A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features

Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed fe...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 6768 - 15
Main Authors Farahmand, Hamed, Xu, Yuanchang, Mostafavi, Ali
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.04.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-32548-x

Cover

Abstract Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.
AbstractList Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial-temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents' flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents' activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial-temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents' flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents' activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.
Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.
Abstract Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.
ArticleNumber 6768
Author Farahmand, Hamed
Xu, Yuanchang
Mostafavi, Ali
Author_xml – sequence: 1
  givenname: Hamed
  surname: Farahmand
  fullname: Farahmand, Hamed
  email: hamedfarahmand@tamu.edu
  organization: Zachry Department of Civil and Environmental Engineering, Texas A&M University
– sequence: 2
  givenname: Yuanchang
  surname: Xu
  fullname: Xu, Yuanchang
  organization: Department of Computer Science and Computer Engineering, Texas A&M University
– sequence: 3
  givenname: Ali
  surname: Mostafavi
  fullname: Mostafavi, Ali
  organization: Zachry Department of Civil and Environmental Engineering, Texas A&M University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37185364$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARLaU_wAJZYsMm4FceXqGq4lGpEhtYW459kpsrxw6208eOf-AP-RJ8b1pou6g3PvaZGY3OmZfFgfMOiuI1we8JZu2HyEkl2hJTVjJa8ba8flYcUcyrkjJKD-7Vh8VJjFucT0UFJ-JFccga0las5kfFcorirNKo7J9fvxNMsw_KoiGoeYMMwIwsqOBGN6DJG7Co9wEtoVMO9dZ7g5y_0iqmHcDCJQQ17MoNJAh-AAd-iUj7aVrcmG5QDyotAeKr4nmvbIST2_u4-PH50_ezr-XFty_nZ6cXpa44SaUwjQKj645x0TY1UQLq3GkarUivhem0wUT3ou7yA1NKe0IaQivGgbKON-y4OF91jVdbOYdxUuFGejXK_YcPg1QhjdqC5B0x3HAuuOp5RytFuBDK6FZojgGbrPVx1ZqXbsquwKU8qgeiDztu3MjBX0qCCcO4Zlnh3a1C8D8XiElOY9RgrdrPSdKW8IqyuiEZ-vYRdOuX4PKsMgpXTUM55xn15r6lf17u1psB7QrQwccYoJd6THnbfudwtNma3IVJrmGSOUxyHyZ5nan0EfVO_UkSW0kxg90A4b_tJ1h_AR0W4Dc
CitedBy_id crossref_primary_10_1007_s11069_025_07187_2
crossref_primary_10_1016_j_ijdrr_2024_104971
crossref_primary_10_1016_j_jhydrol_2024_131406
crossref_primary_10_1016_j_jag_2024_103953
crossref_primary_10_1080_15715124_2024_2329243
crossref_primary_10_1038_s41598_024_65570_8
crossref_primary_10_2166_hydro_2024_024
crossref_primary_10_1016_j_advwatres_2024_104842
crossref_primary_10_1016_j_teadva_2024_200116
crossref_primary_10_1007_s12145_024_01354_y
crossref_primary_10_1016_j_ijdrr_2024_105110
crossref_primary_10_3390_fire7060207
crossref_primary_10_3390_w16213092
crossref_primary_10_1109_TKDE_2023_3333824
crossref_primary_10_1088_1748_9326_ad8172
crossref_primary_10_3390_land13060753
crossref_primary_10_1016_j_watres_2024_122142
crossref_primary_10_1016_j_energy_2024_134352
crossref_primary_10_1038_s41598_023_44276_3
crossref_primary_10_1016_j_jer_2024_08_006
Cites_doi 10.1038/s41467-019-10063-w
10.1029/2019WR025583
10.1038/s41598-021-90964-3
10.1016/j.ijdrr.2020.101798
10.1109/MITS.2022.3162901
10.1007/s12145-019-00439-3
10.1016/j.scitotenv.2019.135161
10.1175/JTECH-D-14-00213.1
10.3390/w12030787
10.1109/ACCESS.2021.3062114
10.1109/TITS.2019.2935152
10.3390/ijgi10070455
10.1080/00045608.2010.497110
10.1109/ACCESS.2019.2963819
10.1016/j.compenvurbsys.2021.101628
10.5194/hess-13-367-2009
10.1016/j.trc.2018.10.011
10.1109/ACCESS.2020.2993874
10.1111/jfr3.12549
10.1177/0165551519828620
10.1111/mice.12495
10.1111/mice.12527
10.1016/j.ijsrc.2017.10.001
10.1016/j.neucom.2020.04.110
10.1016/j.neucom.2021.03.091
10.1016/j.cageo.2017.11.008
10.1080/01431160010014729
10.1016/j.ijinfomgt.2018.05.004
10.1007/s11269-022-03255-5
10.1007/s11069-017-2755-0
10.1038/s41598-021-88476-1
10.1038/s41598-020-70524-x
10.1016/S0198-9715(01)00010-2
10.1016/j.inffus.2020.10.004
10.3390/electronics10091014
10.1016/j.engappai.2012.05.023
10.1016/j.jhydrol.2019.05.087
10.3390/ijgi4031549
10.1007/s11069-020-04044-2
10.1038/s41598-021-93077-z
10.5194/nhess-4-295-2004
10.1016/j.compenvurbsys.2017.11.004
10.1038/nature14539
10.1007/s00521-015-1930-z
10.1007/s11069-006-9094-x
10.1016/j.rse.2019.03.014
10.5194/hess-25-4081-2021
10.1007/s11069-017-2927-y
10.1016/j.compenvurbsys.2020.101514
10.1016/j.jhydrol.2015.10.047
10.1038/s41598-021-99587-0
10.1111/mice.12457
10.1109/TNN.2008.2005605
10.3390/rs71014200
10.1007/s11069-018-3273-4
10.1126/sciadv.1500779
10.3390/ijgi4042246
10.1109/TGRS.2018.2835306
10.1016/j.envsoft.2021.105051
10.1016/j.compenvurbsys.2022.101870
10.1007/s40010-017-0461-7
10.1016/j.jhydrol.2015.02.049
10.1007/978-3-319-19024-2_11
10.1111/mice.12629
10.1109/CVPR42600.2020.01443
10.3837/tiis.2021.07.002
10.1109/ACCESS.2021.3137651
10.24963/ijcai.2018/505
10.1155/2021/5536386
10.3389/fbuil.2020.607961
10.1057/s41599-022-01353-8
10.1007/s00521-020-05487-1
10.1109/BigData.2015.7364069
10.31223/OSF.IO/E9XQR
10.1109/BigMM.2017.29
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-32548-x
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database

CrossRef

PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_4b1d4d4494af4b25a1499adc89c40e0d
PMC10130063
37185364
10_1038_s41598_023_32548_x
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: #1832662; #1832662; #1832662
– fundername: Texas A&M University
  grantid: X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund)
– fundername: Texas A&M University
  grantid: X-Grant program (Presidential Excellence Fund)
– fundername: National Science Foundation
  grantid: #1832662
– fundername: ;
  grantid: X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund)
– fundername: ;
  grantid: #1832662; #1832662; #1832662
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-9d7aedc6b3498761a9e6c5477ca1fc9dbcd01cf96bc9d0222f11712534e23b473
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:19:23 EDT 2025
Thu Aug 21 18:38:10 EDT 2025
Thu Sep 04 21:58:20 EDT 2025
Wed Aug 13 05:30:09 EDT 2025
Thu Jan 02 22:50:52 EST 2025
Thu Apr 24 23:09:06 EDT 2025
Tue Jul 01 04:24:34 EDT 2025
Fri Feb 21 02:39:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-9d7aedc6b3498761a9e6c5477ca1fc9dbcd01cf96bc9d0222f11712534e23b473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-32548-x
PMID 37185364
PQID 2805772444
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_4b1d4d4494af4b25a1499adc89c40e0d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10130063
proquest_miscellaneous_2814523671
proquest_journals_2805772444
pubmed_primary_37185364
crossref_citationtrail_10_1038_s41598_023_32548_x
crossref_primary_10_1038_s41598_023_32548_x
springer_journals_10_1038_s41598_023_32548_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-25
PublicationDateYYYYMMDD 2023-04-25
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ricchi, Bonaldo, Cioni, Carniel, Miglietta (CR15) 2021; 11
Zhao (CR45) 2020; 21
Nguyen, Chen (CR25) 2020; 12
Chang, Lafrenz, Jung, Figliozzi, Platman, Pederson (CR4) 2010; 100
Zhu, Wang, Tao, Deng, Zhao, Li (CR53) 2021; 9
Ming, Liang, Xia, Li, Fowler (CR14) 2020; 56
Hu, Fang, Pain, Navon (CR31) 2019; 575
Xu, Lv, Li, Shi (CR38) 2022; 36
Fan, Mostafavi (CR71) 2019; 34
Huang, Wang, Li (CR69) 2018; 56
CR39
Liu, Jiang, Mu, Wang (CR40) 2020; 8
CR79
Ragini, Anand, Bhaskar (CR87) 2018; 42
CR34
CR78
CR77
CR76
Mostafizi, Wang, Cox, Cramer, Dong (CR8) 2017; 88
Mobley, Sebastian, Highfield, Brody (CR75) 2019; 12
CR73
Samuels, Taylor, Mohammadi (CR81) 2020; 103
Ha, Liu, Mu (CR36) 2021; 11
Nguyen (CR47) 2016; 541
Jongman, Wagemaker, Romero, de Perez (CR70) 2015; 4
Fan, Jiang, Mostafavi (CR20) 2020; 10
Brivio, Colombo, Maggi, Tomasoni (CR63) 2002; 23
Dong, Yu, Farahmand, Mostafavi (CR10) 2019; 35
Apel, Thieken, Merz, Blöschl (CR72) 2004; 4
Hosseini (CR24) 2020; 711
Alizadeh Kharazi, Behzadan (CR28) 2021; 88
Rollason, Bracken, Hardy, Large (CR12) 2018; 92
Xu, Lv, Li, Sun, Sheng (CR37) 2022; 15
Chang, Hsu, Chang (CR32) 2019
Puttinaovarat, Horkaew (CR26) 2020; 8
Wu, Chau (CR30) 2013; 26
Srikudkao, Khundate, So-In, Horkaew, Phaudphut, Rujirakul (CR62) 2015; 361
Liu, Li, Li, Bai, Hu (CR56) 2021; 10
LeCun, Bengio, Hinton (CR35) 2015; 521
Chen, Leng, Labi (CR29) 2020; 35
Hossain, Katiyar, Hong, Wolf (CR19) 2007; 43
Fan, Esparza, Dargin, Wu, Oztekin, Mostafavi (CR80) 2020; 83
CR43
Feng, Yuan, Liu, Huang, Liu, Li (CR59) 2020; 1333
Jarihani, Callow, McVicar, Van Niel, Larsen (CR22) 2015; 524
CR42
CR86
CR41
CR85
CR83
Lv, Li, Dong, Li (CR84) 2021
CR82
Blumberg, Georgas, Yin, Herrington, Orton (CR1) 2015; 32
Huang, Xiao (CR67) 2015; 4
Yuan, Xu, Li, Mostafavi (CR2) 2021; 97
Amarnath, Matheswaran, Pandey, Alahacoon, Yoshimoto (CR23) 2017; 87
Karami, Shah, Vaezi, Bansal (CR68) 2019; 46
Al-Sabhan, Mulligan, Blackburn (CR6) 2003; 27
CR17
CR13
Niu, Zhong, Yu (CR46) 2021; 452
CR57
Wang, Yang, Stanley, Gao (CR11) 2019; 10
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (CR51) 2009; 20
Guo, Lin, Feng, Song, Wan (CR33) 2019; 33
Rosser, Leibovici, Jackson (CR64) 2017; 87
Itoh, Ikeda, Nagayama, Mizuyama (CR16) 2018; 33
Wang, Mao, Wang, Rae, Shaw (CR5) 2018; 111
Pan, Zhu, Kong, Shi, Yang (CR58) 2021; 10
Zhang, Chang, Meng, Xiang, Pan (CR52) 2020; 34
Ding, Zhu, Feng, Zhang, Cheng (CR44) 2020; 403
Yuan, Li, Liu (CR66) 2020; 51
Giustarini, Chini, Hostache, Pappenberger, Matgen (CR3) 2015; 7
di Mauro (CR49) 2021; 25
Wu, Shen, Wang, Wu (CR74) 2020; 13
Kryvasheyeu (CR9) 2016; 2
Jiang, Madsen, Bauer-Gottwein (CR21) 2019; 225
Wang, Govindaraj, Górriz, Zhang, Zhang (CR54) 2021; 67
Furquim, Pessin, Faiçal, Mendiondo, Ueyama (CR27) 2015; 27
Montanari, Hostache, Matgen, Schumann, Pfister, Hoffmann (CR50) 2009; 13
CR61
Hemmati, Mahmoud, Ellingwood, Crooks (CR65) 2021; 11
CR60
Li (CR48) 2021; 141
Brown (CR18) 2021; 11
Lin, He, Peeta (CR55) 2018; 97
Ogie, Holderness, Dunn, Turpin (CR7) 2018; 68
32548_CR61
32548_CR60
C di Mauro (32548_CR49) 2021; 25
RI Ogie (32548_CR7) 2018; 68
T Itoh (32548_CR16) 2018; 33
J Zhu (32548_CR53) 2021; 9
H Apel (32548_CR72) 2004; 4
Z Wu (32548_CR74) 2020; 13
F Yuan (32548_CR66) 2020; 51
W Al-Sabhan (32548_CR6) 2003; 27
W Wang (32548_CR11) 2019; 10
E Rollason (32548_CR12) 2018; 92
C Fan (32548_CR71) 2019; 34
Z Xu (32548_CR37) 2022; 15
C Pan (32548_CR58) 2021; 10
CL Wu (32548_CR30) 2013; 26
L Lin (32548_CR55) 2018; 97
B Jongman (32548_CR70) 2015; 4
Q Zhang (32548_CR52) 2020; 34
AF Blumberg (32548_CR1) 2015; 32
RQ Wang (32548_CR5) 2018; 111
M Montanari (32548_CR50) 2009; 13
L Feng (32548_CR59) 2020; 1333
A Mostafizi (32548_CR8) 2017; 88
G Amarnath (32548_CR23) 2017; 87
DT Nguyen (32548_CR25) 2020; 12
32548_CR39
D Liu (32548_CR40) 2020; 8
S Guo (32548_CR33) 2019; 33
G Furquim (32548_CR27) 2015; 27
X Huang (32548_CR69) 2018; 56
32548_CR76
32548_CR73
32548_CR79
32548_CR34
32548_CR78
32548_CR77
A Karami (32548_CR68) 2019; 46
Z Xu (32548_CR38) 2022; 36
32548_CR83
32548_CR82
Y LeCun (32548_CR35) 2015; 521
PA Brivio (32548_CR63) 2002; 23
Y Kryvasheyeu (32548_CR9) 2016; 2
C Fan (32548_CR80) 2020; 83
L Jiang (32548_CR21) 2019; 225
FS Hosseini (32548_CR24) 2020; 711
X Ming (32548_CR14) 2020; 56
Y Ding (32548_CR44) 2020; 403
F Yuan (32548_CR2) 2021; 97
F Scarselli (32548_CR51) 2009; 20
S Chen (32548_CR29) 2020; 35
P Nguyen (32548_CR47) 2016; 541
R Hu (32548_CR31) 2019; 575
JF Rosser (32548_CR64) 2017; 87
B Alizadeh Kharazi (32548_CR28) 2021; 88
Z Niu (32548_CR46) 2021; 452
32548_CR43
32548_CR42
32548_CR86
32548_CR41
32548_CR85
S Ha (32548_CR36) 2021; 11
W Mobley (32548_CR75) 2019; 12
R Samuels (32548_CR81) 2020; 103
Q Huang (32548_CR67) 2015; 4
M Liu (32548_CR56) 2021; 10
L Giustarini (32548_CR3) 2015; 7
H Chang (32548_CR4) 2010; 100
S Dong (32548_CR10) 2019; 35
F Hossain (32548_CR19) 2007; 43
S Puttinaovarat (32548_CR26) 2020; 8
JR Ragini (32548_CR87) 2018; 42
A Ricchi (32548_CR15) 2021; 11
C Fan (32548_CR20) 2020; 10
Z Li (32548_CR48) 2021; 141
32548_CR17
AA Jarihani (32548_CR22) 2015; 524
L Zhao (32548_CR45) 2020; 21
M Hemmati (32548_CR65) 2021; 11
Z Lv (32548_CR84) 2021
JM Brown (32548_CR18) 2021; 11
B Srikudkao (32548_CR62) 2015; 361
32548_CR13
FJ Chang (32548_CR32) 2019
SH Wang (32548_CR54) 2021; 67
32548_CR57
References_xml – year: 2021
  ident: CR84
  publication-title: Deep Learning in the COVID-19 Epidemic: A deep Model for Urban Traffic Revitalization Index
– volume: 10
  start-page: 2114
  issue: 1
  year: 2019
  ident: CR11
  article-title: Local floods induce large-scale abrupt failures of road networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10063-w
– volume: 56
  start-page: e2019WR025583
  issue: 7
  year: 2020
  ident: CR14
  article-title: Real-time flood forecasting based on a high-performance 2-D Hydrodynamic model and numerical weather predictions
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025583
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 23
  ident: CR36
  article-title: Prediction of Yangtze River streamflow based on deep learning neural network with El Niño-Southern Oscillation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90964-3
– volume: 361
  start-page: 107
  year: 2015
  end-page: 116
  ident: CR62
  article-title: Flood warning and management schemes with drone emulator using ultrasonic and image processing
  publication-title: Adv. Intell. Syst. Comput.
– volume: 51
  start-page: 101798
  year: 2020
  ident: CR66
  article-title: Understanding the evolutions of public responses using social media: Hurricane Matthew case study
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101798
– volume: 15
  start-page: 136
  issue: 1
  year: 2022
  end-page: 159
  ident: CR37
  article-title: A novel perspective on travel demand prediction considering natural environmental and socioeconomic factors
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2022.3162901
– volume: 13
  start-page: 377
  issue: 2
  year: 2020
  end-page: 390
  ident: CR74
  article-title: An ontology-based framework for heterogeneous data management and its application for urban flood disasters
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-019-00439-3
– ident: CR39
– volume: 711
  start-page: 135161
  year: 2020
  ident: CR24
  article-title: Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135161
– volume: 32
  start-page: 1486
  issue: 8
  year: 2015
  end-page: 1497
  ident: CR1
  article-title: Street-scale modeling of storm surge inundation along the new jersey hudson river waterfront
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-14-00213.1
– volume: 12
  start-page: 787
  issue: 3
  year: 2020
  ident: CR25
  article-title: Real-time probabilistic flood forecasting using multiple machine learning methods
  publication-title: Water
  doi: 10.3390/w12030787
– volume: 9
  start-page: 35973
  year: 2021
  end-page: 35983
  ident: CR53
  article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062114
– volume: 21
  start-page: 3848
  issue: 9
  year: 2020
  end-page: 3858
  ident: CR45
  article-title: T-GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2935152
– volume: 10
  start-page: 455
  issue: 7
  year: 2021
  ident: CR56
  article-title: Pedestrian flow prediction in open public places using graph convolutional network
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi10070455
– volume: 100
  start-page: 938
  issue: 4
  year: 2010
  end-page: 952
  ident: CR4
  article-title: Potential impacts of climate change on flood-induced travel disruptions: A case study of Portland, Oregon, USA
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1080/00045608.2010.497110
– volume: 8
  start-page: 5885
  year: 2020
  end-page: 5905
  ident: CR26
  article-title: Flood forecasting system based on integrated big and crowdsource data by using machine learning techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963819
– volume: 88
  start-page: 101628
  year: 2021
  ident: CR28
  article-title: Flood depth mapping in street photos with image processing and deep neural networks
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2021.101628
– volume: 13
  start-page: 367
  issue: 3
  year: 2009
  end-page: 380
  ident: CR50
  article-title: Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote sensing-derived water stages
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-13-367-2009
– ident: CR61
– volume: 97
  start-page: 258
  year: 2018
  end-page: 276
  ident: CR55
  article-title: Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.10.011
– ident: CR77
– year: 2019
  ident: CR32
  publication-title: Flood Forecasting Using Machine Learning Methods
– volume: 8
  start-page: 90069
  year: 2020
  end-page: 90086
  ident: CR40
  article-title: Streamflow prediction using deep learning neural network: Case study of Yangtze River
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993874
– ident: CR42
– volume: 12
  start-page: e12549
  issue: S1
  year: 2019
  ident: CR75
  article-title: Estimating flood extent during Hurricane Harvey using maximum entropy to build a hazard distribution model
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12549
– volume: 46
  start-page: 313
  issue: 3
  year: 2019
  end-page: 324
  ident: CR68
  article-title: Twitter speaks: A case of national disaster situational awareness
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551519828620
– volume: 35
  start-page: 305
  issue: 4
  year: 2020
  end-page: 321
  ident: CR29
  article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12495
– volume: 35
  start-page: 668
  issue: 7
  year: 2019
  end-page: 684
  ident: CR10
  article-title: Bayesian modeling of flood control networks for failure cascade characterization and vulnerability assessment
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12527
– volume: 1333
  start-page: 3
  year: 2020
  end-page: 10
  ident: CR59
  article-title: A discriminative STGCN for skeleton oriented action recognition
  publication-title: Commun. Comput. Inf. Sci.
– volume: 33
  start-page: 922
  issue: 01
  year: 2019
  end-page: 929
  ident: CR33
  article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: CR57
– volume: 33
  start-page: 107
  issue: 2
  year: 2018
  end-page: 116
  ident: CR16
  article-title: Hydraulic model tests for propagation of flow and sediment in floods due to breaking of a natural landslide dam during a mountainous torrent
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/j.ijsrc.2017.10.001
– volume: 403
  start-page: 348
  year: 2020
  end-page: 359
  ident: CR44
  article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.110
– ident: CR60
– volume: 452
  start-page: 48
  year: 2021
  end-page: 62
  ident: CR46
  article-title: A review on the attention mechanism of deep learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– ident: CR78
– ident: CR85
– volume: 111
  start-page: 139
  year: 2018
  end-page: 147
  ident: CR5
  article-title: Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.11.008
– volume: 23
  start-page: 429
  issue: 3
  year: 2002
  end-page: 441
  ident: CR63
  article-title: Integration of remote sensing data and GIS for accurate mapping of flooded areas
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160010014729
– volume: 42
  start-page: 13
  year: 2018
  end-page: 24
  ident: CR87
  article-title: Big data analytics for disaster response and recovery through sentiment analysis
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2018.05.004
– volume: 36
  start-page: 4293
  issue: 11
  year: 2022
  end-page: 4312
  ident: CR38
  article-title: A novel approach for predicting water demand with complex patterns based on ensemble learning
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03255-5
– volume: 87
  start-page: 103
  issue: 1
  year: 2017
  end-page: 120
  ident: CR64
  article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2755-0
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  ident: CR15
  article-title: Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88476-1
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 12
  ident: CR20
  article-title: A network percolation-based contagion model of flood propagation and recession in urban road networks
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70524-x
– volume: 27
  start-page: 9
  issue: 1
  year: 2003
  end-page: 32
  ident: CR6
  article-title: A real-time hydrological model for flood prediction using GIS and the WWW
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/S0198-9715(01)00010-2
– volume: 67
  start-page: 208
  year: 2021
  end-page: 229
  ident: CR54
  article-title: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.004
– volume: 10
  start-page: 1014
  issue: 9
  year: 2021
  ident: CR58
  article-title: DC-STGCN: Dual-channel based graph convolutional networks for network traffic forecasting
  publication-title: Electron
  doi: 10.3390/electronics10091014
– volume: 26
  start-page: 997
  issue: 3
  year: 2013
  end-page: 1007
  ident: CR30
  article-title: Prediction of rainfall time series using modular soft computingmethods
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.023
– volume: 575
  start-page: 911
  year: 2019
  end-page: 920
  ident: CR31
  article-title: Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.087
– volume: 4
  start-page: 1549
  issue: 3
  year: 2015
  end-page: 1568
  ident: CR67
  article-title: Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4031549
– volume: 103
  start-page: 1455
  issue: 1
  year: 2020
  end-page: 1477
  ident: CR81
  article-title: Silence of the Tweets: incorporating social media activity drop-offs into crisis detection
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04044-2
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 10
  ident: CR18
  article-title: Novel use of social media to assess and improve coastal flood forecasts and hazard alerts
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93077-z
– ident: CR43
– volume: 4
  start-page: 295
  issue: 2
  year: 2004
  end-page: 308
  ident: CR72
  article-title: Flood risk assessment and associated uncertainty
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-4-295-2004
– volume: 68
  start-page: 97
  year: 2018
  end-page: 109
  ident: CR7
  article-title: Assessing the vulnerability of hydrological infrastructure to flood damage in coastal cities of developing nations
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2017.11.004
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR35
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 27
  start-page: 1129
  issue: 5
  year: 2015
  end-page: 1141
  ident: CR27
  article-title: Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1930-z
– volume: 43
  start-page: 199
  issue: 2
  year: 2007
  end-page: 210
  ident: CR19
  article-title: The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-006-9094-x
– volume: 225
  start-page: 229
  year: 2019
  end-page: 247
  ident: CR21
  article-title: Simultaneous calibration of multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua River
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.014
– ident: CR82
– volume: 25
  start-page: 4081
  issue: 7
  year: 2021
  end-page: 4097
  ident: CR49
  article-title: Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic-hydraulic forecasting model: A proof of concept
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-4081-2021
– ident: CR79
– volume: 88
  start-page: 1347
  issue: 3
  year: 2017
  end-page: 1372
  ident: CR8
  article-title: Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2927-y
– ident: CR86
– volume: 83
  start-page: 101514
  year: 2020
  ident: CR80
  article-title: Spatial biases in crowdsourced data: Social media content attention concentrates on populous areas in disasters
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2020.101514
– volume: 541
  start-page: 401
  year: 2016
  end-page: 420
  ident: CR47
  article-title: A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.047
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 15
  ident: CR65
  article-title: Unraveling the complexity of human behavior and urbanization on community vulnerability to floods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99587-0
– volume: 34
  start-page: 1055
  issue: 12
  year: 2019
  end-page: 1070
  ident: CR71
  article-title: A graph-based method for social sensing of infrastructure disruptions in disasters
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12457
– ident: CR73
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  end-page: 80
  ident: CR51
  article-title: The graph neural network model
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 7
  start-page: 14200
  issue: 10
  year: 2015
  end-page: 14226
  ident: CR3
  article-title: Flood hazard mapping combining hydrodynamic modeling and multi annual remote sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs71014200
– volume: 92
  start-page: 1665
  issue: 3
  year: 2018
  end-page: 1686
  ident: CR12
  article-title: Rethinking flood risk communication
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3273-4
– volume: 2
  start-page: e1500779
  issue: 3
  year: 2016
  ident: CR9
  article-title: Rapid assessment of disaster damage using social media activity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500779
– volume: 34
  start-page: 1177
  issue: 01
  year: 2020
  end-page: 1185
  ident: CR52
  article-title: Spatio-temporal graph structure learning for traffic forecasting
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 4
  start-page: 2246
  issue: 4
  year: 2015
  end-page: 2266
  ident: CR70
  article-title: Early flood detection for rapid humanitarian response: Harnessing near real-time satellite and twitter signals
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4042246
– ident: CR17
– volume: 56
  start-page: 4691
  issue: 8
  year: 2018
  end-page: 4701
  ident: CR69
  article-title: Reconstructing flood inundation probability by enhancing near real-time imagery with real-time gauges and tweets
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2835306
– volume: 141
  start-page: 105051
  year: 2021
  ident: CR48
  article-title: CREST-iMAP v1.0: A fully coupled hydrologic-hydraulic modeling framework dedicated to flood inundation mapping and prediction
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105051
– ident: CR13
– ident: CR34
– volume: 97
  start-page: 101870
  year: 2021
  ident: CR2
  article-title: Spatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2022.101870
– ident: CR76
– ident: CR83
– ident: CR41
– volume: 87
  start-page: 941
  issue: 4
  year: 2017
  end-page: 950
  ident: CR23
  article-title: Flood mapping tools for disaster preparedness and emergency response using satellite data and hydrodynamic models: A case study of bagmathi basin India
  publication-title: Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
  doi: 10.1007/s40010-017-0461-7
– volume: 524
  start-page: 489
  year: 2015
  end-page: 506
  ident: CR22
  article-title: Satellite-derived digital elevation model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.02.049
– volume: 92
  start-page: 1665
  issue: 3
  year: 2018
  ident: 32548_CR12
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-018-3273-4
– volume: 56
  start-page: e2019WR025583
  issue: 7
  year: 2020
  ident: 32548_CR14
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025583
– volume: 12
  start-page: e12549
  issue: S1
  year: 2019
  ident: 32548_CR75
  publication-title: J. Flood Risk Manag.
  doi: 10.1111/jfr3.12549
– volume: 87
  start-page: 941
  issue: 4
  year: 2017
  ident: 32548_CR23
  publication-title: Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.
  doi: 10.1007/s40010-017-0461-7
– ident: 32548_CR61
– volume: 8
  start-page: 5885
  year: 2020
  ident: 32548_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2963819
– volume: 8
  start-page: 90069
  year: 2020
  ident: 32548_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993874
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 32548_CR15
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88476-1
– volume: 361
  start-page: 107
  year: 2015
  ident: 32548_CR62
  publication-title: Adv. Intell. Syst. Comput.
  doi: 10.1007/978-3-319-19024-2_11
– volume: 4
  start-page: 2246
  issue: 4
  year: 2015
  ident: 32548_CR70
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4042246
– ident: 32548_CR43
  doi: 10.1111/mice.12629
– volume: 27
  start-page: 9
  issue: 1
  year: 2003
  ident: 32548_CR6
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/S0198-9715(01)00010-2
– volume: 111
  start-page: 139
  year: 2018
  ident: 32548_CR5
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2017.11.008
– volume: 225
  start-page: 229
  year: 2019
  ident: 32548_CR21
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.014
– volume: 33
  start-page: 922
  issue: 01
  year: 2019
  ident: 32548_CR33
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 32548_CR57
  doi: 10.1109/CVPR42600.2020.01443
– volume: 103
  start-page: 1455
  issue: 1
  year: 2020
  ident: 32548_CR81
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-020-04044-2
– ident: 32548_CR78
– volume: 51
  start-page: 101798
  year: 2020
  ident: 32548_CR66
  publication-title: Int. J. Disaster Risk Reduct.
  doi: 10.1016/j.ijdrr.2020.101798
– ident: 32548_CR76
  doi: 10.3837/tiis.2021.07.002
– volume: 2
  start-page: e1500779
  issue: 3
  year: 2016
  ident: 32548_CR9
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500779
– volume: 20
  start-page: 61
  issue: 1
  year: 2009
  ident: 32548_CR51
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2005605
– volume: 100
  start-page: 938
  issue: 4
  year: 2010
  ident: 32548_CR4
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1080/00045608.2010.497110
– ident: 32548_CR73
  doi: 10.1109/ACCESS.2021.3137651
– volume: 7
  start-page: 14200
  issue: 10
  year: 2015
  ident: 32548_CR3
  publication-title: Remote Sens.
  doi: 10.3390/rs71014200
– ident: 32548_CR86
  doi: 10.24963/ijcai.2018/505
– volume: 35
  start-page: 305
  issue: 4
  year: 2020
  ident: 32548_CR29
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12495
– volume: 83
  start-page: 101514
  year: 2020
  ident: 32548_CR80
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2020.101514
– volume: 33
  start-page: 107
  issue: 2
  year: 2018
  ident: 32548_CR16
  publication-title: Int. J. Sediment Res.
  doi: 10.1016/j.ijsrc.2017.10.001
– volume: 97
  start-page: 101870
  year: 2021
  ident: 32548_CR2
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2022.101870
– volume: 10
  start-page: 2114
  issue: 1
  year: 2019
  ident: 32548_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10063-w
– volume: 9
  start-page: 35973
  year: 2021
  ident: 32548_CR53
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3062114
– volume: 97
  start-page: 258
  year: 2018
  ident: 32548_CR55
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2018.10.011
– ident: 32548_CR77
  doi: 10.1155/2021/5536386
– volume: 43
  start-page: 199
  issue: 2
  year: 2007
  ident: 32548_CR19
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-006-9094-x
– volume: 34
  start-page: 1177
  issue: 01
  year: 2020
  ident: 32548_CR52
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 34
  start-page: 1055
  issue: 12
  year: 2019
  ident: 32548_CR71
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12457
– ident: 32548_CR39
– volume: 23
  start-page: 429
  issue: 3
  year: 2002
  ident: 32548_CR63
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160010014729
– volume: 13
  start-page: 377
  issue: 2
  year: 2020
  ident: 32548_CR74
  publication-title: Earth Sci. Inform.
  doi: 10.1007/s12145-019-00439-3
– volume: 10
  start-page: 455
  issue: 7
  year: 2021
  ident: 32548_CR56
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi10070455
– ident: 32548_CR82
  doi: 10.3389/fbuil.2020.607961
– volume-title: Deep Learning in the COVID-19 Epidemic: A deep Model for Urban Traffic Revitalization Index
  year: 2021
  ident: 32548_CR84
– volume: 35
  start-page: 668
  issue: 7
  year: 2019
  ident: 32548_CR10
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12527
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 32548_CR65
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99587-0
– ident: 32548_CR83
  doi: 10.1057/s41599-022-01353-8
– volume: 87
  start-page: 103
  issue: 1
  year: 2017
  ident: 32548_CR64
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2755-0
– ident: 32548_CR13
  doi: 10.1007/s00521-020-05487-1
– volume: 403
  start-page: 348
  year: 2020
  ident: 32548_CR44
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.04.110
– volume: 1333
  start-page: 3
  year: 2020
  ident: 32548_CR59
  publication-title: Commun. Comput. Inf. Sci.
– volume: 21
  start-page: 3848
  issue: 9
  year: 2020
  ident: 32548_CR45
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2019.2935152
– volume: 88
  start-page: 1347
  issue: 3
  year: 2017
  ident: 32548_CR8
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-017-2927-y
– ident: 32548_CR34
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 32548_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-93077-z
– volume: 541
  start-page: 401
  year: 2016
  ident: 32548_CR47
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.10.047
– volume: 4
  start-page: 295
  issue: 2
  year: 2004
  ident: 32548_CR72
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-4-295-2004
– volume: 10
  start-page: 1014
  issue: 9
  year: 2021
  ident: 32548_CR58
  publication-title: Electron
  doi: 10.3390/electronics10091014
– volume: 711
  start-page: 135161
  year: 2020
  ident: 32548_CR24
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135161
– volume: 27
  start-page: 1129
  issue: 5
  year: 2015
  ident: 32548_CR27
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1930-z
– volume: 452
  start-page: 48
  year: 2021
  ident: 32548_CR46
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.03.091
– volume: 36
  start-page: 4293
  issue: 11
  year: 2022
  ident: 32548_CR38
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03255-5
– volume: 46
  start-page: 313
  issue: 3
  year: 2019
  ident: 32548_CR68
  publication-title: J. Inf. Sci.
  doi: 10.1177/0165551519828620
– volume: 575
  start-page: 911
  year: 2019
  ident: 32548_CR31
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.05.087
– volume: 13
  start-page: 367
  issue: 3
  year: 2009
  ident: 32548_CR50
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-13-367-2009
– volume: 25
  start-page: 4081
  issue: 7
  year: 2021
  ident: 32548_CR49
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-4081-2021
– volume: 4
  start-page: 1549
  issue: 3
  year: 2015
  ident: 32548_CR67
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi4031549
– volume: 42
  start-page: 13
  year: 2018
  ident: 32548_CR87
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2018.05.004
– volume: 68
  start-page: 97
  year: 2018
  ident: 32548_CR7
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2017.11.004
– volume: 88
  start-page: 101628
  year: 2021
  ident: 32548_CR28
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2021.101628
– ident: 32548_CR60
– volume: 67
  start-page: 208
  year: 2021
  ident: 32548_CR54
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.10.004
– ident: 32548_CR17
  doi: 10.1109/BigData.2015.7364069
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 32548_CR36
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90964-3
– ident: 32548_CR85
– volume: 56
  start-page: 4691
  issue: 8
  year: 2018
  ident: 32548_CR69
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2835306
– ident: 32548_CR79
– volume: 26
  start-page: 997
  issue: 3
  year: 2013
  ident: 32548_CR30
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2012.05.023
– ident: 32548_CR42
  doi: 10.31223/OSF.IO/E9XQR
– volume: 524
  start-page: 489
  year: 2015
  ident: 32548_CR22
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.02.049
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 32548_CR35
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 32
  start-page: 1486
  issue: 8
  year: 2015
  ident: 32548_CR1
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-14-00213.1
– volume: 12
  start-page: 787
  issue: 3
  year: 2020
  ident: 32548_CR25
  publication-title: Water
  doi: 10.3390/w12030787
– volume-title: Flood Forecasting Using Machine Learning Methods
  year: 2019
  ident: 32548_CR32
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 32548_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-70524-x
– volume: 15
  start-page: 136
  issue: 1
  year: 2022
  ident: 32548_CR37
  publication-title: IEEE Intell. Transp. Syst. Mag.
  doi: 10.1109/MITS.2022.3162901
– ident: 32548_CR41
  doi: 10.1109/BigMM.2017.29
– volume: 141
  start-page: 105051
  year: 2021
  ident: 32548_CR48
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2021.105051
SSID ssj0000529419
Score 2.5695136
Snippet Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this...
Abstract Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6768
SubjectTerms 639/166/986
704/4111
Census
Computer applications
Deep learning
Extreme weather
Floods
Humanities and Social Sciences
Hurricanes
Hydrologic data
multidisciplinary
Physics
Rainfall intensity
Science
Science (multidisciplinary)
Spatial discrimination learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYsKvbUmHmn80DENCaHQnhrITejlprB4Q7xLk1v-Q_5hf0lHkneb7fPSoy0J5JlvrE9o9A1jr6UHMF0g8KrOlgg9xVwlTYkorfAKZAPx7vCHj83xCb4_rU9vlfqKOWFZHjgbbg8tePSICk2PVtSGKL0y3nXKYRUqH_--lapubaayqrdQCGq6JVPJbm-klSreJhOylLQp6srLjZUoCfb_jmX-miz504lpWoiOHrD7E4Pk-3nm2-xOGB6yu7mm5NUjttznY8ySNrNv1zeT8NSMJ11q7kM451OdiM88FcHhRFr58sKagfcxh50P86_OjDEZmnoSzlMVI34Ws2bmBLYwX47c5VsliyvehyQMOj5mJ0eHnw6Oy6m2QulqhEWpfGvomxorUdEPEYwKDbW0rTPQO-Wt8xW4XjWWHuKmsAdoiQxJDEJabOUTtjXMh_CMcevr2gpwNkq_VA4MbbidNQBWOI9OFQxWdtZuEh6P9S9mOh2Ay05n32jyjU6-0ZcFe7Mec55lN_7a-11037pnlMxOLwhIegKS_heQCra7cr6e4njUoiM-2xIFwoK9WjdTBMZjFZNsTn0A6yiEBwV7mrGynolsIx9qaHS3gaKNqW62DF_Okso3xDNlIpAFe7sC3I95_dkWz_-HLXbYPREjpcJS1Ltsa3GxDC-IfC3syxRn3wELui4e
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEF5qi-CLeDdaZQXfNDST3Vz2QaSVliJ4ELHQt7C3tIVDcjw5B9s3_4P_0F_izOZSjpe-JdkN7OWb3dmdmW8Yey0cgC49gleVJpZQo8wlQsdSCpM6BSIHih3-NMuPT-TH0-x0i83GWBhyqxzXxLBQu9bSHfleWqJmUeBmJN8vvsWUNYqsq2MKDT2kVnDvAsXYLbaDS3KJuN85OJx9_jLdupBdS4IaomcSUe51uINRlFkqYoGHpTK-3NihApH_v7TPv50o_7Ckhg3q6B67O2iWfL-Hwn225ZsH7Hafa_IKn4Kvp-0esvU-78iPWs9__fg5UFPNeWCu5s77BR8ySZzxkCaHo1rL10ujG16Tlztv2u9Wd-QujTVREkKeI35OfjUtwtG3647bPu5kdcVrH6hDu0fs5Ojw64fjeMi-ENtMwipWrtDYu9wIqXDJBK18jiVFYTXUVjljXQK2VrnBFzo21gAFqktC-lQYWYjHbLtpG_-UceOyzKRgDZHDJBY0Hsmt0QAmtU5aFTEYR7yyAzU5ZciYV8FELsqqn6UKZ6kKs1RdRuzN9M-iJ-a4sfYBTeRUk0i1w4d2eVYNMlpJA046KZXUtTRppvH0qLSzpbIy8YmL2O4Ig2qQ9K66xmXEXk3FKKNkeNFhzLEOyIyo8iBiT3rUTC0RBWlMOf5dbuBpo6mbJc3FeeABB7I6o4oZsbcj9K7b9f-xeHZzN56zOylJQyLjNNtl26vl2r9AxWtlXg7S9Bs6sS7C
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7LLIIX8W3rKhG8aWNXUv3IcRSXZUAvurC3Jq_eFYbuZXoG3Zv_wX_oL7GSfsjoKnjsSQXSqarOl6mqrxh7IR2ArjwZr6pMitCQz2VSp4jSCKdAFhBqh99_KE5OcXWWnx0wMdXCxKT9SGkZP9NTdtjrng6aUAwmZCrpTlOlhBsPKzr-xIIdLperj6v5n5UQu0JQY4VMJqtrJu-dQpGs_zqE-Wei5G_R0ngIHd9mt0b0yJfDeu-wA9_eZTeGfpJX99huyfuQIa3XP759H0mn1jxyUnPn_SUfe0Sc89gAhxNg5buN0S1vQv46b7svVvchEZokycZjByN-ETJmOjI03-16boeKku0Vb3zcwf4-Oz1-9-ntSTr2VUhtjrBNlSs1vVNhJCr6GIJWvqCRsrQaGqucsS4D26jC0EO4EDYAJQEhiV5Ig6V8wBZt1_pHjBuX50aANYH2JbOg6bJtjQYwwjq0KmEw7XNtR9Lx0PtiXcfgt6zqQTc16aaOuqm_JuzlPOdyoNz4p_SboL5ZMtBlxx-6zXk9mk-NBhw6RIW6QSNyTfdCpZ2tlMXMZy5hR5Py69GH-1pUhGVLgj-YsOfzMHlfCKnouOckA5gHEjxI2MPBVuaVyDJgoYJmV3tWtLfU_ZH280Vk-IYQTybwmLBXk8H9Wtff9-Lx_4k_YTdF8IkMU5EfscV2s_NPCWJtzbPRp34Cyawk6Q
  priority: 102
  providerName: Springer Nature
Title A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features
URI https://link.springer.com/article/10.1038/s41598-023-32548-x
https://www.ncbi.nlm.nih.gov/pubmed/37185364
https://www.proquest.com/docview/2805772444
https://www.proquest.com/docview/2814523671
https://pubmed.ncbi.nlm.nih.gov/PMC10130063
https://doaj.org/article/4b1d4d4494af4b25a1499adc89c40e0d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKKyQuiDcLJTISN1jYsb0PHxBKo1ZVpFYIiJTbyq9tkaLdkk1Ec-M_8A_5JYy9m6BA6GkftiU_ZtbfrGe-IeQVtwCqcCi8stCxgAp1LuEqFoJrZiXwDHzs8Nl5djoR42k63SPrdEf9BLY7TTufT2oyn729_rb6gAr_vgsZL961uAn5QDHGY472ThEjpjzAnSnzxthZD_c7rm8mBcg-dmZ30639KdD478Ke_7pQ_nWOGrank3vkbo8r6bAThPtkz9UPyO0u0-QK74Knp2kfkuWQtt6LWs1-_fjZE1PNaOCtpta5K9rnkbigIUkORVBLl3Otalp5H3daN9-Nar2zNNZEPQhZjuil96ppUBhds2yp6aJOFitauUAc2j4ik5PjL6PTuM-9EJtUwCKWNlc4ukxzIfGDCUq6DEvy3CiojLTa2ARMJTOND95orAByBEtcOMa1yPljsl83tXtKqLZpqhkY7alhEgMKDXKjFYBmxgojIwLrGS9NT0zu82PMynBAzouyW6USV6kMq1ReR-T1ps1VR8txY-0jv5Cbmp5SO7xo5hdlr6Gl0GCFFUIKVQnNUoW2o1TWFNKIxCU2IodrMSjXYlqyAvFujhBJROTlphg11B-7qDDnWAdE6onyICJPOqnZ9ITnHi9l2LrYkqetrm6X1F8vAws4-DNnBJgRebMWvT_9-v9cPLt5GM_JHea1IRExSw_J_mK-dC8Qdi30gNzKp_mAHAyH489jvB4dn3_8hG9H2WgQfmUMgrb9BghTMYo
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVAguiJ1AASPBCaLGsbP4UKEWWk1pO0KolXpzvaVFGiXDZEbt3PgP_B9-DL-EZ2ephqW33iZjJ3L8Fr-Xt3wIvaaGEJlbYF6eq5CRAmQuojJkjKrYcEJT4mqHD0bp8Ih9Ok6OV9DPrhbGpVV2OtEralNp9418Pc7BssjgMGLvJ99ChxrloqsdhIZsoRXMhm8x1hZ27NnFObhw9cbuR6D3mzje2T78MAxblIFQJ4zMQm4yaY1OFWXgf8PSuE1hJMu0JIXmRmkTEV3wVMGFc48KQjIwCyizMVUso_DcG2iVuQrXAVrd2h59_tJ_5XFxNEZ4W60T0Xy9hhPTVbXFNKTgnOXhxdKJ6IED_mXt_p20-Ufk1h-IO3fRndaSxZsN691DK7a8j2422JYL-OVzS3X9AM03ce3ytuX41_cfbSusMfadsrGxdoJb5IpT7GF5MJjReD5VssSFy6rHZXWuZe3Ss2EmSJ7HVcJnLo-nAva31bzGuqlzmS1wYX2r0vohOroWOjxCg7Iq7ROElUkSFROtXDOaSBOZ8kgrSYiKtWGaB4h0Oy502wrdIXKMhQ_J01w0VBJAJeGpJC4C9La_Z9I0Arly9pYjZD_TNfH2f1TTU9HqBMEUMcwwxpksmIoTCd4ql0bnXLPIRiZAax0biFaz1OJSDgL0qh8GneACPdLvOcwhLHGt-UiAHjdc06-EZs5CS-HufImflpa6PFJ-PfN9x4mLcoNJG6B3Hetdruv_e_H06td4iW4NDw_2xf7uaO8Zuh07yYhYGCdraDCbzu1zMPpm6kUrWRidXLcw_wYgKmvX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVCAuiJ1AASPBCaKJY2fxoUIt7ailMKoQlXoL3tIijZJhMqN2bvwH_hU_g1_Cs-OkGpbeepuMncjxW_xe3vIh9JJqQkRugHl5LkNGSpC5iIqQMSpjzQlNia0d_jhO947Y--PkeA397GphbFplpxOdota1st_Ih3EOlkUGhxEblj4t4nBn9Hb6LbQIUjbS2sFpCA-zoDdduzFf5HFglmfgzjWb-ztA-1dxPNr9_G4v9IgDoUoYmYdcZ8JolUrKwBeHZXKTwkiWKUFKxbVUOiKq5KmEC-sqlYRkYCJQZmIqWUbhudfQeganJBug9e3d8eGn_ouPjakxwn3lTkTzYQOnp61wi2lIwVHLw_OV09GBCPzL8v07gfOPKK47HEe30S1v1eKtlg3voDVT3UXXW5zLJfxyeaaquYcWW7ixOdxi8uv7D98Wa4Jd12ysjZlij2Jxgh1EDwaTGi9mUlS4tBn2uKrPlGhsqjbMBCl0GEv41Ob01CAKpl40WLU1L_MlLo1rW9rcR0dXQocHaFDVlXmEsNRJImOipG1MEykiUh4pKQiRsdJM8QCRbscL5duiW3SOSeHC8zQvWioVQKXCUak4D9Dr_p5p2xTk0tnblpD9TNvQ2_1Rz04Krx8KJolmmjHORMlknAjwXLnQKueKRSbSAdro2KDwWqYpLmQiQC_6YdAPNugj3J7DHMIS26aPBOhhyzX9SmhmrbUU7s5X-Gllqasj1ddT14Oc2Ig3mLcBetOx3sW6_r8Xjy9_jefoBgh18WF_fPAE3YytYEQsjJMNNJjPFuYp2H9z-cwLFkZfrlqWfwPfT3AD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spatial%E2%80%93temporal+graph+deep+learning+model+for+urban+flood+nowcasting+leveraging+heterogeneous+community+features&rft.jtitle=Scientific+reports&rft.au=Farahmand%2C+Hamed&rft.au=Xu%2C+Yuanchang&rft.au=Mostafavi%2C+Ali&rft.date=2023-04-25&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=6768&rft_id=info:doi/10.1038%2Fs41598-023-32548-x&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon