Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies

Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Further...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 8031 - 17
Main Authors Zhang, Zhihua, Hu, Changtao, Wu, Zhihui, Zhang, Zhen, Yang, Shuwen, Yang, Wang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.
AbstractList Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.
Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.
Abstract Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.
Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not sufficient for monitoring large areas of land subsidence due to the time-consuming, labor-intensive, and expensive nature of the process. Furthermore, the results of conventional methods may not be timely, rendering them ineffective for monitoring purposes. Interferometric Synthetic Aperture Radar (InSAR) technology is a widely used method for monitoring ground subsidence due to its low cost, high efficiency, and ability to cover large areas. To monitor the surface sink condition of Shanghai over the past 2 years, monitoring data were obtained through the technical processing of 24 images from Sentinel-1A data covering Shanghai from 2019 to 2020 using the Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS-InSAR) technique. The ground subsidence (GS) results were extracted via PS and SBAS interferometry processing, while Shuttle Radar Topography Mission data were used to correct the residual phase. According to PS and SBAS methods, the maximum ground subsidence in the study area reached 99.8 mm and 47.2 mm, respectively. The subsidence rate and the accumulated amount of subsidence derived from the monitoring results revealed the urban area in Shanghai to be principally characterized by uneven GS, with multiple settlement funnels being found to be distributed across the main urban area. Moreover, when compared with the historical subsidence data, geological data, and urban construction distribution data, the individual settlement funnels were observed to correspond to those data concerning the historical surface settlement funnel in Shanghai. By randomly selecting GS time-series data regarding three feature points, it was determined that the morphological variables of the GS remained largely consistent at all time points and that their change trends exhibited a high degree of consistency, which verified the reliability of the PS-InSAR and SBAS-InSAR monitoring method. The results can provide data support for decision making in terms of geological disaster prevention and control in Shanghai.
ArticleNumber 8031
Author Yang, Wang
Yang, Shuwen
Hu, Changtao
Wu, Zhihui
Zhang, Zhihua
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Zhihua
  surname: Zhang
  fullname: Zhang, Zhihua
  email: zhzhihua99@163.com
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Gansu Province Engineering Laboratory for National Geographical State Monitoring
– sequence: 2
  givenname: Changtao
  surname: Hu
  fullname: Hu, Changtao
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Gansu Province Engineering Laboratory for National Geographical State Monitoring
– sequence: 3
  givenname: Zhihui
  surname: Wu
  fullname: Wu, Zhihui
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Gansu Province Engineering Laboratory for National Geographical State Monitoring
– sequence: 4
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Gansu Province Engineering Laboratory for National Geographical State Monitoring
– sequence: 5
  givenname: Shuwen
  surname: Yang
  fullname: Yang, Shuwen
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Gansu Province Engineering Laboratory for National Geographical State Monitoring
– sequence: 6
  givenname: Wang
  surname: Yang
  fullname: Yang, Wang
  organization: Faculty of Geomatics, Lanzhou Jiaotong University, National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Gansu Province Engineering Laboratory for National Geographical State Monitoring
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37198287$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFAR_aB_gAOKxIVLwJ9JfELbisJKRSAWzpbtvGS9ytqLnSD13-PdtKXtoZYs288zo7HfnKIjHzwg9IbgDwSz5mPiRMimxJSVTBBBS_ICnVDMRUkZpUcP9sfoPKUNzkNQyYl8hY5ZTWRDm_oEdd-Cd2OIzveF9m2eerhJLhWhK_oYplxKk0muBW-hcL5YrbXv19oVRidoi-CLH6ty6VeLnwf-6mJxdxzBrn0YQu8gvUYvOz0kOL9dz9Dvq8-_Lr-W19-_LC8X16UVnIylBMNkS0XVGYK1bLGQYLnm3FAiTLbcVhxjiRtCWEsN64wFqFpN65poSoCdoeWs2wa9UbvotjreqKCdOhRC7JWOo7MDKM0NFqQ2mjDJsTCmksZIamoBsmIVzVqfZq3dZLbQWvBj1MMj0cc33q1VH_4qgonMHy-ywvtbhRj-TJBGtXXJwjBoD2FKija5cbyWNcvQd0-gmzDF3IwDildcsFpm1NuHlu693PUzA-gMsDGkFKG7hxCs9rlRc25Uzo065EaRTGqekKwb9ejC_llueJ7KZmra7SME8b_tZ1j_AByB1Mc
CitedBy_id crossref_primary_10_1080_19475705_2024_2447543
crossref_primary_10_3390_app132112091
crossref_primary_10_3390_rs16162873
crossref_primary_10_3390_rs16122197
crossref_primary_10_3390_rs16111864
crossref_primary_10_1007_s12665_024_11778_w
crossref_primary_10_3390_w16030473
crossref_primary_10_1007_s10668_024_04797_x
crossref_primary_10_3390_rs16244774
crossref_primary_10_1109_JSTARS_2024_3400698
crossref_primary_10_3390_land14010202
crossref_primary_10_3390_rs17010108
crossref_primary_10_1016_j_jag_2024_104107
crossref_primary_10_1016_j_jhydrol_2025_132939
crossref_primary_10_1038_s41598_025_87087_4
crossref_primary_10_1080_19475705_2024_2383783
crossref_primary_10_1016_j_scitotenv_2024_169873
crossref_primary_10_3390_land14030470
crossref_primary_10_3390_rs16203815
crossref_primary_10_3390_s24123871
crossref_primary_10_3389_fenvs_2025_1522949
crossref_primary_10_1007_s12524_024_02030_w
crossref_primary_10_1080_19475705_2024_2375546
crossref_primary_10_1007_s11629_023_8408_8
crossref_primary_10_3390_heritage8040113
crossref_primary_10_3390_land13020184
Cites_doi 10.1016/j.enggeo.2015.04.020
10.1109/36.898661
10.1007/s12665-011-1237-z
10.3390/rs10071006
10.3390/rs8060468
10.1016/j.gr.2023.01.014
10.1080/15481603.2018.1513444
10.3390/rs11050580
10.1080/15481603.2019.1676973
10.1029/2006GL028433
10.1007/s41651-022-00110-4
10.13203/j.whugis20200262
10.1007/s00024-007-0192-9
10.1007/s11069-022-05509-2
10.6046/zrzyyg.2021291
10.14358/PERS.21-00091R2
10.3390/rs9040380
10.1080/15481603.2016.1227297
10.1016/j.ejrs.2021.05.001
10.1109/JSTARS.2022.3198728
10.1038/s41598-020-67989-1
10.1016/j.jog.2009.12.002
10.1126/science.abb8549
10.3390/rs13040546
10.1007/s12665-011-0951-x
10.1080/19475705.2018.1529711
10.11873/j.issn.1004-0323.2019.6.1324
10.13203/j.whugis20200146
10.1109/TGRS.2002.803792
10.1016/j.ijdrr.2020.101924
10.1080/02286203.2008.11442497
10.1016/j.earscirev.2022.104239
10.1007/s41651-021-00090-x
10.1007/s12517-020-06322-6
10.1007/s41651-021-00094-7
10.1016/j.acags.2020.100041
10.1007/s12517-021-07497-2
10.1016/j.rse.2020.111976
10.3390/Rs11030241
10.1016/j.rse.2020.112161
10.13544/j.cnki.jeg.2017-382
10.1016/j.rsase.2021.100691
10.1109/TGRS.2023.3236510
10.1016/j.rse.2020.112254
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-35152-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Geology
EISSN 2045-2322
EndPage 17
ExternalDocumentID oai_doaj_org_article_a4b0517ba139405bb69bb92b75e96362
PMC10192325
37198287
10_1038_s41598_023_35152_1
Genre Journal Article
GrantInformation_xml – fundername: project of Gansu Provincial Department of Transportation
  grantid: 2021-31
– fundername: the Central Government to Guide Local Scientific and Technological Development
  grantid: 22ZY1QA005
– fundername: Key R&D Project of Gansu Province
  grantid: 21YF11GA008
– fundername: the National Natural Science Foundation of China
  grantid: 41930101, 41861059, 42161069
– fundername: National Key R&D Program of China
  grantid: 2022YFB3903604; 2022YFB3903604
– fundername: National Key R&D Program of China
  grantid: 2022YFB3903604
– fundername: ;
  grantid: 41930101, 41861059, 42161069
– fundername: ;
  grantid: 2021-31
– fundername: ;
  grantid: 2022YFB3903604; 2022YFB3903604
– fundername: ;
  grantid: 21YF11GA008
– fundername: ;
  grantid: 22ZY1QA005
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-9eb39d256fb10a9d059ec4a44b215b982d6400908113d2b3fbcee6da2771a21e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:23 EDT 2025
Thu Aug 21 18:36:57 EDT 2025
Fri Jul 11 08:34:02 EDT 2025
Wed Aug 13 04:33:08 EDT 2025
Wed Mar 05 08:08:27 EST 2025
Tue Jul 01 04:24:42 EDT 2025
Thu Apr 24 23:00:25 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-9eb39d256fb10a9d059ec4a44b215b982d6400908113d2b3fbcee6da2771a21e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-35152-1
PMID 37198287
PQID 2814645379
PQPubID 2041939
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a4b0517ba139405bb69bb92b75e96362
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10192325
proquest_miscellaneous_2815247973
proquest_journals_2814645379
pubmed_primary_37198287
crossref_primary_10_1038_s41598_023_35152_1
crossref_citationtrail_10_1038_s41598_023_35152_1
springer_journals_10_1038_s41598_023_35152_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-17
PublicationDateYYYYMMDD 2023-05-17
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fentahun, Bagyaraj, Melesse (CR3) 2021; 24
Cigna, Tapete (CR40) 2021; 253
Nie, Liu, Jin (CR18) 2013; 28
Liu, Shang (CR39) 2016; 41
Calais, Dong, Wang, Shen, Vergnolle (CR22) 2006
Yang, Ke, Zhang, Chen, Gong, Lv, Zhu, Li (CR15) 2018; 10
Luo, Du, Chang (CR51) 2014; 34
Ghasemloo, Matkan, Alimohammadi (CR13) 2022; 6
Ahmed, Mahmud, Tuya (CR24) 2021; 5
Ma, Zou, Ma (CR38) 2019; 34
Wu, Yang, Ding, Zhang, Zhang, Lu (CR53) 2020; 248
Zhang, Hu, Zhang (CR7) 2022; 34
Gao, Fan, Fu (CR20) 2019; 39
Yang, Lu, Zhang, Liu, Ji, Zhao (CR46) 2019; 10
Zhou, Gong, Chen, Zhu, Duan, Gao, Lu (CR37) 2016; 53
Yao, He, Zhang, Yang, Chen, Sun, Zhao, Cao (CR47) 2023; 61
Maghsoudi, Amani, Ahmadi (CR43) 2021; 14
Zhu, Gong, Li, Wang, Chen, Dai, Teatini (CR8) 2015; 193
CR6
Fuhrmann, Garthwaite (CR27) 2019
Dumka, SuriBabu, Malik, Prajapati (CR29) 2020; 8
Zhang, Zhang, Hu (CR49) 2023; 117
Khorrami, Abrishami, Maghsoudi (CR42) 2020; 10
Liu, Wang, Lu, Gao, Wang, Jiao, Zhang (CR34) 2019; 11
Zhang, Wu, Li (CR52) 2022; 88
Gerardo, Pablo, Tomas (CR2) 2021; 371
Xiong, Wang, Qin (CR19) 2021; 13
Zhou, Gong, Chen, Li, Gao, Zhu, Liang (CR9) 2017; 9
Ferretti, Prati, Rocca (CR30) 2001; 39
Xu, Pu, Zhao, He, Zhang, Liu (CR28) 2020; 46
Lucia, Federico, Gabriele, Marco, Beniamino (CR10) 2020; 51
Thomas, Saha, Danumah (CR11) 2021; 5
Xong, Nie, Luo (CR21) 2019; 11
Mohammadimanesh, Salehi, Mahdianpari, English, Chamberland, Alasset (CR33) 2019; 56
Lyu, Ke, Guo (CR16) 2020; 57
CR14
Kumar, Pant, Satyal, Dumka (CR23) 2008; 28
Azarakhsh, Azadbakht, Matkan (CR12) 2022; 25
Riccardo, Francesco, Mariarosaria (CR35) 2007; 164
Zhang, Feng, Qi (CR5) 2018; 26
Berardino, Fornaro, Lanari, Sansosti (CR32) 2002; 40
Yan (CR17) 2020
Mahmoodinasab, Mohseni (CR44) 2021; 14
Francesca, Deodato (CR41) 2021; 254
Espiritu, Reyes, Benitez (CR45) 2022; 114
Federico, Francesco, Matteo (CR36) 2022; 235
He, Yan, Yang, Yao, Zhang, Chen, Liu (CR48) 2022; 15
Zhang (CR31) 2016
Greif, Vlcko (CR4) 2012; 66
Sousa, Ruiz, Hanssen (CR50) 2010; 49
Chen, Tomás, Li, Motagh, Li, Hu, Gong, Li, Yu, Gong (CR26) 2016; 8
Huang, Li, Wang (CR1) 2012; 66
Pu, Xu, Zhao (CR25) 2021; 46
F Mahmoodinasab (35152_CR44) 2021; 14
M Chen (35152_CR26) 2016; 8
JC Xong (35152_CR21) 2019; 11
CS Yang (35152_CR46) 2019; 10
YY Ma (35152_CR38) 2019; 34
F Mohammadimanesh (35152_CR33) 2019; 56
AV Thomas (35152_CR11) 2021; 5
M Khorrami (35152_CR42) 2020; 10
J Zhang (35152_CR5) 2018; 26
Y Maghsoudi (35152_CR43) 2021; 14
N Ghasemloo (35152_CR13) 2022; 6
T Fuhrmann (35152_CR27) 2019
L Zhu (35152_CR8) 2015; 193
JJ Sousa (35152_CR50) 2010; 49
SB Wu (35152_CR53) 2020; 248
ET Gao (35152_CR20) 2019; 39
Y He (35152_CR48) 2022; 15
YJ Nie (35152_CR18) 2013; 28
Z Azarakhsh (35152_CR12) 2022; 25
E Calais (35152_CR22) 2006
F Cigna (35152_CR40) 2021; 253
ZH Zhang (35152_CR52) 2022; 88
Y Yan (35152_CR17) 2020
R Federico (35152_CR36) 2022; 235
Q Yang (35152_CR15) 2018; 10
ZH Zhang (35152_CR49) 2023; 117
Q Xu (35152_CR28) 2020; 46
K Kumar (35152_CR23) 2008; 28
A Ferretti (35152_CR30) 2001; 39
L Riccardo (35152_CR35) 2007; 164
ST Xiong (35152_CR19) 2021; 13
ZH Zhang (35152_CR7) 2022; 34
HG Gerardo (35152_CR2) 2021; 371
CH Pu (35152_CR25) 2021; 46
MY Lyu (35152_CR16) 2020; 57
CF Zhou (35152_CR37) 2016; 53
S Yao (35152_CR47) 2023; 61
TM Fentahun (35152_CR3) 2021; 24
KW Espiritu (35152_CR45) 2022; 114
S Huang (35152_CR1) 2012; 66
X Liu (35152_CR34) 2019; 11
SM Luo (35152_CR51) 2014; 34
RK Dumka (35152_CR29) 2020; 8
X Liu (35152_CR39) 2016; 41
C Francesca (35152_CR41) 2021; 254
ZJ Zhang (35152_CR31) 2016
35152_CR14
C Zhou (35152_CR9) 2017; 9
R Ahmed (35152_CR24) 2021; 5
V Greif (35152_CR4) 2012; 66
35152_CR6
S Lucia (35152_CR10) 2020; 51
P Berardino (35152_CR32) 2002; 40
References_xml – volume: 193
  start-page: 243
  year: 2015
  end-page: 255
  ident: CR8
  article-title: Land subsidence due to groundwater withdrawal in the northern Beijing plain, China
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.04.020
– volume: 39
  start-page: 8
  issue: 1
  year: 2001
  end-page: 20
  ident: CR30
  article-title: Permanent scatterers in SAR interferometry
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.898661
– volume: 66
  start-page: 275
  year: 2012
  end-page: 284
  ident: CR1
  article-title: A new model of geo-environmental impact assessment of mining: A multiple-criteria assessment method integrating Fuzzy-AHP with fuzzy synthetic ranking
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1237-z
– volume: 10
  start-page: 1006
  issue: 7
  year: 2018
  ident: CR15
  article-title: Multi-scale analysis of the relationship between land subsidence and buildings: A case study in an eastern Beijing urban area using the PS-InSAR technique
  publication-title: Remote Sens.
  doi: 10.3390/rs10071006
– volume: 8
  start-page: 468
  year: 2016
  ident: CR26
  article-title: Imaging land subsidence induced by groundwater extraction in Beijing using satellite radar interferometry
  publication-title: Remote Sens.
  doi: 10.3390/rs8060468
– volume: 117
  start-page: 344
  issue: 5
  year: 2023
  end-page: 362
  ident: CR49
  article-title: Hazard assessment model of ground subsidence coupling AHP, RS and GIS—A case study of Shanghai
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2023.01.014
– volume: 56
  start-page: 485
  issue: 4
  year: 2019
  end-page: 510
  ident: CR33
  article-title: Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: A case study from Mayo, Yukon Territory, Canada
  publication-title: GI Sci. Remote Sens.
  doi: 10.1080/15481603.2018.1513444
– year: 2016
  ident: CR31
  publication-title: Research on Settlement Monitoring of High Speed Railway Based on PS-InSAR Technology
– volume: 11
  start-page: 580
  year: 2019
  ident: CR34
  article-title: Damage detection and analysis of urban bridges using terrestrial laser scanning (TLS), ground-based microwave interferometry, and permanent scatterer interferometry synthetic aperture radar (PS-InSAR)
  publication-title: Remote Sens.
  doi: 10.3390/rs11050580
– volume: 57
  start-page: 140
  issue: 1
  year: 2020
  end-page: 156
  ident: CR16
  article-title: Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry
  publication-title: GI Sci. Remote Sens.
  doi: 10.1080/15481603.2019.1676973
– year: 2006
  ident: CR22
  article-title: Continental deformation in Asia from a combined GPS solution
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028433
– volume: 6
  start-page: 19
  issue: 2
  year: 2022
  ident: CR13
  article-title: Estimating the agricultural farm soil moisture using spectral indices of Landsat 8, and Sentinel-1, and artificial neural networks
  publication-title: J. Geovisualization Spatial Anal.
  doi: 10.1007/s41651-022-00110-4
– volume: 46
  start-page: 983
  issue: 7
  year: 2021
  end-page: 993
  ident: CR25
  article-title: Land uplift monitoring and analysis in Yan’an new district based on SBAS⁃InSAR technology
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
  doi: 10.13203/j.whugis20200262
– volume: 164
  start-page: 637
  issue: 4
  year: 2007
  end-page: 661
  ident: CR35
  article-title: An overview of the small baseline subset algorithm: A DInSAR technique for surface deformation analysis
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-007-0192-9
– volume: 114
  start-page: 3139
  year: 2022
  end-page: 3161
  ident: CR45
  article-title: Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) reveals continued ground deformation in and around Metro Manila, Philippines, associated with groundwater exploitation
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-022-05509-2
– volume: 34
  start-page: 106
  issue: 3
  year: 2022
  end-page: 111
  ident: CR7
  article-title: PS-InSAR based monitoring and analysis of surface subsidence in Shanghai
  publication-title: Remote Sens. Nat. Resour.
  doi: 10.6046/zrzyyg.2021291
– volume: 88
  start-page: 517
  issue: 8
  year: 2022
  end-page: 525
  ident: CR52
  article-title: Monitoring environment transformation along the BTIC railway based on remote sensing by utilizing the R_RSEI
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.21-00091R2
– volume: 9
  start-page: 380
  issue: 4
  year: 2017
  ident: CR9
  article-title: InSAR time-series analysis of land subsidence under different land use types in the eastern Beijing Plain, China
  publication-title: Remote Sens.
  doi: 10.3390/rs9040380
– volume: 41
  start-page: 101
  issue: 02
  year: 2016
  end-page: 105
  ident: CR39
  article-title: Application contrast of PS-InSAR and SBAS-InSAR in urban surface subsidence monitoring
  publication-title: GNSS World China
– volume: 53
  start-page: 671
  year: 2016
  end-page: 688
  ident: CR37
  article-title: Land subsidence under different land use in the eastern Beijing plain, China 2005–2013 revealed by InSAR timeseries analysis
  publication-title: GI Sci. Remote Sens.
  doi: 10.1080/15481603.2016.1227297
– volume: 24
  start-page: 735
  year: 2021
  end-page: 744
  ident: CR3
  article-title: Seismic hazard sensitivity assessment in the Ethiopian Rift, using an integrated approach of AHP and DInSAR methods
  publication-title: Egypt. J. Remote Sens. Space Sci.
  doi: 10.1016/j.ejrs.2021.05.001
– volume: 15
  start-page: 6732
  year: 2022
  end-page: 6751
  ident: CR48
  article-title: Time-series analysis and prediction of surface deformation in the Jinchuan mining area, Gansu Province, by using InSAR and CNN–PhLSTM network
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3198728
– volume: 10
  start-page: 11357
  year: 2020
  ident: CR42
  article-title: Extreme subsidence in a populated city (Mashhad) detected by PSInSAR considering groundwater withdrawal and geotechnical properties
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67989-1
– volume: 49
  start-page: 181
  issue: 34
  year: 2010
  end-page: 189
  ident: CR50
  article-title: PS-InSAR processing methodologies in the detection of field surface deformation-Study of the Granada basin (Central Betic Cordilleras, southern Spain)
  publication-title: J. Geodyn.
  doi: 10.1016/j.jog.2009.12.002
– volume: 371
  start-page: 34
  issue: 6524
  year: 2021
  end-page: 36
  ident: CR2
  article-title: Mapping the global threat of land subsidence
  publication-title: Science
  doi: 10.1126/science.abb8549
– volume: 13
  start-page: 546
  issue: 4
  year: 2021
  end-page: 546
  ident: CR19
  article-title: Time-series analysis on persistent scatter-interferometric synthetic aperture radar (PS-InSAR) derived displacements of the Hong Kong–Zhuhai–Macao Bridge (HZMB) from Sentinel-1A observations
  publication-title: Remote Sens.
  doi: 10.3390/rs13040546
– volume: 34
  start-page: 43
  issue: 01
  year: 2014
  end-page: 46
  ident: CR51
  article-title: Ground subsidence rates of beling area inversed by PS-InSAR analysis
  publication-title: J. Geod. Geodyn.
– volume: 66
  start-page: 1585
  issue: 6
  year: 2012
  end-page: 1595
  ident: CR4
  article-title: Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-0951-x
– ident: CR14
– volume: 10
  start-page: 465
  year: 2019
  end-page: 482
  ident: CR46
  article-title: Ground deformation and fissure activity in Datong basin, China 2007–2010 revealed by multi-track InSAR
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2018.1529711
– volume: 34
  start-page: 1324
  issue: 6
  year: 2019
  end-page: 1331
  ident: CR38
  article-title: Settlement monitoring and analysis of Tianjin area based on PS-InSAR
  publication-title: Remote Sens. Technol. Appl.
  doi: 10.11873/j.issn.1004-0323.2019.6.1324
– volume: 46
  start-page: 957
  issue: 7
  year: 2020
  end-page: 969
  ident: CR28
  article-title: Time series InSAR monitoring and analysis of spatiotemporal evolution characteristics of land subsidence in Yan'an New District
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
  doi: 10.13203/j.whugis20200146
– ident: CR6
– volume: 40
  start-page: 2375
  year: 2002
  end-page: 2384
  ident: CR32
  article-title: A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803792
– volume: 51
  start-page: 101924
  year: 2020
  ident: CR10
  article-title: Early estimation of ground displacements and building damage after seismic events using SAR and LiDAR data: The case of the Amatrice earthquake in central Italy, on 24th August 2016
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101924
– volume: 28
  start-page: 4
  year: 2008
  ident: CR23
  article-title: Comparison of digital surface modeling techniques for sloping hill terrain using GPS data
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.2008.11442497
– volume: 235
  start-page: 104239
  year: 2022
  ident: CR36
  article-title: Review of satellite radar interferometry for subsidence analysis
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2022.104239
– volume: 5
  start-page: 21
  year: 2021
  ident: CR11
  article-title: Landslide susceptibility zonation of Idukki district using GIS in the Aftermath of 2018 Kerala floods and landslides: A comparison of AHP and frequency ratio methods
  publication-title: J. Geovisualization Spatial Anal.
  doi: 10.1007/s41651-021-00090-x
– volume: 14
  start-page: 30
  year: 2021
  ident: CR43
  article-title: A study of land subsidence in west of Tehran using Sentinel-1 data and permanent scatterer interferometric technique
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-06322-6
– volume: 5
  start-page: 24
  year: 2021
  ident: CR24
  article-title: A GIS-based mathematical approach for generating 3d terrain model from high-resolution UAV imageries
  publication-title: J. Geovisualization Spatial Anal.
  doi: 10.1007/s41651-021-00094-7
– year: 2020
  ident: CR17
  publication-title: Ground Subsidence Monitoring and Mechanism Analysis in Haikou Area Based on SBAS-InSAR Technology
– volume: 28
  start-page: 56
  issue: 02
  year: 2013
  end-page: 61
  ident: CR18
  article-title: Ground subsidence of shanghai from 2009 to 2010 monitored by PS-InSAR technique
  publication-title: Remote Sens. Inf.
– volume: 8
  start-page: 100041
  year: 2020
  ident: CR29
  article-title: PS-InSAR derived deformation study in the Kachchh, Western India
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2020.100041
– volume: 11
  start-page: 98
  year: 2019
  end-page: 102+129
  ident: CR21
  article-title: Monitoring urban land subsidence by dual-polarization Sentinel-1data: A case study of Shanghai
  publication-title: Bull. Surv. Mapp.
– volume: 14
  start-page: 1106
  year: 2021
  ident: CR44
  article-title: A spatiotemporal analysis of the relationship between groundwater level and ground surface displacement using Sentinel-1 SAR data
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-021-07497-2
– volume: 248
  year: 2020
  ident: CR53
  article-title: Two decades of settlement of Hong Kong international airport measured with multi-temporal InSAR
  publication-title: Remote Sens. Environ. Interdiscip. J.
  doi: 10.1016/j.rse.2020.111976
– volume: 39
  start-page: 158
  issue: 02
  year: 2019
  end-page: 163
  ident: CR20
  article-title: Land subsidence monitoring of Nanjing area based on PS-InSAR and SBAS technology
  publication-title: Geod. Geodyn.
– year: 2019
  ident: CR27
  article-title: Resolving three-dimensional surface motion with InSAR: Constraints from multi-geometry data fusion
  publication-title: Remote Sens.
  doi: 10.3390/Rs11030241
– volume: 253
  start-page: 112161
  year: 2021
  ident: CR40
  article-title: Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112161
– volume: 26
  start-page: 999
  issue: 4
  year: 2018
  end-page: 1007
  ident: CR5
  article-title: Monitoring land subsidence in Panjin region with SBAS-InSAR method
  publication-title: J. Eng. Geol.
  doi: 10.13544/j.cnki.jeg.2017-382
– volume: 25
  start-page: 100691
  year: 2022
  ident: CR12
  article-title: Estimation, modeling, and prediction of land subsidence using Sentinel-1 time series in Tehran-Shahriar plain: A machine learning-based investigation
  publication-title: Remote Sens. Appl. Soc. Environ.
  doi: 10.1016/j.rsase.2021.100691
– volume: 61
  start-page: 5201722
  year: 2023
  ident: CR47
  article-title: A convLSTM neural network model for spatiotemporal prediction of mining area surface deformation based on SBAS-InSAR monitoring data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3236510
– volume: 254
  start-page: 112254
  year: 2021
  ident: CR41
  article-title: Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112254
– volume: 14
  start-page: 30
  year: 2021
  ident: 35152_CR43
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-06322-6
– volume: 66
  start-page: 1585
  issue: 6
  year: 2012
  ident: 35152_CR4
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-0951-x
– volume: 39
  start-page: 8
  issue: 1
  year: 2001
  ident: 35152_CR30
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.898661
– volume: 5
  start-page: 24
  year: 2021
  ident: 35152_CR24
  publication-title: J. Geovisualization Spatial Anal.
  doi: 10.1007/s41651-021-00094-7
– volume: 57
  start-page: 140
  issue: 1
  year: 2020
  ident: 35152_CR16
  publication-title: GI Sci. Remote Sens.
  doi: 10.1080/15481603.2019.1676973
– volume: 61
  start-page: 5201722
  year: 2023
  ident: 35152_CR47
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3236510
– volume: 34
  start-page: 43
  issue: 01
  year: 2014
  ident: 35152_CR51
  publication-title: J. Geod. Geodyn.
– volume-title: Research on Settlement Monitoring of High Speed Railway Based on PS-InSAR Technology
  year: 2016
  ident: 35152_CR31
– volume: 14
  start-page: 1106
  year: 2021
  ident: 35152_CR44
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-021-07497-2
– volume: 24
  start-page: 735
  year: 2021
  ident: 35152_CR3
  publication-title: Egypt. J. Remote Sens. Space Sci.
  doi: 10.1016/j.ejrs.2021.05.001
– volume: 51
  start-page: 101924
  year: 2020
  ident: 35152_CR10
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101924
– volume: 25
  start-page: 100691
  year: 2022
  ident: 35152_CR12
  publication-title: Remote Sens. Appl. Soc. Environ.
  doi: 10.1016/j.rsase.2021.100691
– volume: 114
  start-page: 3139
  year: 2022
  ident: 35152_CR45
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-022-05509-2
– year: 2019
  ident: 35152_CR27
  publication-title: Remote Sens.
  doi: 10.3390/Rs11030241
– volume: 15
  start-page: 6732
  year: 2022
  ident: 35152_CR48
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2022.3198728
– ident: 35152_CR14
– year: 2006
  ident: 35152_CR22
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL028433
– volume: 117
  start-page: 344
  issue: 5
  year: 2023
  ident: 35152_CR49
  publication-title: Gondwana Res.
  doi: 10.1016/j.gr.2023.01.014
– volume: 5
  start-page: 21
  year: 2021
  ident: 35152_CR11
  publication-title: J. Geovisualization Spatial Anal.
  doi: 10.1007/s41651-021-00090-x
– volume: 164
  start-page: 637
  issue: 4
  year: 2007
  ident: 35152_CR35
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-007-0192-9
– volume: 8
  start-page: 100041
  year: 2020
  ident: 35152_CR29
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2020.100041
– volume: 254
  start-page: 112254
  year: 2021
  ident: 35152_CR41
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112254
– volume: 9
  start-page: 380
  issue: 4
  year: 2017
  ident: 35152_CR9
  publication-title: Remote Sens.
  doi: 10.3390/rs9040380
– volume: 193
  start-page: 243
  year: 2015
  ident: 35152_CR8
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2015.04.020
– volume: 66
  start-page: 275
  year: 2012
  ident: 35152_CR1
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-011-1237-z
– volume: 11
  start-page: 580
  year: 2019
  ident: 35152_CR34
  publication-title: Remote Sens.
  doi: 10.3390/rs11050580
– volume-title: Ground Subsidence Monitoring and Mechanism Analysis in Haikou Area Based on SBAS-InSAR Technology
  year: 2020
  ident: 35152_CR17
– volume: 49
  start-page: 181
  issue: 34
  year: 2010
  ident: 35152_CR50
  publication-title: J. Geodyn.
  doi: 10.1016/j.jog.2009.12.002
– volume: 13
  start-page: 546
  issue: 4
  year: 2021
  ident: 35152_CR19
  publication-title: Remote Sens.
  doi: 10.3390/rs13040546
– volume: 53
  start-page: 671
  year: 2016
  ident: 35152_CR37
  publication-title: GI Sci. Remote Sens.
  doi: 10.1080/15481603.2016.1227297
– volume: 10
  start-page: 465
  year: 2019
  ident: 35152_CR46
  publication-title: Geomat. Nat. Hazards Risk
  doi: 10.1080/19475705.2018.1529711
– volume: 41
  start-page: 101
  issue: 02
  year: 2016
  ident: 35152_CR39
  publication-title: GNSS World China
– volume: 248
  year: 2020
  ident: 35152_CR53
  publication-title: Remote Sens. Environ. Interdiscip. J.
  doi: 10.1016/j.rse.2020.111976
– volume: 46
  start-page: 983
  issue: 7
  year: 2021
  ident: 35152_CR25
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
  doi: 10.13203/j.whugis20200262
– volume: 6
  start-page: 19
  issue: 2
  year: 2022
  ident: 35152_CR13
  publication-title: J. Geovisualization Spatial Anal.
  doi: 10.1007/s41651-022-00110-4
– volume: 34
  start-page: 1324
  issue: 6
  year: 2019
  ident: 35152_CR38
  publication-title: Remote Sens. Technol. Appl.
  doi: 10.11873/j.issn.1004-0323.2019.6.1324
– volume: 10
  start-page: 11357
  year: 2020
  ident: 35152_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67989-1
– volume: 8
  start-page: 468
  year: 2016
  ident: 35152_CR26
  publication-title: Remote Sens.
  doi: 10.3390/rs8060468
– volume: 26
  start-page: 999
  issue: 4
  year: 2018
  ident: 35152_CR5
  publication-title: J. Eng. Geol.
  doi: 10.13544/j.cnki.jeg.2017-382
– volume: 10
  start-page: 1006
  issue: 7
  year: 2018
  ident: 35152_CR15
  publication-title: Remote Sens.
  doi: 10.3390/rs10071006
– volume: 28
  start-page: 4
  year: 2008
  ident: 35152_CR23
  publication-title: Int. J. Model. Simul.
  doi: 10.1080/02286203.2008.11442497
– volume: 46
  start-page: 957
  issue: 7
  year: 2020
  ident: 35152_CR28
  publication-title: Geomat. Inf. Sci. Wuhan Univ.
  doi: 10.13203/j.whugis20200146
– volume: 39
  start-page: 158
  issue: 02
  year: 2019
  ident: 35152_CR20
  publication-title: Geod. Geodyn.
– volume: 34
  start-page: 106
  issue: 3
  year: 2022
  ident: 35152_CR7
  publication-title: Remote Sens. Nat. Resour.
  doi: 10.6046/zrzyyg.2021291
– volume: 40
  start-page: 2375
  year: 2002
  ident: 35152_CR32
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2002.803792
– volume: 371
  start-page: 34
  issue: 6524
  year: 2021
  ident: 35152_CR2
  publication-title: Science
  doi: 10.1126/science.abb8549
– ident: 35152_CR6
– volume: 88
  start-page: 517
  issue: 8
  year: 2022
  ident: 35152_CR52
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.21-00091R2
– volume: 28
  start-page: 56
  issue: 02
  year: 2013
  ident: 35152_CR18
  publication-title: Remote Sens. Inf.
– volume: 56
  start-page: 485
  issue: 4
  year: 2019
  ident: 35152_CR33
  publication-title: GI Sci. Remote Sens.
  doi: 10.1080/15481603.2018.1513444
– volume: 253
  start-page: 112161
  year: 2021
  ident: 35152_CR40
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112161
– volume: 11
  start-page: 98
  year: 2019
  ident: 35152_CR21
  publication-title: Bull. Surv. Mapp.
– volume: 235
  start-page: 104239
  year: 2022
  ident: 35152_CR36
  publication-title: Earth-Sci. Rev.
  doi: 10.1016/j.earscirev.2022.104239
SSID ssj0000529419
Score 2.575707
Snippet Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are not...
Abstract Shanghai is susceptible to land subsidence due to its unique geological environment and frequent human activities. Traditional leveling techniques are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8031
SubjectTerms 704/172
704/2151/213
Decision making
Emergency preparedness
Geology
Humanities and Social Sciences
Interferometry
Land subsidence
Monitoring methods
multidisciplinary
Radar
Science
Science (multidisciplinary)
Urban areas
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kIHgRNT5GE2nBmw5JP2Z6-rgRQyIo4hrIremaniYL0ivu5uC_T1X3zJpVEy8e5jD9gKIeXdWP-oqx152KfRxkqBsFqtZCQw1B-ToGjDe8aGP0lCj88VN7cqY_nDfn10p90ZuwAg9cGHfgNRCMFHhBNbwbgNYCWAmmGVB3yuqLPu_aZqqgekurhR2zZA5Vd7BCT0XZZFLR4_VG1mLLE2XA_r9FmX8-lvztxjQ7ouMH7P4YQfJZofwhuzOkR-xuqSn5c5fFYqU0l_sU8CuoI3wZOaVwYNMKF4tSS5QvEp_TkfGFX3ByaIEvE_88r0_TfPYlz58fzabf9XQMj7vrx-zs-P3Xdyf1WEyh7hst1rXFXbMNGOBEEIfeBgyrhl57rQGdPthOhhbN2WKEIFSQoCKg-2yDl8YIL8WgnrCdtEzDM8YJZc4rGGwAqfs2QBd0q4xRpouA9l8xMTHW9SPSOBW8-ObyjbfqXBGGQ2G4LAwnKvZmM-d7wdm4dfQRyWszkjCycwNqjhs1x_1Lcyq2N0nbjYa7cpKORHWjjK3Yq003mhzdo_g0LC_zmEZqY42q2NOiHBtKlBGWaghUrNtSmy1St3vS4iLDeoscbcumYm8nDftF1828eP4_ePGC3ZNkGgRLa_bYzvrH5bCP0dYaXmbDugLiHiKP
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxJtAQUbiBlbrR-L4hLaIUpBAiKXS3ixPHLcroaR0t4f-ezxOstXy6GGl3cSJvJlnZuzvA3hdq9jEVgZeKlRcC40cg_I8hpRveFHF6Gmj8Jev1dGx_rwoF2PBbTUuq5x8YnbUoW-oRr4nqValS2Xsu7NfnFijqLs6UmjchFsEXUZabRZmU2OhLpYWdtwrs6_qvVWKV7SnTCpawl5KLrbiUYbt_1eu-feSyT_6pjkcHd6Du2MeyWaD4O_DjbZ7ALcHZsnL9O1jZuy9fAhxsFq6C_NdSJ8BhYT1kdGWjnRolZzHwC3Klh2bUwn51C8ZBbjA-o59m_NP3Xz2PV8_P5hNP9dTWT69bT-C48MPP94f8ZFcgTelFmtu01u0DSnhiSj2vQ0pzWob7bXGlASgrWWoknnblDEIFSSqiCmcVsFLY4SXolWPYafru_YpMEKd8wpbG1DqpgpYB10pY5SpIyZ_UICYHrFrRuRxIsD46XIHXNVuEItLYnFZLE4U8GZzzdmAu3Ht6AOS3GYkYWbnA_35iRtN0HmNBEiGXhAbfIlYWUQr0ZRt8kKVLGB3krsbDXnlrtSugFeb08kEqa_iu7a_yGNKqY01qoAng5psZqKMsMQpUEC9pUBbU90-0y1PM8y3yNm3LAt4O-na1bz-_yyeXf83nsMdSepPALRmF3bW5xfti5RXrfFlNp7fmdodxQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-lRfAifrtaJYI3XWw-drM5bsVSHyjiWugtZDYb-6DsSt_rwf_emeyHPK2Chz1skoEhM5OZfMxvGHtVqdjGToa8UKByLTTkEJTPY8B4w4syRk-Jwh8_ladnenVenO8xOefCpEf7CdIyLdPz67C3G3Q0lAwmFb09L2SOO54DgmpH3T6o61WzWk5W6O5KCztlyByp6gbiHS-UwPpvijD_fCj5221pckInd9mdKXrk9cjvPbbX9ffZrbGe5I8HLI4WSrTc9wG_EXGED5FT-gY2bXChGOuI8nXPGzouvvBrTs4s8KHnn5v8Q9_UXxJ9c1zPv9v5CB531g_Z2cn7r-9O86mQQt4WWmxziztmGzC4iSCOvA0YUnWt9loDOnywlQwlmrLF6ECoIEFFQNdZBi-NEV6KTj1i-_3Qd08YJ4Q5r6CzAaRuywBV0KUyRpkqAtp-xsQ8sa6dUMap2MWlS7fdqnKjMBwKwyVhOJGx1wvN9xFj45-jj0ley0jCx04Nw9U3N-mL8xoIfAy8oMrvBUBpAawEU3S44pQyY4eztN1ktBsn6TgUNcrYjL1cutHc6A7F991wncYUUhtrVMYej8qxcKKMsFQ_IGPVjtrssLrb068vEqS3SJG2LDL2ZtawX3z9fS6e_t_wZ-y2JCMg8FlzyPa3V9fdc4yptvBiMqKff3EZ5A
  priority: 102
  providerName: Springer Nature
Title Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies
URI https://link.springer.com/article/10.1038/s41598-023-35152-1
https://www.ncbi.nlm.nih.gov/pubmed/37198287
https://www.proquest.com/docview/2814645379
https://www.proquest.com/docview/2815247973
https://pubmed.ncbi.nlm.nih.gov/PMC10192325
https://doaj.org/article/a4b0517ba139405bb69bb92b75e96362
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTaC9IL7JGJWReIMA_kgcPyCUVptGpU3TQqW-RXadsEpTAm0nbf89ZzspFAoPPERVHFu17Dvf72zf7wBeZ7ye1RWzccINjwUVJjaW67i2iDc0Tetau0Dh07P0ZCLG02S6A326o24Al1tdO5dParK4enfz_fYTKvzHEDKevV-iEXKBYoy7e-kJi9Eb2kPLJF1Gg9MO7geub6YEVV3szPam-3CPS_TEmbtk94up8oz-22Don7cpfztS9Zbq-AHc7yAmyYNMPISdqnkEd0PSydvHUAc1dm2Jbiw-gZaEtDVxMR5YtMTVJCQbJfOGFG5P-VLPibN4lrQNOS_iz02RX_j2xTDvX1f9Pj26309gcnz0ZXQSd9kW4lki6CpW6FYriwioNvSDVhZxVzUTWgiDqMDggNgU9V0hhKDcMsNrg_Y1tZpJSTWjFX8Ku03bVM-BOBo6zU2lrGFillqTWZFyKbnMaoMLRAS0H9hy1lGRu4wYV6U_EudZGealxHkp_byUNII36zbfAhHHP2sP3XytazoSbV_QLr6WnU6WWhjHUGY0denhE2NSZYxiRiYVLkspi-Cwn-2yF8ySuT1TkXCpIni1_ow66Q5adFO1175OwoRUkkfwLAjHuie9cEWQbYjNRlc3vzTzS8_7TT0cZ0kEb3sJ-9mvv4_Fwf__0wvYZ043HFutPITd1eK6eokgbGUGcEdO5QD28nxcjPF3eHR2foGlo3Q08BsbA697PwCLFDFU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAgSDBE0RdH4njB4S2QNnSQ4htpX0zdpzQlVBSuluh_VP8RmacZKvl6FsfIuVwIsdz2uOZD-BFLqqiKrlPUuFEIpl0ifPCJpVHf8OyrKosJQrvH2SjI_lpkk7W4FefC0PbKnudGBS1bwpaI9_ktFYlU6H025MfCaFGUXS1h9Bo2WK3XPzEKdvszc57pO9Lzrc_HL4bJR2qQFKkks0TjdNH7dHSV44NrPboX5SFtFI6tH5O59xnyNcaTSUTnjtRObQjmbdcKWY5KwV-9wpcRcM7oMmemqjlmg5FzSTTXW7OQOSbM7SPlMPGBW2ZT3nCVuxfgAn4l2_79xbNP-K0wfxt34Kbnd8aD1tGuw1rZX0HrrVIlgs8-xgQghd3oWq1BH0ltrXHo616EjdVTCkkeGuGyqrFMo2ndTymJetjO43JoPq4qePP42SnHg-_hPfHW8P-ct6HAXB2fw-OLmXY78N63dTlQ4ipyp0VrtTecVlk3uVeZkIpofLKof6JgPVDbIqu0jkBbnw3IeIuctOSxSBZTCCLYRG8Wr5z0tb5uLD1FlFu2ZJqdIcbzek304m8sdJRATRnGaHPp85l2jnNnUpL1HoZj2Cjp7vpFMfMnLN5BM-Xj1HkKY5j67I5C21SLpVWIoIHLZsseyIU04RhEEG-wkArXV19Uk-PQ1lxFrx9nkbwuue18379fyweXfwbz-D66HB_z-ztHOw-hhucRIGK36oNWJ-fnpVP0Kebu6dBkGL4etmS-xt-1Fo0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeGAkaCE1jpPuz1HhBKaENDIaoaKvW27HptGgnZpUmF8tf4dcz4kSo8eushUmKvrc3O7DezOzvzAbxMRZEVOfdRLJyIJJMucl7YqPDob1iWFIWlROHPk2TvSH48jo834FeXC0PHKjtMrIHaVxntkfc57VXJWCjdL9pjEQc7o3enPyJikKJIa0en0ajIfr78icu3-dvxDsr6Feej3S_v96KWYSDKYskWkcalpPZo9QvHtq326GvkmbRSOrSETqfcJ6jjGs0mE547UTi0KYm3XClmOcsFvvcabCpaFfVgc7g7OThc7fBQDE0y3WbqbIu0P0drSRltXNAB-phHbM0a1qQB__J0_z6w-UfUtjaGo9twq_Viw0GjdndgIy_vwvWG13KJ3z7UfMHLe1A0mEFvCW3p8dPUQAmrIqSEErw0R-hqmE3DWRlOaQP7xM5CMq8-rMrwYBqNy-ngsH5-Ohx0PxddUADX-vfh6EoG_gH0yqrMH0FINe-scLn2jsss8S71MhFKCZUWDtEoANYNscnauudEv_Hd1PF3kZpGLAbFYmqxGBbA69Uzp03Vj0tbD0lyq5ZUsbu-UJ19My0AGCsdlUNzlhEXfexcop3T3Kk4RwxMeABbndxNCyNzc6H0AbxY3UYAoKiOLfPqvG4Tc6m0EgE8bNRk1ROhmCZGgwDSNQVa6-r6nXJ2UhcZZ7Xvz-MA3nS6dtGv_4_F48v_xnO4gbPWfBpP9p_ATU4zgSrhqi3oLc7O86fo4C3cs3YmhfD1qifvb9pOX88
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+and+analysis+of+ground+subsidence+in+Shanghai+based+on+PS-InSAR+and+SBAS-InSAR+technologies&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Zhihua&rft.au=Hu%2C+Changtao&rft.au=Wu%2C+Zhihui&rft.au=Zhang%2C+Zhen&rft.date=2023-05-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=13&rft_id=info:doi/10.1038%2Fs41598-023-35152-1&rft_id=info%3Apmid%2F37198287&rft.externalDocID=PMC10192325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon