An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer

Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polye...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 6905 - 21
Main Authors Yan, Jiaqi, Ma, Xiaodong, Liang, Danna, Ran, Meixin, Zheng, Dongdong, Chen, Xiaodong, Zhou, Shichong, Sun, Weijian, Shen, Xian, Zhang, Hongbo
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca 2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca 2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca 2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation. Despite delivering gene-specific silencing, the use of deoxyribozymes (DNAzymes) for cancer therapy is limited by toxicity due to off-target effects. Here, the authors develop a multi-component DNAzyme, targeting both miRNA21 and HSP70, to induce tumour-specific sensitisation to photothermal therapy in preclinical models of pancreatic cancer.
AbstractList Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca 2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca 2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca 2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation. Despite delivering gene-specific silencing, the use of deoxyribozymes (DNAzymes) for cancer therapy is limited by toxicity due to off-target effects. Here, the authors develop a multi-component DNAzyme, targeting both miRNA21 and HSP70, to induce tumour-specific sensitisation to photothermal therapy in preclinical models of pancreatic cancer.
Abstract Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca 2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca 2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca 2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.Despite delivering gene-specific silencing, the use of deoxyribozymes (DNAzymes) for cancer therapy is limited by toxicity due to off-target effects. Here, the authors develop a multi-component DNAzyme, targeting both miRNA21 and HSP70, to induce tumour-specific sensitisation to photothermal therapy in preclinical models of pancreatic cancer.
Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.
ArticleNumber 6905
Author Chen, Xiaodong
Zhou, Shichong
Ma, Xiaodong
Sun, Weijian
Ran, Meixin
Shen, Xian
Zheng, Dongdong
Yan, Jiaqi
Liang, Danna
Zhang, Hongbo
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Yan
  fullname: Yan, Jiaqi
  organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University
– sequence: 2
  givenname: Xiaodong
  surname: Ma
  fullname: Ma, Xiaodong
  organization: Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University
– sequence: 3
  givenname: Danna
  orcidid: 0000-0002-8910-568X
  surname: Liang
  fullname: Liang, Danna
  organization: Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
– sequence: 4
  givenname: Meixin
  surname: Ran
  fullname: Ran, Meixin
  organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University
– sequence: 5
  givenname: Dongdong
  orcidid: 0000-0001-6189-9046
  surname: Zheng
  fullname: Zheng, Dongdong
  organization: Department of Ultrasound, Fudan University Shanghai Cancer Center
– sequence: 6
  givenname: Xiaodong
  surname: Chen
  fullname: Chen, Xiaodong
  organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University
– sequence: 7
  givenname: Shichong
  surname: Zhou
  fullname: Zhou, Shichong
  organization: Department of Ultrasound, Fudan University Shanghai Cancer Center
– sequence: 8
  givenname: Weijian
  surname: Sun
  fullname: Sun, Weijian
  email: fame198288@126.com
  organization: Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University
– sequence: 9
  givenname: Xian
  surname: Shen
  fullname: Shen, Xian
  email: shenxian@wmu.edu.cn
  organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University
– sequence: 10
  givenname: Hongbo
  orcidid: 0000-0002-1071-4416
  surname: Zhang
  fullname: Zhang, Hongbo
  email: hongbo.zhang@abo.fi
  organization: Joint Centre of Translational Medicine, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku Bioscience Centre, University of Turku and Åbo Akademi University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37903795$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLwJ-Jc0JV-apUwQXOluNMdr1K7GA7lbYHfjuzuy20PdSSNSP7vTdPM_OyOPLBQ1G8puQ9JVx9SIKKuqkI45VgjSAVe1acMCJoRRvGj-7lx8VZShuCh7dUCfGiOOZNS_DKk-LPuS_NkoM12Yzb7Gw5LSOGMM1Yz-fy0_fzm-0EpTc-TMaunYdyCLHMyxRilWawbkDWvA455DXEyYzlLpp5WybwyWV3Y7ILvnS-nI23EcyujMUU4qvi-WDGBGe38bT49eXzz4tv1dWPr5cX51eVlYLmysiWQA2WNQ2j0oLtoJGttV0HXW976ATvaW1bSYYBm9MSJjlvpYR-UIzUhJ8WlwfdPpiNnqObTNzqYJzeP4S40iairRF0p2iPXeOio1a0slZ9wwnrDBDSAmc7rY8HrXnpJugtdima8YHowx_v1noVrjUlNa2ZqlHh3a1CDL8XSFlPLlkYR-MhLEkzpXC2slEtQt8-gm7CEj32ao8iu11QiHpz39I_L3dzRoA6AGwMKUUYtHV5PxZ06Ea0pndK-rBVGrdK77dKM6SyR9Q79SdJ_EBKCPYriP9tP8H6C_WP4aw
CitedBy_id crossref_primary_10_1021_acsnano_4c08690
crossref_primary_10_1021_acs_nanolett_4c04375
crossref_primary_10_1021_acsnano_4c17645
crossref_primary_10_1002_adfm_202406503
crossref_primary_10_1016_j_nantod_2024_102164
crossref_primary_10_1021_acsnano_4c13882
crossref_primary_10_1002_smll_202400941
crossref_primary_10_1002_advs_202401611
crossref_primary_10_1016_j_biomaterials_2024_122574
crossref_primary_10_1002_advs_202401214
crossref_primary_10_1016_j_nantod_2024_102445
crossref_primary_10_1016_j_addr_2025_115519
crossref_primary_10_1002_anie_202424684
crossref_primary_10_1002_smll_202405231
crossref_primary_10_1016_j_ajps_2024_100989
crossref_primary_10_1016_j_mtbio_2024_101272
crossref_primary_10_1016_j_snb_2025_137260
crossref_primary_10_1021_acsnano_4c01780
crossref_primary_10_1016_j_colsurfa_2024_134346
crossref_primary_10_1002_anie_202417363
crossref_primary_10_1002_smtd_202401160
crossref_primary_10_1007_s40820_025_01665_9
crossref_primary_10_1002_adma_202409035
crossref_primary_10_1021_acsnano_4c05475
crossref_primary_10_1016_j_bioactmat_2025_02_040
crossref_primary_10_1021_acssensors_4c02246
crossref_primary_10_1002_smtd_202400757
crossref_primary_10_1002_advs_202308637
crossref_primary_10_1016_j_ijbiomac_2025_140116
crossref_primary_10_1021_jacs_4c14818
crossref_primary_10_1002_advs_202417676
crossref_primary_10_1016_j_biomaterials_2024_122513
crossref_primary_10_1186_s12951_024_02984_6
crossref_primary_10_1002_anie_202410380
crossref_primary_10_1016_j_bioactmat_2024_08_030
crossref_primary_10_1002_ange_202417363
crossref_primary_10_1016_j_bios_2024_117037
crossref_primary_10_1038_s41467_024_48149_9
crossref_primary_10_1021_acsnano_4c15164
crossref_primary_10_1002_adbi_202400593
crossref_primary_10_1038_s41598_024_63142_4
crossref_primary_10_1021_acsnano_3c13056
crossref_primary_10_1021_acsnano_4c09527
crossref_primary_10_1016_j_cej_2024_157036
crossref_primary_10_1002_adhm_202401602
crossref_primary_10_1002_adma_202313389
crossref_primary_10_1002_smll_202410535
crossref_primary_10_1021_acsami_4c10006
crossref_primary_10_1007_s11426_024_2294_x
crossref_primary_10_1002_adfm_202406650
crossref_primary_10_1021_acsanm_4c00005
crossref_primary_10_1039_D4NR01536C
crossref_primary_10_1002_adma_202414648
crossref_primary_10_1021_acs_langmuir_4c03495
crossref_primary_10_1002_ange_202410380
crossref_primary_10_1039_D4CC03774J
crossref_primary_10_1021_acsnano_4c09695
crossref_primary_10_1002_agt2_723
crossref_primary_10_1016_j_nantod_2024_102311
crossref_primary_10_1016_j_cej_2024_157141
crossref_primary_10_1016_j_fmre_2024_07_008
crossref_primary_10_1021_acs_analchem_4c07071
crossref_primary_10_1002_smo_20240017
crossref_primary_10_1016_j_bbrc_2024_151155
crossref_primary_10_1021_acsmaterialslett_4c01022
crossref_primary_10_1002_ange_202424684
crossref_primary_10_1016_j_mtnano_2024_100496
crossref_primary_10_1016_j_fmre_2024_11_006
crossref_primary_10_1016_j_cej_2024_157747
crossref_primary_10_1016_j_apsb_2024_08_030
crossref_primary_10_1021_acsami_3c15593
crossref_primary_10_1016_j_bios_2024_116060
crossref_primary_10_1016_j_mattod_2024_01_004
Cites_doi 10.1038/ncomms14378
10.1002/anie.202101474
10.1080/15476286.2018.1445959
10.1073/pnas.94.9.4262
10.1016/j.actbio.2019.03.044
10.1016/j.biomaterials.2015.11.025
10.1073/pnas.1908158117
10.1002/smll.202100479
10.1002/sstr.202100034
10.1039/C8CS00489G
10.1002/adma.202106773
10.1002/anie.202008413
10.1002/adfm.201702834
10.1038/s41557-021-00645-x
10.1021/jacs.6b12693
10.1073/pnas.89.6.2036
10.1002/anie.202101924
10.1186/1556-276X-6-67
10.1002/cbic.202000586
10.1002/anie.202015979
10.1021/acs.analchem.0c01592
10.1002/advs.201800049
10.1021/acsnano.0c09902
10.1016/j.cej.2021.129744
10.1016/j.bios.2020.112017
10.1111/cas.13267
10.1016/j.cclet.2013.11.012
10.1021/acssensors.5b00306
10.1158/0008-5472.CAN-09-4467
10.1038/s43018-022-00470-2
10.1021/acs.analchem.0c05444
10.1023/A:1004379319348
10.1038/s41586-021-04225-4
10.1039/D2BM00640E
10.1021/acsnano.6b06658
10.1016/j.chempr.2019.12.003
10.1177/0023677217724823
10.1371/journal.pone.0085771
10.1021/acs.analchem.0c04092
10.1021/jacs.1c03129
10.1016/j.isci.2019.100815
10.2147/IJN.S202424
10.1126/sciadv.abd6764
10.1016/j.snb.2019.01.135
10.1074/jbc.275.16.11693
10.1016/j.oceram.2021.100092
10.1002/adma.202100849
10.1002/anie.202204291
10.1016/j.cell.2007.11.028
10.1021/ja9076777
10.1002/anie.201411417
10.1038/s41467-023-38601-7
10.1002/adfm.201706124
10.1002/anie.202116569
10.1016/j.biomaterials.2020.119976
10.1126/sciadv.aat3386
10.1002/adma.202007426
10.1093/nar/gkl183
10.1021/acs.analchem.5b00220
10.1016/j.cej.2019.123043
10.1002/adfm.201909806
10.1016/j.tibtech.2020.04.012
10.1002/anie.202016442
10.1111/jphp.13137
10.1002/anie.202101744
10.1073/pnas.2016158117
10.3389/fimmu.2022.863346
10.1002/adhm.201901187
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-42740-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 21
ExternalDocumentID oai_doaj_org_article_b81d72334b1c49568d7302bae009e320
PMC10616286
37903795
10_1038_s41467_023_42740_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Academy of Finland (Suomen Akatemia)
  grantid: 347897; 336355; 353146; 337531
  funderid: https://doi.org/10.13039/501100002341
– fundername: The Leading Talents in Scientific and Technological Innovation from Zhejiang Provincial Ten Thousand Talents Plan (Grant No. 2019R52021 (X. S.)), The Key Research and Development Program of Zhejiang Province (Grant No. 2021C03120 (X. S.)). The Key Research and Development Program of Wenzhou (Grant No: ZY2021003 (X. S.))
– fundername: China Food and Health International Pilot Project funded by the Finnish Ministry of Education and Culture
– fundername: the National Natural Science Foundation of China (Grant No. 82071945 (S. Z.)), Shanghai Committee of Science and Technology, China (Grant No. 21S31905400 (S. Z.)), and the Shanghai Anticancer Association EYAS PROJECT (Grant No. SACA-CY22C07 (S. Z.)).
– fundername: the National Natural Science Foundation (Grant Nos. 82272172 (W. S.), 81972261 (W. S.), the Medical Health Science and Technology key Project of Zhejiang Provincial and Ministry Health Commission (Grant No. WKJ-ZJ-2322 (W. S.))
– fundername: ;
– fundername: ;
  grantid: 347897; 336355; 353146; 337531
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-a590e6ec277215cecbe759ccbbebdcdeb43d16c950ff038902533955edf820603
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:57:53 EDT 2025
Thu Aug 21 18:36:33 EDT 2025
Tue Aug 05 09:54:47 EDT 2025
Wed Aug 13 07:01:42 EDT 2025
Thu Apr 03 07:00:31 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Tue Jul 01 02:10:42 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-a590e6ec277215cecbe759ccbbebdcdeb43d16c950ff038902533955edf820603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8910-568X
0000-0002-1071-4416
0000-0001-6189-9046
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-42740-2
PMID 37903795
PQID 2884010388
PQPubID 546298
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_b81d72334b1c49568d7302bae009e320
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10616286
proquest_miscellaneous_2884675789
proquest_journals_2884010388
pubmed_primary_37903795
crossref_citationtrail_10_1038_s41467_023_42740_2
crossref_primary_10_1038_s41467_023_42740_2
springer_journals_10_1038_s41467_023_42740_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-30
PublicationDateYYYYMMDD 2023-10-30
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BorggräfeJTime-resolved structural analysis of an RNA-cleaving DNA catalystNature20226011441492022Natur.601..144B10.1038/s41586-021-04225-4
Zhang, L. et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv. Sci.5, 1800049 (2018).
YinXChenBHeMHuBA homogeneous multicomponent nucleic acid enzyme assay for universal nucleic acid detection by single-particle inductively coupled plasma mass spectrometryAnal. Chem.202193495249591:CAS:528:DC%2BB3MXlvFWht7g%3D3368930210.1021/acs.analchem.0c05444
Safdar, S. et al. DNA-only, microwell-based bioassay for multiplex nucleic acid detection with single base-pair resolution using MNAzymes. Biosens. Bioelectron.152, 112017 (2020).
LuchtelRAHigh-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse modelProc. Natl Acad. Sci.2020117166616772020PNAS..117.1666L1:CAS:528:DC%2BB3cXhsFKrsb0%3D31911474698341810.1073/pnas.1908158117
PatutinaOAMesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potencyProc. Natl Acad. Sci. USA202011732370323792020PNAS..11732370P1:CAS:528:DC%2BB3cXis1ygtrvJ33288723776876410.1073/pnas.2016158117
Chen, F. et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett.6, 67 (2011).
WolfeBRPorubskyNJZadehJNDirksRMPierceNAConstrained multistate sequence design for nucleic acid reaction pathway engineeringJ. Am. Chem. Soc.2017139313431441:CAS:528:DC%2BC2sXisVGlsLg%3D2819193810.1021/jacs.6b12693
FanHA smart DNAzyme–MnO2 nanosystem for efficient gene silencingAngew. Chem. Int. Ed.201554480148051:CAS:528:DC%2BC2MXkvVequrg%3D10.1002/anie.201411417
Calkins, K. G. Measuring Correlation (Andrews University, 2005).
WangYNguyenKSpitaleRCChaputJCA biologically stable DNAzyme that efficiently silences gene expression in cellsNat. Chem.2021133193261:CAS:528:DC%2BB3MXnsVGgu7k%3D3376736310.1038/s41557-021-00645-x
LiGCLiLLiuRYRehmanMLeeWMHeat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domainProc. Natl Acad. Sci. USA199289203620401992PNAS...89.2036L1:CAS:528:DyaK38XitFWrsLo%3D15495624859110.1073/pnas.89.6.2036
YanJSelf-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapyBiomater. Sci.202210411941251:CAS:528:DC%2BB38Xhs12ls7bF3578922510.1039/D2BM00640E
Wang, J. et al. Orthotopic and heterotopic murine models of pancreatic cancer exhibit different immunological microenvironments and different responses to immunotherapy. Front. Immunol.13, 863346 (2022).
Yan, J. et al. Peritumoral microgel reservoir for long-term light-controlled triple-synergistic treatment of osteosarcoma with single ultra-low dose. Small17, 2100479 (2021).
LiYCo-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapyCancer Sci.2017108149315031:CAS:528:DC%2BC2sXpvFCrtb0%3D28444967549792710.1111/cas.13267
SchweikleMStabilisation of amorphous calcium phosphate in polyethylene glycol hydrogelsActa Biomater.2019901321451:CAS:528:DC%2BC1MXmtlOhtbY%3D3090586310.1016/j.actbio.2019.03.044
Li, F. et al. A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angew. Chem. Int. Ed. Engl.61, e202116569 (2022).
Tian, H. et al. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J.382, 123043 (2020).
KebebeDDimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancerInt. J. Nanomed.201914617961951:CAS:528:DC%2BC1MXisVCmtLjN10.2147/IJN.S202424
ZhouWChenQHuangP-JJDingJLiuJDNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serumAnal. Chem.201587400140071:CAS:528:DC%2BC2MXkt1Oiur0%3D2575718610.1021/acs.analchem.5b00220
Wang, Y. et al. Engineering electronic band structure of binary thermoelectric nanocatalysts for augmented pyrocatalytic tumor nanotherapy. Adv. Mater.34, 2106773 (2022).
ChangMSingle-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapyAngew. Chem. Int. Ed.20216012971129791:CAS:528:DC%2BB3MXhtVShs7bK10.1002/anie.202101924
Wang, Z. et al. An intelligent nanomachine guided by DNAzyme logic system for precise chemodynamic therapy. Angew. Chem. Int. Ed.61, e202204291 (2022).
Luo, H. et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater.27, 1702834 (2017).
ChenW-HOvercoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapyACS Nano201711141914311:CAS:528:DC%2BC2sXht1ylsLg%3D2810763110.1021/acsnano.6b06658
GongXA smart theranostic nanocapsule for spatiotemporally programmable photo-gene therapyAngew. Chem. Int. Ed. Engl.20205921648216551:CAS:528:DC%2BB3cXhvV2ntbnI3276781710.1002/anie.202008413
ZhouWZhangYDingJLiuJIn vitro selection in serum: RNA-cleaving DNAzymes for measuring Ca2+ and Mg2ACS Sensors201616006062016Senso..16..600Z1:CAS:528:DC%2BC28XksFCjtbc%3D10.1021/acssensors.5b00306
MoonWJYangYLiuJZn2+-dependent DNAzymes: from solution chemistry to analytical, materials and therapeutic applicationsChemBioChem2021227797891:CAS:528:DC%2BB3cXit1yhur7F3300711310.1002/cbic.202000586
WangBKGold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencingBiomaterials20167827391:CAS:528:DC%2BC2MXhvVOqt73M2664662510.1016/j.biomaterials.2015.11.025
QiCMusettiSFuLHZhuYJHuangLBiomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applicationsChem. Soc. Rev.201948269827371:CAS:528:DC%2BC1MXptlCjsbk%3D3108098710.1039/C8CS00489G
Wang, K. et al. Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation. Nat. Commun.14, 2950 (2023).
Xin, X. et al. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci. Adv.6, eabd6764 (2020).
LimaJFCerqueiraLFigueiredoCOliveiraCAzevedoNFAnti-miRNA oligonucleotides: a comprehensive guide for designRNA Biol.20181533835229570036592772510.1080/15476286.2018.1445959
LiuCSelf-assembly of copper–DNAzyme nanohybrids for dual-catalytic tumor therapyAngew. Chem. Int. Ed.20216014324143281:CAS:528:DC%2BB3MXhtFynt7nL10.1002/anie.202101744
ÄmmäläCTargeted delivery of antisense oligonucleotides to pancreatic β-cellsSci. Adv.20184eaat33862018SciA....4.3386A30345352619268510.1126/sciadv.aat3386
Liu, S.-Y. et al. Ultrathin 2D copper(I) 1,2,4-triazolate coordination polymer nanosheets for efficient and selective gene silencing and photodynamic therapy. Adv. Mater.33, 2100849 (2021).
Ding, F. et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials245, 119976 (2020).
SafdarSLammertynJSpasicDRNA-cleaving NAzymes: the next big thing in biosensing?Trends Biotechnol.202038134313591:CAS:528:DC%2BB3cXptlektb0%3D3247375110.1016/j.tibtech.2020.04.012
LiuXDNA framework-encoded mineralization of calcium phosphateChem202064724851:CAS:528:DC%2BB3cXnslGnur8%3D10.1016/j.chempr.2019.12.003
YanJLymphatic clearance is the main drainage route of lamotrigine-loaded micelles following delivery to the brainJ. Pharm. Pharmacol.201971148814961:CAS:528:DC%2BC1MXhtlOlt7%2FL3131383810.1111/jphp.13137
PengHLiX-FZhangHLeXCA microRNA-initiated DNAzyme motor operating in living cellsNat. Commun.201782017NatCo...814378P28262725534350310.1038/ncomms14378
SantoroSWJoyceGFA general purpose RNA-cleaving DNA enzymeProc. Natl Acad. Sci.199794426242661997PNAS...94.4262S1:CAS:528:DyaK2sXjtVyit7w%3D91139772071010.1073/pnas.94.9.4262
WangZA bimetallic metal–organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapyAngew. Chem. Int. Ed.20216012431124371:CAS:528:DC%2BB3MXps1Gms7Y%3D10.1002/anie.202016442
MaLLiuJCatalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnologyiScience2020231008152020iSci...23j0815M1:CAS:528:DC%2BB3cXhtVKntbs%3D31954323696270610.1016/j.isci.2019.100815
YinYDNAzyme-powered three-dimensional DNA walker nanoprobe for detection amyloid beta-peptide oligomer in living cells and in vivoAnal. Chem.202092924792561:CAS:528:DC%2BB3cXhtFGmtr3I3253615310.1021/acs.analchem.0c01592
PeracchiAPreferential activation of the 8–17 deoxyribozyme by Ca 2+ ions: evidence for the identity of 8–17 with the catalytic domain of the Mg5 deoxyribozyme*J. Biol. Chem.200027511693116971:CAS:528:DC%2BD3cXisl2jsr0%3D1076678910.1074/jbc.275.16.11693
LyuMPNA-assisted DNAzymes to cleave double-stranded DNA for genetic engineering with high sequence fidelityJ. Am. Chem. Soc.2021143972497281:CAS:528:DC%2BB3MXhtlKhtLzF34156847913335510.1021/jacs.1c03129
Chen, Q.-W. et al. Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal–organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater.30, 1909806 (2020).
Wu, C. et al. Acid-triggered charge-convertible graphene-based all-in-one nanocomplex for enhanced genetic phototherapy of triple-negative breast cancer. Adv. Healthc. Mater.9, e1901187 (2020).
MokanyEBoneSMYoungPEDoanTBToddAVMNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switchesJ. Am. Chem. Soc.2010132105110591:CAS:528:DC%2BD1MXhs1WjsLvF2003809510.1021/ja9076777
DavisSLolloBFreierSEsauCImproved targeting of miRNA with antisense oligonucleotidesNucleic Acids Res.200634229423041:CAS:528:DC%2BD28Xks1Smt7o%3D16690972145953710.1093/nar/gkl183
Zheng, P. et al. A multichannel Ca(2+) nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater.33, e2007426 (2021).
ZhuDEncoding DNA frameworks for amplified multiplexed imaging of intracellular microRNA
C Liu (42740_CR39) 2021; 60
Y Li (42740_CR57) 2017; 108
JF Lima (42740_CR37) 2018; 15
WJ Moon (42740_CR43) 2021; 22
42740_CR61
42740_CR62
42740_CR64
Y Wang (42740_CR21) 2021; 13
D Zhu (42740_CR27) 2021; 93
42740_CR23
E Giovannetti (42740_CR35) 2010; 70
J Borggräfe (42740_CR14) 2022; 601
42740_CR19
X Yin (42740_CR29) 2021; 93
X Liu (42740_CR47) 2020; 6
D Zheng (42740_CR67) 2023; 22
SW Santoro (42740_CR42) 1997; 94
Y Yin (42740_CR18) 2020; 92
PT Olesen (42740_CR52) 1998; 33
42740_CR53
42740_CR10
42740_CR54
42740_CR11
42740_CR59
D Kebebe (42740_CR60) 2019; 14
W Zhou (42740_CR24) 2015; 87
F Cappellesso (42740_CR66) 2022; 3
M Chang (42740_CR7) 2021; 60
D Yi (42740_CR15) 2021; 60
S Safdar (42740_CR26) 2020; 38
L Chen (42740_CR55) 2014; 9
H Fan (42740_CR40) 2015; 54
J Yan (42740_CR65) 2022; 10
N Wang (42740_CR28) 2019; 286
42740_CR9
J Wang (42740_CR17) 2021; 60
42740_CR41
X Gong (42740_CR12) 2020; 59
42740_CR49
RA Luchtel (42740_CR56) 2020; 117
BK Wang (42740_CR2) 2016; 78
BR Wolfe (42740_CR45) 2017; 139
R-H Lai (42740_CR50) 2014; 25
OA Patutina (42740_CR58) 2020; 117
W-H Chen (42740_CR8) 2017; 11
C Qi (42740_CR48) 2019; 48
W Zhou (42740_CR32) 2016; 1
M Schweikle (42740_CR51) 2019; 90
42740_CR70
E Mokany (42740_CR25) 2010; 132
42740_CR71
AJ Smith (42740_CR68) 2017; 52
42740_CR31
C Ämmälä (42740_CR13) 2018; 4
42740_CR33
42740_CR34
S Davis (42740_CR36) 2006; 34
Y Liu (42740_CR63) 2019; 42
DE Clapham (42740_CR46) 2007; 131
MA Abdou Mohamed (42740_CR30) 2021; 15
Z Wang (42740_CR38) 2021; 60
H Peng (42740_CR20) 2017; 8
42740_CR5
L Ma (42740_CR16) 2020; 23
42740_CR6
M Lyu (42740_CR22) 2021; 143
J Yan (42740_CR69) 2019; 71
A Peracchi (42740_CR44) 2000; 275
42740_CR1
GC Li (42740_CR3) 1992; 89
42740_CR4
References_xml – reference: Li, F. et al. A proton-activatable DNA-based nanosystem enables co-delivery of CRISPR/Cas9 and DNAzyme for combined gene therapy. Angew. Chem. Int. Ed. Engl.61, e202116569 (2022).
– reference: ZhouWChenQHuangP-JJDingJLiuJDNAzyme hybridization, cleavage, degradation, and sensing in undiluted human blood serumAnal. Chem.201587400140071:CAS:528:DC%2BC2MXkt1Oiur0%3D2575718610.1021/acs.analchem.5b00220
– reference: Wu, C. et al. Acid-triggered charge-convertible graphene-based all-in-one nanocomplex for enhanced genetic phototherapy of triple-negative breast cancer. Adv. Healthc. Mater.9, e1901187 (2020).
– reference: Zheng, P. et al. A multichannel Ca(2+) nanomodulator for multilevel mitochondrial destruction-mediated cancer therapy. Adv. Mater.33, e2007426 (2021).
– reference: OlesenPTSteenbergTChristensenEBjerrumNJElectrolytic deposition of amorphous and crystalline zinc–calcium phosphatesJ. Mater. Sci.199833305930631998JMatS..33.3059O1:CAS:528:DyaK1cXltlemtLY%3D10.1023/A:1004379319348
– reference: WangBKGold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencingBiomaterials20167827391:CAS:528:DC%2BC2MXhvVOqt73M2664662510.1016/j.biomaterials.2015.11.025
– reference: Wang, J. et al. Orthotopic and heterotopic murine models of pancreatic cancer exhibit different immunological microenvironments and different responses to immunotherapy. Front. Immunol.13, 863346 (2022).
– reference: PengHLiX-FZhangHLeXCA microRNA-initiated DNAzyme motor operating in living cellsNat. Commun.201782017NatCo...814378P28262725534350310.1038/ncomms14378
– reference: Hu, Y. et al. Preparation of photothermal responsive and ROS generative gold nanocages for cancer therapy. Chem. Eng. J.421, 129744 (2021).
– reference: GiovannettiEMicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activityCancer Res.201070452845381:CAS:528:DC%2BC3cXmslWgt7Y%3D2046053910.1158/0008-5472.CAN-09-4467
– reference: LimaJFCerqueiraLFigueiredoCOliveiraCAzevedoNFAnti-miRNA oligonucleotides: a comprehensive guide for designRNA Biol.20181533835229570036592772510.1080/15476286.2018.1445959
– reference: Liu, S.-Y. et al. Ultrathin 2D copper(I) 1,2,4-triazolate coordination polymer nanosheets for efficient and selective gene silencing and photodynamic therapy. Adv. Mater.33, 2100849 (2021).
– reference: WangJA self-catabolic multifunctional DNAzyme nanosponge for programmable drug delivery and efficient gene silencingAngew. Chem. Int. Ed.202160107661077410.1002/anie.202101474
– reference: Luo, H. et al. Mutually synergistic nanoparticles for effective thermo-molecularly targeted therapy. Adv. Funct. Mater.27, 1702834 (2017).
– reference: PeracchiAPreferential activation of the 8–17 deoxyribozyme by Ca 2+ ions: evidence for the identity of 8–17 with the catalytic domain of the Mg5 deoxyribozyme*J. Biol. Chem.200027511693116971:CAS:528:DC%2BD3cXisl2jsr0%3D1076678910.1074/jbc.275.16.11693
– reference: WolfeBRPorubskyNJZadehJNDirksRMPierceNAConstrained multistate sequence design for nucleic acid reaction pathway engineeringJ. Am. Chem. Soc.2017139313431441:CAS:528:DC%2BC2sXisVGlsLg%3D2819193810.1021/jacs.6b12693
– reference: ClaphamDECalcium signalingCell2007131104710581:CAS:528:DC%2BD1cXksFGgsA%3D%3D1808309610.1016/j.cell.2007.11.028
– reference: YiDZhaoJLiLAn enzyme-activatable engineered DNAzyme sensor for cell-selective imaging of metal ionsAngew. Chem. Int. Ed. Engl.202160630063041:CAS:528:DC%2BB3MXjvVCmu74%3D3339317010.1002/anie.202015979
– reference: Tian, H. et al. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin. Chem. Eng. J.382, 123043 (2020).
– reference: Xin, X. et al. Redox-responsive nanoplatform for codelivery of miR-519c and gemcitabine for pancreatic cancer therapy. Sci. Adv.6, eabd6764 (2020).
– reference: Calkins, K. G. Measuring Correlation (Andrews University, 2005).
– reference: Wang, Y. et al. Engineering electronic band structure of binary thermoelectric nanocatalysts for augmented pyrocatalytic tumor nanotherapy. Adv. Mater.34, 2106773 (2022).
– reference: YinXChenBHeMHuBA homogeneous multicomponent nucleic acid enzyme assay for universal nucleic acid detection by single-particle inductively coupled plasma mass spectrometryAnal. Chem.202193495249591:CAS:528:DC%2BB3MXlvFWht7g%3D3368930210.1021/acs.analchem.0c05444
– reference: LaiR-HDongP-JWangY-LLuoJ-BRedispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphateChin. Chem. Lett.2014252952981:CAS:528:DC%2BC3sXhvFOlsr%2FF10.1016/j.cclet.2013.11.012
– reference: LiYCo-delivery of microRNA-21 antisense oligonucleotides and gemcitabine using nanomedicine for pancreatic cancer therapyCancer Sci.2017108149315031:CAS:528:DC%2BC2sXpvFCrtb0%3D28444967549792710.1111/cas.13267
– reference: SchweikleMStabilisation of amorphous calcium phosphate in polyethylene glycol hydrogelsActa Biomater.2019901321451:CAS:528:DC%2BC1MXmtlOhtbY%3D3090586310.1016/j.actbio.2019.03.044
– reference: LiGCLiLLiuRYRehmanMLeeWMHeat shock protein hsp70 protects cells from thermal stress even after deletion of its ATP-binding domainProc. Natl Acad. Sci. USA199289203620401992PNAS...89.2036L1:CAS:528:DyaK38XitFWrsLo%3D15495624859110.1073/pnas.89.6.2036
– reference: MaLLiuJCatalytic nucleic acids: biochemistry, chemical biology, biosensors, and nanotechnologyiScience2020231008152020iSci...23j0815M1:CAS:528:DC%2BB3cXhtVKntbs%3D31954323696270610.1016/j.isci.2019.100815
– reference: Chen, F. et al. Europium-doped amorphous calcium phosphate porous nanospheres: preparation and application as luminescent drug carriers. Nanoscale Res. Lett.6, 67 (2011).
– reference: Wang, Q. et al. Multifunctional shell-core nanoparticles for treatment of multidrug resistance hepatocellular carcinoma. Adv. Funct. Mater.28, 1706124 (2018).
– reference: YanJSelf-assembly of DNA nanogels with endogenous microRNA toehold self-regulating switches for targeted gene regulation therapyBiomater. Sci.202210411941251:CAS:528:DC%2BB38Xhs12ls7bF3578922510.1039/D2BM00640E
– reference: PatutinaOAMesyl phosphoramidate backbone modified antisense oligonucleotides targeting miR-21 with enhanced in vivo therapeutic potencyProc. Natl Acad. Sci. USA202011732370323792020PNAS..11732370P1:CAS:528:DC%2BB3cXis1ygtrvJ33288723776876410.1073/pnas.2016158117
– reference: Roohani, I., Cheong, S. & Wang, A. How to build a bone?—Hydroxyapatite or Posner’s clusters as bone minerals. Open Ceram.6, 100092 (2021).
– reference: WangNSongLQiuYXingHLiJHybridization-activated spherical DNAzyme for cascading two-photon fluorescence emission: applied for intracellular miRNA measurement by two-photon microscopySens. Actuators B Chem.20192862502571:CAS:528:DC%2BC1MXisFCktLk%3D10.1016/j.snb.2019.01.135
– reference: Kozlowski, H. N. et al. A colorimetric test to differentiate patients infected with influenza from COVID-19. Small Struct. 2, 2100034 (2021).
– reference: YanJLymphatic clearance is the main drainage route of lamotrigine-loaded micelles following delivery to the brainJ. Pharm. Pharmacol.201971148814961:CAS:528:DC%2BC1MXhtlOlt7%2FL3131383810.1111/jphp.13137
– reference: Ding, F. et al. Polydopamine-coated nucleic acid nanogel for siRNA-mediated low-temperature photothermal therapy. Biomaterials245, 119976 (2020).
– reference: Abdou MohamedMADiagnosing antibiotic resistance using nucleic acid enzymes and gold nanoparticlesACS Nano202115937993901:CAS:528:DC%2BB3MXhtVCiurrL3397061210.1021/acsnano.0c09902
– reference: MoonWJYangYLiuJZn2+-dependent DNAzymes: from solution chemistry to analytical, materials and therapeutic applicationsChemBioChem2021227797891:CAS:528:DC%2BB3cXit1yhur7F3300711310.1002/cbic.202000586
– reference: YinYDNAzyme-powered three-dimensional DNA walker nanoprobe for detection amyloid beta-peptide oligomer in living cells and in vivoAnal. Chem.202092924792561:CAS:528:DC%2BB3cXhtFGmtr3I3253615310.1021/acs.analchem.0c01592
– reference: Safdar, S. et al. DNA-only, microwell-based bioassay for multiplex nucleic acid detection with single base-pair resolution using MNAzymes. Biosens. Bioelectron.152, 112017 (2020).
– reference: ZhengDBiomimetic nanoparticles drive the mechanism understanding of shear-wave elasticity stiffness in triple negative breast cancers to predict clinical treatmentBioact. Mater.2023225675871:CAS:528:DC%2BB38XivVaiurvN36382024
– reference: ChangMSingle-atom Pd nanozyme for ferroptosis-boosted mild-temperature photothermal therapyAngew. Chem. Int. Ed.20216012971129791:CAS:528:DC%2BB3MXhtVShs7bK10.1002/anie.202101924
– reference: Zhang, L. et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation. Adv. Sci.5, 1800049 (2018).
– reference: ChenW-HOvercoming the heat endurance of tumor cells by interfering with the anaerobic glycolysis metabolism for improved photothermal therapyACS Nano201711141914311:CAS:528:DC%2BC2sXht1ylsLg%3D2810763110.1021/acsnano.6b06658
– reference: WangYNguyenKSpitaleRCChaputJCA biologically stable DNAzyme that efficiently silences gene expression in cellsNat. Chem.2021133193261:CAS:528:DC%2BB3MXnsVGgu7k%3D3376736310.1038/s41557-021-00645-x
– reference: Wang, Z. et al. An intelligent nanomachine guided by DNAzyme logic system for precise chemodynamic therapy. Angew. Chem. Int. Ed.61, e202204291 (2022).
– reference: ChenLAutophagy inhibition contributes to the synergistic interaction between EGCG and doxorubicin to kill the hepatoma Hep3B cellsPLoS ONE20149e857712014PLoSO...985771C24465696389749510.1371/journal.pone.0085771
– reference: LiuCSelf-assembly of copper–DNAzyme nanohybrids for dual-catalytic tumor therapyAngew. Chem. Int. Ed.20216014324143281:CAS:528:DC%2BB3MXhtFynt7nL10.1002/anie.202101744
– reference: Chen, Q.-W. et al. Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal–organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater.30, 1909806 (2020).
– reference: GongXA smart theranostic nanocapsule for spatiotemporally programmable photo-gene therapyAngew. Chem. Int. Ed. Engl.20205921648216551:CAS:528:DC%2BB3cXhvV2ntbnI3276781710.1002/anie.202008413
– reference: ÄmmäläCTargeted delivery of antisense oligonucleotides to pancreatic β-cellsSci. Adv.20184eaat33862018SciA....4.3386A30345352619268510.1126/sciadv.aat3386
– reference: ZhouWZhangYDingJLiuJIn vitro selection in serum: RNA-cleaving DNAzymes for measuring Ca2+ and Mg2ACS Sensors201616006062016Senso..16..600Z1:CAS:528:DC%2BC28XksFCjtbc%3D10.1021/acssensors.5b00306
– reference: KebebeDDimeric c(RGD) peptide conjugated nanostructured lipid carriers for efficient delivery of Gambogic acid to breast cancerInt. J. Nanomed.201914617961951:CAS:528:DC%2BC1MXisVCmtLjN10.2147/IJN.S202424
– reference: CappellessoFTargeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancerNat. Cancer20223146414831:CAS:528:DC%2BB38XjtF2hurnF36522548976787110.1038/s43018-022-00470-2
– reference: BorggräfeJTime-resolved structural analysis of an RNA-cleaving DNA catalystNature20226011441492022Natur.601..144B10.1038/s41586-021-04225-4
– reference: DavisSLolloBFreierSEsauCImproved targeting of miRNA with antisense oligonucleotidesNucleic Acids Res.200634229423041:CAS:528:DC%2BD28Xks1Smt7o%3D16690972145953710.1093/nar/gkl183
– reference: SantoroSWJoyceGFA general purpose RNA-cleaving DNA enzymeProc. Natl Acad. Sci.199794426242661997PNAS...94.4262S1:CAS:528:DyaK2sXjtVyit7w%3D91139772071010.1073/pnas.94.9.4262
– reference: MokanyEBoneSMYoungPEDoanTBToddAVMNAzymes, a versatile new class of nucleic acid enzymes that can function as biosensors and molecular switchesJ. Am. Chem. Soc.2010132105110591:CAS:528:DC%2BD1MXhs1WjsLvF2003809510.1021/ja9076777
– reference: Yan, J. et al. Peritumoral microgel reservoir for long-term light-controlled triple-synergistic treatment of osteosarcoma with single ultra-low dose. Small17, 2100479 (2021).
– reference: LyuMPNA-assisted DNAzymes to cleave double-stranded DNA for genetic engineering with high sequence fidelityJ. Am. Chem. Soc.2021143972497281:CAS:528:DC%2BB3MXhtlKhtLzF34156847913335510.1021/jacs.1c03129
– reference: Wang, K. et al. Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation. Nat. Commun.14, 2950 (2023).
– reference: SafdarSLammertynJSpasicDRNA-cleaving NAzymes: the next big thing in biosensing?Trends Biotechnol.202038134313591:CAS:528:DC%2BB3cXptlektb0%3D3247375110.1016/j.tibtech.2020.04.012
– reference: WangZA bimetallic metal–organic framework encapsulated with DNAzyme for intracellular drug synthesis and self-sufficient gene therapyAngew. Chem. Int. Ed.20216012431124371:CAS:528:DC%2BB3MXps1Gms7Y%3D10.1002/anie.202016442
– reference: LiuYThe targeting of non‑coding RNAs by curcumin: facts and hopes for cancer therapy (Review)Oncol. Rep.20194220341:CAS:528:DC%2BC1MXhslGks73F6549103
– reference: LuchtelRAHigh-dose ascorbic acid synergizes with anti-PD1 in a lymphoma mouse modelProc. Natl Acad. Sci.2020117166616772020PNAS..117.1666L1:CAS:528:DC%2BB3cXhsFKrsb0%3D31911474698341810.1073/pnas.1908158117
– reference: ZhuDEncoding DNA frameworks for amplified multiplexed imaging of intracellular microRNAsAnal. Chem.202193222622341:CAS:528:DC%2BB3MXmsFCnug%3D%3D3341742710.1021/acs.analchem.0c04092
– reference: SmithAJCluttonRELilleyEHansenKEABrattelidTPREPARE: guidelines for planning animal research and testingLab. Anim.20175213514128771074586231910.1177/0023677217724823
– reference: FanHA smart DNAzyme–MnO2 nanosystem for efficient gene silencingAngew. Chem. Int. Ed.201554480148051:CAS:528:DC%2BC2MXkvVequrg%3D10.1002/anie.201411417
– reference: QiCMusettiSFuLHZhuYJHuangLBiomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applicationsChem. Soc. Rev.201948269827371:CAS:528:DC%2BC1MXptlCjsbk%3D3108098710.1039/C8CS00489G
– reference: LiuXDNA framework-encoded mineralization of calcium phosphateChem202064724851:CAS:528:DC%2BB3cXnslGnur8%3D10.1016/j.chempr.2019.12.003
– volume: 8
  year: 2017
  ident: 42740_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14378
– volume: 60
  start-page: 10766
  year: 2021
  ident: 42740_CR17
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101474
– volume: 15
  start-page: 338
  year: 2018
  ident: 42740_CR37
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2018.1445959
– volume: 94
  start-page: 4262
  year: 1997
  ident: 42740_CR42
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.94.9.4262
– volume: 90
  start-page: 132
  year: 2019
  ident: 42740_CR51
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.03.044
– volume: 78
  start-page: 27
  year: 2016
  ident: 42740_CR2
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.11.025
– volume: 117
  start-page: 1666
  year: 2020
  ident: 42740_CR56
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1908158117
– ident: 42740_CR59
  doi: 10.1002/smll.202100479
– ident: 42740_CR31
  doi: 10.1002/sstr.202100034
– volume: 48
  start-page: 2698
  year: 2019
  ident: 42740_CR48
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00489G
– ident: 42740_CR6
  doi: 10.1002/adma.202106773
– volume: 59
  start-page: 21648
  year: 2020
  ident: 42740_CR12
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202008413
– ident: 42740_CR4
  doi: 10.1002/adfm.201702834
– volume: 13
  start-page: 319
  year: 2021
  ident: 42740_CR21
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00645-x
– volume: 139
  start-page: 3134
  year: 2017
  ident: 42740_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12693
– volume: 89
  start-page: 2036
  year: 1992
  ident: 42740_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.89.6.2036
– volume: 60
  start-page: 12971
  year: 2021
  ident: 42740_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101924
– ident: 42740_CR53
  doi: 10.1186/1556-276X-6-67
– volume: 22
  start-page: 779
  year: 2021
  ident: 42740_CR43
  publication-title: ChemBioChem
  doi: 10.1002/cbic.202000586
– volume: 42
  start-page: 20
  year: 2019
  ident: 42740_CR63
  publication-title: Oncol. Rep.
– volume: 60
  start-page: 6300
  year: 2021
  ident: 42740_CR15
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202015979
– volume: 92
  start-page: 9247
  year: 2020
  ident: 42740_CR18
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c01592
– ident: 42740_CR62
  doi: 10.1002/advs.201800049
– volume: 15
  start-page: 9379
  year: 2021
  ident: 42740_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09902
– ident: 42740_CR64
  doi: 10.1016/j.cej.2021.129744
– ident: 42740_CR33
  doi: 10.1016/j.bios.2020.112017
– volume: 108
  start-page: 1493
  year: 2017
  ident: 42740_CR57
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13267
– volume: 25
  start-page: 295
  year: 2014
  ident: 42740_CR50
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2013.11.012
– volume: 1
  start-page: 600
  year: 2016
  ident: 42740_CR32
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.5b00306
– volume: 70
  start-page: 4528
  year: 2010
  ident: 42740_CR35
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-4467
– volume: 3
  start-page: 1464
  year: 2022
  ident: 42740_CR66
  publication-title: Nat. Cancer
  doi: 10.1038/s43018-022-00470-2
– volume: 93
  start-page: 4952
  year: 2021
  ident: 42740_CR29
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c05444
– volume: 33
  start-page: 3059
  year: 1998
  ident: 42740_CR52
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004379319348
– volume: 601
  start-page: 144
  year: 2022
  ident: 42740_CR14
  publication-title: Nature
  doi: 10.1038/s41586-021-04225-4
– volume: 10
  start-page: 4119
  year: 2022
  ident: 42740_CR65
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM00640E
– volume: 22
  start-page: 567
  year: 2023
  ident: 42740_CR67
  publication-title: Bioact. Mater.
– volume: 11
  start-page: 1419
  year: 2017
  ident: 42740_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06658
– volume: 6
  start-page: 472
  year: 2020
  ident: 42740_CR47
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.12.003
– volume: 52
  start-page: 135
  year: 2017
  ident: 42740_CR68
  publication-title: Lab. Anim.
  doi: 10.1177/0023677217724823
– volume: 9
  start-page: e85771
  year: 2014
  ident: 42740_CR55
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0085771
– volume: 93
  start-page: 2226
  year: 2021
  ident: 42740_CR27
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c04092
– volume: 143
  start-page: 9724
  year: 2021
  ident: 42740_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03129
– volume: 23
  start-page: 100815
  year: 2020
  ident: 42740_CR16
  publication-title: iScience
  doi: 10.1016/j.isci.2019.100815
– volume: 14
  start-page: 6179
  year: 2019
  ident: 42740_CR60
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S202424
– ident: 42740_CR11
  doi: 10.1126/sciadv.abd6764
– volume: 286
  start-page: 250
  year: 2019
  ident: 42740_CR28
  publication-title: Sens. Actuators B Chem.
  doi: 10.1016/j.snb.2019.01.135
– volume: 275
  start-page: 11693
  year: 2000
  ident: 42740_CR44
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.275.16.11693
– ident: 42740_CR49
  doi: 10.1016/j.oceram.2021.100092
– ident: 42740_CR23
  doi: 10.1002/adma.202100849
– ident: 42740_CR34
  doi: 10.1002/anie.202204291
– volume: 131
  start-page: 1047
  year: 2007
  ident: 42740_CR46
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.028
– volume: 132
  start-page: 1051
  year: 2010
  ident: 42740_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9076777
– volume: 54
  start-page: 4801
  year: 2015
  ident: 42740_CR40
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411417
– ident: 42740_CR70
  doi: 10.1038/s41467-023-38601-7
– ident: 42740_CR54
  doi: 10.1002/adfm.201706124
– ident: 42740_CR61
– ident: 42740_CR19
  doi: 10.1002/anie.202116569
– ident: 42740_CR1
  doi: 10.1016/j.biomaterials.2020.119976
– volume: 4
  start-page: eaat3386
  year: 2018
  ident: 42740_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat3386
– ident: 42740_CR41
  doi: 10.1002/adma.202007426
– volume: 34
  start-page: 2294
  year: 2006
  ident: 42740_CR36
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl183
– volume: 87
  start-page: 4001
  year: 2015
  ident: 42740_CR24
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b00220
– ident: 42740_CR5
  doi: 10.1016/j.cej.2019.123043
– ident: 42740_CR9
  doi: 10.1002/adfm.201909806
– volume: 38
  start-page: 1343
  year: 2020
  ident: 42740_CR26
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.04.012
– volume: 60
  start-page: 12431
  year: 2021
  ident: 42740_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202016442
– volume: 71
  start-page: 1488
  year: 2019
  ident: 42740_CR69
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.13137
– volume: 60
  start-page: 14324
  year: 2021
  ident: 42740_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202101744
– volume: 117
  start-page: 32370
  year: 2020
  ident: 42740_CR58
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2016158117
– ident: 42740_CR71
  doi: 10.3389/fimmu.2022.863346
– ident: 42740_CR10
  doi: 10.1002/adhm.201901187
SSID ssj0000391844
Score 2.6500645
Snippet Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic...
Abstract Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6905
SubjectTerms 14
14/19
14/32
147/135
147/143
59
631/61/350/354
631/61/54/152
631/67/1059/602
Biocompatibility
Calcium (intracellular)
Calcium (mitochondrial)
Calcium efflux
Calcium homeostasis
Calcium ions
Calcium phosphates
Cancer
Cancer therapies
Cell Line, Tumor
Curcumin
Curcumin - pharmacology
Deoxyribozymes
DNA, Catalytic
Efflux
Ethanolamine
Gene regulation
Gene therapy
Heat shock proteins
Homeostasis
Hsp70 protein
Humanities and Social Sciences
Humans
Hydrophobicity
Irradiation
Laser radiation
Micelles
MicroRNAs - genetics
Mineralization
miRNA
mRNA
multidisciplinary
Nanoparticles - chemistry
Neoplasms
Oligopeptides
Pancreatic cancer
Pancreatic Neoplasms
Pancreatic Neoplasms - therapy
Phototherapy - methods
Photothermal Therapy
Polyethylene glycol
Polyethylene Glycols - chemistry
PTEN protein
Science
Science (multidisciplinary)
Toxicity
Tumor suppressor genes
Tumors
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpBRmJG0R1_NhNjsujqpDoiUq9WX7MqpVYp9rNHpYDv50ZO7t0eV445JI4ycj-7PnGngdjrxADAfWeqxva3NDg2hrVsKu964wE48E5OtH9dDY5PdcfL8zFjVJf5BNW0gOXjjv2SKimUintm0Bkvo2ISekdIDkAJbO1jjrvhjGV12DVoemixygZodrjlc5rAqqoWqMlJmq5p4lywv7fscxfnSV_OjHNiujkHrs7Mkg-K5LfZ7cgPWC3S03JzUP2bZa4Ww993pfZYBuefQbJdbxP-HH-_mz2dbMAnlzqF9mVEjgyVz6sF_2ypshL8h7i15f9kKOzFvizEqW14Stydx_G0E1-lTiuJYV2Bh4IP8tH7Pzkw-d3p_VYZKEORjdD7UwnYAJBIs1uTIDgYWq6ELwHH0MEr1VsJqEzYj6nZHzIkZTqjIE4p9TvQj1mBwnlf8p4iMiWOkAbLKLdBRrJHcyDCI2IoonOV6zZdrgNYwZyKoTxxeaTcNXaMkgWB8nmQbKyYq9371yX_Bt_bf2WxnHXknJn5xuIKDsiyv4LURU72qLAjhN6ZWWLljD9ta3Yy91jnIp0vuIS9OvSZkL1AbqKPSmg2Umipp3Ay1Ss3YPTnqj7T9LVZU73TUY7BRBX7M0WeT_k-nNfHP6PvnjG7kiaMqSsxRE7GJZreI4sbPAv8oT7DiZULoA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDax1EjtNTqg8ygqJPbHS3iw_puxK26S06aEc-O3MOG5W5bGHXhqncTMznm_ejL1GHvCo96zIybmhwNYC1bAVzja6AO3AWorofj2pjk_VlzN9lhxu65RWuTsT40EdOk8-8qOiRlOEunnX75Y_BE2NouhqGqFxk93CZ1WU0lXPPo8-Fup-XiuVamXw3qO1iicDKiqh0B6TotjTR7Ft_7-w5t8pk3_ETaM6mt1jdxOO5NOB8PfZDWgfsNvDZMntQ_Zr2nK76bvondniGh4zBymBvGvxx_nHk-nP7QJ4a9tuERMqgSN-5f1m0a0E1V9SDhFfnnd9rNFa4MOGWq0tX1PSe58KOPlFy_FEGcCn5564aPWInc4-fftwLNKoBeG1ynthdSOhAl8g2M61B-9gohvvnQMXfACnypBXvtFyPqeWfIiUyrLRGsKcGsDL8jE7aHH_Txn3ATFTA2iJBbS-QCHEg7mXPpdB5sG6jOW7F2586kNO4zAuTYyHl7UZiGSQSCYSyRQZezPesxy6cFy7-j3RcVxJHbTjF93qu0kCaRwC9UlRlsrlnozEOuBZVzgLCDqhLGTGDndcYJJYr80VE2bs1XgZBZKiLLaFbjOsqWhKQJOxJwPTjDspJ43Ej85YvcdOe1vdv9JenMem32S6Uxlxxt7uOO9qX_9_F8-u_xvP2Z2ChIGUsTxkB_1qAy8QZfXuZRSl3311JyY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN4hwYns3OYZHVa1EL1CpN8t2ZmklNql2s4flwG9nxnmghYLEYS_JZDOKZzzf2DOfAV6RDQSKey7NeHFDoytSCsMu9a40ORqPzvGO7qez2em5XlyYiwPIx16YWLQfKS3jND1Wh73d6OjSFGFSTYmUTGnaPWKqdrLto6pafF5MKyvMeV5oPXTISFXc8PBeFIpk_TchzD8LJX_bLY1B6OQu3BnQo6h6fe_BATb34VZ_nuTuAfyoGuG2XRvXZHYkI2K9IJeNtw39ufhwVn3frVA0rmlXsYwSBaFW0W1X7TrlrkuuHBLXl20XO7NW9LK-Q2snNlzq3g1tm-KqETSP9JAziMC2s34I5ycfv7w_TYcDFtJgdNalzpQSZxhygtiZCRg8zk0Zgvfo61Cj16rOZqE0crlkIj7CR0qVxmC9ZNp3qR7BYUP6PwERakJKJVL-VVPOhZqAHS6DDJmsZVY7n0A2fnAbBvZxPgTjm4274Kqw_SBZGiQbB8nmCbyenrnuuTf-Kf2Ox3GSZN7seKFdf7WDHVlP8HyeK6V9Fjg1LGqa4XLvkKAmqlwmcDxagR2ceWPzgrJgfmuRwMvpNrkh7624BtttLzPjswHKBB73RjNpoualpJ9JoNgzpz1V9-80V5eR6psTdm4eTuDNaHm_9Pr7t3j6f-LP4HbOzsEhWR7DYbfe4nPCWp1_MTjXT4f7JkE
  priority: 102
  providerName: Springer Nature
Title An autocatalytic multicomponent DNAzyme nanomachine for tumor-specific photothermal therapy sensitization in pancreatic cancer
URI https://link.springer.com/article/10.1038/s41467-023-42740-2
https://www.ncbi.nlm.nih.gov/pubmed/37903795
https://www.proquest.com/docview/2884010388
https://www.proquest.com/docview/2884675789
https://pubmed.ncbi.nlm.nih.gov/PMC10616286
https://doaj.org/article/b81d72334b1c49568d7302bae009e320
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTUi8oPEdNioj8QaBJI7z8YBQVlamSqsQUKlvke2426Q1GWkqER7427lz0qJC4YmHJFJsJ5Z95_udfR8AL5AGNMo96fq0uREambgohqWrZCoCI5SRkk50zyfR2TQcz8RsD9bpjvoBXO5U7Sif1LS-fv3ta_sOGf5t5zKevFmGlt1R-rghKlmei0vyAUqmmDIanPdw367MPEWFJux9Z3Y33ZJPNoz_Luz5pwnlb-eoVjyNDuFujytZ1hHCPdgz5X243WWabB_Aj6xkctVUdremxTrMWhKSQXlV4sfZ-0n2vV0YVsqyWlgDS8MQz7Jmtahql_wxyaaI3VxWjfXZWuDPOt-tli3JCL7pHTrZVclwhenAqGaaqKp-CNPR6ZfhmdunXnC1CP3GlSL1TGR0gODbF9poZWKRaq2UUYUujAp54Uc6Fd58TiH6EDlxngphijkFhPf4I9gvsf9PgOkCMVRqUDMrUBszIUI-M9ee9r3C8wupHPDXA57rPi45pce4zu35OE_ybpJynKTcTlIeOPBy0-ami8rxz9onNI-bmhRR276o6ou8Z9BcIXCPA85D5WtSGpMC175ASYMg1PDAc-B4TQX5mkrzIEH9mP6aOPB8U4wMSqcusjTVqqsTUdaA1IHHHdFsesLj1MNLOJBskdNWV7dLyqtLGwScVHlyK3bg1ZryfvXr72Px9H-MxRHcCYhlSIR7x7Df1CvzDLFZowZwK57FeE9GHwZwkGXjz2N8npxOPn7Ct8NoOLC7HgPLmD8B4qw9gg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQwguiG8CA4wEJ4iWOHabHBAqjNKxradN2s3YjssmrUnXpkLhwJ_E38h7TtKpfOy2Qy6Jkzh5z8-_9w3wCnnA4r6nw5iMG8LpNMRtWIdGZ5I7aZzW5NE9GPdGR-LLsTzegF9dLgyFVXYy0QvqvLRkI9_mKaoiVM07fT87D6lrFHlXuxYaDVvsufo7qmyLd7s7SN_XnA8_HX4chW1XgdBKEVehllnkes5yxJWxtM4a15eZtcY4k9vcGZHkcc9mMppMqPocgoIkyaR0-YRqnUcJPvcaXBd4kpS9dPh5ZdOhauupEG1uDt68vRBeEuHGGArU_6KQr-1_vk3Av7Dt3yGaf_hp_fY3vAO3W9zKBg2j3YUNV9yDG00ny_o-_BwUTC-r0luDahzDfKQiBayXBT6c7YwHP-qpY4UuyqkP4HQM8TKrltNyHlK-J8UssdlJWfmcsCm-rMkNq9mCguyrNmGUnRYMJVgDdi2zxLXzB3B0JUR4CJsFzv8xMJsjRsscan45antOIKR0ExvZOMqjONcmgLj74cq2dc-p_caZ8v73JFUNkRQSSXkiKR7Am9U9s6bqx6WjPxAdVyOpYrc_Uc6_qVYAKIOKQZ8niTCxJaU0zVG2cqMdglyX8CiArY4LVCtGFuqC6QN4ubqMAoC8Orpw5bIZ06OuBFkAjxqmWc0k6WcRHjKAdI2d1qa6fqU4PfFFxslUQGnLAbztOO9iXv__F08u_4wXcHN0eLCv9nfHe0_hFqeFQUAg2oLNar50zxDhVea5X1YMvl71Ov4N3nZk8A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAosEJ7Bir72JfUAoJY1aClGFqNTbsrte00rEDokjZA78MH4dM2s7VXj01kMu8drZeB77zRvgOfKAwXNP-SE5N2KrEh-PYeVrlQpuhbZKUUT3w3Swfxy_OxEnW_Crq4WhtMpOJzpFnZWGfOR9nqApQt28k37epkUcjSdv5t98miBFkdZunEbDIoe2_o7m2_L1wRhp_YLzyd6nt_t-O2HANyIOK1-JNLADazhizFAYa7QditQYra3OTGZ1HGXhwKQiyHPqRIcAIYpSIWyWU9_zIMLnXoHtIVlFPdje3ZsefVx7eKj3ehLHbaUO3t5fxk4v4THpx2gNBj7fOA3d0IB_Id2_Ezb_iNq6w3ByE260KJaNGra7BVu2uA1Xm7mW9R34OSqYWlWl8w3VuIa5vEVKXy8LfDgbT0c_6pllhSrKmUvntAzRM6tWs3LhU_UnZTCx-WlZuQqxGf5YUylWsyWl3Fdt-Sg7Kxjqswb6GmaIhxd34fhSyHAPegXu_wEwkyFiSy3agRnafjZGgGlzE5gwyIIwU9qDsHvh0rRd0GkYx1fpovFRIhsiSSSSdESS3IOX63vmTQ-QC1fvEh3XK6l_t_uiXHyRrTqQGs2EIY-iWIeGTNQkQ03LtbIIeW3EAw92Oi6QrVJZynMR8ODZ-jKqA4rxqMKWq2bNgGYUpB7cb5hmvZNomAb4ER4kG-y0sdXNK8XZqWs5To4DKmL24FXHeef7-v-7eHjx33gK11CG5fuD6eEjuM5JLggVBDvQqxYr-xjhXqWftHLF4PNli_JvXh9qgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+autocatalytic+multicomponent+DNAzyme+nanomachine+for+tumor-specific+photothermal+therapy+sensitization+in+pancreatic+cancer&rft.jtitle=Nature+communications&rft.au=Jiaqi+Yan&rft.au=Xiaodong+Ma&rft.au=Danna+Liang&rft.au=Meixin+Ran&rft.date=2023-10-30&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1038%2Fs41467-023-42740-2&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b81d72334b1c49568d7302bae009e320
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon