title: Carbon doi: 10.1016/0008-6223(76)90009-9 – volume: 25 start-page: 1656 year: 2004 end-page: 1676 ident: CR75 article-title: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20090 – volume: 16 start-page: 989 year: 2021 end-page: 995 ident: CR11 article-title: Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00933-0 – ident: CR3 – volume: 30 year: 2018 ident: CR18 article-title: Facile fabrication of large‐area atomically thin membranes by direct synthesis of graphene with nanoscale porosity publication-title: Adv. Mater. doi: 10.1002/adma.201804977 – volume: 46 start-page: 4530 year: 2017 end-page: 4571 ident: CR26 article-title: Current and future directions in electron transfer chemistry of graphene publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00181A – volume: 479 start-page: 114311 year: 2020 ident: CR62 article-title: Towards enhanced antifouling and flux performances of thin-film composite forward osmosis membrane via constructing a sandwich-like carbon nanotubes-coated support publication-title: Desalination doi: 10.1016/j.desal.2020.114311 – volume: 4 start-page: 2027 year: 2021 end-page: 2038 ident: CR64 article-title: Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction publication-title: Matter doi: 10.1016/j.matt.2021.03.017 – volume: 34 year: 2022 ident: CR45 article-title: In situ nucleation‐decoupled and site‐specific incorporation of Å‐scale pores in graphene via epoxidation publication-title: Adv. Mater. doi: 10.1002/adma.202206627 – volume: 611 start-page: 118273 year: 2020 ident: CR33 article-title: Carbon nanotube-supported polyamide membrane with minimized internal concentration polarization for both aqueous and organic solvent forward osmosis process publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118273 – volume: 34 start-page: 2201472 year: 2022 ident: CR19 article-title: Gas separations using nanoporous atomically thin membranes: recent theoretical, simulation, and experimental advances publication-title: Adv. Mater. doi: 10.1002/adma.202201472 – volume: 10 start-page: 20101 year: 2022 end-page: 20110 ident: CR59 article-title: Electropolymerized thin films with a microporous architecture enabling molecular sieving in harsh organic solvents under high temperature publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02178A – volume: 15 start-page: 13230 year: 2021 end-page: 13239 ident: CR29 article-title: Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture publication-title: ACS Nano doi: 10.1021/acsnano.1c02927 – volume: 149 start-page: 134 year: 2012 end-page: 141 ident: CR73 article-title: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2011.08.020 – volume: 19 start-page: 195 year: 2020 end-page: 202 ident: CR65 article-title: Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage publication-title: Nat. Mater. doi: 10.1038/s41563-019-0536-8 – volume: 25 start-page: 3443 year: 2013 ident: 48419_CR57 publication-title: Adv. Mater. doi: 10.1002/adma.201300839 – volume: 550 start-page: 380 year: 2017 ident: 48419_CR41 publication-title: Nature doi: 10.1038/nature24044 – volume: 45 start-page: 1 year: 2022 ident: 48419_CR55 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2022.01.027 – volume: 17 start-page: 7584 year: 2023 ident: 48419_CR60 publication-title: ACS Nano doi: 10.1021/acsnano.2c12774 – volume: 18 start-page: 5506 year: 2018 ident: 48419_CR67 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b01904 – volume: 5 start-page: 574 year: 2010 ident: 48419_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 14 start-page: 351 year: 1976 ident: 48419_CR48 publication-title: Carbon doi: 10.1016/0008-6223(76)90009-9 – volume: 12 start-page: 509 year: 2017 ident: 48419_CR22 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.72 – volume: 60 start-page: 1355 year: 2004 ident: 48419_CR76 publication-title: Acta Crystallogr. Sect. D: Biol. Crystallogr. doi: 10.1107/S0907444904011679 – volume: 344 start-page: 289 year: 2014 ident: 48419_CR16 publication-title: Science doi: 10.1126/science.1249097 – volume: 479 start-page: 114311 year: 2020 ident: 48419_CR62 publication-title: Desalination doi: 10.1016/j.desal.2020.114311 – volume: 11 year: 2020 ident: 48419_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19182-1 – volume: 149 start-page: 134 year: 2012 ident: 48419_CR73 publication-title: Micropor. Mesopor. Mater. doi: 10.1016/j.micromeso.2011.08.020 – volume: 10 start-page: 20101 year: 2022 ident: 48419_CR59 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02178A – volume: 14 year: 2023 ident: 48419_CR69 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39533-y – volume: 5 start-page: 518 year: 2022 ident: 48419_CR4 publication-title: Nat. Sustain. doi: 10.1038/s41893-022-00870-3 – volume: 7 year: 2021 ident: 48419_CR52 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf0116 – volume: 17 start-page: 3081 year: 2017 ident: 48419_CR15 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00442 – volume: 342 start-page: 95 year: 2013 ident: 48419_CR17 publication-title: Science doi: 10.1126/science.1236686 – volume: 32 year: 2022 ident: 48419_CR54 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108672 – volume: 9 year: 2018 ident: 48419_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04904-3 – volume: 61 start-page: e202200321 year: 2022 ident: 48419_CR47 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202200321 – volume: 29 year: 2017 ident: 48419_CR25 publication-title: Adv. Mater. doi: 10.1002/adma.201700277 – volume: 12 start-page: 546 year: 2017 ident: 48419_CR66 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.21 – ident: 48419_CR3 doi: 10.1038/s41586-023-05888-x – ident: 48419_CR6 doi: 10.1063/1.5035295 – volume: 604 start-page: 118050 year: 2020 ident: 48419_CR61 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118050 – volume: 324 start-page: 1312 year: 2009 ident: 48419_CR32 publication-title: science doi: 10.1126/science.1171245 – volume: 1 start-page: 37 year: 2023 ident: 48419_CR1 publication-title: Nat. Water doi: 10.1038/s44221-022-00006-z – volume: 10 start-page: 459 year: 2015 ident: 48419_CR50 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.37 – volume: 8 start-page: 2458 year: 2008 ident: 48419_CR38 publication-title: Nano Lett. doi: 10.1021/nl801457b – volume: 25 start-page: 1656 year: 2004 ident: 48419_CR75 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20090 – volume: 136 start-page: 2232 year: 2014 ident: 48419_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4117268 – volume: 11 year: 2020 ident: 48419_CR71 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17373-4 – volume: 12 start-page: 3305 year: 2019 ident: 48419_CR27 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01238A – volume: 6 start-page: 4026 year: 2015 ident: 48419_CR72 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01895 – volume: 44 start-page: 5016 year: 2015 ident: 48419_CR20 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00423J – volume: 446 start-page: 60 year: 2007 ident: 48419_CR35 publication-title: Nature doi: 10.1038/nature05545 – volume: 46 start-page: 4530 year: 2017 ident: 48419_CR26 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00181A – volume: 14 start-page: 15306 year: 2020 ident: 48419_CR70 publication-title: ACS Nano doi: 10.1021/acsnano.0c05649 – volume: 34 start-page: 2108940 year: 2022 ident: 48419_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.202108940 – volume: 14 year: 2023 ident: 48419_CR2 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37932-9 – volume: 360 start-page: 199 year: 2018 ident: 48419_CR23 publication-title: Science doi: 10.1126/science.aar2009 – volume: 10 start-page: 785 year: 2015 ident: 48419_CR24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.158 – volume: 618 year: 2021 ident: 48419_CR36 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118745 – volume: 15 start-page: 11970 year: 2021 ident: 48419_CR53 publication-title: Acs Nano doi: 10.1021/acsnano.1c03194 – volume: 34 start-page: 2201472 year: 2022 ident: 48419_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.202201472 – volume: 15 start-page: 13230 year: 2021 ident: 48419_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.1c02927 – volume: 15 start-page: 5209 year: 2021 ident: 48419_CR44 publication-title: ACS nano doi: 10.1021/acsnano.0c10451 – volume: 33 year: 2021 ident: 48419_CR63 publication-title: Adv. Mater. doi: 10.1002/adma.202104404 – volume: 1 start-page: 281 year: 2023 ident: 48419_CR5 publication-title: Nat. Water doi: 10.1038/s44221-022-00010-3 – volume: 7 year: 2021 ident: 48419_CR14 publication-title: Sci. Adv. doi: 10.1126/sciadv.abg6263 – volume: 9 year: 2018 ident: 48419_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02941-6 – volume: 364 start-page: 1057 year: 2019 ident: 48419_CR10 publication-title: Science doi: 10.1126/science.aau5321 – volume: 34 year: 2022 ident: 48419_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.202206627 – volume: 10 start-page: 10369 year: 2018 ident: 48419_CR9 publication-title: ACS Appl. Mater. interfaces doi: 10.1021/acsami.8b00846 – volume: 30 year: 2018 ident: 48419_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201804977 – volume: 4 start-page: 2027 year: 2021 ident: 48419_CR64 publication-title: Matter doi: 10.1016/j.matt.2021.03.017 – volume: 20 start-page: 5951 year: 2020 ident: 48419_CR31 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01934 – volume: 4 start-page: 435 year: 2008 ident: 48419_CR74 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 16 start-page: 989 year: 2021 ident: 48419_CR11 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00933-0 – volume: 118 year: 2021 ident: 48419_CR13 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.2111360118 – volume: 18 start-page: 596 year: 2023 ident: 48419_CR42 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-023-01337-y – ident: 48419_CR46 doi: 10.1021/jacsau.3c00395 – volume: 7 start-page: 728 year: 2012 ident: 48419_CR21 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.162 – volume: 19 start-page: 767 year: 2020 ident: 48419_CR43 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0634-7 – volume: 611 start-page: 118273 year: 2020 ident: 48419_CR33 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118273 – volume: 14 start-page: 17163 year: 2020 ident: 48419_CR58 publication-title: ACS Nano doi: 10.1021/acsnano.0c06944 – volume: 13 start-page: 5278 year: 2019 ident: 48419_CR37 publication-title: ACS Nano doi: 10.1021/acsnano.8b09761 – ident: 48419_CR8 doi: 10.1063/1.4776707 – volume: 30 year: 2020 ident: 48419_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003979 – volume: 2 start-page: 723 year: 2022 ident: 48419_CR49 publication-title: JACS Au doi: 10.1021/jacsau.1c00570 – volume: 6 start-page: 2806 year: 2015 ident: 48419_CR39 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00914 – volume: 12 start-page: 5034 year: 2016 ident: 48419_CR34 publication-title: Small doi: 10.1002/smll.201601253 – volume: 19 start-page: 195 year: 2020 ident: 48419_CR65 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0536-8 – volume: 143 start-page: 5080 year: 2021 ident: 48419_CR68 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00575 |
SSID | ssj0000391844 |
Score | 2.5405216 |
Snippet | The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux.... Abstract The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4006 |
SubjectTerms | 147/135 147/143 147/3 639/301/357/918/1055 639/638/898 639/925/918/1053 Electrochemistry Fabrication Graphene Humanities and Social Sciences Ion flux Lithium ions Magnesium Masks Membranes multidisciplinary Polymers Pore size Pore size distribution Pores Science Science (multidisciplinary) Selectivity Separation Size distribution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFD-MgbAX8WNqdUqEvWlYmpyk6aPKxhAUBhvsLaRpgoLrxu71wf_ek6T3bnd-vQjpS5uW9Jfz2TS_A7AvfEhC9YZHaSJHFZF74UfemQHJnyovQ_4O-emzOT7Dj-f6_Fapr_xPWKUHrsAdiC7pwQclbdJI2QfpY9fZvM2tC2Y0KVtf8nm3kqlig1VPqQvOu2SEsgcLLDaBXBJHi23PzYYnKoT9v4syf_1Z8s6KaXFERw_g_hxBsnd15A9hK06P4F6tKfnjMZwc1sI2YWYC4NfkcMiujYwibUrzWaGoJgvHLuIFpcpk6hgFruwq01wsIqN54nSwRays4JfTLpweHZ5-OOZz3QQeNLZL7vWgEiI1MWT4WpHG1stOREpvZArt6KPOBavSYFWUlKaOFkMIKfbY6aCewPZ0OcVnwDyBLkehh5AoEVTBSz1oevqIMVAgkBpoVxC6MHOK59IW31xZ21bWVdgdwe4K7M408GZ9z1Vl1Phr7_d5ZtY9Mxt2OUEy4mYZcf-SkQb2VvPqZhVdODJ0SP6bWgOv15dJufKKCYFPM1L60IsbYRt4WsVgPRKVixla7BuwGwKyMdTNK9PXL4XAO7O8tlJ0DbxdydLNuP6MxfP_gcUL2JFZCTIBrdqD7eX19_iS4qrl8Kqo0E-aRB2x priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEsE3DZsmaZJ5EpVdFkFBWGHeQpqLCrudcTo--O89J810GS8LnZc2U07O_STpdwh5yX3IXC40S0InpmRSzHMfmdG9gngqvQi4Dvnxkz79oj4su2VdcBvrscqdTyyOOq4CrpEfgV4qcLdwvVn_YNg1CndXawuN6-QGQpfhkS6zNPMaC6KfW6XqtzJc2qNRFc8AgYkpq9oF03vxqMD2_yvX_PvI5B_7piUcndwht2seSd9Ogr9LrqXhHrk5dZb8dZ98Pp7a24SKB8A2EHbAu0UK-TYU-7QAVYOfoxfpAgpmcHgU0le6RrCLMVGQFoMfHdOEDb4aHpCzk-Oz96esdk9goVPtlvmul1kpuHjPTQbby7H1wvAERY7IoY0-ddi2KvdWJgHFarQqhJDTQpkuyIfkYFgN6TGh3uZORN71IUM5KIMXXd_B26NKAdKB3JB2x0IXKrI4Nrg4d2WHW1o3sd0B211hu9MNeTX_Zz3halw5-h1KZh6JmNjlxmrz1VUTczjJ3gcpgFyYtAHPbYzFDyJN0FEDmYc7ubpqqKO7VKuGvJgfg4nhvgkwHyRSxsDENbcNeTSpwUyJxJaGVi0aYvcUZI_U_SfD928FxhuxXlvBTUNe73Tpkq7_8-LJ1dN4Sm4JVG8EmJWH5GC7-ZmeQd607Z8X4_gNv04VQg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UFsGXUq2X0Voi-NYGM7nvY11aSsGCUKFvIZNJVLCzZXd98N_3JHMpq1UQZl5mMsPJybnm8h2A98yHxMRM08h1pFJEST3zLTW6kehPhechz0N-utTnX-TFtbreAj6ehSmb9gukZTHT4-6wDytZVBo9CpVW1jOqH8FOhm7PUj3X82leJSOeWymH8zFM2Ac-3fBBBar_ofjyz22Sv62VFhd0tge7Q-xITnpqn8JW7J7B476a5K99-Hzal7QJAwYAXaKrQYvWEoyxMcEnBZwabRu5iTeYJKORIxiyktsMcLGKBEeI4k1WsccDX3TP4ers9Gp-ToeKCTQoWa-pV41IUuLFGmYS6ltqa88Ni5jY8BTq1keVS1WlxorIMUFtrQwhpDiTRgXxAra7RRdfAfE2Kd4y1YSEKaAInqtG4d9bGQOGAKmCemShCwOaeC5q8cOVVW1hXc92h2x3he1OV3A0fXPbY2n8s_XHPDJTy4yDXR4sll_dIBcud7LxQXAkFztt0FobY_MhSBN0q5HMg3Fc3aCcK4cmTqLnxquCd9NrVKu8VoLMxxEpbbDjmtkKXvZiMFEichlDK2cV2A0B2SB18033_VuB7s74rjVnpoLjUZbu6fo7L17_X_M38IRncc8gs-IAttfLn_Etxk7r5rAoyx1t9RM- priority: 102 providerName: Springer Nature |
Title | Electrochemical-repaired porous graphene membranes for precise ion-ion separation |
URI | https://link.springer.com/article/10.1038/s41467-024-48419-6 https://www.ncbi.nlm.nih.gov/pubmed/38740849 https://www.proquest.com/docview/3054303303 https://www.proquest.com/docview/3054840608 https://pubmed.ncbi.nlm.nih.gov/PMC11091207 https://doaj.org/article/07f5bac328f54407add77801957c6d6f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD7sBcEX8W51HSr4ptE2SZP0QWR2mHEZ2MXLLsxbSNNkFXY768wsuP_ek7QdGR1F6AXatJycnGvTfAfgZWasz1gpiKPCEc4cJyYzNZGi4uhPmaE2fIc8PhFHZ3w6K2Y70Jc76hi43JrahXpSZ4uLNz--37xHhX_XLhlXb5c8qjt6G8IVz0sidmEfPZMMinrchfvRMrMSE5ow0UwznhP03axbR7P9NRu-KkL6b4tD__yd8rc51eiqJnfhThdjpsNWKO7Bjmvuw6226uTNA_g0bkvf2A4rgCzQJaHlq1Nkw_x6mUYQa7SB6aW7xGQajWGKoW16FYAwli7FkSS4p0vX4obPm4dwOhmfjo5IV1mB2ILnK2KKinnOccuqTHrUS1_nhsrMYQJEvc1r44pQ0spXijmKiWytuLXWu5LLwrJHsNfMG_cEUqN8QeusqKzHVJFZQ4uqwLfX3FkMFXwCec9CbTvU8VD84kLH2W-mdMt2jWzXke1aJPBq_cxVi7nxz9aHYWTWLQNedrwwX5zrTv106GRlLKNILnZaolWXUoXFktKKWiCZB_246l4GNZpCjh4etwRerG-j-oU5FWQ-jkhsgx0XmUrgcSsGa0pYKHeoeJmA2hCQDVI37zTfvkaI74ADm9NMJvC6l6VfdP2dF0__g85ncJsGGQ8ItOwA9laLa_ccA6tVNYBdOZN4VJMPA9gfDqdfpng-HJ98_IxXR2I0iJ8sBlGrfgIJxyM0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiLUEChgJTmDVsZ3Yc0CIpdWULhLSIM3NShwbkGgyTKZC_VH8R56dpRqW3ioll4knen7-3mI7_h7Ac1ZYz8Qkp47njkrhJC1YUVGVlxLjqSi4DeuQR8f59LP8OM_mG_BrOAsTPqscfGJ01FVjwxr5DuJSorvF683iBw1Vo8Lu6lBCo4PFgTv7iVO29vX-BxzfF5zv7c7eT2lfVYDaTKYrWmSl8FLixUqmPGLSV2nBFXOY_HNv06pwWSjn5EstHMdJXKWltda7iVSZFfjaK3AV4y4LBqXmalzSCWTrWsr-aA4TeqeV0RFhHKRSy3RC87XwF6sE_Cu1_fsLzT-2aWP027sFN_u0lbztcHYbNlx9B651hSzP7sKn3a6aju3pB-gSoxw604pget-ctiTyYqNbJSfuBOfn6F8JZstkEbg1WkcQHBRv0rqOiryp78HsMtR6HzbrpnYPgBTaZ7xiWWk9zj6FLXhWZvj2SjqL2YdPIB1UaGxPZB7qaXw3cUNdaNOp3aDaTVS7yRN4Of5n0dF4XNj6XRiZsWWg4I4_NMsvprdoEzpZFlZwFBc7rTBQKKXD-Utl8ypHMbeHcTW9X2jNOYoTeDY-RosO2zSofByR2AY7njOdwFYHg1ESESooajlJQK8BZE3U9Sf1t6-RNTxQy6acqQReDVg6l-v_unh4cTeewvXp7OjQHO4fHzyCGzxAPXDbim3YXC1P3WNM2Vblk2goBMwlG-ZvLk9RzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJTmBtYjux94AQ0K5aChVIRdqb5Tg2INFk2WyF-tP4d4ydR7U8equUXBInGo_n6cc3AE9TY33KpwV1rHBUcCeoSU1FZVEK9KfcMBvmIT8cFnufxbt5Pt-AX8NZmLCtcrCJ0VBXjQ1z5BOUS4HmFq-J77dFfNyZvVr8oKGCVFhpHcppdCJy4E5_YvrWvtzfwbF-xths9-jtHu0rDFCbi2xFTV5yLwReaZlKj_Lpq8wwmTpMBJi3WWVcHko7-VJxxzChq5Sw1no3FTK3HH97CS5LnmdBxeRcjtM7AXhdCdEf00m5mrQiGiX0iVQokU1pseYKY8WAf4W5f-_W_GPJNnrC2Q243oew5HUnczdhw9W34EpX1PL0Nnza7Srr2B6KgC7R46FhrQiG-s1JSyJGNppYcuyOMVdHW0swciaLgLPROoKCQvEmretgyZv6DhxdBFvvwmbd1O4eEKN8zqo0L63HTJRbw_Iyx79XwlmMRHwC2cBCbXtQ81Bb47uOi-tc6Y7tGtmuI9t1kcDz8ZtFB-lxbus3YWTGlgGOOz5oll90r906dLI0ljMkFzst0WlIqcJZTGmLqkAyt4dx1b2NaPWZRCfwZHyN2h2WbJD5OCKxDXa8SFUCW50YjJTwUE1RiWkCak1A1khdf1N_-xoRxAPMbMZSmcCLQZbO6Po_L-6f343HcBVVUr_fPzx4ANdYkPQAc8u3YXO1PHEPMXpblY-inhDQF6yXvwH2-FYD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical-repaired+porous+graphene+membranes+for+precise+ion-ion+separation&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Zongyao&rft.au=Zhao%2C+Kangning&rft.au=Chi%2C+Heng-Yu&rft.au=Shen%2C+Yueqing&rft.date=2024-05-13&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=4006&rft_id=info:doi/10.1038%2Fs41467-024-48419-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |