Tipping time of a holonomic quantum cylinder

The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of physics Vol. 89; no. 9; pp. 903 - 913
Main Authors Shegelski, Mark R.A., Stoker, Jamie Sanchez-Fortun, Kellett, Ian
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.09.2011
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉 tip = t 0 C 1  exp [C 2 (r/r 0 ) 9 ], where t 0 is the time scale, C 1 and C 2 are constants of order unity, r is the radius of the cylinder, and r 0 is the length scale for the tipping. We compare our results with those found in previous works.
AbstractList The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by t sub(tip) = t sub(0)C sub(1)exp[C sub(2)(r/r sub(0)) super(9)], where t sub(0) is the time scale, C sub(1) and C sub(2) are constants of order unity, r is the radius of the cylinder, and r sub(0) is the length scale for the tipping. We compare our results with those found in previous works.Original Abstract: Nous obtenons les Hamiltoniens, classique et quantique, pour un cylindre soumis a des contraintes holonomes. Le Hamiltonien quantique est simplifie et recrit sous une forme sans dimension. Nous calculons le temps de bascule d'un cylindre quantique soumis a la gravite. Des solutions numeriques sont obtenues pour une fonction d'onde initiale appropriee. Cela nous donne un temps de bascule de la forme t sub(tip) = t sub(0)C sub(1)exp[C sub(2)(r/r sub(0)) super(9)], ou t sub(0) est l'echelle de temps de bascule, C sub(1) et C sub(2) sont des constantes de l'ordre de 1, r est le rayon du cylindre et r sub(0) est l'echelle de longueur pour le mouvement de bascule. Nous comparons nos resultats avec ceux de travaux precedents.
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉 tip = t 0 C 1  exp [C 2 (r/r 0 ) 9 ], where t 0 is the time scale, C 1 and C 2 are constants of order unity, r is the radius of the cylinder, and r 0 is the length scale for the tipping. We compare our results with those found in previous works.
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by [.sub.tip] = [t.sub.0][C.sub.1] exp [[C.sub.2][(r/[r.sub.0]).sup.9]], where [t.sub.0] is the time scale, [C.sub.1] and [C.sub.2] are constants of order unity, r is the radius of the cylinder, and r0 is the length scale for the tipping. We compare our results with those found in previous works.
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉 tip = t 0 C 1 exp [C 2 (r/r 0 ) 9 ], where t 0 is the time scale, C 1 and C 2 are constants of order unity, r is the radius of the cylinder, and r 0 is the length scale for the tipping. We compare our results with those found in previous works.
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by 〈t〉tip = t0C1 exp [C2(r/r0)9], where t0 is the time scale, C1 and C2 are constants of order unity, r is the radius of the cylinder, and r0 is the length scale for the tipping. We compare our results with those found in previous works.
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by ..., where ... is the time scale, C... and C... are constants of order unity, ... is the radius of the cylinder, and ... is the length scale for the tipping. We compare our results with those found in previous works. (ProQuest: ... denotes formulae/symbols omitted.)
The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified and cast into a dimensionless form. The tipping time of a quantum mechanical cylinder subject to gravity is calculated. Numerical solutions for an appropriate initial wave function are obtained. We find that the tipping time is given by [.sub.tip] = [t.sub.0][C.sub.1] exp [[C.sub.2][(r/[r.sub.0]).sup.9]], where [t.sub.0] is the time scale, [C.sub.1] and [C.sub.2] are constants of order unity, r is the radius of the cylinder, and r0 is the length scale for the tipping. We compare our results with those found in previous works. PACS Nos: 03.65.-w, 03.65.Xp Nous obtenons les Hamiltoniens, classique et quantique, pour un cylindre soumis a des contraintes holonomes. Le Hamiltonien quantique est simplifie et recrit sous une forme sans dimension. Nous calculons le temps de bascule d'un cylindre quantique soumis a la gravite. Des solutions numeriques sont obtenues pour une fonction d'onde initiale appropriee. Cela nous donne un temps de bascule de la forme [.sub.tip] = [t.sub.o][C.sub.1] exp [[C.sub.2][(r/[r.sub.0]).sup.9]], ou [t.sub.o] est l'echelle de temps de bascule, [C.sub.1] et [C.sub.2] sont des constantes de l'ordre de 1, r est le rayon du cylindre et [r.sub.0] est l'echelle de longueur pour le mouvement de bascule. Nous comparons nos resultats avec ceux de travaux precedents. [Traduit par la Redaction]
Abstract_FL Nous obtenons les Hamiltoniens, classique et quantique, pour un cylindre soumis à des contraintes holonomes. Le Hamiltonien quantique est simplifié et récrit sous une forme sans dimension. Nous calculons le temps de bascule d’un cylindre quantique soumis à la gravité. Des solutions numériques sont obtenues pour une fonction d’onde initiale appropriée. Cela nous donne un temps de bascule de la forme 〈t〉 tip = t 0 C 1  exp [C 2 (r/r 0 ) 9 ], où t 0 est l’échelle de temps de bascule, C 1 et C 2 sont des constantes de l’ordre de 1, r est le rayon du cylindre et r 0 est l’échelle de longueur pour le mouvement de bascule. Nous comparons nos résultats avec ceux de travaux précédents.
Audience Academic
Author Kellett, Ian
Stoker, Jamie Sanchez-Fortun
Shegelski, Mark R.A.
Author_xml – sequence: 1
  givenname: Mark R.A.
  surname: Shegelski
  fullname: Shegelski, Mark R.A.
– sequence: 2
  givenname: Jamie Sanchez-Fortun
  surname: Stoker
  fullname: Stoker, Jamie Sanchez-Fortun
– sequence: 3
  givenname: Ian
  surname: Kellett
  fullname: Kellett, Ian
BookMark eNqV0ltLHDEUAOBQLLha8S8MFlotHZtMMpnkUaS1grRg7XPIZE7WyEwym8xA_fdmWaHdshZKHnLhy-2cc4D2fPCA0DHB54RQ-WkkpMSCv0ILUmFRcszqPbTAOI9Zhdk-OkjpIU8bQsQCfbxz4-j8spjcAEWwhS7uQx98GJwpVrP20zwU5rF3voP4Br22uk9w9Nwfop9fPt9dfi1vvl9dX17clKZmZCo17doWQLeWEFuDaKzANbYgjdC0klBRjKUE1uGWYmZ41XXANbSaYiloZ-khOt2cO8awmiFNanDJQN9rD2FOimAqKsokp5me_EUfwhx9fp0SkoumyT_N6O1LiBJGmKw55b_VUvegnLdhitqsb1YXVVMR3giyvrDcoZbgIeocN7AuL2_5kx3ejG6l_kTnO1BuHeQ87Dz1bGtDNhP8mpZ6Tkld_7j9D_tt277fWBNDShGsGqMbdHzMMVfr8lK5vFQuryw_bKSPJkICHc39P_C7l_EzUmPO_BOQRNfZ
CODEN CJPHAD
Cites_doi 10.1119/1.14950
10.1070/RD2002v007n02ABEH000204
10.1016/j.ijnonlinmec.2006.06.002
10.1139/P09-058
10.1016/j.physd.2007.05.010
10.1070/RD2003v008n02ABEH000237
10.1119/1.2717222
10.1119/1.15463
10.1103/PhysRevE.69.056610
10.1103/PhysRevLett.101.030402
10.1016/S0034-4877(09)90001-5
10.1103/PhysRevE.66.045102
10.1007/s00332-004-0655-4
10.1023/A:1010399531533
10.1119/1.1986889
10.1016/j.ijnonlinmec.2007.09.010
10.1119/1.1501117
10.1016/0034-4877(94)90038-8
10.1007/BF00045108
10.1023/A:1009759106323
10.1088/0305-4470/20/7/017
10.1006/jmaa.2000.7050
10.1016/S0034-4877(97)85617-0
10.1007/BF01594907
10.1103/PhysRevLett.90.248302
10.1119/1.2783152
10.1115/1.1979515
10.1016/S0167-2789(01)00281-0
10.1119/1.1924489
10.1139/p06-003
10.1016/j.ijnonlinmec.2006.02.005
10.1088/0143-0807/31/2/009
10.1061/(ASCE)0893-1321(2000)13:1(17)
ContentType Journal Article
Copyright COPYRIGHT 2011 NRC Research Press
2011 Published by NRC Research Press
Copyright National Research Council of Canada Sep 2011
Copyright_xml – notice: COPYRIGHT 2011 NRC Research Press
– notice: 2011 Published by NRC Research Press
– notice: Copyright National Research Council of Canada Sep 2011
DBID AAYXX
CITATION
ISN
ISR
7U5
8FD
H8D
L7M
DOI 10.1139/p11-086
DatabaseName CrossRef
Gale In Context: Canada
Gale In Context: Science
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database





CrossRef
Aerospace Database
Aerospace Database


DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1208-6045
EndPage 913
ExternalDocumentID 2481031661
A272167813
10_1139_p11_086
p11-086
Genre Mathematical physics
Feature
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID -DZ
-~X
.4S
.DC
00T
0R~
29B
3V.
4.4
5GY
5RP
6J9
6TJ
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAIKC
AAMNW
ABDBF
ABDPE
ABJNI
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACNCT
AEGXH
AENEX
AFFNX
AFKRA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCR
BENPR
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
CCPQU
COF
CS3
D8U
DATHI
DU5
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
EDH
EDO
EJD
EMK
EPL
EST
ESX
F5P
GNUQQ
GUQSH
HCIFZ
HZ~
I-F
IAO
ICQ
IEA
IGS
IOF
IPNFZ
ISN
ISR
ITC
LK5
M2O
M2P
M2Q
M3C
M3G
M7R
MV1
MVM
NMEPN
NRXXU
NYCZX
O9-
OHT
ONR
OVD
P2P
P62
PADUT
PCBAR
PQQKQ
PRG
PROAC
PV9
QF4
QM1
QN7
QO4
QRP
RIG
RNS
RRCRK
RRP
RZL
S10
TAE
TEORI
TN5
TUS
TWZ
U5U
VOH
WH7
ZCG
ZY4
~02
AAYXX
ACUHS
AETEA
AEUYN
CITATION
PHGZM
PHGZT
PQGLB
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c541t-a3dbbeeabf11f5e87f8050fe9c8a329e230099e4d0b304c62dde6aeba30983df3
ISSN 0008-4204
IngestDate Fri Jul 11 02:10:50 EDT 2025
Fri Aug 15 20:15:22 EDT 2025
Sat Aug 16 18:51:42 EDT 2025
Wed Mar 19 01:27:13 EDT 2025
Fri Mar 14 02:43:04 EDT 2025
Tue Jun 10 15:32:37 EDT 2025
Sat Mar 08 17:46:54 EST 2025
Wed Mar 05 04:45:03 EST 2025
Wed Mar 05 04:50:33 EST 2025
Thu Jul 10 08:15:12 EDT 2025
Thu May 23 14:20:26 EDT 2019
Sat Dec 07 06:43:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c541t-a3dbbeeabf11f5e87f8050fe9c8a329e230099e4d0b304c62dde6aeba30983df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
PQID 3141495636
PQPubID 47725
PageCount 11
ParticipantIDs gale_infotracmisc_A272167813
gale_infotraccpiq_272167813
crossref_primary_10_1139_p11_086
nrcresearch_primary_10_1139_p11_086
proquest_journals_3141495636
gale_infotracacademiconefile_A272167813
proquest_journals_896877000
gale_infotracgeneralonefile_A272167813
gale_incontextgauss_ISN_A272167813
gale_incontextgauss_ISR_A272167813
proquest_miscellaneous_1038234963
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationSubtitle Journal Canadien de Physique
PublicationTitle Canadian journal of physics
PublicationYear 2011
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – sequence: 0
  name: NRC Research Press
– name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References Van Dooren R. (refg34/ref34) 1978; 29
Bloch A.M. (refg28/ref28) 2005; 52
refg40/ref40
refg18/ref18
refg20/ref20
refg22/ref22
refg36/ref36
refg38/ref38
refg31/ref31
Ghori Q.K. (refg33/ref33) 1974; 25
refg9/ref9
refg11/ref11
refg25/ref25
refg6/ref6
refg15/ref15
refg29/ref29
refg26/ref26
refg14/ref14
refg8/ref8
refg5/ref5
refg2/ref2
refg23/ref23
refg37/ref37
refg17/ref17
refg19/ref19
refg30/ref30
refg21/ref21
refg7/ref7
refg4/ref4
refg10/ref10
refg12/ref12
refg1/ref1
refg41/ref41
refg32/ref32
refg35/ref35
refg39/ref39
refg3/ref3
refg42/ref42
refg24/ref24
refg16/ref16
refg13/ref13
refg27/ref27
References_xml – ident: refg20/ref20
  doi: 10.1119/1.14950
– ident: refg9/ref9
  doi: 10.1070/RD2002v007n02ABEH000204
– ident: refg13/ref13
  doi: 10.1016/j.ijnonlinmec.2006.06.002
– ident: refg25/ref25
  doi: 10.1139/P09-058
– ident: refg7/ref7
– ident: refg21/ref21
  doi: 10.1016/j.physd.2007.05.010
– volume: 52
  start-page: 324
  year: 2005
  ident: refg28/ref28
  publication-title: Not. Am. Math. Soc.
– ident: refg12/ref12
  doi: 10.1070/RD2003v008n02ABEH000237
– ident: refg42/ref42
  doi: 10.1119/1.2717222
– ident: refg15/ref15
  doi: 10.1119/1.15463
– ident: refg18/ref18
  doi: 10.1103/PhysRevE.69.056610
– ident: refg35/ref35
  doi: 10.1103/PhysRevLett.101.030402
– ident: refg36/ref36
  doi: 10.1016/S0034-4877(09)90001-5
– ident: refg17/ref17
  doi: 10.1103/PhysRevE.66.045102
– ident: refg4/ref4
  doi: 10.1007/s00332-004-0655-4
– ident: refg10/ref10
  doi: 10.1023/A:1010399531533
– ident: refg3/ref3
– ident: refg5/ref5
  doi: 10.1119/1.1986889
– ident: refg22/ref22
  doi: 10.1016/j.ijnonlinmec.2007.09.010
– ident: refg16/ref16
  doi: 10.1119/1.1501117
– volume: 25
  start-page: 536
  year: 1974
  ident: refg33/ref33
  publication-title: J. Math. Anal. Appl.
– ident: refg31/ref31
  doi: 10.1016/0034-4877(94)90038-8
– ident: refg1/ref1
– ident: refg8/ref8
  doi: 10.1007/BF00045108
– ident: refg29/ref29
  doi: 10.1023/A:1009759106323
– ident: refg32/ref32
  doi: 10.1088/0305-4470/20/7/017
– ident: refg27/ref27
  doi: 10.1006/jmaa.2000.7050
– ident: refg30/ref30
  doi: 10.1016/S0034-4877(97)85617-0
– volume: 29
  start-page: 828
  year: 1978
  ident: refg34/ref34
  publication-title: J. Math. Anal. Appl.
– ident: refg11/ref11
  doi: 10.1007/BF01594907
– ident: refg19/ref19
  doi: 10.1103/PhysRevLett.90.248302
– ident: refg24/ref24
  doi: 10.1119/1.2783152
– ident: refg41/ref41
– ident: refg23/ref23
  doi: 10.1115/1.1979515
– ident: refg14/ref14
  doi: 10.1016/S0167-2789(01)00281-0
– ident: refg38/ref38
  doi: 10.1119/1.1924489
– ident: refg39/ref39
  doi: 10.1139/p06-003
– ident: refg37/ref37
– ident: refg6/ref6
  doi: 10.1016/j.ijnonlinmec.2006.02.005
– ident: refg40/ref40
  doi: 10.1088/0143-0807/31/2/009
– ident: refg2/ref2
– ident: refg26/ref26
  doi: 10.1061/(ASCE)0893-1321(2000)13:1(17)
SSID ssj0007118
Score 1.8732437
Snippet The classical and quantum mechanical Hamiltonians for a cylinder subject to holonomic constraints are derived. The quantum mechanical Hamiltonian is simplified...
SourceID proquest
gale
crossref
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 903
SubjectTerms 03.65.Xp
03.65.–w
Constants
Cylinders
Dimensional analysis
Gravitation
Gravity
Hamiltonian functions
Mathematical analysis
Mathematical models
Numerical analysis
Quantum mechanics
Quantum physics
Rayon
Unity
Wave functions
Title Tipping time of a holonomic quantum cylinder
URI http://www.nrcresearchpress.com/doi/abs/10.1139/p11-086
https://www.proquest.com/docview/3141495636
https://www.proquest.com/docview/896877000
https://www.proquest.com/docview/1038234963
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdQJyR4QHyK0gHhQ_BQMhI7zcfjNqi2SVRTu0l7s-zEbiexpLTpA_vruYvdNGEdAl6iKndyHf9s3_njfkfIe59qsEoqcFnsZW4QMupKJaSbaCbAPYhonGI08rdReHQenFwMLjYZBavoklLupddb40r-B1V4B7hilOw_IFsXCi_gN-ALT0AYnn-HccWuMK0SxJtAR5zLqkBjjJYEc3LVT39-R0bERdMLrSkJGrwRZouj9rAnMzxMt0mtMaCnP96rwZ6Uhb2McSKuLlV_Al1npq7dIfjyq82xPp4JmLOnY9sHs81-adLcXhiND-s7gK1bIWY2jd2AmvTB69nUJASyvSZpTI1JxWWwZcpmyHh6Wu3U_kaKbXh5KfILRTGmJt6h0Htoh-zsH3w5GNYWN_J9Y3FtfUxwNJb82Zbb8jqs7b2fL1LLqDS7YYkr9-LsIXlg1wXOvgH5Ebmj8sfk7qkB5Qn5ZKF2EGqn0I5waqgdC7WzhvopOR9-PTs8cm2iCzcdBH7pCpZJqWCIaN_XAxVHOvYGnlZJGgtGEwXLRHDkVZB5knlBGlKwSaFQUjAviVmm2TPSyYtcPSeORHIfiWzMAQ1SHQowIt5AhjL0siTwZJc464bgc8Nnwqt1IEv4HNaC0FZd8hYbiCM7SI7Xj6ZitVzy48mIb7C4VWncUvpolXRRLkQqbMgHVBVZx1qavZZmOr_8wRvSDy3p1DCybytmt6UIU2XaEr9rYH7797_epmWlfJ5p-Jt1b-F2oC4584Nqt4FBAb2b4jgJ4yiCLtolb2op1g8vOeaqWC055iqgmMCBvfhjc_TIvc1I3SWdcrFSL8E1LuUrOzJ-AT9At2Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tipping+time+of+a+holonomic+quantum+cylinder&rft.jtitle=Canadian+journal+of+physics&rft.au=Shegelski%2C+Mark+R.A&rft.au=Stoker%2C+Jamie+Sanchez-Fortun&rft.au=Kellett%2C+Ian&rft.date=2011-09-01&rft.pub=NRC+Research+Press&rft.issn=0008-4204&rft.volume=89&rft.issue=9&rft.spage=903&rft_id=info:doi/10.1139%2FP11-086&rft.externalDocID=A272167813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4204&client=summon