An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polye...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 6905 - 21 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.10.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca
2+
under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca
2+
to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca
2+
homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Despite delivering gene-specific silencing, the use of deoxyribozymes (DNAzymes) for cancer therapy is limited by toxicity due to off-target effects. Here, the authors develop a multi-component DNAzyme, targeting both miRNA21 and HSP70, to induce tumour-specific sensitisation to photothermal therapy in preclinical models of pancreatic cancer. |
---|---|
AbstractList | Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca
2+
under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca
2+
to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca
2+
homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Despite delivering gene-specific silencing, the use of deoxyribozymes (DNAzymes) for cancer therapy is limited by toxicity due to off-target effects. Here, the authors develop a multi-component DNAzyme, targeting both miRNA21 and HSP70, to induce tumour-specific sensitisation to photothermal therapy in preclinical models of pancreatic cancer. Abstract Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation. Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca 2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca 2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca 2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation. Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation. Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.Despite delivering gene-specific silencing, the use of deoxyribozymes (DNAzymes) for cancer therapy is limited by toxicity due to off-target effects. Here, the authors develop a multi-component DNAzyme, targeting both miRNA21 and HSP70, to induce tumour-specific sensitisation to photothermal therapy in preclinical models of pancreatic cancer. Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation. |
ArticleNumber | 6905 |
Author | Chen, Xiaodong Zhou, Shichong Ma, Xiaodong Sun, Weijian Ran, Meixin Shen, Xian Zheng, Dongdong Yan, Jiaqi Liang, Danna Zhang, Hongbo |
Author_xml | – sequence: 1 givenname: Jiaqi surname: Yan fullname: Yan, Jiaqi organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University – sequence: 2 givenname: Xiaodong surname: Ma fullname: Ma, Xiaodong organization: Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University – sequence: 3 givenname: Danna orcidid: 0000-0002-8910-568X surname: Liang fullname: Liang, Danna organization: Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University – sequence: 4 givenname: Meixin surname: Ran fullname: Ran, Meixin organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University – sequence: 5 givenname: Dongdong orcidid: 0000-0001-6189-9046 surname: Zheng fullname: Zheng, Dongdong organization: Department of Ultrasound, Fudan University Shanghai Cancer Center – sequence: 6 givenname: Xiaodong surname: Chen fullname: Chen, Xiaodong organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University – sequence: 7 givenname: Shichong surname: Zhou fullname: Zhou, Shichong organization: Department of Ultrasound, Fudan University Shanghai Cancer Center – sequence: 8 givenname: Weijian surname: Sun fullname: Sun, Weijian email: fame198288@126.com organization: Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University – sequence: 9 givenname: Xian surname: Shen fullname: Shen, Xian email: shenxian@wmu.edu.cn organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University – sequence: 10 givenname: Hongbo orcidid: 0000-0002-1071-4416 surname: Zhang fullname: Zhang, Hongbo email: hongbo.zhang@abo.fi organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37903795$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxIVLwJ-Jc0JV-apUwQXOluNMdr1K7GA7lbYHfjuzuy20PdSSNSP7vTdPM_OyOPLBQ1G8puQ9JVx9SIKKuqkI45VgjSAVe1acMCJoRRvGj-7lx8VZShuCh7dUCfGiOOZNS_DKk-LPuS_NkoM12Yzb7Gw5LSOGMM1Yz-fy0_fzm-0EpTc-TMaunYdyCLHMyxRilWawbkDWvA455DXEyYzlLpp5WybwyWV3Y7ILvnS-nI23EcyujMUU4qvi-WDGBGe38bT49eXzz4tv1dWPr5cX51eVlYLmysiWQA2WNQ2j0oLtoJGttV0HXW976ATvaW1bSYYBm9MSJjlvpYR-UIzUhJ8WlwfdPpiNnqObTNzqYJzeP4S40iairRF0p2iPXeOio1a0slZ9wwnrDBDSAmc7rY8HrXnpJugtdima8YHowx_v1noVrjUlNa2ZqlHh3a1CDL8XSFlPLlkYR-MhLEkzpXC2slEtQt8-gm7CEj32ao8iu11QiHpz39I_L3dzRoA6AGwMKUUYtHV5PxZ06Ea0pndK-rBVGrdK77dKM6SyR9Q79SdJ_EBKCPYriP9tP8H6C_WP4aw |
CitedBy_id | crossref_primary_10_1021_acsnano_4c08690 crossref_primary_10_1021_acs_nanolett_4c04375 crossref_primary_10_1021_acsnano_4c17645 crossref_primary_10_1002_adfm_202406503 crossref_primary_10_1016_j_nantod_2024_102164 crossref_primary_10_1021_acsnano_4c13882 crossref_primary_10_1002_smll_202400941 crossref_primary_10_1002_advs_202401611 crossref_primary_10_1016_j_biomaterials_2024_122574 crossref_primary_10_1002_advs_202401214 crossref_primary_10_1016_j_nantod_2024_102445 crossref_primary_10_1016_j_addr_2025_115519 crossref_primary_10_1002_anie_202424684 crossref_primary_10_1002_smll_202405231 crossref_primary_10_1016_j_ajps_2024_100989 crossref_primary_10_1016_j_mtbio_2024_101272 crossref_primary_10_1016_j_snb_2025_137260 crossref_primary_10_1021_acsnano_4c01780 crossref_primary_10_1016_j_colsurfa_2024_134346 crossref_primary_10_1002_anie_202417363 crossref_primary_10_1002_smtd_202401160 crossref_primary_10_1007_s40820_025_01665_9 crossref_primary_10_1002_adma_202409035 crossref_primary_10_1021_acsnano_4c05475 crossref_primary_10_1016_j_bioactmat_2025_02_040 crossref_primary_10_1021_acssensors_4c02246 crossref_primary_10_1002_smtd_202400757 crossref_primary_10_1002_advs_202308637 crossref_primary_10_1016_j_ijbiomac_2025_140116 crossref_primary_10_1021_jacs_4c14818 crossref_primary_10_1002_advs_202417676 crossref_primary_10_1016_j_biomaterials_2024_122513 crossref_primary_10_1186_s12951_024_02984_6 crossref_primary_10_1002_anie_202410380 crossref_primary_10_1016_j_bioactmat_2024_08_030 crossref_primary_10_1002_ange_202417363 crossref_primary_10_1016_j_bios_2024_117037 crossref_primary_10_1038_s41467_024_48149_9 crossref_primary_10_1021_acsnano_4c15164 crossref_primary_10_1002_adbi_202400593 crossref_primary_10_1038_s41598_024_63142_4 crossref_primary_10_1021_acsnano_3c13056 crossref_primary_10_1021_acsnano_4c09527 crossref_primary_10_1016_j_cej_2024_157036 crossref_primary_10_1002_adhm_202401602 crossref_primary_10_1002_adma_202313389 crossref_primary_10_1002_smll_202410535 crossref_primary_10_1021_acsami_4c10006 crossref_primary_10_1007_s11426_024_2294_x crossref_primary_10_1002_adfm_202406650 crossref_primary_10_1021_acsanm_4c00005 crossref_primary_10_1039_D4NR01536C crossref_primary_10_1002_adma_202414648 crossref_primary_10_1021_acs_langmuir_4c03495 crossref_primary_10_1002_ange_202410380 crossref_primary_10_1039_D4CC03774J crossref_primary_10_1021_acsnano_4c09695 crossref_primary_10_1002_agt2_723 crossref_primary_10_1016_j_nantod_2024_102311 crossref_primary_10_1016_j_cej_2024_157141 crossref_primary_10_1016_j_fmre_2024_07_008 crossref_primary_10_1021_acs_analchem_4c07071 crossref_primary_10_1002_smo_20240017 crossref_primary_10_1016_j_bbrc_2024_151155 crossref_primary_10_1021_acsmaterialslett_4c01022 crossref_primary_10_1002_ange_202424684 crossref_primary_10_1016_j_mtnano_2024_100496 crossref_primary_10_1016_j_fmre_2024_11_006 crossref_primary_10_1016_j_cej_2024_157747 crossref_primary_10_1016_j_apsb_2024_08_030 crossref_primary_10_1021_acsami_3c15593 crossref_primary_10_1016_j_bios_2024_116060 crossref_primary_10_1016_j_mattod_2024_01_004 |
Cites_doi | 10.1038/ncomms14378 10.1002/anie.202101474 10.1080/15476286.2018.1445959 10.1073/pnas.94.9.4262 10.1016/j.actbio.2019.03.044 10.1016/j.biomaterials.2015.11.025 10.1073/pnas.1908158117 10.1002/smll.202100479 10.1002/sstr.202100034 10.1039/C8CS00489G 10.1002/adma.202106773 10.1002/anie.202008413 10.1002/adfm.201702834 10.1038/s41557-021-00645-x 10.1021/jacs.6b12693 10.1073/pnas.89.6.2036 10.1002/anie.202101924 10.1186/1556-276X-6-67 10.1002/cbic.202000586 10.1002/anie.202015979 10.1021/acs.analchem.0c01592 10.1002/advs.201800049 10.1021/acsnano.0c09902 10.1016/j.cej.2021.129744 10.1016/j.bios.2020.112017 10.1111/cas.13267 10.1016/j.cclet.2013.11.012 10.1021/acssensors.5b00306 10.1158/0008-5472.CAN-09-4467 10.1038/s43018-022-00470-2 10.1021/acs.analchem.0c05444 10.1023/A:1004379319348 10.1038/s41586-021-04225-4 10.1039/D2BM00640E 10.1021/acsnano.6b06658 10.1016/j.chempr.2019.12.003 10.1177/0023677217724823 10.1371/journal.pone.0085771 10.1021/acs.analchem.0c04092 10.1021/jacs.1c03129 10.1016/j.isci.2019.100815 10.2147/IJN.S202424 10.1126/sciadv.abd6764 10.1016/j.snb.2019.01.135 10.1074/jbc.275.16.11693 10.1016/j.oceram.2021.100092 10.1002/adma.202100849 10.1002/anie.202204291 10.1016/j.cell.2007.11.028 10.1021/ja9076777 10.1002/anie.201411417 10.1038/s41467-023-38601-7 10.1002/adfm.201706124 10.1002/anie.202116569 10.1016/j.biomaterials.2020.119976 10.1126/sciadv.aat3386 10.1002/adma.202007426 10.1093/nar/gkl183 10.1021/acs.analchem.5b00220 10.1016/j.cej.2019.123043 10.1002/adfm.201909806 10.1016/j.tibtech.2020.04.012 10.1002/anie.202016442 10.1111/jphp.13137 10.1002/anie.202101744 10.1073/pnas.2016158117 10.3389/fimmu.2022.863346 10.1002/adhm.201901187 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-42740-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_b81d72334b1c49568d7302bae009e320 PMC10616286 37903795 10_1038_s41467_023_42740_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Academy of Finland (Suomen Akatemia) grantid: 347897; 336355; 353146; 337531 funderid: https://doi.org/10.13039/501100002341 – fundername: The Leading Talents in Scientific and Technological Innovation from Zhejiang Provincial Ten Thousand Talents Plan (Grant No. 2019R52021 (X. S.)), The Key Research and Development Program of Zhejiang Province (Grant No. 2021C03120 (X. S.)). The Key Research and Development Program of Wenzhou (Grant No: ZY2021003 (X. S.)) – fundername: China Food and Health International Pilot Project funded by the Finnish Ministry of Education and Culture – fundername: the National Natural Science Foundation of China (Grant No. 82071945 (S. Z.)), Shanghai Committee of Science and Technology, China (Grant No. 21S31905400 (S. Z.)), and the Shanghai Anticancer Association EYAS PROJECT (Grant No. SACA-CY22C07 (S. Z.)). – fundername: the National Natural Science Foundation (Grant Nos. 82272172 (W. S.), 81972261 (W. S.), the Medical Health Science and Technology key Project of Zhejiang Provincial and Ministry Health Commission (Grant No. WKJ-ZJ-2322 (W. S.)) – fundername: ; – fundername: ; grantid: 347897; 336355; 353146; 337531 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-a590e6ec277215cecbe759ccbbebdcdeb43d16c950ff038902533955edf820603 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:57:53 EDT 2025 Thu Aug 21 18:36:33 EDT 2025 Tue Aug 05 09:54:47 EDT 2025 Wed Aug 13 07:01:42 EDT 2025 Thu Apr 03 07:00:31 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Tue Jul 01 02:10:42 EDT 2025 Fri Feb 21 02:39:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-a590e6ec277215cecbe759ccbbebdcdeb43d16c950ff038902533955edf820603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8910-568X 0000-0002-1071-4416 0000-0001-6189-9046 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-42740-2 |
PMID | 37903795 |
PQID | 2884010388 |
PQPubID | 546298 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b81d72334b1c49568d7302bae009e320 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10616286 proquest_miscellaneous_2884675789 proquest_journals_2884010388 pubmed_primary_37903795 crossref_citationtrail_10_1038_s41467_023_42740_2 crossref_primary_10_1038_s41467_023_42740_2 springer_journals_10_1038_s41467_023_42740_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-30 |
PublicationDateYYYYMMDD | 2023-10-30 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | BorggräfeJTime-resolved structural analysis of an RNA-cleaving DNA catalystNature20226011441492022Natur.601..144B10.1038/s41586-021-04225-4 Zhang, L. et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv. Sci.5, 1800049 (2018). YinXChenBHeMHuBA homogeneous multicomponent nucleic acid enzyme assay for universal nucleic acid detection by single-particle inductively coupled plasma mass spectrometryAnal. Chem.202193495249591:CAS:528:DC%2BB3MXlvFWht7g%3D3368930210.1021/acs.analchem.0c05444 Safdar, S. et al. DNA-only, microwell-based bioassay for multiplex nucleic acid detection with single base-pair resolution using MNAzymes. Biosens. Bioelectron.152, 112017 (2020). LuchtelRAHigh-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse modelProc. Natl Acad. Sci.2020117166616772020PNAS..117.1666L1:CAS:528:DC%2BB3cXhsFKrsb0%3D31911474698341810.1073/pnas.1908158117 PatutinaOAMesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potencyProc. Natl Acad. Sci. USA202011732370323792020PNAS..11732370P1:CAS:528:DC%2BB3cXis1ygtrvJ33288723776876410.1073/pnas.2016158117 Chen, F. et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett.6, 67 (2011). WolfeBRPorubskyNJZadehJNDirksRMPierceNAConstrained multistate sequence design for nucleic acid reaction pathway engineeringJ. Am. Chem. Soc.2017139313431441:CAS:528:DC%2BC2sXisVGlsLg%3D2819193810.1021/jacs.6b12693 FanHA smart DNAzyme–MnO2 nanosystem for efficient gene silencingAngew. Chem. Int. Ed.201554480148051:CAS:528:DC%2BC2MXkvVequrg%3D10.1002/anie.201411417 Calkins, K. G. Measuring Correlation (Andrews University, 2005). WangYNguyenKSpitaleRCChaputJCA biologically stable DNAzyme that efficiently silences gene expression in cellsNat. Chem.2021133193261:CAS:528:DC%2BB3MXnsVGgu7k%3D3376736310.1038/s41557-021-00645-x LiGCLiLLiuRYRehmanMLeeWMHeat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domainProc. Natl Acad. Sci. USA199289203620401992PNAS...89.2036L1:CAS:528:DyaK38XitFWrsLo%3D15495624859110.1073/pnas.89.6.2036 YanJSelf-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapyBiomater. Sci.202210411941251:CAS:528:DC%2BB38Xhs12ls7bF3578922510.1039/D2BM00640E Wang, J. et al. Orthotopic and heterotopic murine models of pancreatic cancer exhibit different immunological microenvironments and different responses to immunotherapy. Front. Immunol.13, 863346 (2022). Yan, J. et al. Peritumoral microgel reservoir for long-term light-controlled triple-synergistic treatment of osteosarcoma with single ultra-low dose. Small17, 2100479 (2021). LiYCo-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapyCancer Sci.2017108149315031:CAS:528:DC%2BC2sXpvFCrtb0%3D28444967549792710.1111/cas.13267 SchweikleMStabilisation of amorphous calcium phosphate in polyethylene glycol hydrogelsActa Biomater.2019901321451:CAS:528:DC%2BC1MXmtlOhtbY%3D3090586310.1016/j.actbio.2019.03.044 Li, F. et al. A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angew. Chem. Int. Ed. Engl.61, e202116569 (2022). Tian, H. et al. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J.382, 123043 (2020). KebebeDDimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancerInt. J. Nanomed.201914617961951:CAS:528:DC%2BC1MXisVCmtLjN10.2147/IJN.S202424 ZhouWChenQHuangP-JJDingJLiuJDNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serumAnal. Chem.201587400140071:CAS:528:DC%2BC2MXkt1Oiur0%3D2575718610.1021/acs.analchem.5b00220 Wang, Y. et al. Engineering electronic band structure of binary thermoelectric nanocatalysts for augmented pyrocatalytic tumor nanotherapy. Adv. Mater.34, 2106773 (2022). ChangMSingle-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapyAngew. Chem. Int. Ed.20216012971129791:CAS:528:DC%2BB3MXhtVShs7bK10.1002/anie.202101924 Wang, Z. et al. An intelligent nanomachine guided by DNAzyme logic system for precise chemodynamic therapy. Angew. Chem. Int. Ed.61, e202204291 (2022). Luo, H. et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater.27, 1702834 (2017). ChenW-HOvercoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapyACS Nano201711141914311:CAS:528:DC%2BC2sXht1ylsLg%3D2810763110.1021/acsnano.6b06658 GongXA smart theranostic nanocapsule for spatiotemporally programmable photo-gene therapyAngew. Chem. Int. Ed. Engl.20205921648216551:CAS:528:DC%2BB3cXhvV2ntbnI3276781710.1002/anie.202008413 ZhouWZhangYDingJLiuJIn vitro selection in serum: RNA-cleaving DNAzymes for measuring Ca2+ and Mg2ACS Sensors201616006062016Senso..16..600Z1:CAS:528:DC%2BC28XksFCjtbc%3D10.1021/acssensors.5b00306 MoonWJYangYLiuJZn2+-dependent DNAzymes: from solution chemistry to analytical, materials and therapeutic applicationsChemBioChem2021227797891:CAS:528:DC%2BB3cXit1yhur7F3300711310.1002/cbic.202000586 WangBKGold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencingBiomaterials20167827391:CAS:528:DC%2BC2MXhvVOqt73M2664662510.1016/j.biomaterials.2015.11.025 QiCMusettiSFuLHZhuYJHuangLBiomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applicationsChem. Soc. Rev.201948269827371:CAS:528:DC%2BC1MXptlCjsbk%3D3108098710.1039/C8CS00489G Wang, K. et al. Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation. Nat. Commun.14, 2950 (2023). Xin, X. et al. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci. Adv.6, eabd6764 (2020). LimaJFCerqueiraLFigueiredoCOliveiraCAzevedoNFAnti-miRNA oligonucleotides: a comprehensive guide for designRNA Biol.20181533835229570036592772510.1080/15476286.2018.1445959 LiuCSelf-assembly of copper–DNAzyme nanohybrids for dual-catalytic tumor therapyAngew. Chem. Int. Ed.20216014324143281:CAS:528:DC%2BB3MXhtFynt7nL10.1002/anie.202101744 ÄmmäläCTargeted delivery of antisense oligonucleotides to pancreatic β-cellsSci. Adv.20184eaat33862018SciA....4.3386A30345352619268510.1126/sciadv.aat3386 Liu, S.-Y. et al. Ultrathin 2D copper(I) 1,2,4-triazolate coordination polymer nanosheets for efficient and selective gene silencing and photodynamic therapy. Adv. Mater.33, 2100849 (2021). Ding, F. et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials245, 119976 (2020). SafdarSLammertynJSpasicDRNA-cleaving NAzymes: the next big thing in biosensing?Trends Biotechnol.202038134313591:CAS:528:DC%2BB3cXptlektb0%3D3247375110.1016/j.tibtech.2020.04.012 LiuXDNA framework-encoded mineralization of calcium phosphateChem202064724851:CAS:528:DC%2BB3cXnslGnur8%3D10.1016/j.chempr.2019.12.003 YanJLymphatic clearance is the main drainage route of lamotrigine-loaded micelles following delivery to the brainJ. Pharm. Pharmacol.201971148814961:CAS:528:DC%2BC1MXhtlOlt7%2FL3131383810.1111/jphp.13137 PengHLiX-FZhangHLeXCA microRNA-initiated DNAzyme motor operating in living cellsNat. Commun.201782017NatCo...814378P28262725534350310.1038/ncomms14378 SantoroSWJoyceGFA general purpose RNA-cleaving DNA enzymeProc. Natl Acad. Sci.199794426242661997PNAS...94.4262S1:CAS:528:DyaK2sXjtVyit7w%3D91139772071010.1073/pnas.94.9.4262 WangZA bimetallic metal–organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapyAngew. Chem. Int. Ed.20216012431124371:CAS:528:DC%2BB3MXps1Gms7Y%3D10.1002/anie.202016442 MaLLiuJCatalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnologyiScience2020231008152020iSci...23j0815M1:CAS:528:DC%2BB3cXhtVKntbs%3D31954323696270610.1016/j.isci.2019.100815 YinYDNAzyme-powered three-dimensional DNA walker nanoprobe for detection amyloid beta-peptide oligomer in living cells and in vivoAnal. Chem.202092924792561:CAS:528:DC%2BB3cXhtFGmtr3I3253615310.1021/acs.analchem.0c01592 PeracchiAPreferential activation of the 8–17 deoxyribozyme by Ca 2+ ions: evidence for the identity of 8–17 with the catalytic domain of the Mg5 deoxyribozyme*J. Biol. Chem.200027511693116971:CAS:528:DC%2BD3cXisl2jsr0%3D1076678910.1074/jbc.275.16.11693 LyuMPNA-assisted DNAzymes to cleave double-stranded DNA for genetic engineering with high sequence fidelityJ. Am. Chem. Soc.2021143972497281:CAS:528:DC%2BB3MXhtlKhtLzF34156847913335510.1021/jacs.1c03129 Chen, Q.-W. et al. Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal–organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater.30, 1909806 (2020). Wu, C. et al. Acid-triggered charge-convertible graphene-based all-in-one nanocomplex for enhanced genetic phototherapy of triple-negative breast cancer. Adv. Healthc. Mater.9, e1901187 (2020). MokanyEBoneSMYoungPEDoanTBToddAVMNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switchesJ. Am. Chem. Soc.2010132105110591:CAS:528:DC%2BD1MXhs1WjsLvF2003809510.1021/ja9076777 DavisSLolloBFreierSEsauCImproved targeting of miRNA with antisense oligonucleotidesNucleic Acids Res.200634229423041:CAS:528:DC%2BD28Xks1Smt7o%3D16690972145953710.1093/nar/gkl183 Zheng, P. et al. A multichannel Ca(2+) nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater.33, e2007426 (2021). ZhuDEncoding DNA frameworks for amplified multiplexed imaging of intracellular microRNA C Liu (42740_CR39) 2021; 60 Y Li (42740_CR57) 2017; 108 JF Lima (42740_CR37) 2018; 15 WJ Moon (42740_CR43) 2021; 22 42740_CR61 42740_CR62 42740_CR64 Y Wang (42740_CR21) 2021; 13 D Zhu (42740_CR27) 2021; 93 42740_CR23 E Giovannetti (42740_CR35) 2010; 70 J Borggräfe (42740_CR14) 2022; 601 42740_CR19 X Yin (42740_CR29) 2021; 93 X Liu (42740_CR47) 2020; 6 D Zheng (42740_CR67) 2023; 22 SW Santoro (42740_CR42) 1997; 94 Y Yin (42740_CR18) 2020; 92 PT Olesen (42740_CR52) 1998; 33 42740_CR53 42740_CR10 42740_CR54 42740_CR11 42740_CR59 D Kebebe (42740_CR60) 2019; 14 W Zhou (42740_CR24) 2015; 87 F Cappellesso (42740_CR66) 2022; 3 M Chang (42740_CR7) 2021; 60 D Yi (42740_CR15) 2021; 60 S Safdar (42740_CR26) 2020; 38 L Chen (42740_CR55) 2014; 9 H Fan (42740_CR40) 2015; 54 J Yan (42740_CR65) 2022; 10 N Wang (42740_CR28) 2019; 286 42740_CR9 J Wang (42740_CR17) 2021; 60 42740_CR41 X Gong (42740_CR12) 2020; 59 42740_CR49 RA Luchtel (42740_CR56) 2020; 117 BK Wang (42740_CR2) 2016; 78 BR Wolfe (42740_CR45) 2017; 139 R-H Lai (42740_CR50) 2014; 25 OA Patutina (42740_CR58) 2020; 117 W-H Chen (42740_CR8) 2017; 11 C Qi (42740_CR48) 2019; 48 W Zhou (42740_CR32) 2016; 1 M Schweikle (42740_CR51) 2019; 90 42740_CR70 E Mokany (42740_CR25) 2010; 132 42740_CR71 AJ Smith (42740_CR68) 2017; 52 42740_CR31 C Ämmälä (42740_CR13) 2018; 4 42740_CR33 42740_CR34 S Davis (42740_CR36) 2006; 34 Y Liu (42740_CR63) 2019; 42 DE Clapham (42740_CR46) 2007; 131 MA Abdou Mohamed (42740_CR30) 2021; 15 Z Wang (42740_CR38) 2021; 60 H Peng (42740_CR20) 2017; 8 42740_CR5 L Ma (42740_CR16) 2020; 23 42740_CR6 M Lyu (42740_CR22) 2021; 143 J Yan (42740_CR69) 2019; 71 A Peracchi (42740_CR44) 2000; 275 42740_CR1 GC Li (42740_CR3) 1992; 89 42740_CR4 |
References_xml | – reference: Li, F. et al. A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angew. Chem. Int. Ed. Engl.61, e202116569 (2022). – reference: ZhouWChenQHuangP-JJDingJLiuJDNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serumAnal. Chem.201587400140071:CAS:528:DC%2BC2MXkt1Oiur0%3D2575718610.1021/acs.analchem.5b00220 – reference: Wu, C. et al. Acid-triggered charge-convertible graphene-based all-in-one nanocomplex for enhanced genetic phototherapy of triple-negative breast cancer. Adv. Healthc. Mater.9, e1901187 (2020). – reference: Zheng, P. et al. A multichannel Ca(2+) nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater.33, e2007426 (2021). – reference: OlesenPTSteenbergTChristensenEBjerrumNJElectrolytic deposition of amorphous and crystalline zinc–calcium phosphatesJ. Mater. Sci.199833305930631998JMatS..33.3059O1:CAS:528:DyaK1cXltlemtLY%3D10.1023/A:1004379319348 – reference: WangBKGold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencingBiomaterials20167827391:CAS:528:DC%2BC2MXhvVOqt73M2664662510.1016/j.biomaterials.2015.11.025 – reference: Wang, J. et al. Orthotopic and heterotopic murine models of pancreatic cancer exhibit different immunological microenvironments and different responses to immunotherapy. Front. Immunol.13, 863346 (2022). – reference: PengHLiX-FZhangHLeXCA microRNA-initiated DNAzyme motor operating in living cellsNat. Commun.201782017NatCo...814378P28262725534350310.1038/ncomms14378 – reference: Hu, Y. et al. Preparation of photothermal responsive and ROS generative gold nanocages for cancer therapy. Chem. Eng. J.421, 129744 (2021). – reference: GiovannettiEMicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activityCancer Res.201070452845381:CAS:528:DC%2BC3cXmslWgt7Y%3D2046053910.1158/0008-5472.CAN-09-4467 – reference: LimaJFCerqueiraLFigueiredoCOliveiraCAzevedoNFAnti-miRNA oligonucleotides: a comprehensive guide for designRNA Biol.20181533835229570036592772510.1080/15476286.2018.1445959 – reference: Liu, S.-Y. et al. Ultrathin 2D copper(I) 1,2,4-triazolate coordination polymer nanosheets for efficient and selective gene silencing and photodynamic therapy. Adv. Mater.33, 2100849 (2021). – reference: WangJA self-catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencingAngew. Chem. Int. Ed.202160107661077410.1002/anie.202101474 – reference: Luo, H. et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater.27, 1702834 (2017). – reference: PeracchiAPreferential activation of the 8–17 deoxyribozyme by Ca 2+ ions: evidence for the identity of 8–17 with the catalytic domain of the Mg5 deoxyribozyme*J. Biol. Chem.200027511693116971:CAS:528:DC%2BD3cXisl2jsr0%3D1076678910.1074/jbc.275.16.11693 – reference: WolfeBRPorubskyNJZadehJNDirksRMPierceNAConstrained multistate sequence design for nucleic acid reaction pathway engineeringJ. Am. Chem. Soc.2017139313431441:CAS:528:DC%2BC2sXisVGlsLg%3D2819193810.1021/jacs.6b12693 – reference: ClaphamDECalcium signalingCell2007131104710581:CAS:528:DC%2BD1cXksFGgsA%3D%3D1808309610.1016/j.cell.2007.11.028 – reference: YiDZhaoJLiLAn enzyme-activatable engineered DNAzyme sensor for cell-selective imaging of metal ionsAngew. Chem. Int. Ed. Engl.202160630063041:CAS:528:DC%2BB3MXjvVCmu74%3D3339317010.1002/anie.202015979 – reference: Tian, H. et al. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J.382, 123043 (2020). – reference: Xin, X. et al. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci. Adv.6, eabd6764 (2020). – reference: Calkins, K. G. Measuring Correlation (Andrews University, 2005). – reference: Wang, Y. et al. Engineering electronic band structure of binary thermoelectric nanocatalysts for augmented pyrocatalytic tumor nanotherapy. Adv. Mater.34, 2106773 (2022). – reference: YinXChenBHeMHuBA homogeneous multicomponent nucleic acid enzyme assay for universal nucleic acid detection by single-particle inductively coupled plasma mass spectrometryAnal. Chem.202193495249591:CAS:528:DC%2BB3MXlvFWht7g%3D3368930210.1021/acs.analchem.0c05444 – reference: LaiR-HDongP-JWangY-LLuoJ-BRedispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphateChin. Chem. Lett.2014252952981:CAS:528:DC%2BC3sXhvFOlsr%2FF10.1016/j.cclet.2013.11.012 – reference: LiYCo-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapyCancer Sci.2017108149315031:CAS:528:DC%2BC2sXpvFCrtb0%3D28444967549792710.1111/cas.13267 – reference: SchweikleMStabilisation of amorphous calcium phosphate in polyethylene glycol hydrogelsActa Biomater.2019901321451:CAS:528:DC%2BC1MXmtlOhtbY%3D3090586310.1016/j.actbio.2019.03.044 – reference: LiGCLiLLiuRYRehmanMLeeWMHeat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domainProc. Natl Acad. Sci. USA199289203620401992PNAS...89.2036L1:CAS:528:DyaK38XitFWrsLo%3D15495624859110.1073/pnas.89.6.2036 – reference: MaLLiuJCatalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnologyiScience2020231008152020iSci...23j0815M1:CAS:528:DC%2BB3cXhtVKntbs%3D31954323696270610.1016/j.isci.2019.100815 – reference: Chen, F. et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett.6, 67 (2011). – reference: Wang, Q. et al. Multifunctional shell-core nanoparticles for treatment of multidrug resistance hepatocellular carcinoma. Adv. Funct. Mater.28, 1706124 (2018). – reference: YanJSelf-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapyBiomater. Sci.202210411941251:CAS:528:DC%2BB38Xhs12ls7bF3578922510.1039/D2BM00640E – reference: PatutinaOAMesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potencyProc. Natl Acad. Sci. USA202011732370323792020PNAS..11732370P1:CAS:528:DC%2BB3cXis1ygtrvJ33288723776876410.1073/pnas.2016158117 – reference: Roohani, I., Cheong, S. & Wang, A. How to build a bone?—Hydroxyapatite or Posner’s clusters as bone minerals. Open Ceram.6, 100092 (2021). – reference: WangNSongLQiuYXingHLiJHybridization-activated spherical DNAzyme for cascading two-photon fluorescence emission: applied for intracellular miRNA measurement by two-photon microscopySens. Actuators B Chem.20192862502571:CAS:528:DC%2BC1MXisFCktLk%3D10.1016/j.snb.2019.01.135 – reference: Kozlowski, H. N. et al. A colorimetric test to differentiate patients infected with influenza from COVID-19. Small Struct. 2, 2100034 (2021). – reference: YanJLymphatic clearance is the main drainage route of lamotrigine-loaded micelles following delivery to the brainJ. Pharm. Pharmacol.201971148814961:CAS:528:DC%2BC1MXhtlOlt7%2FL3131383810.1111/jphp.13137 – reference: Ding, F. et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials245, 119976 (2020). – reference: Abdou MohamedMADiagnosing antibiotic resistance using nucleic acid enzymes and gold nanoparticlesACS Nano202115937993901:CAS:528:DC%2BB3MXhtVCiurrL3397061210.1021/acsnano.0c09902 – reference: MoonWJYangYLiuJZn2+-dependent DNAzymes: from solution chemistry to analytical, materials and therapeutic applicationsChemBioChem2021227797891:CAS:528:DC%2BB3cXit1yhur7F3300711310.1002/cbic.202000586 – reference: YinYDNAzyme-powered three-dimensional DNA walker nanoprobe for detection amyloid beta-peptide oligomer in living cells and in vivoAnal. Chem.202092924792561:CAS:528:DC%2BB3cXhtFGmtr3I3253615310.1021/acs.analchem.0c01592 – reference: Safdar, S. et al. DNA-only, microwell-based bioassay for multiplex nucleic acid detection with single base-pair resolution using MNAzymes. Biosens. Bioelectron.152, 112017 (2020). – reference: ZhengDBiomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatmentBioact. Mater.2023225675871:CAS:528:DC%2BB38XivVaiurvN36382024 – reference: ChangMSingle-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapyAngew. Chem. Int. Ed.20216012971129791:CAS:528:DC%2BB3MXhtVShs7bK10.1002/anie.202101924 – reference: Zhang, L. et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv. Sci.5, 1800049 (2018). – reference: ChenW-HOvercoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapyACS Nano201711141914311:CAS:528:DC%2BC2sXht1ylsLg%3D2810763110.1021/acsnano.6b06658 – reference: WangYNguyenKSpitaleRCChaputJCA biologically stable DNAzyme that efficiently silences gene expression in cellsNat. Chem.2021133193261:CAS:528:DC%2BB3MXnsVGgu7k%3D3376736310.1038/s41557-021-00645-x – reference: Wang, Z. et al. An intelligent nanomachine guided by DNAzyme logic system for precise chemodynamic therapy. Angew. Chem. Int. Ed.61, e202204291 (2022). – reference: ChenLAutophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cellsPLoS ONE20149e857712014PLoSO...985771C24465696389749510.1371/journal.pone.0085771 – reference: LiuCSelf-assembly of copper–DNAzyme nanohybrids for dual-catalytic tumor therapyAngew. Chem. Int. Ed.20216014324143281:CAS:528:DC%2BB3MXhtFynt7nL10.1002/anie.202101744 – reference: Chen, Q.-W. et al. Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal–organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater.30, 1909806 (2020). – reference: GongXA smart theranostic nanocapsule for spatiotemporally programmable photo-gene therapyAngew. Chem. Int. Ed. Engl.20205921648216551:CAS:528:DC%2BB3cXhvV2ntbnI3276781710.1002/anie.202008413 – reference: ÄmmäläCTargeted delivery of antisense oligonucleotides to pancreatic β-cellsSci. Adv.20184eaat33862018SciA....4.3386A30345352619268510.1126/sciadv.aat3386 – reference: ZhouWZhangYDingJLiuJIn vitro selection in serum: RNA-cleaving DNAzymes for measuring Ca2+ and Mg2ACS Sensors201616006062016Senso..16..600Z1:CAS:528:DC%2BC28XksFCjtbc%3D10.1021/acssensors.5b00306 – reference: KebebeDDimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancerInt. J. Nanomed.201914617961951:CAS:528:DC%2BC1MXisVCmtLjN10.2147/IJN.S202424 – reference: CappellessoFTargeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancerNat. Cancer20223146414831:CAS:528:DC%2BB38XjtF2hurnF36522548976787110.1038/s43018-022-00470-2 – reference: BorggräfeJTime-resolved structural analysis of an RNA-cleaving DNA catalystNature20226011441492022Natur.601..144B10.1038/s41586-021-04225-4 – reference: DavisSLolloBFreierSEsauCImproved targeting of miRNA with antisense oligonucleotidesNucleic Acids Res.200634229423041:CAS:528:DC%2BD28Xks1Smt7o%3D16690972145953710.1093/nar/gkl183 – reference: SantoroSWJoyceGFA general purpose RNA-cleaving DNA enzymeProc. Natl Acad. Sci.199794426242661997PNAS...94.4262S1:CAS:528:DyaK2sXjtVyit7w%3D91139772071010.1073/pnas.94.9.4262 – reference: MokanyEBoneSMYoungPEDoanTBToddAVMNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switchesJ. Am. Chem. Soc.2010132105110591:CAS:528:DC%2BD1MXhs1WjsLvF2003809510.1021/ja9076777 – reference: Yan, J. et al. Peritumoral microgel reservoir for long-term light-controlled triple-synergistic treatment of osteosarcoma with single ultra-low dose. Small17, 2100479 (2021). – reference: LyuMPNA-assisted DNAzymes to cleave double-stranded DNA for genetic engineering with high sequence fidelityJ. Am. Chem. Soc.2021143972497281:CAS:528:DC%2BB3MXhtlKhtLzF34156847913335510.1021/jacs.1c03129 – reference: Wang, K. et al. Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation. Nat. Commun.14, 2950 (2023). – reference: SafdarSLammertynJSpasicDRNA-cleaving NAzymes: the next big thing in biosensing?Trends Biotechnol.202038134313591:CAS:528:DC%2BB3cXptlektb0%3D3247375110.1016/j.tibtech.2020.04.012 – reference: WangZA bimetallic metal–organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapyAngew. Chem. Int. Ed.20216012431124371:CAS:528:DC%2BB3MXps1Gms7Y%3D10.1002/anie.202016442 – reference: LiuYThe targeting of non‑coding RNAs by curcumin: facts and hopes for cancer therapy (Review)Oncol. Rep.20194220341:CAS:528:DC%2BC1MXhslGks73F6549103 – reference: LuchtelRAHigh-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse modelProc. Natl Acad. Sci.2020117166616772020PNAS..117.1666L1:CAS:528:DC%2BB3cXhsFKrsb0%3D31911474698341810.1073/pnas.1908158117 – reference: ZhuDEncoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAsAnal. Chem.202193222622341:CAS:528:DC%2BB3MXmsFCnug%3D%3D3341742710.1021/acs.analchem.0c04092 – reference: SmithAJCluttonRELilleyEHansenKEABrattelidTPREPARE: guidelines for planning animal research and testingLab. Anim.20175213514128771074586231910.1177/0023677217724823 – reference: FanHA smart DNAzyme–MnO2 nanosystem for efficient gene silencingAngew. Chem. Int. Ed.201554480148051:CAS:528:DC%2BC2MXkvVequrg%3D10.1002/anie.201411417 – reference: QiCMusettiSFuLHZhuYJHuangLBiomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applicationsChem. Soc. Rev.201948269827371:CAS:528:DC%2BC1MXptlCjsbk%3D3108098710.1039/C8CS00489G – reference: LiuXDNA framework-encoded mineralization of calcium phosphateChem202064724851:CAS:528:DC%2BB3cXnslGnur8%3D10.1016/j.chempr.2019.12.003 – volume: 8 year: 2017 ident: 42740_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms14378 – volume: 60 start-page: 10766 year: 2021 ident: 42740_CR17 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101474 – volume: 15 start-page: 338 year: 2018 ident: 42740_CR37 publication-title: RNA Biol. doi: 10.1080/15476286.2018.1445959 – volume: 94 start-page: 4262 year: 1997 ident: 42740_CR42 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.94.9.4262 – volume: 90 start-page: 132 year: 2019 ident: 42740_CR51 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.03.044 – volume: 78 start-page: 27 year: 2016 ident: 42740_CR2 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.11.025 – volume: 117 start-page: 1666 year: 2020 ident: 42740_CR56 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1908158117 – ident: 42740_CR59 doi: 10.1002/smll.202100479 – ident: 42740_CR31 doi: 10.1002/sstr.202100034 – volume: 48 start-page: 2698 year: 2019 ident: 42740_CR48 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00489G – ident: 42740_CR6 doi: 10.1002/adma.202106773 – volume: 59 start-page: 21648 year: 2020 ident: 42740_CR12 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202008413 – ident: 42740_CR4 doi: 10.1002/adfm.201702834 – volume: 13 start-page: 319 year: 2021 ident: 42740_CR21 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00645-x – volume: 139 start-page: 3134 year: 2017 ident: 42740_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12693 – volume: 89 start-page: 2036 year: 1992 ident: 42740_CR3 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.89.6.2036 – volume: 60 start-page: 12971 year: 2021 ident: 42740_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101924 – ident: 42740_CR53 doi: 10.1186/1556-276X-6-67 – volume: 22 start-page: 779 year: 2021 ident: 42740_CR43 publication-title: ChemBioChem doi: 10.1002/cbic.202000586 – volume: 42 start-page: 20 year: 2019 ident: 42740_CR63 publication-title: Oncol. Rep. – volume: 60 start-page: 6300 year: 2021 ident: 42740_CR15 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202015979 – volume: 92 start-page: 9247 year: 2020 ident: 42740_CR18 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c01592 – ident: 42740_CR62 doi: 10.1002/advs.201800049 – volume: 15 start-page: 9379 year: 2021 ident: 42740_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.0c09902 – ident: 42740_CR64 doi: 10.1016/j.cej.2021.129744 – ident: 42740_CR33 doi: 10.1016/j.bios.2020.112017 – volume: 108 start-page: 1493 year: 2017 ident: 42740_CR57 publication-title: Cancer Sci. doi: 10.1111/cas.13267 – volume: 25 start-page: 295 year: 2014 ident: 42740_CR50 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2013.11.012 – volume: 1 start-page: 600 year: 2016 ident: 42740_CR32 publication-title: ACS Sensors doi: 10.1021/acssensors.5b00306 – volume: 70 start-page: 4528 year: 2010 ident: 42740_CR35 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-4467 – volume: 3 start-page: 1464 year: 2022 ident: 42740_CR66 publication-title: Nat. Cancer doi: 10.1038/s43018-022-00470-2 – volume: 93 start-page: 4952 year: 2021 ident: 42740_CR29 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c05444 – volume: 33 start-page: 3059 year: 1998 ident: 42740_CR52 publication-title: J. Mater. Sci. doi: 10.1023/A:1004379319348 – volume: 601 start-page: 144 year: 2022 ident: 42740_CR14 publication-title: Nature doi: 10.1038/s41586-021-04225-4 – volume: 10 start-page: 4119 year: 2022 ident: 42740_CR65 publication-title: Biomater. Sci. doi: 10.1039/D2BM00640E – volume: 22 start-page: 567 year: 2023 ident: 42740_CR67 publication-title: Bioact. Mater. – volume: 11 start-page: 1419 year: 2017 ident: 42740_CR8 publication-title: ACS Nano doi: 10.1021/acsnano.6b06658 – volume: 6 start-page: 472 year: 2020 ident: 42740_CR47 publication-title: Chem doi: 10.1016/j.chempr.2019.12.003 – volume: 52 start-page: 135 year: 2017 ident: 42740_CR68 publication-title: Lab. Anim. doi: 10.1177/0023677217724823 – volume: 9 start-page: e85771 year: 2014 ident: 42740_CR55 publication-title: PLoS ONE doi: 10.1371/journal.pone.0085771 – volume: 93 start-page: 2226 year: 2021 ident: 42740_CR27 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c04092 – volume: 143 start-page: 9724 year: 2021 ident: 42740_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c03129 – volume: 23 start-page: 100815 year: 2020 ident: 42740_CR16 publication-title: iScience doi: 10.1016/j.isci.2019.100815 – volume: 14 start-page: 6179 year: 2019 ident: 42740_CR60 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S202424 – ident: 42740_CR11 doi: 10.1126/sciadv.abd6764 – volume: 286 start-page: 250 year: 2019 ident: 42740_CR28 publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.01.135 – volume: 275 start-page: 11693 year: 2000 ident: 42740_CR44 publication-title: J. Biol. Chem. doi: 10.1074/jbc.275.16.11693 – ident: 42740_CR49 doi: 10.1016/j.oceram.2021.100092 – ident: 42740_CR23 doi: 10.1002/adma.202100849 – ident: 42740_CR34 doi: 10.1002/anie.202204291 – volume: 131 start-page: 1047 year: 2007 ident: 42740_CR46 publication-title: Cell doi: 10.1016/j.cell.2007.11.028 – volume: 132 start-page: 1051 year: 2010 ident: 42740_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9076777 – volume: 54 start-page: 4801 year: 2015 ident: 42740_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411417 – ident: 42740_CR70 doi: 10.1038/s41467-023-38601-7 – ident: 42740_CR54 doi: 10.1002/adfm.201706124 – ident: 42740_CR61 – ident: 42740_CR19 doi: 10.1002/anie.202116569 – ident: 42740_CR1 doi: 10.1016/j.biomaterials.2020.119976 – volume: 4 start-page: eaat3386 year: 2018 ident: 42740_CR13 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat3386 – ident: 42740_CR41 doi: 10.1002/adma.202007426 – volume: 34 start-page: 2294 year: 2006 ident: 42740_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl183 – volume: 87 start-page: 4001 year: 2015 ident: 42740_CR24 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00220 – ident: 42740_CR5 doi: 10.1016/j.cej.2019.123043 – ident: 42740_CR9 doi: 10.1002/adfm.201909806 – volume: 38 start-page: 1343 year: 2020 ident: 42740_CR26 publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.04.012 – volume: 60 start-page: 12431 year: 2021 ident: 42740_CR38 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016442 – volume: 71 start-page: 1488 year: 2019 ident: 42740_CR69 publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.13137 – volume: 60 start-page: 14324 year: 2021 ident: 42740_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202101744 – volume: 117 start-page: 32370 year: 2020 ident: 42740_CR58 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2016158117 – ident: 42740_CR71 doi: 10.3389/fimmu.2022.863346 – ident: 42740_CR10 doi: 10.1002/adhm.201901187 |
SSID | ssj0000391844 |
Score | 2.6500645 |
Snippet | Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic... Abstract Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6905 |
SubjectTerms | 14 14/19 14/32 147/135 147/143 59 631/61/350/354 631/61/54/152 631/67/1059/602 Biocompatibility Calcium (intracellular) Calcium (mitochondrial) Calcium efflux Calcium homeostasis Calcium ions Calcium phosphates Cancer Cancer therapies Cell Line, Tumor Curcumin Curcumin - pharmacology Deoxyribozymes DNA, Catalytic Efflux Ethanolamine Gene regulation Gene therapy Heat shock proteins Homeostasis Hsp70 protein Humanities and Social Sciences Humans Hydrophobicity Irradiation Laser radiation Micelles MicroRNAs - genetics Mineralization miRNA mRNA multidisciplinary Nanoparticles - chemistry Neoplasms Oligopeptides Pancreatic cancer Pancreatic Neoplasms Pancreatic Neoplasms - therapy Phototherapy - methods Photothermal Therapy Polyethylene glycol Polyethylene Glycols - chemistry PTEN protein Science Science (multidisciplinary) Toxicity Tumor suppressor genes Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpBRmJG0R1_NhNjsujqpDoiUq9WX7MqpVYp9rNHpYDv50ZO7t0eV445JI4ycj-7PnGngdjrxADAfWeqxva3NDg2hrVsKu964wE48E5OtH9dDY5PdcfL8zFjVJf5BNW0gOXjjv2SKimUintm0Bkvo2ISekdIDkAJbO1jjrvhjGV12DVoemixygZodrjlc5rAqqoWqMlJmq5p4lywv7fscxfnSV_OjHNiujkHrs7Mkg-K5LfZ7cgPWC3S03JzUP2bZa4Ww993pfZYBuefQbJdbxP-HH-_mz2dbMAnlzqF9mVEjgyVz6sF_2ypshL8h7i15f9kKOzFvizEqW14Stydx_G0E1-lTiuJYV2Bh4IP8tH7Pzkw-d3p_VYZKEORjdD7UwnYAJBIs1uTIDgYWq6ELwHH0MEr1VsJqEzYj6nZHzIkZTqjIE4p9TvQj1mBwnlf8p4iMiWOkAbLKLdBRrJHcyDCI2IoonOV6zZdrgNYwZyKoTxxeaTcNXaMkgWB8nmQbKyYq9371yX_Bt_bf2WxnHXknJn5xuIKDsiyv4LURU72qLAjhN6ZWWLljD9ta3Yy91jnIp0vuIS9OvSZkL1AbqKPSmg2Umipp3Ay1Ss3YPTnqj7T9LVZU73TUY7BRBX7M0WeT_k-nNfHP6PvnjG7kiaMqSsxRE7GJZreI4sbPAv8oT7DiZULoA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDax1EjtNTqg8ygqJPbHS3iw_puxK26S06aEc-O3MOG5W5bGHXhqncTMznm_ejL1GHvCo96zIybmhwNYC1bAVzja6AO3AWorofj2pjk_VlzN9lhxu65RWuTsT40EdOk8-8qOiRlOEunnX75Y_BE2NouhqGqFxk93CZ1WU0lXPPo8-Fup-XiuVamXw3qO1iicDKiqh0B6TotjTR7Ft_7-w5t8pk3_ETaM6mt1jdxOO5NOB8PfZDWgfsNvDZMntQ_Zr2nK76bvondniGh4zBymBvGvxx_nHk-nP7QJ4a9tuERMqgSN-5f1m0a0E1V9SDhFfnnd9rNFa4MOGWq0tX1PSe58KOPlFy_FEGcCn5564aPWInc4-fftwLNKoBeG1ynthdSOhAl8g2M61B-9gohvvnQMXfACnypBXvtFyPqeWfIiUyrLRGsKcGsDL8jE7aHH_Txn3ATFTA2iJBbS-QCHEg7mXPpdB5sG6jOW7F2586kNO4zAuTYyHl7UZiGSQSCYSyRQZezPesxy6cFy7-j3RcVxJHbTjF93qu0kCaRwC9UlRlsrlnozEOuBZVzgLCDqhLGTGDndcYJJYr80VE2bs1XgZBZKiLLaFbjOsqWhKQJOxJwPTjDspJ43Ej85YvcdOe1vdv9JenMem32S6Uxlxxt7uOO9qX_9_F8-u_xvP2Z2ChIGUsTxkB_1qAy8QZfXuZRSl3311JyY priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN4hwYns3OYZHVa1EL1CpN8t2ZmklNql2s4flwG9nxnmghYLEYS_JZDOKZzzf2DOfAV6RDQSKey7NeHFDoytSCsMu9a40ORqPzvGO7qez2em5XlyYiwPIx16YWLQfKS3jND1Wh73d6OjSFGFSTYmUTGnaPWKqdrLto6pafF5MKyvMeV5oPXTISFXc8PBeFIpk_TchzD8LJX_bLY1B6OQu3BnQo6h6fe_BATb34VZ_nuTuAfyoGuG2XRvXZHYkI2K9IJeNtw39ufhwVn3frVA0rmlXsYwSBaFW0W1X7TrlrkuuHBLXl20XO7NW9LK-Q2snNlzq3g1tm-KqETSP9JAziMC2s34I5ycfv7w_TYcDFtJgdNalzpQSZxhygtiZCRg8zk0Zgvfo61Cj16rOZqE0crlkIj7CR0qVxmC9ZNp3qR7BYUP6PwERakJKJVL-VVPOhZqAHS6DDJmsZVY7n0A2fnAbBvZxPgTjm4274Kqw_SBZGiQbB8nmCbyenrnuuTf-Kf2Ox3GSZN7seKFdf7WDHVlP8HyeK6V9Fjg1LGqa4XLvkKAmqlwmcDxagR2ceWPzgrJgfmuRwMvpNrkh7624BtttLzPjswHKBB73RjNpoualpJ9JoNgzpz1V9-80V5eR6psTdm4eTuDNaHm_9Pr7t3j6f-LP4HbOzsEhWR7DYbfe4nPCWp1_MTjXT4f7JkE priority: 102 providerName: Springer Nature |
Title | An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer |
URI | https://link.springer.com/article/10.1038/s41467-023-42740-2 https://www.ncbi.nlm.nih.gov/pubmed/37903795 https://www.proquest.com/docview/2884010388 https://www.proquest.com/docview/2884675789 https://pubmed.ncbi.nlm.nih.gov/PMC10616286 https://doaj.org/article/b81d72334b1c49568d7302bae009e320 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTUi8oPEdNioj8QaBJI7z8YBQVlamSqsQUKlvke2426Q1GWkqER7427lz0qJC4YmHJFJsJ5Z95_udfR8AL5AGNMo96fq0uREambgohqWrZCoCI5SRkk50zyfR2TQcz8RsD9bpjvoBXO5U7Sif1LS-fv3ta_sOGf5t5zKevFmGlt1R-rghKlmei0vyAUqmmDIanPdw367MPEWFJux9Z3Y33ZJPNoz_Luz5pwnlb-eoVjyNDuFujytZ1hHCPdgz5X243WWabB_Aj6xkctVUdremxTrMWhKSQXlV4sfZ-0n2vV0YVsqyWlgDS8MQz7Jmtahql_wxyaaI3VxWjfXZWuDPOt-tli3JCL7pHTrZVclwhenAqGaaqKp-CNPR6ZfhmdunXnC1CP3GlSL1TGR0gODbF9poZWKRaq2UUYUujAp54Uc6Fd58TiH6EDlxngphijkFhPf4I9gvsf9PgOkCMVRqUDMrUBszIUI-M9ee9r3C8wupHPDXA57rPi45pce4zu35OE_ybpJynKTcTlIeOPBy0-ami8rxz9onNI-bmhRR276o6ou8Z9BcIXCPA85D5WtSGpMC175ASYMg1PDAc-B4TQX5mkrzIEH9mP6aOPB8U4wMSqcusjTVqqsTUdaA1IHHHdFsesLj1MNLOJBskdNWV7dLyqtLGwScVHlyK3bg1ZryfvXr72Px9H-MxRHcCYhlSIR7x7Df1CvzDLFZowZwK57FeE9GHwZwkGXjz2N8npxOPn7Ct8NoOLC7HgPLmD8B4qw9gg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQwguiG8CA4wEJ4iWOHabHBAqjNKxradN2s3YjssmrUnXpkLhwJ_E38h7TtKpfOy2Qy6Jkzh5z8-_9w3wCnnA4r6nw5iMG8LpNMRtWIdGZ5I7aZzW5NE9GPdGR-LLsTzegF9dLgyFVXYy0QvqvLRkI9_mKaoiVM07fT87D6lrFHlXuxYaDVvsufo7qmyLd7s7SN_XnA8_HX4chW1XgdBKEVehllnkes5yxJWxtM4a15eZtcY4k9vcGZHkcc9mMppMqPocgoIkyaR0-YRqnUcJPvcaXBd4kpS9dPh5ZdOhauupEG1uDt68vRBeEuHGGArU_6KQr-1_vk3Av7Dt3yGaf_hp_fY3vAO3W9zKBg2j3YUNV9yDG00ny_o-_BwUTC-r0luDahzDfKQiBayXBT6c7YwHP-qpY4UuyqkP4HQM8TKrltNyHlK-J8UssdlJWfmcsCm-rMkNq9mCguyrNmGUnRYMJVgDdi2zxLXzB3B0JUR4CJsFzv8xMJsjRsscan45antOIKR0ExvZOMqjONcmgLj74cq2dc-p_caZ8v73JFUNkRQSSXkiKR7Am9U9s6bqx6WjPxAdVyOpYrc_Uc6_qVYAKIOKQZ8niTCxJaU0zVG2cqMdglyX8CiArY4LVCtGFuqC6QN4ubqMAoC8Orpw5bIZ06OuBFkAjxqmWc0k6WcRHjKAdI2d1qa6fqU4PfFFxslUQGnLAbztOO9iXv__F08u_4wXcHN0eLCv9nfHe0_hFqeFQUAg2oLNar50zxDhVea5X1YMvl71Ov4N3nZk8A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Bir72JfUAoJY1aClGFqNTbsrte00rEDokjZA78MH4dM2s7VXj01kMu8drZeB77zRvgOfKAwXNP-SE5N2KrEh-PYeVrlQpuhbZKUUT3w3Swfxy_OxEnW_Crq4WhtMpOJzpFnZWGfOR9nqApQt28k37epkUcjSdv5t98miBFkdZunEbDIoe2_o7m2_L1wRhp_YLzyd6nt_t-O2HANyIOK1-JNLADazhizFAYa7QditQYra3OTGZ1HGXhwKQiyHPqRIcAIYpSIWyWU9_zIMLnXoHtIVlFPdje3ZsefVx7eKj3ehLHbaUO3t5fxk4v4THpx2gNBj7fOA3d0IB_Id2_Ezb_iNq6w3ByE260KJaNGra7BVu2uA1Xm7mW9R34OSqYWlWl8w3VuIa5vEVKXy8LfDgbT0c_6pllhSrKmUvntAzRM6tWs3LhU_UnZTCx-WlZuQqxGf5YUylWsyWl3Fdt-Sg7Kxjqswb6GmaIhxd34fhSyHAPegXu_wEwkyFiSy3agRnafjZGgGlzE5gwyIIwU9qDsHvh0rRd0GkYx1fpovFRIhsiSSSSdESS3IOX63vmTQ-QC1fvEh3XK6l_t_uiXHyRrTqQGs2EIY-iWIeGTNQkQ03LtbIIeW3EAw92Oi6QrVJZynMR8ODZ-jKqA4rxqMKWq2bNgGYUpB7cb5hmvZNomAb4ER4kG-y0sdXNK8XZqWs5To4DKmL24FXHeef7-v-7eHjx33gK11CG5fuD6eEjuM5JLggVBDvQqxYr-xjhXqWftHLF4PNli_JvXh9qgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autocatalytic+multicomponent+DNAzyme+nanomachine+for+tumor-specific+photothermal+therapy+sensitization+in+pancreatic+cancer&rft.jtitle=Nature+communications&rft.au=Jiaqi+Yan&rft.au=Xiaodong+Ma&rft.au=Danna+Liang&rft.au=Meixin+Ran&rft.date=2023-10-30&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1038%2Fs41467-023-42740-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b81d72334b1c49568d7302bae009e320 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |