Tipping time of a holonomic quantum cylinder
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions...
Saved in:
Published in | Canadian journal of physics Vol. 89; no. 9; pp. 903 - 913 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
01.09.2011
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉
tip
= t
0
C
1
exp [C
2
(r/r
0
)
9
], where t
0
is the time scale, C
1
and C
2
are constants of order unity, r is the radius of the cylinder, and r
0
is the length scale for the tipping. We compare our results with those found in previous works. |
---|---|
AbstractList | The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by t sub(tip) = t sub(0)C sub(1)exp[C sub(2)(r/r sub(0)) super(9)], where t sub(0) is the time scale, C sub(1) and C sub(2) are constants of order unity, r is the radius of the cylinder, and r sub(0) is the length scale for the tipping. We compare our results with those found in previous works.Original Abstract: Nous obtenons les Hamiltoniens, classique et quantique, pour un cylindre soumis a des contraintes holonomes. Le Hamiltonien quantique est simplifie et recrit sous une forme sans dimension. Nous calculons le temps de bascule d'un cylindre quantique soumis a la gravite. Des solutions numeriques sont obtenues pour une fonction d'onde initiale appropriee. Cela nous donne un temps de bascule de la forme t sub(tip) = t sub(0)C sub(1)exp[C sub(2)(r/r sub(0)) super(9)], ou t sub(0) est l'echelle de temps de bascule, C sub(1) et C sub(2) sont des constantes de l'ordre de 1, r est le rayon du cylindre et r sub(0) est l'echelle de longueur pour le mouvement de bascule. Nous comparons nos resultats avec ceux de travaux precedents. The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉 tip = t 0 C 1 exp [C 2 (r/r 0 ) 9 ], where t 0 is the time scale, C 1 and C 2 are constants of order unity, r is the radius of the cylinder, and r 0 is the length scale for the tipping. We compare our results with those found in previous works. The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by [.sub.tip] = [t.sub.0][C.sub.1] exp [[C.sub.2][(r/[r.sub.0]).sup.9]], where [t.sub.0] is the time scale, [C.sub.1] and [C.sub.2] are constants of order unity, r is the radius of the cylinder, and r0 is the length scale for the tipping. We compare our results with those found in previous works. The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉 tip = t 0 C 1 exp [C 2 (r/r 0 ) 9 ], where t 0 is the time scale, C 1 and C 2 are constants of order unity, r is the radius of the cylinder, and r 0 is the length scale for the tipping. We compare our results with those found in previous works. The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉tip = t0C1 exp [C2(r/r0)9], where t0 is the time scale, C1 and C2 are constants of order unity, r is the radius of the cylinder, and r0 is the length scale for the tipping. We compare our results with those found in previous works. The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by ..., where ... is the time scale, C... and C... are constants of order unity, ... is the radius of the cylinder, and ... is the length scale for the tipping. We compare our results with those found in previous works. (ProQuest: ... denotes formulae/symbols omitted.) The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by [.sub.tip] = [t.sub.0][C.sub.1] exp [[C.sub.2][(r/[r.sub.0]).sup.9]], where [t.sub.0] is the time scale, [C.sub.1] and [C.sub.2] are constants of order unity, r is the radius of the cylinder, and r0 is the length scale for the tipping. We compare our results with those found in previous works. PACS Nos: 03.65.-w, 03.65.Xp Nous obtenons les Hamiltoniens, classique et quantique, pour un cylindre soumis a des contraintes holonomes. Le Hamiltonien quantique est simplifie et recrit sous une forme sans dimension. Nous calculons le temps de bascule d'un cylindre quantique soumis a la gravite. Des solutions numeriques sont obtenues pour une fonction d'onde initiale appropriee. Cela nous donne un temps de bascule de la forme [.sub.tip] = [t.sub.o][C.sub.1] exp [[C.sub.2][(r/[r.sub.0]).sup.9]], ou [t.sub.o] est l'echelle de temps de bascule, [C.sub.1] et [C.sub.2] sont des constantes de l'ordre de 1, r est le rayon du cylindre et [r.sub.0] est l'echelle de longueur pour le mouvement de bascule. Nous comparons nos resultats avec ceux de travaux precedents. [Traduit par la Redaction] |
Abstract_FL | Nous obtenons les Hamiltoniens, classique et quantique, pour un cylindre soumis à des contraintes holonomes. Le Hamiltonien quantique est simplifié et récrit sous une forme sans dimension. Nous calculons le temps de bascule d’un cylindre quantique soumis à la gravité. Des solutions numériques sont obtenues pour une fonction d’onde initiale appropriée. Cela nous donne un temps de bascule de la forme 〈t〉
tip
= t
0
C
1
exp [C
2
(r/r
0
)
9
], où t
0
est l’échelle de temps de bascule, C
1
et C
2
sont des constantes de l’ordre de 1, r est le rayon du cylindre et r
0
est l’échelle de longueur pour le mouvement de bascule. Nous comparons nos résultats avec ceux de travaux précédents. |
Audience | Academic |
Author | Kellett, Ian Stoker, Jamie Sanchez-Fortun Shegelski, Mark R.A. |
Author_xml | – sequence: 1 givenname: Mark R.A. surname: Shegelski fullname: Shegelski, Mark R.A. – sequence: 2 givenname: Jamie Sanchez-Fortun surname: Stoker fullname: Stoker, Jamie Sanchez-Fortun – sequence: 3 givenname: Ian surname: Kellett fullname: Kellett, Ian |
BookMark | eNqV0ltLHDEUAOBQLLha8S8MFlotHZtMMpnkUaS1grRg7XPIZE7WyEwym8xA_fdmWaHdshZKHnLhy-2cc4D2fPCA0DHB54RQ-WkkpMSCv0ILUmFRcszqPbTAOI9Zhdk-OkjpIU8bQsQCfbxz4-j8spjcAEWwhS7uQx98GJwpVrP20zwU5rF3voP4Br22uk9w9Nwfop9fPt9dfi1vvl9dX17clKZmZCo17doWQLeWEFuDaKzANbYgjdC0klBRjKUE1uGWYmZ41XXANbSaYiloZ-khOt2cO8awmiFNanDJQN9rD2FOimAqKsokp5me_EUfwhx9fp0SkoumyT_N6O1LiBJGmKw55b_VUvegnLdhitqsb1YXVVMR3giyvrDcoZbgIeocN7AuL2_5kx3ejG6l_kTnO1BuHeQ87Dz1bGtDNhP8mpZ6Tkld_7j9D_tt277fWBNDShGsGqMbdHzMMVfr8lK5vFQuryw_bKSPJkICHc39P_C7l_EzUmPO_BOQRNfZ |
CODEN | CJPHAD |
Cites_doi | 10.1119/1.14950 10.1070/RD2002v007n02ABEH000204 10.1016/j.ijnonlinmec.2006.06.002 10.1139/P09-058 10.1016/j.physd.2007.05.010 10.1070/RD2003v008n02ABEH000237 10.1119/1.2717222 10.1119/1.15463 10.1103/PhysRevE.69.056610 10.1103/PhysRevLett.101.030402 10.1016/S0034-4877(09)90001-5 10.1103/PhysRevE.66.045102 10.1007/s00332-004-0655-4 10.1023/A:1010399531533 10.1119/1.1986889 10.1016/j.ijnonlinmec.2007.09.010 10.1119/1.1501117 10.1016/0034-4877(94)90038-8 10.1007/BF00045108 10.1023/A:1009759106323 10.1088/0305-4470/20/7/017 10.1006/jmaa.2000.7050 10.1016/S0034-4877(97)85617-0 10.1007/BF01594907 10.1103/PhysRevLett.90.248302 10.1119/1.2783152 10.1115/1.1979515 10.1016/S0167-2789(01)00281-0 10.1119/1.1924489 10.1139/p06-003 10.1016/j.ijnonlinmec.2006.02.005 10.1088/0143-0807/31/2/009 10.1061/(ASCE)0893-1321(2000)13:1(17) |
ContentType | Journal Article |
Copyright | COPYRIGHT 2011 NRC Research Press 2011 Published by NRC Research Press Copyright National Research Council of Canada Sep 2011 |
Copyright_xml | – notice: COPYRIGHT 2011 NRC Research Press – notice: 2011 Published by NRC Research Press – notice: Copyright National Research Council of Canada Sep 2011 |
DBID | AAYXX CITATION ISN ISR 7U5 8FD H8D L7M |
DOI | 10.1139/p11-086 |
DatabaseName | CrossRef Gale In Context: Canada Gale In Context: Science Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef Aerospace Database Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1208-6045 |
EndPage | 913 |
ExternalDocumentID | 2481031661 A272167813 10_1139_p11_086 p11-086 |
Genre | Mathematical physics Feature |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | -DZ -~X .4S .DC 00T 0R~ 29B 3V. 4.4 5GY 5RP 6J9 6TJ 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAIKC AAMNW ABDBF ABDPE ABJNI ABTAH ABUWG ACGFO ACGFS ACGOD ACNCT AEGXH AENEX AFFNX AFKRA AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCR BENPR BGLVJ BHPHI BKSAR BLC BPHCQ CAG CCPQU COF CS3 D8U DATHI DU5 DWQXO EAD EAP EAS EBC EBD EBS ECC EDH EDO EJD EMK EPL EST ESX F5P GNUQQ GUQSH HCIFZ HZ~ I-F IAO ICQ IEA IGS IOF IPNFZ ISN ISR ITC LK5 M2O M2P M2Q M3C M3G M7R MV1 MVM NMEPN NRXXU NYCZX O9- OHT ONR OVD P2P P62 PADUT PCBAR PQQKQ PRG PROAC PV9 QF4 QM1 QN7 QO4 QRP RIG RNS RRCRK RRP RZL S10 TAE TEORI TN5 TUS TWZ U5U VOH WH7 ZCG ZY4 ~02 AAYXX ACUHS AETEA AEUYN CITATION PHGZM PHGZT PQGLB 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c541t-a3dbbeeabf11f5e87f8050fe9c8a329e230099e4d0b304c62dde6aeba30983df3 |
ISSN | 0008-4204 |
IngestDate | Fri Jul 11 02:10:50 EDT 2025 Fri Aug 15 20:15:22 EDT 2025 Sat Aug 16 18:51:42 EDT 2025 Wed Mar 19 01:27:13 EDT 2025 Fri Mar 14 02:43:04 EDT 2025 Tue Jun 10 15:32:37 EDT 2025 Sat Mar 08 17:46:54 EST 2025 Wed Mar 05 04:45:03 EST 2025 Wed Mar 05 04:50:33 EST 2025 Thu Jul 10 08:15:12 EDT 2025 Thu May 23 14:20:26 EDT 2019 Sat Dec 07 06:43:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c541t-a3dbbeeabf11f5e87f8050fe9c8a329e230099e4d0b304c62dde6aeba30983df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
PQID | 3141495636 |
PQPubID | 47725 |
PageCount | 11 |
ParticipantIDs | gale_infotracmisc_A272167813 gale_infotraccpiq_272167813 crossref_primary_10_1139_p11_086 nrcresearch_primary_10_1139_p11_086 proquest_journals_3141495636 gale_infotracacademiconefile_A272167813 proquest_journals_896877000 gale_infotracgeneralonefile_A272167813 gale_incontextgauss_ISN_A272167813 gale_incontextgauss_ISR_A272167813 proquest_miscellaneous_1038234963 |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationSubtitle | Journal Canadien de Physique |
PublicationTitle | Canadian journal of physics |
PublicationYear | 2011 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – sequence: 0 name: NRC Research Press – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | Van Dooren R. (refg34/ref34) 1978; 29 Bloch A.M. (refg28/ref28) 2005; 52 refg40/ref40 refg18/ref18 refg20/ref20 refg22/ref22 refg36/ref36 refg38/ref38 refg31/ref31 Ghori Q.K. (refg33/ref33) 1974; 25 refg9/ref9 refg11/ref11 refg25/ref25 refg6/ref6 refg15/ref15 refg29/ref29 refg26/ref26 refg14/ref14 refg8/ref8 refg5/ref5 refg2/ref2 refg23/ref23 refg37/ref37 refg17/ref17 refg19/ref19 refg30/ref30 refg21/ref21 refg7/ref7 refg4/ref4 refg10/ref10 refg12/ref12 refg1/ref1 refg41/ref41 refg32/ref32 refg35/ref35 refg39/ref39 refg3/ref3 refg42/ref42 refg24/ref24 refg16/ref16 refg13/ref13 refg27/ref27 |
References_xml | – ident: refg20/ref20 doi: 10.1119/1.14950 – ident: refg9/ref9 doi: 10.1070/RD2002v007n02ABEH000204 – ident: refg13/ref13 doi: 10.1016/j.ijnonlinmec.2006.06.002 – ident: refg25/ref25 doi: 10.1139/P09-058 – ident: refg7/ref7 – ident: refg21/ref21 doi: 10.1016/j.physd.2007.05.010 – volume: 52 start-page: 324 year: 2005 ident: refg28/ref28 publication-title: Not. Am. Math. Soc. – ident: refg12/ref12 doi: 10.1070/RD2003v008n02ABEH000237 – ident: refg42/ref42 doi: 10.1119/1.2717222 – ident: refg15/ref15 doi: 10.1119/1.15463 – ident: refg18/ref18 doi: 10.1103/PhysRevE.69.056610 – ident: refg35/ref35 doi: 10.1103/PhysRevLett.101.030402 – ident: refg36/ref36 doi: 10.1016/S0034-4877(09)90001-5 – ident: refg17/ref17 doi: 10.1103/PhysRevE.66.045102 – ident: refg4/ref4 doi: 10.1007/s00332-004-0655-4 – ident: refg10/ref10 doi: 10.1023/A:1010399531533 – ident: refg3/ref3 – ident: refg5/ref5 doi: 10.1119/1.1986889 – ident: refg22/ref22 doi: 10.1016/j.ijnonlinmec.2007.09.010 – ident: refg16/ref16 doi: 10.1119/1.1501117 – volume: 25 start-page: 536 year: 1974 ident: refg33/ref33 publication-title: J. Math. Anal. Appl. – ident: refg31/ref31 doi: 10.1016/0034-4877(94)90038-8 – ident: refg1/ref1 – ident: refg8/ref8 doi: 10.1007/BF00045108 – ident: refg29/ref29 doi: 10.1023/A:1009759106323 – ident: refg32/ref32 doi: 10.1088/0305-4470/20/7/017 – ident: refg27/ref27 doi: 10.1006/jmaa.2000.7050 – ident: refg30/ref30 doi: 10.1016/S0034-4877(97)85617-0 – volume: 29 start-page: 828 year: 1978 ident: refg34/ref34 publication-title: J. Math. Anal. Appl. – ident: refg11/ref11 doi: 10.1007/BF01594907 – ident: refg19/ref19 doi: 10.1103/PhysRevLett.90.248302 – ident: refg24/ref24 doi: 10.1119/1.2783152 – ident: refg41/ref41 – ident: refg23/ref23 doi: 10.1115/1.1979515 – ident: refg14/ref14 doi: 10.1016/S0167-2789(01)00281-0 – ident: refg38/ref38 doi: 10.1119/1.1924489 – ident: refg39/ref39 doi: 10.1139/p06-003 – ident: refg37/ref37 – ident: refg6/ref6 doi: 10.1016/j.ijnonlinmec.2006.02.005 – ident: refg40/ref40 doi: 10.1088/0143-0807/31/2/009 – ident: refg2/ref2 – ident: refg26/ref26 doi: 10.1061/(ASCE)0893-1321(2000)13:1(17) |
SSID | ssj0007118 |
Score | 1.8732437 |
Snippet | The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified... |
SourceID | proquest gale crossref nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 903 |
SubjectTerms | 03.65.Xp 03.65.–w Constants Cylinders Dimensional analysis Gravitation Gravity Hamiltonian functions Mathematical analysis Mathematical models Numerical analysis Quantum mechanics Quantum physics Rayon Unity Wave functions |
Title | Tipping time of a holonomic quantum cylinder |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/p11-086 https://www.proquest.com/docview/3141495636 https://www.proquest.com/docview/896877000 https://www.proquest.com/docview/1038234963 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJyR4QHyK0gHhQ_BQMhI7zcfjNqi2SVRTu0l7s-zEbiexpLTpA_vruYvdNGEdAl6iKndyHf9s3_njfkfIe59qsEoqcFnsZW4QMupKJaSbaCbAPYhonGI08rdReHQenFwMLjYZBavoklLupddb40r-B1V4B7hilOw_IFsXCi_gN-ALT0AYnn-HccWuMK0SxJtAR5zLqkBjjJYEc3LVT39-R0bERdMLrSkJGrwRZouj9rAnMzxMt0mtMaCnP96rwZ6Uhb2McSKuLlV_Al1npq7dIfjyq82xPp4JmLOnY9sHs81-adLcXhiND-s7gK1bIWY2jd2AmvTB69nUJASyvSZpTI1JxWWwZcpmyHh6Wu3U_kaKbXh5KfILRTGmJt6h0Htoh-zsH3w5GNYWN_J9Y3FtfUxwNJb82Zbb8jqs7b2fL1LLqDS7YYkr9-LsIXlg1wXOvgH5Ebmj8sfk7qkB5Qn5ZKF2EGqn0I5waqgdC7WzhvopOR9-PTs8cm2iCzcdBH7pCpZJqWCIaN_XAxVHOvYGnlZJGgtGEwXLRHDkVZB5knlBGlKwSaFQUjAviVmm2TPSyYtcPSeORHIfiWzMAQ1SHQowIt5AhjL0siTwZJc464bgc8Nnwqt1IEv4HNaC0FZd8hYbiCM7SI7Xj6ZitVzy48mIb7C4VWncUvpolXRRLkQqbMgHVBVZx1qavZZmOr_8wRvSDy3p1DCybytmt6UIU2XaEr9rYH7797_epmWlfJ5p-Jt1b-F2oC4584Nqt4FBAb2b4jgJ4yiCLtolb2op1g8vOeaqWC055iqgmMCBvfhjc_TIvc1I3SWdcrFSL8E1LuUrOzJ-AT9At2Q |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tipping+time+of+a+holonomic+quantum+cylinder&rft.jtitle=Canadian+journal+of+physics&rft.au=Shegelski%2C+Mark+R.A&rft.au=Stoker%2C+Jamie+Sanchez-Fortun&rft.au=Kellett%2C+Ian&rft.date=2011-09-01&rft.pub=NRC+Research+Press&rft.issn=0008-4204&rft.volume=89&rft.issue=9&rft.spage=903&rft_id=info:doi/10.1139%2FP11-086&rft.externalDocID=A272167813 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4204&client=summon |