Electrochemical-repaired porous graphene membranes for precise ion-ion separation

The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 4006 - 11
Main Authors Zhou, Zongyao, Zhao, Kangning, Chi, Heng-Yu, Shen, Yueqing, Song, Shuqing, Hsu, Kuang-Jung, Chevalier, Mojtaba, Shi, Wenxiong, Agrawal, Kumar Varoon
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.05.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li + /Mg 2+ selectivity from zero-dimensional pores reaching 300 with a high Li + ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li + /Mg 2+ separation performance.
AbstractList The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.
The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li /Mg selectivity from zero-dimensional pores reaching 300 with a high Li ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.
The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li+/Mg2+ separation performance.
The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li + /Mg 2+ selectivity from zero-dimensional pores reaching 300 with a high Li + ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.
The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li + /Mg 2+ selectivity from zero-dimensional pores reaching 300 with a high Li + ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations. The preparation of atom-thick lattices with Å-scale pores is desirable for achieving ion selectivity and high ion flux. Here authors present a cm-scale membrane made of atom-thick graphene film hosting zero-dimensional pores spanning only a few Å, repaired using an in situ electrochemical strategy, yielding high Li + /Mg 2+ separation performance.
Abstract The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorporated, however, it is challenging to avoid larger non-selective pores at the tail-end of the pore size distribution which reduces ion-ion selectivity. Herein, we develop a strategy to overcome this challenge using an electrochemical repair strategy that successfully masks larger pores in large-area graphene. 10-nm-thick electropolymerized conjugated microporous polymer (CMP) layer is successfully deposited on graphene, thanks to a strong π-π interaction in these two materials. While the CMP layer itself is not selective, it effectively masks graphene pores, leading to a large Li+/Mg2+ selectivity from zero-dimensional pores reaching 300 with a high Li+ ion permeation rate surpassing the performance of reported materials for ion-ion separation. Overall, this scalable repair strategy enables the fabrication of monolayer graphene membranes with customizable pore sizes, limiting the contribution of nonselective pores, and offering graphene membranes a versatile platform for a broad spectrum of challenging separations.
ArticleNumber 4006
Author Agrawal, Kumar Varoon
Zhao, Kangning
Chevalier, Mojtaba
Shi, Wenxiong
Shen, Yueqing
Zhou, Zongyao
Song, Shuqing
Hsu, Kuang-Jung
Chi, Heng-Yu
Author_xml – sequence: 1
  givenname: Zongyao
  surname: Zhou
  fullname: Zhou, Zongyao
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology
– sequence: 2
  givenname: Kangning
  orcidid: 0000-0003-2916-4386
  surname: Zhao
  fullname: Zhao, Kangning
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Heng-Yu
  surname: Chi
  fullname: Chi, Heng-Yu
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Yueqing
  surname: Shen
  fullname: Shen, Yueqing
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Shuqing
  orcidid: 0000-0002-3514-3760
  surname: Song
  fullname: Song, Shuqing
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 6
  givenname: Kuang-Jung
  surname: Hsu
  fullname: Hsu, Kuang-Jung
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 7
  givenname: Mojtaba
  orcidid: 0000-0003-2183-9377
  surname: Chevalier
  fullname: Chevalier, Mojtaba
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 8
  givenname: Wenxiong
  orcidid: 0000-0002-7969-3780
  surname: Shi
  fullname: Shi, Wenxiong
  organization: Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology
– sequence: 9
  givenname: Kumar Varoon
  orcidid: 0000-0002-5170-6412
  surname: Agrawal
  fullname: Agrawal, Kumar Varoon
  email: kumar.agrawal@epfl.ch
  organization: Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38740849$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWhSbf5Az0UQy-5uNGXLflUSkjSQKAUcheyPNrVYlvuyFvov692naRJDhEjNEjvvRnNzAdyNMYRCPnE6FdGhb5IkslalZTLUmrJmrJ-R045laxkioujZ_4JOUtpS_MSDdNSvicnQitJtWxOya-rHtyM0W1gCM72JcJkA0JXTBHjLhVrtNMGRigGGFq0I6TCRywmBBcSFCGOZd5FyjS0c3Y_kmNv-wRnD-eK3F9f3V_-KO9-3txefr8rXSXZXNqqFV7KbLSlyleM-o5ZrijIpuHesc5CJVitfasFcMVEp6VzzkMjVeXEitwusl20WzNhGCz-NdEGc7iIuDYW5-B6MHv51jrBta9yOGW7TilNWVMpV3e1z1rfFq1p1w7QORhntP0L0ZcvY9iYdfxjGKMN41RlhfMHBYy_d5BmM4TkoO9zwXIVjaBV7hKtqc7QL6-g27jDMZfqgBJU7G1FPj9P6SmXx85lAF8ADmNKCP4JwqjZT4hZJsTkCTGHCTF1JulXJBfmQ9fyt0L_NlUs1JTjjGvA_2m_wfoHpCPP2g
CitedBy_id crossref_primary_10_1016_j_watres_2025_123291
crossref_primary_10_1016_j_desal_2025_118684
crossref_primary_10_1063_5_0241089
crossref_primary_10_1016_j_ces_2025_121499
crossref_primary_10_1016_j_jhazmat_2025_137770
crossref_primary_10_1016_j_seppur_2025_132666
crossref_primary_10_1038_s43586_024_00344_0
crossref_primary_10_1016_j_seppur_2025_132019
Cites_doi 10.1021/jacs.1c00575
10.1038/s41563-020-0634-7
10.1002/anie.202200321
10.1126/sciadv.abf0116
10.1038/nnano.2015.158
10.1038/nnano.2017.72
10.1039/C9EE01238A
10.1002/adma.201300839
10.1038/nature24044
10.1021/ja4117268
10.1002/smll.201601253
10.1016/j.cjche.2022.01.027
10.1073/pnas.2111360118
10.1126/science.1249097
10.1038/s41467-018-02941-6
10.1002/adma.202108940
10.1021/nl801457b
10.1002/adma.201700277
10.1021/acsnano.8b09761
10.1021/acs.nanolett.7b00442
10.1038/s44221-022-00010-3
10.1038/s41893-022-00870-3
10.1038/s41467-023-37932-9
10.1002/adfm.202003979
10.1038/nnano.2010.132
10.1126/science.1171245
10.1126/science.1236686
10.1038/nnano.2012.162
10.1016/j.memsci.2020.118050
10.1038/s41565-023-01337-y
10.1039/C4CS00423J
10.1126/science.aar2009
10.1021/acsnano.1c03194
10.1021/acs.nanolett.8b01904
10.1038/s41467-020-17373-4
10.1021/acsami.8b00846
10.1016/j.memsci.2020.118745
10.1021/acs.jpclett.5b00914
10.1038/s41467-018-04904-3
10.1038/s44221-022-00006-z
10.1126/sciadv.abg6263
10.1038/nnano.2017.21
10.1021/acsnano.0c05649
10.1126/science.aau5321
10.1002/adfm.202108672
10.1021/ct700301q
10.1038/nnano.2015.37
10.1107/S0907444904011679
10.1021/acs.jpclett.5b01895
10.1021/jacsau.1c00570
10.1038/s41467-020-19182-1
10.1021/acsnano.0c10451
10.1021/acsnano.0c06944
10.1038/s41467-023-39533-y
10.1021/acs.nanolett.0c01934
10.1002/adma.202104404
10.1038/nature05545
10.1021/acsnano.2c12774
10.1016/0008-6223(76)90009-9
10.1002/jcc.20090
10.1038/s41565-021-00933-0
10.1002/adma.201804977
10.1039/C7CS00181A
10.1016/j.desal.2020.114311
10.1016/j.matt.2021.03.017
10.1002/adma.202206627
10.1016/j.memsci.2020.118273
10.1002/adma.202201472
10.1039/D2TA02178A
10.1021/acsnano.1c02927
10.1016/j.micromeso.2011.08.020
10.1038/s41563-019-0536-8
10.1038/s41586-023-05888-x
10.1063/1.5035295
10.1021/jacsau.3c00395
10.1063/1.4776707
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-48419-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database
CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_07f5bac328f54407add77801957c6d6f
PMC11091207
38740849
10_1038_s41467_024_48419_6
Genre Journal Article
GrantInformation_xml – fundername: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement N° 101034260.
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-a5b3f44f440b07f510fd1a270e4992fc1dae53168fb83e2713d84cccfe9475c3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:22 EDT 2025
Thu Aug 21 18:35:41 EDT 2025
Fri Jul 11 07:29:42 EDT 2025
Wed Aug 13 09:51:06 EDT 2025
Thu Apr 03 06:51:55 EDT 2025
Tue Jul 01 02:11:07 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
Fri Feb 21 02:37:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-a5b3f44f440b07f510fd1a270e4992fc1dae53168fb83e2713d84cccfe9475c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2916-4386
0000-0002-3514-3760
0000-0003-2183-9377
0000-0002-7969-3780
0000-0002-5170-6412
OpenAccessLink https://www.nature.com/articles/s41467-024-48419-6
PMID 38740849
PQID 3054303303
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_07f5bac328f54407add77801957c6d6f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11091207
proquest_miscellaneous_3054840608
proquest_journals_3054303303
pubmed_primary_38740849
crossref_primary_10_1038_s41467_024_48419_6
crossref_citationtrail_10_1038_s41467_024_48419_6
springer_journals_10_1038_s41467_024_48419_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-13
PublicationDateYYYYMMDD 2024-05-13
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DuChanois (CR1) 2023; 1
He (CR27) 2019; 12
Li (CR32) 2009; 324
Li (CR17) 2013; 342
Sheng (CR63) 2021; 33
Goutham (CR42) 2023; 18
Surwade (CR50) 2015; 10
Kidambi (CR18) 2018; 30
Rezaei, Villalobos, Hsu, Agrawal (CR47) 2022; 61
Fan (CR60) 2023; 17
Wang (CR2) 2023; 14
Meyer (CR35) 2007; 446
Huang (CR12) 2018; 9
Kidambi (CR25) 2017; 29
Kaplan (CR26) 2017; 46
Dai (CR5) 2023; 1
He (CR28) 2020; 30
Willems, Rycroft, Kazi, Meza, Haranczyk (CR73) 2012; 149
Bunch (CR38) 2008; 8
Gao (CR37) 2019; 13
CR3
CR6
Wang (CR24) 2015; 10
Cheng (CR31) 2020; 20
Deng, Wang, An, Li, Hu (CR62) 2020; 479
Koenig, Wang, Pellegrino, Bunch (CR21) 2012; 7
CR8
Kidambi (CR9) 2018; 10
Huang, Zhang, Li, Shi (CR39) 2015; 6
CR46
Song, Yu, Ham, Kim (CR67) 2018; 18
Jang, Bakli, Chakraborty, Karnik (CR30) 2022; 34
Lee (CR36) 2021; 618
Wang (CR71) 2020; 11
Oostenbrink, Villa, Mark, Van Gunsteren (CR75) 2004; 25
Hsu (CR29) 2021; 15
Shen (CR14) 2021; 7
Lu (CR43) 2020; 19
Tan (CR65) 2020; 19
Moreno (CR23) 2018; 360
Abraham (CR66) 2017; 12
Ren (CR72) 2015; 6
Celebi (CR16) 2014; 344
Guo (CR58) 2020; 14
Chen (CR41) 2017; 550
Zhang (CR44) 2021; 15
Biederman, Miles, Vastola, Walker (CR48) 1976; 14
Zhou, Hu, Wang, Mi (CR33) 2020; 611
Kang (CR69) 2023; 14
Yang (CR10) 2019; 364
Wang (CR22) 2017; 12
Zhu (CR34) 2016; 12
Lu, Liu, Wang, Zhang (CR59) 2022; 10
Zhou (CR56) 2020; 11
Li (CR61) 2020; 604
Qian (CR68) 2021; 143
Wang (CR4) 2022; 5
Zhou, Li, Rehman, Lai (CR55) 2022; 45
Zhu (CR70) 2020; 14
Huang (CR52) 2021; 7
Cheng, Iyengar, Karnik (CR11) 2021; 16
Wang (CR40) 2018; 9
Lu (CR13) 2021; 118
Liu, Jin, Xu (CR20) 2015; 44
Zhou (CR54) 2022; 32
Wang, Williams, Boutilier, Kidambi, Karnik (CR15) 2017; 17
Huang (CR45) 2022; 34
Gu (CR57) 2013; 25
Zhou (CR53) 2021; 15
Li (CR49) 2022; 2
Bing (CR64) 2021; 4
Yamada (CR51) 2014; 136
Schüttelkopf, Van Aalten (CR76) 2004; 60
Yuan (CR19) 2022; 34
Bae (CR7) 2010; 5
Hess, Kutzner, Van Der Spoel, Lindahl (CR74) 2008; 4
S Huang (48419_CR45) 2022; 34
M Wang (48419_CR4) 2022; 5
S Huang (48419_CR52) 2021; 7
X Li (48419_CR32) 2009; 324
JC Meyer (48419_CR35) 2007; 446
Y Yamada (48419_CR51) 2014; 136
Y Lu (48419_CR59) 2022; 10
L Wang (48419_CR22) 2017; 12
J-h Song (48419_CR67) 2018; 18
L Shen (48419_CR14) 2021; 7
G Liu (48419_CR20) 2015; 44
D Guo (48419_CR58) 2020; 14
48419_CR6
48419_CR8
Z Yuan (48419_CR19) 2022; 34
PR Kidambi (48419_CR9) 2018; 10
J Abraham (48419_CR66) 2017; 12
S Bae (48419_CR7) 2010; 5
D Jang (48419_CR30) 2022; 34
L Chen (48419_CR41) 2017; 550
Z Zhou (48419_CR55) 2022; 45
C Oostenbrink (48419_CR75) 2004; 25
M Zhang (48419_CR44) 2021; 15
TF Willems (48419_CR73) 2012; 149
J Zhu (48419_CR70) 2020; 14
K Celebi (48419_CR16) 2014; 344
R Wang (48419_CR2) 2023; 14
S Gao (48419_CR37) 2019; 13
R Dai (48419_CR5) 2023; 1
SP Koenig (48419_CR21) 2012; 7
CE Ren (48419_CR72) 2015; 6
PR Kidambi (48419_CR25) 2017; 29
G He (48419_CR27) 2019; 12
J Li (48419_CR61) 2020; 604
PR Kidambi (48419_CR18) 2018; 30
J Lu (48419_CR43) 2020; 19
Y Lu (48419_CR13) 2021; 118
S Goutham (48419_CR42) 2023; 18
Y Kang (48419_CR69) 2023; 14
B Hess (48419_CR74) 2008; 4
L Huang (48419_CR39) 2015; 6
S Bing (48419_CR64) 2021; 4
W-C Lee (48419_CR36) 2021; 618
Z Zhou (48419_CR56) 2020; 11
F Sheng (48419_CR63) 2021; 33
C Cheng (48419_CR11) 2021; 16
C Gu (48419_CR57) 2013; 25
RM DuChanois (48419_CR1) 2023; 1
P Cheng (48419_CR31) 2020; 20
L Wang (48419_CR24) 2015; 10
Z Zhou (48419_CR33) 2020; 611
JS Bunch (48419_CR38) 2008; 8
C Moreno (48419_CR23) 2018; 360
P Wang (48419_CR40) 2018; 9
Y Qian (48419_CR68) 2021; 143
Z Zhou (48419_CR54) 2022; 32
48419_CR3
L Wang (48419_CR15) 2017; 17
H Fan (48419_CR60) 2023; 17
48419_CR46
G He (48419_CR28) 2020; 30
J Wang (48419_CR71) 2020; 11
Y Yang (48419_CR10) 2019; 364
Y Zhu (48419_CR34) 2016; 12
D Biederman (48419_CR48) 1976; 14
Z Zhou (48419_CR53) 2021; 15
K-J Hsu (48419_CR29) 2021; 15
S Li (48419_CR49) 2022; 2
S Huang (48419_CR12) 2018; 9
AW Schüttelkopf (48419_CR76) 2004; 60
M Rezaei (48419_CR47) 2022; 61
L Deng (48419_CR62) 2020; 479
SP Surwade (48419_CR50) 2015; 10
H Li (48419_CR17) 2013; 342
A Kaplan (48419_CR26) 2017; 46
R Tan (48419_CR65) 2020; 19
References_xml – volume: 143
  start-page: 5080
  year: 2021
  end-page: 5090
  ident: CR68
  article-title: Enhanced ion sieving of graphene oxide membranes via surface amine functionalization
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00575
– volume: 19
  start-page: 767
  year: 2020
  end-page: 774
  ident: CR43
  article-title: Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0634-7
– volume: 61
  start-page: e202200321
  year: 2022
  ident: CR47
  article-title: Demonstrating and unraveling a controlled nanometer‐scale expansion of the vacancy defects in graphene by CO2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200321
– volume: 7
  year: 2021
  ident: CR52
  article-title: Millisecond lattice gasification for high-density CO2-and O2-sieving nanopores in single-layer graphene
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf0116
– volume: 10
  start-page: 785
  year: 2015
  end-page: 790
  ident: CR24
  article-title: Molecular valves for controlling gas phase transport made from discrete ångström-sized pores in graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.158
– volume: 12
  start-page: 509
  year: 2017
  end-page: 522
  ident: CR22
  article-title: Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.72
– volume: 12
  start-page: 3305
  year: 2019
  end-page: 3312
  ident: CR27
  article-title: High-permeance polymer-functionalized single-layer graphene membranes that surpass the postcombustion carbon capture target
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01238A
– volume: 25
  start-page: 3443
  year: 2013
  end-page: 3448
  ident: CR57
  article-title: Electrochemical route to fabricate film‐like conjugated microporous polymers and application for organic electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300839
– volume: 550
  start-page: 380
  year: 2017
  end-page: 383
  ident: CR41
  article-title: Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
  publication-title: Nature
  doi: 10.1038/nature24044
– volume: 136
  start-page: 2232
  year: 2014
  end-page: 2235
  ident: CR51
  article-title: Subnanometer vacancy defects introduced on graphene by oxygen gas
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4117268
– volume: 12
  start-page: 5034
  year: 2016
  end-page: 5041
  ident: CR34
  article-title: Single‐walled carbon nanotube film supported nanofiltration membrane with a nearly 10 nm thick polyamide selective layer for high‐flux and high‐rejection desalination
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 45
  start-page: 1
  year: 2022
  end-page: 14
  ident: CR55
  article-title: Conjugated microporous polymer membranes for chemical separations
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2022.01.027
– volume: 118
  year: 2021
  ident: CR13
  article-title: Monolayer graphene membranes for molecular separation in high-temperature harsh organic solvents
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2111360118
– ident: CR8
– volume: 344
  start-page: 289
  year: 2014
  end-page: 292
  ident: CR16
  article-title: Ultimate permeation across atomically thin porous graphene
  publication-title: Science
  doi: 10.1126/science.1249097
– volume: 9
  year: 2018
  ident: CR40
  article-title: Ultrafast ion sieving using nanoporous polymeric membranes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02941-6
– volume: 34
  start-page: 2108940
  year: 2022
  ident: CR30
  article-title: Molecular self‐assembly enables tuning of nanopores in atomically thin graphene membranes for highly selective transport
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108940
– volume: 8
  start-page: 2458
  year: 2008
  end-page: 2462
  ident: CR38
  article-title: Impermeable atomic membranes from graphene sheets
  publication-title: Nano Lett.
  doi: 10.1021/nl801457b
– volume: 29
  year: 2017
  ident: CR25
  article-title: Nanoporous atomically thin graphene membranes for desalting and dialysis applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700277
– ident: CR46
– volume: 13
  start-page: 5278
  year: 2019
  end-page: 5290
  ident: CR37
  article-title: Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09761
– volume: 17
  start-page: 3081
  year: 2017
  end-page: 3088
  ident: CR15
  article-title: Single-layer graphene membranes withstand ultrahigh applied pressure
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00442
– volume: 1
  start-page: 281
  year: 2023
  end-page: 290
  ident: CR5
  article-title: Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification
  publication-title: Nat. Water
  doi: 10.1038/s44221-022-00010-3
– volume: 5
  start-page: 518
  year: 2022
  end-page: 526
  ident: CR4
  article-title: Ultrafast seawater desalination with covalent organic framework membranes
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-00870-3
– volume: 14
  year: 2023
  ident: CR2
  article-title: Pyro-layered heterostructured nanosheet membrane for hydrogen separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37932-9
– volume: 30
  year: 2020
  ident: CR28
  article-title: Synergistic CO2‐sieving from polymer with intrinsic microporosity masking nanoporous single‐layer graphene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003979
– volume: 5
  start-page: 574
  year: 2010
  end-page: 578
  ident: CR7
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 324
  start-page: 1312
  year: 2009
  end-page: 1314
  ident: CR32
  article-title: Large-area synthesis of high-quality and uniform graphene films on copper foils
  publication-title: science
  doi: 10.1126/science.1171245
– volume: 342
  start-page: 95
  year: 2013
  end-page: 98
  ident: CR17
  article-title: Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation
  publication-title: Science
  doi: 10.1126/science.1236686
– volume: 7
  start-page: 728
  year: 2012
  end-page: 732
  ident: CR21
  article-title: Selective molecular sieving through porous graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.162
– volume: 604
  start-page: 118050
  year: 2020
  ident: CR61
  article-title: Fabrication and characterization of carbon nanotubes-based porous composite forward osmosis membrane: flux performance, separation mechanism, and potential application
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118050
– volume: 18
  start-page: 596
  year: 2023
  end-page: 601
  ident: CR42
  article-title: Beyond steric selectivity of ions using ångström-scale capillaries
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01337-y
– volume: 44
  start-page: 5016
  year: 2015
  end-page: 5030
  ident: CR20
  article-title: Graphene-based membranes
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00423J
– volume: 360
  start-page: 199
  year: 2018
  end-page: 203
  ident: CR23
  article-title: Bottom-up synthesis of multifunctional nanoporous graphene
  publication-title: Science
  doi: 10.1126/science.aar2009
– volume: 15
  start-page: 11970
  year: 2021
  end-page: 11980
  ident: CR53
  article-title: Precise sub-angstrom ion separation using conjugated microporous polymer membranes
  publication-title: Acs Nano
  doi: 10.1021/acsnano.1c03194
– volume: 18
  start-page: 5506
  year: 2018
  end-page: 5513
  ident: CR67
  article-title: Tunable ion sieving of graphene membranes through the control of nitrogen-bonding configuration
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01904
– volume: 11
  year: 2020
  ident: CR71
  article-title: Ion sieving by a two-dimensional Ti3C2T x alginate lamellar membrane with stable interlayer spacing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17373-4
– volume: 10
  start-page: 10369
  year: 2018
  end-page: 10378
  ident: CR9
  article-title: A scalable route to nanoporous large-area atomically thin graphene membranes by roll-to-roll chemical vapor deposition and polymer support casting
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/acsami.8b00846
– volume: 618
  year: 2021
  ident: CR36
  article-title: Centimeter-scale gas-sieving nanoporous single-layer graphene membrane
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118745
– volume: 6
  start-page: 2806
  year: 2015
  end-page: 2815
  ident: CR39
  article-title: Graphene-based membranes for molecular separation
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00914
– volume: 9
  year: 2018
  ident: CR12
  article-title: Single-layer graphene membranes by crack-free transfer for gas mixture separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04904-3
– volume: 1
  start-page: 37
  year: 2023
  end-page: 46
  ident: CR1
  article-title: Prospects of metal recovery from wastewater and brine
  publication-title: Nat. Water
  doi: 10.1038/s44221-022-00006-z
– volume: 7
  year: 2021
  ident: CR14
  article-title: Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg6263
– volume: 12
  start-page: 546
  year: 2017
  end-page: 550
  ident: CR66
  article-title: Tunable sieving of ions using graphene oxide membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.21
– volume: 14
  start-page: 15306
  year: 2020
  end-page: 15316
  ident: CR70
  article-title: Precisely tunable ion sieving with an Al13–Ti3C2T x lamellar membrane by controlling interlayer spacing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05649
– volume: 364
  start-page: 1057
  year: 2019
  end-page: 1062
  ident: CR10
  article-title: Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration
  publication-title: Science
  doi: 10.1126/science.aau5321
– volume: 32
  year: 2022
  ident: CR54
  article-title: Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108672
– volume: 4
  start-page: 435
  year: 2008
  end-page: 447
  ident: CR74
  article-title: GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 10
  start-page: 459
  year: 2015
  end-page: 464
  ident: CR50
  article-title: Water desalination using nanoporous single-layer graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.37
– volume: 60
  start-page: 1355
  year: 2004
  end-page: 1363
  ident: CR76
  article-title: PRODRG: a tool for high-throughput crystallography of protein–ligand complexes
  publication-title: Acta Crystallogr. Sect. D: Biol. Crystallogr.
  doi: 10.1107/S0907444904011679
– volume: 6
  start-page: 4026
  year: 2015
  end-page: 4031
  ident: CR72
  article-title: Charge-and size-selective ion sieving through Ti3C2T x MXene membranes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01895
– ident: CR6
– volume: 2
  start-page: 723
  year: 2022
  end-page: 730
  ident: CR49
  article-title: Structure evolution of graphitic surface upon oxidation: insights by scanning tunneling microscopy
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00570
– volume: 11
  year: 2020
  ident: CR56
  article-title: Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19182-1
– volume: 15
  start-page: 5209
  year: 2021
  end-page: 5220
  ident: CR44
  article-title: Designing biomimic two-dimensional ionic transport channels for efficient ion sieving
  publication-title: ACS nano
  doi: 10.1021/acsnano.0c10451
– volume: 14
  start-page: 17163
  year: 2020
  end-page: 17173
  ident: CR58
  article-title: Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li–S batteries
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06944
– volume: 14
  year: 2023
  ident: CR69
  article-title: Nanoconfinement enabled non-covalently decorated MXene membranes for ion-sieving
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39533-y
– volume: 20
  start-page: 5951
  year: 2020
  end-page: 5959
  ident: CR31
  article-title: Facile size-selective defect sealing in large-area atomically thin graphene membranes for sub-nanometer scale separations
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01934
– volume: 33
  year: 2021
  ident: CR63
  article-title: Efficient ion sieving in covalent organic framework membranes with sub‐2‐nanometer channels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104404
– volume: 446
  start-page: 60
  year: 2007
  end-page: 63
  ident: CR35
  article-title: The structure of suspended graphene sheets
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 17
  start-page: 7584
  year: 2023
  end-page: 7594
  ident: CR60
  article-title: Pore-in-pore engineering in a covalent organic framework membrane for gas separation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12774
– volume: 14
  start-page: 351
  year: 1976
  end-page: 356
  ident: CR48
  article-title: Carbon-carbon dioxide reaction: kinetics at low pressures and hydrogen inhibition
  publication-title: Carbon
  doi: 10.1016/0008-6223(76)90009-9
– volume: 25
  start-page: 1656
  year: 2004
  end-page: 1676
  ident: CR75
  article-title: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force‐field parameter sets 53A5 and 53A6
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20090
– volume: 16
  start-page: 989
  year: 2021
  end-page: 995
  ident: CR11
  article-title: Molecular size-dependent subcontinuum solvent permeation and ultrafast nanofiltration across nanoporous graphene membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00933-0
– ident: CR3
– volume: 30
  year: 2018
  ident: CR18
  article-title: Facile fabrication of large‐area atomically thin membranes by direct synthesis of graphene with nanoscale porosity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804977
– volume: 46
  start-page: 4530
  year: 2017
  end-page: 4571
  ident: CR26
  article-title: Current and future directions in electron transfer chemistry of graphene
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00181A
– volume: 479
  start-page: 114311
  year: 2020
  ident: CR62
  article-title: Towards enhanced antifouling and flux performances of thin-film composite forward osmosis membrane via constructing a sandwich-like carbon nanotubes-coated support
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114311
– volume: 4
  start-page: 2027
  year: 2021
  end-page: 2038
  ident: CR64
  article-title: Bio-inspired construction of ion conductive pathway in covalent organic framework membranes for efficient lithium extraction
  publication-title: Matter
  doi: 10.1016/j.matt.2021.03.017
– volume: 34
  year: 2022
  ident: CR45
  article-title: In situ nucleation‐decoupled and site‐specific incorporation of Å‐scale pores in graphene via epoxidation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206627
– volume: 611
  start-page: 118273
  year: 2020
  ident: CR33
  article-title: Carbon nanotube-supported polyamide membrane with minimized internal concentration polarization for both aqueous and organic solvent forward osmosis process
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118273
– volume: 34
  start-page: 2201472
  year: 2022
  ident: CR19
  article-title: Gas separations using nanoporous atomically thin membranes: recent theoretical, simulation, and experimental advances
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201472
– volume: 10
  start-page: 20101
  year: 2022
  end-page: 20110
  ident: CR59
  article-title: Electropolymerized thin films with a microporous architecture enabling molecular sieving in harsh organic solvents under high temperature
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02178A
– volume: 15
  start-page: 13230
  year: 2021
  end-page: 13239
  ident: CR29
  article-title: Multipulsed millisecond ozone gasification for predictable tuning of nucleation and nucleation-decoupled nanopore expansion in graphene for carbon capture
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02927
– volume: 149
  start-page: 134
  year: 2012
  end-page: 141
  ident: CR73
  article-title: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2011.08.020
– volume: 19
  start-page: 195
  year: 2020
  end-page: 202
  ident: CR65
  article-title: Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0536-8
– volume: 25
  start-page: 3443
  year: 2013
  ident: 48419_CR57
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201300839
– volume: 550
  start-page: 380
  year: 2017
  ident: 48419_CR41
  publication-title: Nature
  doi: 10.1038/nature24044
– volume: 45
  start-page: 1
  year: 2022
  ident: 48419_CR55
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2022.01.027
– volume: 17
  start-page: 7584
  year: 2023
  ident: 48419_CR60
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c12774
– volume: 18
  start-page: 5506
  year: 2018
  ident: 48419_CR67
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b01904
– volume: 5
  start-page: 574
  year: 2010
  ident: 48419_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 14
  start-page: 351
  year: 1976
  ident: 48419_CR48
  publication-title: Carbon
  doi: 10.1016/0008-6223(76)90009-9
– volume: 12
  start-page: 509
  year: 2017
  ident: 48419_CR22
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.72
– volume: 60
  start-page: 1355
  year: 2004
  ident: 48419_CR76
  publication-title: Acta Crystallogr. Sect. D: Biol. Crystallogr.
  doi: 10.1107/S0907444904011679
– volume: 344
  start-page: 289
  year: 2014
  ident: 48419_CR16
  publication-title: Science
  doi: 10.1126/science.1249097
– volume: 479
  start-page: 114311
  year: 2020
  ident: 48419_CR62
  publication-title: Desalination
  doi: 10.1016/j.desal.2020.114311
– volume: 11
  year: 2020
  ident: 48419_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19182-1
– volume: 149
  start-page: 134
  year: 2012
  ident: 48419_CR73
  publication-title: Micropor. Mesopor. Mater.
  doi: 10.1016/j.micromeso.2011.08.020
– volume: 10
  start-page: 20101
  year: 2022
  ident: 48419_CR59
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02178A
– volume: 14
  year: 2023
  ident: 48419_CR69
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39533-y
– volume: 5
  start-page: 518
  year: 2022
  ident: 48419_CR4
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-022-00870-3
– volume: 7
  year: 2021
  ident: 48419_CR52
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf0116
– volume: 17
  start-page: 3081
  year: 2017
  ident: 48419_CR15
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00442
– volume: 342
  start-page: 95
  year: 2013
  ident: 48419_CR17
  publication-title: Science
  doi: 10.1126/science.1236686
– volume: 32
  year: 2022
  ident: 48419_CR54
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202108672
– volume: 9
  year: 2018
  ident: 48419_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04904-3
– volume: 61
  start-page: e202200321
  year: 2022
  ident: 48419_CR47
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202200321
– volume: 29
  year: 2017
  ident: 48419_CR25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700277
– volume: 12
  start-page: 546
  year: 2017
  ident: 48419_CR66
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.21
– ident: 48419_CR3
  doi: 10.1038/s41586-023-05888-x
– ident: 48419_CR6
  doi: 10.1063/1.5035295
– volume: 604
  start-page: 118050
  year: 2020
  ident: 48419_CR61
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118050
– volume: 324
  start-page: 1312
  year: 2009
  ident: 48419_CR32
  publication-title: science
  doi: 10.1126/science.1171245
– volume: 1
  start-page: 37
  year: 2023
  ident: 48419_CR1
  publication-title: Nat. Water
  doi: 10.1038/s44221-022-00006-z
– volume: 10
  start-page: 459
  year: 2015
  ident: 48419_CR50
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.37
– volume: 8
  start-page: 2458
  year: 2008
  ident: 48419_CR38
  publication-title: Nano Lett.
  doi: 10.1021/nl801457b
– volume: 25
  start-page: 1656
  year: 2004
  ident: 48419_CR75
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20090
– volume: 136
  start-page: 2232
  year: 2014
  ident: 48419_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4117268
– volume: 11
  year: 2020
  ident: 48419_CR71
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17373-4
– volume: 12
  start-page: 3305
  year: 2019
  ident: 48419_CR27
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01238A
– volume: 6
  start-page: 4026
  year: 2015
  ident: 48419_CR72
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01895
– volume: 44
  start-page: 5016
  year: 2015
  ident: 48419_CR20
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00423J
– volume: 446
  start-page: 60
  year: 2007
  ident: 48419_CR35
  publication-title: Nature
  doi: 10.1038/nature05545
– volume: 46
  start-page: 4530
  year: 2017
  ident: 48419_CR26
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00181A
– volume: 14
  start-page: 15306
  year: 2020
  ident: 48419_CR70
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c05649
– volume: 34
  start-page: 2108940
  year: 2022
  ident: 48419_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108940
– volume: 14
  year: 2023
  ident: 48419_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37932-9
– volume: 360
  start-page: 199
  year: 2018
  ident: 48419_CR23
  publication-title: Science
  doi: 10.1126/science.aar2009
– volume: 10
  start-page: 785
  year: 2015
  ident: 48419_CR24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.158
– volume: 618
  year: 2021
  ident: 48419_CR36
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118745
– volume: 15
  start-page: 11970
  year: 2021
  ident: 48419_CR53
  publication-title: Acs Nano
  doi: 10.1021/acsnano.1c03194
– volume: 34
  start-page: 2201472
  year: 2022
  ident: 48419_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201472
– volume: 15
  start-page: 13230
  year: 2021
  ident: 48419_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02927
– volume: 15
  start-page: 5209
  year: 2021
  ident: 48419_CR44
  publication-title: ACS nano
  doi: 10.1021/acsnano.0c10451
– volume: 33
  year: 2021
  ident: 48419_CR63
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202104404
– volume: 1
  start-page: 281
  year: 2023
  ident: 48419_CR5
  publication-title: Nat. Water
  doi: 10.1038/s44221-022-00010-3
– volume: 7
  year: 2021
  ident: 48419_CR14
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg6263
– volume: 9
  year: 2018
  ident: 48419_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-02941-6
– volume: 364
  start-page: 1057
  year: 2019
  ident: 48419_CR10
  publication-title: Science
  doi: 10.1126/science.aau5321
– volume: 34
  year: 2022
  ident: 48419_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202206627
– volume: 10
  start-page: 10369
  year: 2018
  ident: 48419_CR9
  publication-title: ACS Appl. Mater. interfaces
  doi: 10.1021/acsami.8b00846
– volume: 30
  year: 2018
  ident: 48419_CR18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804977
– volume: 4
  start-page: 2027
  year: 2021
  ident: 48419_CR64
  publication-title: Matter
  doi: 10.1016/j.matt.2021.03.017
– volume: 20
  start-page: 5951
  year: 2020
  ident: 48419_CR31
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01934
– volume: 4
  start-page: 435
  year: 2008
  ident: 48419_CR74
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 16
  start-page: 989
  year: 2021
  ident: 48419_CR11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00933-0
– volume: 118
  year: 2021
  ident: 48419_CR13
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.2111360118
– volume: 18
  start-page: 596
  year: 2023
  ident: 48419_CR42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-023-01337-y
– ident: 48419_CR46
  doi: 10.1021/jacsau.3c00395
– volume: 7
  start-page: 728
  year: 2012
  ident: 48419_CR21
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.162
– volume: 19
  start-page: 767
  year: 2020
  ident: 48419_CR43
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0634-7
– volume: 611
  start-page: 118273
  year: 2020
  ident: 48419_CR33
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118273
– volume: 14
  start-page: 17163
  year: 2020
  ident: 48419_CR58
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06944
– volume: 13
  start-page: 5278
  year: 2019
  ident: 48419_CR37
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09761
– ident: 48419_CR8
  doi: 10.1063/1.4776707
– volume: 30
  year: 2020
  ident: 48419_CR28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003979
– volume: 2
  start-page: 723
  year: 2022
  ident: 48419_CR49
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00570
– volume: 6
  start-page: 2806
  year: 2015
  ident: 48419_CR39
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00914
– volume: 12
  start-page: 5034
  year: 2016
  ident: 48419_CR34
  publication-title: Small
  doi: 10.1002/smll.201601253
– volume: 19
  start-page: 195
  year: 2020
  ident: 48419_CR65
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0536-8
– volume: 143
  start-page: 5080
  year: 2021
  ident: 48419_CR68
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00575
SSID ssj0000391844
Score 2.5405216
Snippet The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux....
Abstract The preparation of atom-thick porous lattice hosting Å-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4006
SubjectTerms 147/135
147/143
147/3
639/301/357/918/1055
639/638/898
639/925/918/1053
Electrochemistry
Fabrication
Graphene
Humanities and Social Sciences
Ion flux
Lithium ions
Magnesium
Masks
Membranes
multidisciplinary
Polymers
Pore size
Pore size distribution
Pores
Science
Science (multidisciplinary)
Selectivity
Separation
Size distribution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFD-MgbAX8WNqdUqEvWlYmpyk6aPKxhAUBhvsLaRpgoLrxu71wf_ek6T3bnd-vQjpS5uW9Jfz2TS_A7AvfEhC9YZHaSJHFZF74UfemQHJnyovQ_4O-emzOT7Dj-f6_Fapr_xPWKUHrsAdiC7pwQclbdJI2QfpY9fZvM2tC2Y0KVtf8nm3kqlig1VPqQvOu2SEsgcLLDaBXBJHi23PzYYnKoT9v4syf_1Z8s6KaXFERw_g_hxBsnd15A9hK06P4F6tKfnjMZwc1sI2YWYC4NfkcMiujYwibUrzWaGoJgvHLuIFpcpk6hgFruwq01wsIqN54nSwRays4JfTLpweHZ5-OOZz3QQeNLZL7vWgEiI1MWT4WpHG1stOREpvZArt6KPOBavSYFWUlKaOFkMIKfbY6aCewPZ0OcVnwDyBLkehh5AoEVTBSz1oevqIMVAgkBpoVxC6MHOK59IW31xZ21bWVdgdwe4K7M408GZ9z1Vl1Phr7_d5ZtY9Mxt2OUEy4mYZcf-SkQb2VvPqZhVdODJ0SP6bWgOv15dJufKKCYFPM1L60IsbYRt4WsVgPRKVixla7BuwGwKyMdTNK9PXL4XAO7O8tlJ0DbxdydLNuP6MxfP_gcUL2JFZCTIBrdqD7eX19_iS4qrl8Kqo0E-aRB2x
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFA66Ivgi3q2uEsE3DZsmaZJ5EpVdFkFBWGHeQpqLCrudcTo--O89J810GS8LnZc2U07O_STpdwh5yX3IXC40S0InpmRSzHMfmdG9gngqvQi4Dvnxkz79oj4su2VdcBvrscqdTyyOOq4CrpEfgV4qcLdwvVn_YNg1CndXawuN6-QGQpfhkS6zNPMaC6KfW6XqtzJc2qNRFc8AgYkpq9oF03vxqMD2_yvX_PvI5B_7piUcndwht2seSd9Ogr9LrqXhHrk5dZb8dZ98Pp7a24SKB8A2EHbAu0UK-TYU-7QAVYOfoxfpAgpmcHgU0le6RrCLMVGQFoMfHdOEDb4aHpCzk-Oz96esdk9goVPtlvmul1kpuHjPTQbby7H1wvAERY7IoY0-ddi2KvdWJgHFarQqhJDTQpkuyIfkYFgN6TGh3uZORN71IUM5KIMXXd_B26NKAdKB3JB2x0IXKrI4Nrg4d2WHW1o3sd0B211hu9MNeTX_Zz3halw5-h1KZh6JmNjlxmrz1VUTczjJ3gcpgFyYtAHPbYzFDyJN0FEDmYc7ubpqqKO7VKuGvJgfg4nhvgkwHyRSxsDENbcNeTSpwUyJxJaGVi0aYvcUZI_U_SfD928FxhuxXlvBTUNe73Tpkq7_8-LJ1dN4Sm4JVG8EmJWH5GC7-ZmeQd607Z8X4_gNv04VQg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFD7UFsGXUq2X0Voi-NYGM7nvY11aSsGCUKFvIZNJVLCzZXd98N_3JHMpq1UQZl5mMsPJybnm8h2A98yHxMRM08h1pFJEST3zLTW6kehPhechz0N-utTnX-TFtbreAj6ehSmb9gukZTHT4-6wDytZVBo9CpVW1jOqH8FOhm7PUj3X82leJSOeWymH8zFM2Ac-3fBBBar_ofjyz22Sv62VFhd0tge7Q-xITnpqn8JW7J7B476a5K99-Hzal7QJAwYAXaKrQYvWEoyxMcEnBZwabRu5iTeYJKORIxiyktsMcLGKBEeI4k1WsccDX3TP4ers9Gp-ToeKCTQoWa-pV41IUuLFGmYS6ltqa88Ni5jY8BTq1keVS1WlxorIMUFtrQwhpDiTRgXxAra7RRdfAfE2Kd4y1YSEKaAInqtG4d9bGQOGAKmCemShCwOaeC5q8cOVVW1hXc92h2x3he1OV3A0fXPbY2n8s_XHPDJTy4yDXR4sll_dIBcud7LxQXAkFztt0FobY_MhSBN0q5HMg3Fc3aCcK4cmTqLnxquCd9NrVKu8VoLMxxEpbbDjmtkKXvZiMFEichlDK2cV2A0B2SB18033_VuB7s74rjVnpoLjUZbu6fo7L17_X_M38IRncc8gs-IAttfLn_Etxk7r5rAoyx1t9RM-
  priority: 102
  providerName: Springer Nature
Title Electrochemical-repaired porous graphene membranes for precise ion-ion separation
URI https://link.springer.com/article/10.1038/s41467-024-48419-6
https://www.ncbi.nlm.nih.gov/pubmed/38740849
https://www.proquest.com/docview/3054303303
https://www.proquest.com/docview/3054840608
https://pubmed.ncbi.nlm.nih.gov/PMC11091207
https://doaj.org/article/07f5bac328f54407add77801957c6d6f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9QwFD7sBcEX8W51HSr4ptE2SZP0QWR2mHEZ2MXLLsxbSNNkFXY768wsuP_ek7QdGR1F6AXatJycnGvTfAfgZWasz1gpiKPCEc4cJyYzNZGi4uhPmaE2fIc8PhFHZ3w6K2Y70Jc76hi43JrahXpSZ4uLNz--37xHhX_XLhlXb5c8qjt6G8IVz0sidmEfPZMMinrchfvRMrMSE5ow0UwznhP03axbR7P9NRu-KkL6b4tD__yd8rc51eiqJnfhThdjpsNWKO7Bjmvuw6226uTNA_g0bkvf2A4rgCzQJaHlq1Nkw_x6mUYQa7SB6aW7xGQajWGKoW16FYAwli7FkSS4p0vX4obPm4dwOhmfjo5IV1mB2ILnK2KKinnOccuqTHrUS1_nhsrMYQJEvc1r44pQ0spXijmKiWytuLXWu5LLwrJHsNfMG_cEUqN8QeusqKzHVJFZQ4uqwLfX3FkMFXwCec9CbTvU8VD84kLH2W-mdMt2jWzXke1aJPBq_cxVi7nxz9aHYWTWLQNedrwwX5zrTv106GRlLKNILnZaolWXUoXFktKKWiCZB_246l4GNZpCjh4etwRerG-j-oU5FWQ-jkhsgx0XmUrgcSsGa0pYKHeoeJmA2hCQDVI37zTfvkaI74ADm9NMJvC6l6VfdP2dF0__g85ncJsGGQ8ItOwA9laLa_ccA6tVNYBdOZN4VJMPA9gfDqdfpng-HJ98_IxXR2I0iJ8sBlGrfgIJxyM0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiLUEChgJTmDVsZ3Yc0CIpdWULhLSIM3NShwbkGgyTKZC_VH8R56dpRqW3ioll4knen7-3mI7_h7Ac1ZYz8Qkp47njkrhJC1YUVGVlxLjqSi4DeuQR8f59LP8OM_mG_BrOAsTPqscfGJ01FVjwxr5DuJSorvF683iBw1Vo8Lu6lBCo4PFgTv7iVO29vX-BxzfF5zv7c7eT2lfVYDaTKYrWmSl8FLixUqmPGLSV2nBFXOY_HNv06pwWSjn5EstHMdJXKWltda7iVSZFfjaK3AV4y4LBqXmalzSCWTrWsr-aA4TeqeV0RFhHKRSy3RC87XwF6sE_Cu1_fsLzT-2aWP027sFN_u0lbztcHYbNlx9B651hSzP7sKn3a6aju3pB-gSoxw604pget-ctiTyYqNbJSfuBOfn6F8JZstkEbg1WkcQHBRv0rqOiryp78HsMtR6HzbrpnYPgBTaZ7xiWWk9zj6FLXhWZvj2SjqL2YdPIB1UaGxPZB7qaXw3cUNdaNOp3aDaTVS7yRN4Of5n0dF4XNj6XRiZsWWg4I4_NMsvprdoEzpZFlZwFBc7rTBQKKXD-Utl8ypHMbeHcTW9X2jNOYoTeDY-RosO2zSofByR2AY7njOdwFYHg1ESESooajlJQK8BZE3U9Sf1t6-RNTxQy6acqQReDVg6l-v_unh4cTeewvXp7OjQHO4fHzyCGzxAPXDbim3YXC1P3WNM2Vblk2goBMwlG-ZvLk9RzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLMEChgJTmBtYjux94AQ0K5aChVIRdqb5Tg2INFk2WyF-tP4d4ydR7U8equUXBInGo_n6cc3AE9TY33KpwV1rHBUcCeoSU1FZVEK9KfcMBvmIT8cFnufxbt5Pt-AX8NZmLCtcrCJ0VBXjQ1z5BOUS4HmFq-J77dFfNyZvVr8oKGCVFhpHcppdCJy4E5_YvrWvtzfwbF-xths9-jtHu0rDFCbi2xFTV5yLwReaZlKj_Lpq8wwmTpMBJi3WWVcHko7-VJxxzChq5Sw1no3FTK3HH97CS5LnmdBxeRcjtM7AXhdCdEf00m5mrQiGiX0iVQokU1pseYKY8WAf4W5f-_W_GPJNnrC2Q243oew5HUnczdhw9W34EpX1PL0Nnza7Srr2B6KgC7R46FhrQiG-s1JSyJGNppYcuyOMVdHW0swciaLgLPROoKCQvEmretgyZv6DhxdBFvvwmbd1O4eEKN8zqo0L63HTJRbw_Iyx79XwlmMRHwC2cBCbXtQ81Bb47uOi-tc6Y7tGtmuI9t1kcDz8ZtFB-lxbus3YWTGlgGOOz5oll90r906dLI0ljMkFzst0WlIqcJZTGmLqkAyt4dx1b2NaPWZRCfwZHyN2h2WbJD5OCKxDXa8SFUCW50YjJTwUE1RiWkCak1A1khdf1N_-xoRxAPMbMZSmcCLQZbO6Po_L-6f343HcBVVUr_fPzx4ANdYkPQAc8u3YXO1PHEPMXpblY-inhDQF6yXvwH2-FYD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical-repaired+porous+graphene+membranes+for+precise+ion-ion+separation&rft.jtitle=Nature+communications&rft.au=Zhou%2C+Zongyao&rft.au=Zhao%2C+Kangning&rft.au=Chi%2C+Heng-Yu&rft.au=Shen%2C+Yueqing&rft.date=2024-05-13&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=4006&rft_id=info:doi/10.1038%2Fs41467-024-48419-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon