A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features
Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed fe...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 6768 - 15 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.04.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-32548-x |
Cover
Abstract | Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood. |
---|---|
AbstractList | Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial-temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents' flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents' activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood.Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial-temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents' flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents' activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood. Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood. Abstract Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this study was to adopt and test a novel structured deep-learning model for urban flood nowcasting by integrating physics-based and human-sensed features. We present a new computational modeling framework including an attention-based spatial–temporal graph convolution network (ASTGCN) model and different streams of data that are collected in real-time, preprocessed, and fed into the model to consider spatial and temporal information and dependencies that improve flood nowcasting. The novelty of the computational modeling framework is threefold: first, the model is capable of considering spatial and temporal dependencies in inundation propagation thanks to the spatial and temporal graph convolutional modules; second, it enables capturing the influence of heterogeneous temporal data streams that can signal flooding status, including physics-based features (e.g., rainfall intensity and water elevation) and human-sensed data (e.g., residents’ flood reports and fluctuations of human activity) on flood nowcasting. Third, its attention mechanism enables the model to direct its focus to the most influential features that vary dynamically and influence the flood nowcasting. We show the application of the modeling framework in the context of Harris County, Texas, as the study area and 2017 Hurricane Harvey as the flood event. Three categories of features are used for nowcasting the extent of flood inundation in different census tracts: (i) static features that capture spatial characteristics of various locations and influence their flood status similarity, (ii) physics-based dynamic features that capture changes in hydrodynamic variables, and (iii) heterogeneous human-sensed dynamic features that capture various aspects of residents’ activities that can provide information regarding flood status. Results indicate that the ASTGCN model provides superior performance for nowcasting of urban flood inundation at the census-tract level, with precision 0.808 and recall 0.891, which shows the model performs better compared with other state-of-the-art models. Moreover, ASTGCN model performance improves when heterogeneous dynamic features are added into the model that solely relies on physics-based features, which demonstrates the promise of using heterogenous human-sensed data for flood nowcasting. Given the results of the comparisons of the models, the proposed modeling framework has the potential to be more investigated when more data of historical events are available in order to develop a predictive tool to provide community responders with an enhanced prediction of the flood inundation during urban flood. |
ArticleNumber | 6768 |
Author | Farahmand, Hamed Xu, Yuanchang Mostafavi, Ali |
Author_xml | – sequence: 1 givenname: Hamed surname: Farahmand fullname: Farahmand, Hamed email: hamedfarahmand@tamu.edu organization: Zachry Department of Civil and Environmental Engineering, Texas A&M University – sequence: 2 givenname: Yuanchang surname: Xu fullname: Xu, Yuanchang organization: Department of Computer Science and Computer Engineering, Texas A&M University – sequence: 3 givenname: Ali surname: Mostafavi fullname: Mostafavi, Ali organization: Zachry Department of Civil and Environmental Engineering, Texas A&M University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37185364$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUjFARLaU_wAJZYsMm4FceXqGq4lGpEhtYW459kpsrxw6208eOf-AP-RJ8b1pou6g3PvaZGY3OmZfFgfMOiuI1we8JZu2HyEkl2hJTVjJa8ba8flYcUcyrkjJKD-7Vh8VJjFucT0UFJ-JFccga0las5kfFcorirNKo7J9fvxNMsw_KoiGoeYMMwIwsqOBGN6DJG7Co9wEtoVMO9dZ7g5y_0iqmHcDCJQQ17MoNJAh-AAd-iUj7aVrcmG5QDyotAeKr4nmvbIST2_u4-PH50_ezr-XFty_nZ6cXpa44SaUwjQKj645x0TY1UQLq3GkarUivhem0wUT3ou7yA1NKe0IaQivGgbKON-y4OF91jVdbOYdxUuFGejXK_YcPg1QhjdqC5B0x3HAuuOp5RytFuBDK6FZojgGbrPVx1ZqXbsquwKU8qgeiDztu3MjBX0qCCcO4Zlnh3a1C8D8XiElOY9RgrdrPSdKW8IqyuiEZ-vYRdOuX4PKsMgpXTUM55xn15r6lf17u1psB7QrQwccYoJd6THnbfudwtNma3IVJrmGSOUxyHyZ5nan0EfVO_UkSW0kxg90A4b_tJ1h_AR0W4Dc |
CitedBy_id | crossref_primary_10_1007_s11069_025_07187_2 crossref_primary_10_1016_j_ijdrr_2024_104971 crossref_primary_10_1016_j_jhydrol_2024_131406 crossref_primary_10_1016_j_jag_2024_103953 crossref_primary_10_1080_15715124_2024_2329243 crossref_primary_10_1038_s41598_024_65570_8 crossref_primary_10_2166_hydro_2024_024 crossref_primary_10_1016_j_advwatres_2024_104842 crossref_primary_10_1016_j_teadva_2024_200116 crossref_primary_10_1007_s12145_024_01354_y crossref_primary_10_1016_j_ijdrr_2024_105110 crossref_primary_10_3390_fire7060207 crossref_primary_10_3390_w16213092 crossref_primary_10_1109_TKDE_2023_3333824 crossref_primary_10_1088_1748_9326_ad8172 crossref_primary_10_3390_land13060753 crossref_primary_10_1016_j_watres_2024_122142 crossref_primary_10_1016_j_energy_2024_134352 crossref_primary_10_1038_s41598_023_44276_3 crossref_primary_10_1016_j_jer_2024_08_006 |
Cites_doi | 10.1038/s41467-019-10063-w 10.1029/2019WR025583 10.1038/s41598-021-90964-3 10.1016/j.ijdrr.2020.101798 10.1109/MITS.2022.3162901 10.1007/s12145-019-00439-3 10.1016/j.scitotenv.2019.135161 10.1175/JTECH-D-14-00213.1 10.3390/w12030787 10.1109/ACCESS.2021.3062114 10.1109/TITS.2019.2935152 10.3390/ijgi10070455 10.1080/00045608.2010.497110 10.1109/ACCESS.2019.2963819 10.1016/j.compenvurbsys.2021.101628 10.5194/hess-13-367-2009 10.1016/j.trc.2018.10.011 10.1109/ACCESS.2020.2993874 10.1111/jfr3.12549 10.1177/0165551519828620 10.1111/mice.12495 10.1111/mice.12527 10.1016/j.ijsrc.2017.10.001 10.1016/j.neucom.2020.04.110 10.1016/j.neucom.2021.03.091 10.1016/j.cageo.2017.11.008 10.1080/01431160010014729 10.1016/j.ijinfomgt.2018.05.004 10.1007/s11269-022-03255-5 10.1007/s11069-017-2755-0 10.1038/s41598-021-88476-1 10.1038/s41598-020-70524-x 10.1016/S0198-9715(01)00010-2 10.1016/j.inffus.2020.10.004 10.3390/electronics10091014 10.1016/j.engappai.2012.05.023 10.1016/j.jhydrol.2019.05.087 10.3390/ijgi4031549 10.1007/s11069-020-04044-2 10.1038/s41598-021-93077-z 10.5194/nhess-4-295-2004 10.1016/j.compenvurbsys.2017.11.004 10.1038/nature14539 10.1007/s00521-015-1930-z 10.1007/s11069-006-9094-x 10.1016/j.rse.2019.03.014 10.5194/hess-25-4081-2021 10.1007/s11069-017-2927-y 10.1016/j.compenvurbsys.2020.101514 10.1016/j.jhydrol.2015.10.047 10.1038/s41598-021-99587-0 10.1111/mice.12457 10.1109/TNN.2008.2005605 10.3390/rs71014200 10.1007/s11069-018-3273-4 10.1126/sciadv.1500779 10.3390/ijgi4042246 10.1109/TGRS.2018.2835306 10.1016/j.envsoft.2021.105051 10.1016/j.compenvurbsys.2022.101870 10.1007/s40010-017-0461-7 10.1016/j.jhydrol.2015.02.049 10.1007/978-3-319-19024-2_11 10.1111/mice.12629 10.1109/CVPR42600.2020.01443 10.3837/tiis.2021.07.002 10.1109/ACCESS.2021.3137651 10.24963/ijcai.2018/505 10.1155/2021/5536386 10.3389/fbuil.2020.607961 10.1057/s41599-022-01353-8 10.1007/s00521-020-05487-1 10.1109/BigData.2015.7364069 10.31223/OSF.IO/E9XQR 10.1109/BigMM.2017.29 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-32548-x |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_4b1d4d4494af4b25a1499adc89c40e0d PMC10130063 37185364 10_1038_s41598_023_32548_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: #1832662; #1832662; #1832662 – fundername: Texas A&M University grantid: X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund) – fundername: Texas A&M University grantid: X-Grant program (Presidential Excellence Fund) – fundername: National Science Foundation grantid: #1832662 – fundername: ; grantid: X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund); X-Grant program (Presidential Excellence Fund) – fundername: ; grantid: #1832662; #1832662; #1832662 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD COVID K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-9d7aedc6b3498761a9e6c5477ca1fc9dbcd01cf96bc9d0222f11712534e23b473 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:19:23 EDT 2025 Thu Aug 21 18:38:10 EDT 2025 Thu Sep 04 21:58:20 EDT 2025 Wed Aug 13 05:30:09 EDT 2025 Thu Jan 02 22:50:52 EST 2025 Thu Apr 24 23:09:06 EDT 2025 Tue Jul 01 04:24:34 EDT 2025 Fri Feb 21 02:39:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-9d7aedc6b3498761a9e6c5477ca1fc9dbcd01cf96bc9d0222f11712534e23b473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-32548-x |
PMID | 37185364 |
PQID | 2805772444 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4b1d4d4494af4b25a1499adc89c40e0d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10130063 proquest_miscellaneous_2814523671 proquest_journals_2805772444 pubmed_primary_37185364 crossref_citationtrail_10_1038_s41598_023_32548_x crossref_primary_10_1038_s41598_023_32548_x springer_journals_10_1038_s41598_023_32548_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-25 |
PublicationDateYYYYMMDD | 2023-04-25 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ricchi, Bonaldo, Cioni, Carniel, Miglietta (CR15) 2021; 11 Zhao (CR45) 2020; 21 Nguyen, Chen (CR25) 2020; 12 Chang, Lafrenz, Jung, Figliozzi, Platman, Pederson (CR4) 2010; 100 Zhu, Wang, Tao, Deng, Zhao, Li (CR53) 2021; 9 Ming, Liang, Xia, Li, Fowler (CR14) 2020; 56 Hu, Fang, Pain, Navon (CR31) 2019; 575 Xu, Lv, Li, Shi (CR38) 2022; 36 Fan, Mostafavi (CR71) 2019; 34 Huang, Wang, Li (CR69) 2018; 56 CR39 Liu, Jiang, Mu, Wang (CR40) 2020; 8 CR79 Ragini, Anand, Bhaskar (CR87) 2018; 42 CR34 CR78 CR77 CR76 Mostafizi, Wang, Cox, Cramer, Dong (CR8) 2017; 88 Mobley, Sebastian, Highfield, Brody (CR75) 2019; 12 CR73 Samuels, Taylor, Mohammadi (CR81) 2020; 103 Ha, Liu, Mu (CR36) 2021; 11 Nguyen (CR47) 2016; 541 Jongman, Wagemaker, Romero, de Perez (CR70) 2015; 4 Fan, Jiang, Mostafavi (CR20) 2020; 10 Brivio, Colombo, Maggi, Tomasoni (CR63) 2002; 23 Dong, Yu, Farahmand, Mostafavi (CR10) 2019; 35 Apel, Thieken, Merz, Blöschl (CR72) 2004; 4 Hosseini (CR24) 2020; 711 Alizadeh Kharazi, Behzadan (CR28) 2021; 88 Rollason, Bracken, Hardy, Large (CR12) 2018; 92 Xu, Lv, Li, Sun, Sheng (CR37) 2022; 15 Chang, Hsu, Chang (CR32) 2019 Puttinaovarat, Horkaew (CR26) 2020; 8 Wu, Chau (CR30) 2013; 26 Srikudkao, Khundate, So-In, Horkaew, Phaudphut, Rujirakul (CR62) 2015; 361 Liu, Li, Li, Bai, Hu (CR56) 2021; 10 LeCun, Bengio, Hinton (CR35) 2015; 521 Chen, Leng, Labi (CR29) 2020; 35 Hossain, Katiyar, Hong, Wolf (CR19) 2007; 43 Fan, Esparza, Dargin, Wu, Oztekin, Mostafavi (CR80) 2020; 83 CR43 Feng, Yuan, Liu, Huang, Liu, Li (CR59) 2020; 1333 Jarihani, Callow, McVicar, Van Niel, Larsen (CR22) 2015; 524 CR42 CR86 CR41 CR85 CR83 Lv, Li, Dong, Li (CR84) 2021 CR82 Blumberg, Georgas, Yin, Herrington, Orton (CR1) 2015; 32 Huang, Xiao (CR67) 2015; 4 Yuan, Xu, Li, Mostafavi (CR2) 2021; 97 Amarnath, Matheswaran, Pandey, Alahacoon, Yoshimoto (CR23) 2017; 87 Karami, Shah, Vaezi, Bansal (CR68) 2019; 46 Al-Sabhan, Mulligan, Blackburn (CR6) 2003; 27 CR17 CR13 Niu, Zhong, Yu (CR46) 2021; 452 CR57 Wang, Yang, Stanley, Gao (CR11) 2019; 10 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (CR51) 2009; 20 Guo, Lin, Feng, Song, Wan (CR33) 2019; 33 Rosser, Leibovici, Jackson (CR64) 2017; 87 Itoh, Ikeda, Nagayama, Mizuyama (CR16) 2018; 33 Wang, Mao, Wang, Rae, Shaw (CR5) 2018; 111 Pan, Zhu, Kong, Shi, Yang (CR58) 2021; 10 Zhang, Chang, Meng, Xiang, Pan (CR52) 2020; 34 Ding, Zhu, Feng, Zhang, Cheng (CR44) 2020; 403 Yuan, Li, Liu (CR66) 2020; 51 Giustarini, Chini, Hostache, Pappenberger, Matgen (CR3) 2015; 7 di Mauro (CR49) 2021; 25 Wu, Shen, Wang, Wu (CR74) 2020; 13 Kryvasheyeu (CR9) 2016; 2 Jiang, Madsen, Bauer-Gottwein (CR21) 2019; 225 Wang, Govindaraj, Górriz, Zhang, Zhang (CR54) 2021; 67 Furquim, Pessin, Faiçal, Mendiondo, Ueyama (CR27) 2015; 27 Montanari, Hostache, Matgen, Schumann, Pfister, Hoffmann (CR50) 2009; 13 CR61 Hemmati, Mahmoud, Ellingwood, Crooks (CR65) 2021; 11 CR60 Li (CR48) 2021; 141 Brown (CR18) 2021; 11 Lin, He, Peeta (CR55) 2018; 97 Ogie, Holderness, Dunn, Turpin (CR7) 2018; 68 32548_CR61 32548_CR60 C di Mauro (32548_CR49) 2021; 25 RI Ogie (32548_CR7) 2018; 68 T Itoh (32548_CR16) 2018; 33 J Zhu (32548_CR53) 2021; 9 H Apel (32548_CR72) 2004; 4 Z Wu (32548_CR74) 2020; 13 F Yuan (32548_CR66) 2020; 51 W Al-Sabhan (32548_CR6) 2003; 27 W Wang (32548_CR11) 2019; 10 E Rollason (32548_CR12) 2018; 92 C Fan (32548_CR71) 2019; 34 Z Xu (32548_CR37) 2022; 15 C Pan (32548_CR58) 2021; 10 CL Wu (32548_CR30) 2013; 26 L Lin (32548_CR55) 2018; 97 B Jongman (32548_CR70) 2015; 4 Q Zhang (32548_CR52) 2020; 34 AF Blumberg (32548_CR1) 2015; 32 RQ Wang (32548_CR5) 2018; 111 M Montanari (32548_CR50) 2009; 13 L Feng (32548_CR59) 2020; 1333 A Mostafizi (32548_CR8) 2017; 88 G Amarnath (32548_CR23) 2017; 87 DT Nguyen (32548_CR25) 2020; 12 32548_CR39 D Liu (32548_CR40) 2020; 8 S Guo (32548_CR33) 2019; 33 G Furquim (32548_CR27) 2015; 27 X Huang (32548_CR69) 2018; 56 32548_CR76 32548_CR73 32548_CR79 32548_CR34 32548_CR78 32548_CR77 A Karami (32548_CR68) 2019; 46 Z Xu (32548_CR38) 2022; 36 32548_CR83 32548_CR82 Y LeCun (32548_CR35) 2015; 521 PA Brivio (32548_CR63) 2002; 23 Y Kryvasheyeu (32548_CR9) 2016; 2 C Fan (32548_CR80) 2020; 83 L Jiang (32548_CR21) 2019; 225 FS Hosseini (32548_CR24) 2020; 711 X Ming (32548_CR14) 2020; 56 Y Ding (32548_CR44) 2020; 403 F Yuan (32548_CR2) 2021; 97 F Scarselli (32548_CR51) 2009; 20 S Chen (32548_CR29) 2020; 35 P Nguyen (32548_CR47) 2016; 541 R Hu (32548_CR31) 2019; 575 JF Rosser (32548_CR64) 2017; 87 B Alizadeh Kharazi (32548_CR28) 2021; 88 Z Niu (32548_CR46) 2021; 452 32548_CR43 32548_CR42 32548_CR86 32548_CR41 32548_CR85 S Ha (32548_CR36) 2021; 11 W Mobley (32548_CR75) 2019; 12 R Samuels (32548_CR81) 2020; 103 Q Huang (32548_CR67) 2015; 4 M Liu (32548_CR56) 2021; 10 L Giustarini (32548_CR3) 2015; 7 H Chang (32548_CR4) 2010; 100 S Dong (32548_CR10) 2019; 35 F Hossain (32548_CR19) 2007; 43 S Puttinaovarat (32548_CR26) 2020; 8 JR Ragini (32548_CR87) 2018; 42 A Ricchi (32548_CR15) 2021; 11 C Fan (32548_CR20) 2020; 10 Z Li (32548_CR48) 2021; 141 32548_CR17 AA Jarihani (32548_CR22) 2015; 524 L Zhao (32548_CR45) 2020; 21 M Hemmati (32548_CR65) 2021; 11 Z Lv (32548_CR84) 2021 JM Brown (32548_CR18) 2021; 11 B Srikudkao (32548_CR62) 2015; 361 32548_CR13 FJ Chang (32548_CR32) 2019 SH Wang (32548_CR54) 2021; 67 32548_CR57 |
References_xml | – year: 2021 ident: CR84 publication-title: Deep Learning in the COVID-19 Epidemic: A deep Model for Urban Traffic Revitalization Index – volume: 10 start-page: 2114 issue: 1 year: 2019 ident: CR11 article-title: Local floods induce large-scale abrupt failures of road networks publication-title: Nat. Commun. doi: 10.1038/s41467-019-10063-w – volume: 56 start-page: e2019WR025583 issue: 7 year: 2020 ident: CR14 article-title: Real-time flood forecasting based on a high-performance 2-D Hydrodynamic model and numerical weather predictions publication-title: Water Resour. Res. doi: 10.1029/2019WR025583 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 23 ident: CR36 article-title: Prediction of Yangtze River streamflow based on deep learning neural network with El Niño-Southern Oscillation publication-title: Sci. Rep. doi: 10.1038/s41598-021-90964-3 – volume: 361 start-page: 107 year: 2015 end-page: 116 ident: CR62 article-title: Flood warning and management schemes with drone emulator using ultrasonic and image processing publication-title: Adv. Intell. Syst. Comput. – volume: 51 start-page: 101798 year: 2020 ident: CR66 article-title: Understanding the evolutions of public responses using social media: Hurricane Matthew case study publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2020.101798 – volume: 15 start-page: 136 issue: 1 year: 2022 end-page: 159 ident: CR37 article-title: A novel perspective on travel demand prediction considering natural environmental and socioeconomic factors publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2022.3162901 – volume: 13 start-page: 377 issue: 2 year: 2020 end-page: 390 ident: CR74 article-title: An ontology-based framework for heterogeneous data management and its application for urban flood disasters publication-title: Earth Sci. Inform. doi: 10.1007/s12145-019-00439-3 – ident: CR39 – volume: 711 start-page: 135161 year: 2020 ident: CR24 article-title: Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135161 – volume: 32 start-page: 1486 issue: 8 year: 2015 end-page: 1497 ident: CR1 article-title: Street-scale modeling of storm surge inundation along the new jersey hudson river waterfront publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-14-00213.1 – volume: 12 start-page: 787 issue: 3 year: 2020 ident: CR25 article-title: Real-time probabilistic flood forecasting using multiple machine learning methods publication-title: Water doi: 10.3390/w12030787 – volume: 9 start-page: 35973 year: 2021 end-page: 35983 ident: CR53 article-title: AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062114 – volume: 21 start-page: 3848 issue: 9 year: 2020 end-page: 3858 ident: CR45 article-title: T-GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2935152 – volume: 10 start-page: 455 issue: 7 year: 2021 ident: CR56 article-title: Pedestrian flow prediction in open public places using graph convolutional network publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi10070455 – volume: 100 start-page: 938 issue: 4 year: 2010 end-page: 952 ident: CR4 article-title: Potential impacts of climate change on flood-induced travel disruptions: A case study of Portland, Oregon, USA publication-title: Ann. Assoc. Am. Geogr. doi: 10.1080/00045608.2010.497110 – volume: 8 start-page: 5885 year: 2020 end-page: 5905 ident: CR26 article-title: Flood forecasting system based on integrated big and crowdsource data by using machine learning techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963819 – volume: 88 start-page: 101628 year: 2021 ident: CR28 article-title: Flood depth mapping in street photos with image processing and deep neural networks publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2021.101628 – volume: 13 start-page: 367 issue: 3 year: 2009 end-page: 380 ident: CR50 article-title: Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote sensing-derived water stages publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-367-2009 – ident: CR61 – volume: 97 start-page: 258 year: 2018 end-page: 276 ident: CR55 article-title: Predicting station-level hourly demand in a large-scale bike-sharing network: A graph convolutional neural network approach publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.10.011 – ident: CR77 – year: 2019 ident: CR32 publication-title: Flood Forecasting Using Machine Learning Methods – volume: 8 start-page: 90069 year: 2020 end-page: 90086 ident: CR40 article-title: Streamflow prediction using deep learning neural network: Case study of Yangtze River publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993874 – ident: CR42 – volume: 12 start-page: e12549 issue: S1 year: 2019 ident: CR75 article-title: Estimating flood extent during Hurricane Harvey using maximum entropy to build a hazard distribution model publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12549 – volume: 46 start-page: 313 issue: 3 year: 2019 end-page: 324 ident: CR68 article-title: Twitter speaks: A case of national disaster situational awareness publication-title: J. Inf. Sci. doi: 10.1177/0165551519828620 – volume: 35 start-page: 305 issue: 4 year: 2020 end-page: 321 ident: CR29 article-title: A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12495 – volume: 35 start-page: 668 issue: 7 year: 2019 end-page: 684 ident: CR10 article-title: Bayesian modeling of flood control networks for failure cascade characterization and vulnerability assessment publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12527 – volume: 1333 start-page: 3 year: 2020 end-page: 10 ident: CR59 article-title: A discriminative STGCN for skeleton oriented action recognition publication-title: Commun. Comput. Inf. Sci. – volume: 33 start-page: 922 issue: 01 year: 2019 end-page: 929 ident: CR33 article-title: Attention based spatial-temporal graph convolutional networks for traffic flow forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – ident: CR57 – volume: 33 start-page: 107 issue: 2 year: 2018 end-page: 116 ident: CR16 article-title: Hydraulic model tests for propagation of flow and sediment in floods due to breaking of a natural landslide dam during a mountainous torrent publication-title: Int. J. Sediment Res. doi: 10.1016/j.ijsrc.2017.10.001 – volume: 403 start-page: 348 year: 2020 end-page: 359 ident: CR44 article-title: Interpretable spatio-temporal attention LSTM model for flood forecasting publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.110 – ident: CR60 – volume: 452 start-page: 48 year: 2021 end-page: 62 ident: CR46 article-title: A review on the attention mechanism of deep learning publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – ident: CR78 – ident: CR85 – volume: 111 start-page: 139 year: 2018 end-page: 147 ident: CR5 article-title: Hyper-resolution monitoring of urban flooding with social media and crowdsourcing data publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.11.008 – volume: 23 start-page: 429 issue: 3 year: 2002 end-page: 441 ident: CR63 article-title: Integration of remote sensing data and GIS for accurate mapping of flooded areas publication-title: Int. J. Remote Sens. doi: 10.1080/01431160010014729 – volume: 42 start-page: 13 year: 2018 end-page: 24 ident: CR87 article-title: Big data analytics for disaster response and recovery through sentiment analysis publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2018.05.004 – volume: 36 start-page: 4293 issue: 11 year: 2022 end-page: 4312 ident: CR38 article-title: A novel approach for predicting water demand with complex patterns based on ensemble learning publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03255-5 – volume: 87 start-page: 103 issue: 1 year: 2017 end-page: 120 ident: CR64 article-title: Rapid flood inundation mapping using social media, remote sensing and topographic data publication-title: Nat. Hazards doi: 10.1007/s11069-017-2755-0 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 11 ident: CR15 article-title: Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system publication-title: Sci. Rep. doi: 10.1038/s41598-021-88476-1 – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 12 ident: CR20 article-title: A network percolation-based contagion model of flood propagation and recession in urban road networks publication-title: Sci. Rep. doi: 10.1038/s41598-020-70524-x – volume: 27 start-page: 9 issue: 1 year: 2003 end-page: 32 ident: CR6 article-title: A real-time hydrological model for flood prediction using GIS and the WWW publication-title: Comput. Environ. Urban Syst. doi: 10.1016/S0198-9715(01)00010-2 – volume: 67 start-page: 208 year: 2021 end-page: 229 ident: CR54 article-title: Covid-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.004 – volume: 10 start-page: 1014 issue: 9 year: 2021 ident: CR58 article-title: DC-STGCN: Dual-channel based graph convolutional networks for network traffic forecasting publication-title: Electron doi: 10.3390/electronics10091014 – volume: 26 start-page: 997 issue: 3 year: 2013 end-page: 1007 ident: CR30 article-title: Prediction of rainfall time series using modular soft computingmethods publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.05.023 – volume: 575 start-page: 911 year: 2019 end-page: 920 ident: CR31 article-title: Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.087 – volume: 4 start-page: 1549 issue: 3 year: 2015 end-page: 1568 ident: CR67 article-title: Geographic situational awareness: Mining tweets for disaster preparedness, emergency response, impact, and recovery publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi4031549 – volume: 103 start-page: 1455 issue: 1 year: 2020 end-page: 1477 ident: CR81 article-title: Silence of the Tweets: incorporating social media activity drop-offs into crisis detection publication-title: Nat. Hazards doi: 10.1007/s11069-020-04044-2 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 10 ident: CR18 article-title: Novel use of social media to assess and improve coastal flood forecasts and hazard alerts publication-title: Sci. Rep. doi: 10.1038/s41598-021-93077-z – ident: CR43 – volume: 4 start-page: 295 issue: 2 year: 2004 end-page: 308 ident: CR72 article-title: Flood risk assessment and associated uncertainty publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-4-295-2004 – volume: 68 start-page: 97 year: 2018 end-page: 109 ident: CR7 article-title: Assessing the vulnerability of hydrological infrastructure to flood damage in coastal cities of developing nations publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2017.11.004 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR35 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 27 start-page: 1129 issue: 5 year: 2015 end-page: 1141 ident: CR27 article-title: Improving the accuracy of a flood forecasting model by means of machine learning and chaos theory publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1930-z – volume: 43 start-page: 199 issue: 2 year: 2007 end-page: 210 ident: CR19 article-title: The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world publication-title: Nat. Hazards doi: 10.1007/s11069-006-9094-x – volume: 225 start-page: 229 year: 2019 end-page: 247 ident: CR21 article-title: Simultaneous calibration of multiple hydrodynamic model parameters using satellite altimetry observations of water surface elevation in the Songhua River publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.014 – ident: CR82 – volume: 25 start-page: 4081 issue: 7 year: 2021 end-page: 4097 ident: CR49 article-title: Assimilation of probabilistic flood maps from SAR data into a coupled hydrologic-hydraulic forecasting model: A proof of concept publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-4081-2021 – ident: CR79 – volume: 88 start-page: 1347 issue: 3 year: 2017 end-page: 1372 ident: CR8 article-title: Agent-based tsunami evacuation modeling of unplanned network disruptions for evidence-driven resource allocation and retrofitting strategies publication-title: Nat. Hazards doi: 10.1007/s11069-017-2927-y – ident: CR86 – volume: 83 start-page: 101514 year: 2020 ident: CR80 article-title: Spatial biases in crowdsourced data: Social media content attention concentrates on populous areas in disasters publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2020.101514 – volume: 541 start-page: 401 year: 2016 end-page: 420 ident: CR47 article-title: A high resolution coupled hydrologic–hydraulic model (HiResFlood-UCI) for flash flood modeling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.047 – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 15 ident: CR65 article-title: Unraveling the complexity of human behavior and urbanization on community vulnerability to floods publication-title: Sci. Rep. doi: 10.1038/s41598-021-99587-0 – volume: 34 start-page: 1055 issue: 12 year: 2019 end-page: 1070 ident: CR71 article-title: A graph-based method for social sensing of infrastructure disruptions in disasters publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12457 – ident: CR73 – volume: 20 start-page: 61 issue: 1 year: 2009 end-page: 80 ident: CR51 article-title: The graph neural network model publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 7 start-page: 14200 issue: 10 year: 2015 end-page: 14226 ident: CR3 article-title: Flood hazard mapping combining hydrodynamic modeling and multi annual remote sensing data publication-title: Remote Sens. doi: 10.3390/rs71014200 – volume: 92 start-page: 1665 issue: 3 year: 2018 end-page: 1686 ident: CR12 article-title: Rethinking flood risk communication publication-title: Nat. Hazards doi: 10.1007/s11069-018-3273-4 – volume: 2 start-page: e1500779 issue: 3 year: 2016 ident: CR9 article-title: Rapid assessment of disaster damage using social media activity publication-title: Sci. Adv. doi: 10.1126/sciadv.1500779 – volume: 34 start-page: 1177 issue: 01 year: 2020 end-page: 1185 ident: CR52 article-title: Spatio-temporal graph structure learning for traffic forecasting publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 4 start-page: 2246 issue: 4 year: 2015 end-page: 2266 ident: CR70 article-title: Early flood detection for rapid humanitarian response: Harnessing near real-time satellite and twitter signals publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi4042246 – ident: CR17 – volume: 56 start-page: 4691 issue: 8 year: 2018 end-page: 4701 ident: CR69 article-title: Reconstructing flood inundation probability by enhancing near real-time imagery with real-time gauges and tweets publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2835306 – volume: 141 start-page: 105051 year: 2021 ident: CR48 article-title: CREST-iMAP v1.0: A fully coupled hydrologic-hydraulic modeling framework dedicated to flood inundation mapping and prediction publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105051 – ident: CR13 – ident: CR34 – volume: 97 start-page: 101870 year: 2021 ident: CR2 article-title: Spatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2022.101870 – ident: CR76 – ident: CR83 – ident: CR41 – volume: 87 start-page: 941 issue: 4 year: 2017 end-page: 950 ident: CR23 article-title: Flood mapping tools for disaster preparedness and emergency response using satellite data and hydrodynamic models: A case study of bagmathi basin India publication-title: Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. doi: 10.1007/s40010-017-0461-7 – volume: 524 start-page: 489 year: 2015 end-page: 506 ident: CR22 article-title: Satellite-derived digital elevation model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.02.049 – volume: 92 start-page: 1665 issue: 3 year: 2018 ident: 32548_CR12 publication-title: Nat. Hazards doi: 10.1007/s11069-018-3273-4 – volume: 56 start-page: e2019WR025583 issue: 7 year: 2020 ident: 32548_CR14 publication-title: Water Resour. Res. doi: 10.1029/2019WR025583 – volume: 12 start-page: e12549 issue: S1 year: 2019 ident: 32548_CR75 publication-title: J. Flood Risk Manag. doi: 10.1111/jfr3.12549 – volume: 87 start-page: 941 issue: 4 year: 2017 ident: 32548_CR23 publication-title: Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. doi: 10.1007/s40010-017-0461-7 – ident: 32548_CR61 – volume: 8 start-page: 5885 year: 2020 ident: 32548_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2963819 – volume: 8 start-page: 90069 year: 2020 ident: 32548_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2993874 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 32548_CR15 publication-title: Sci. Rep. doi: 10.1038/s41598-021-88476-1 – volume: 361 start-page: 107 year: 2015 ident: 32548_CR62 publication-title: Adv. Intell. Syst. Comput. doi: 10.1007/978-3-319-19024-2_11 – volume: 4 start-page: 2246 issue: 4 year: 2015 ident: 32548_CR70 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi4042246 – ident: 32548_CR43 doi: 10.1111/mice.12629 – volume: 27 start-page: 9 issue: 1 year: 2003 ident: 32548_CR6 publication-title: Comput. Environ. Urban Syst. doi: 10.1016/S0198-9715(01)00010-2 – volume: 111 start-page: 139 year: 2018 ident: 32548_CR5 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2017.11.008 – volume: 225 start-page: 229 year: 2019 ident: 32548_CR21 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.03.014 – volume: 33 start-page: 922 issue: 01 year: 2019 ident: 32548_CR33 publication-title: Proc. AAAI Conf. Artif. Intell. – ident: 32548_CR57 doi: 10.1109/CVPR42600.2020.01443 – volume: 103 start-page: 1455 issue: 1 year: 2020 ident: 32548_CR81 publication-title: Nat. Hazards doi: 10.1007/s11069-020-04044-2 – ident: 32548_CR78 – volume: 51 start-page: 101798 year: 2020 ident: 32548_CR66 publication-title: Int. J. Disaster Risk Reduct. doi: 10.1016/j.ijdrr.2020.101798 – ident: 32548_CR76 doi: 10.3837/tiis.2021.07.002 – volume: 2 start-page: e1500779 issue: 3 year: 2016 ident: 32548_CR9 publication-title: Sci. Adv. doi: 10.1126/sciadv.1500779 – volume: 20 start-page: 61 issue: 1 year: 2009 ident: 32548_CR51 publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2005605 – volume: 100 start-page: 938 issue: 4 year: 2010 ident: 32548_CR4 publication-title: Ann. Assoc. Am. Geogr. doi: 10.1080/00045608.2010.497110 – ident: 32548_CR73 doi: 10.1109/ACCESS.2021.3137651 – volume: 7 start-page: 14200 issue: 10 year: 2015 ident: 32548_CR3 publication-title: Remote Sens. doi: 10.3390/rs71014200 – ident: 32548_CR86 doi: 10.24963/ijcai.2018/505 – volume: 35 start-page: 305 issue: 4 year: 2020 ident: 32548_CR29 publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12495 – volume: 83 start-page: 101514 year: 2020 ident: 32548_CR80 publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2020.101514 – volume: 33 start-page: 107 issue: 2 year: 2018 ident: 32548_CR16 publication-title: Int. J. Sediment Res. doi: 10.1016/j.ijsrc.2017.10.001 – volume: 97 start-page: 101870 year: 2021 ident: 32548_CR2 publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2022.101870 – volume: 10 start-page: 2114 issue: 1 year: 2019 ident: 32548_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10063-w – volume: 9 start-page: 35973 year: 2021 ident: 32548_CR53 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3062114 – volume: 97 start-page: 258 year: 2018 ident: 32548_CR55 publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2018.10.011 – ident: 32548_CR77 doi: 10.1155/2021/5536386 – volume: 43 start-page: 199 issue: 2 year: 2007 ident: 32548_CR19 publication-title: Nat. Hazards doi: 10.1007/s11069-006-9094-x – volume: 34 start-page: 1177 issue: 01 year: 2020 ident: 32548_CR52 publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 34 start-page: 1055 issue: 12 year: 2019 ident: 32548_CR71 publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12457 – ident: 32548_CR39 – volume: 23 start-page: 429 issue: 3 year: 2002 ident: 32548_CR63 publication-title: Int. J. Remote Sens. doi: 10.1080/01431160010014729 – volume: 13 start-page: 377 issue: 2 year: 2020 ident: 32548_CR74 publication-title: Earth Sci. Inform. doi: 10.1007/s12145-019-00439-3 – volume: 10 start-page: 455 issue: 7 year: 2021 ident: 32548_CR56 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi10070455 – ident: 32548_CR82 doi: 10.3389/fbuil.2020.607961 – volume-title: Deep Learning in the COVID-19 Epidemic: A deep Model for Urban Traffic Revitalization Index year: 2021 ident: 32548_CR84 – volume: 35 start-page: 668 issue: 7 year: 2019 ident: 32548_CR10 publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12527 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 32548_CR65 publication-title: Sci. Rep. doi: 10.1038/s41598-021-99587-0 – ident: 32548_CR83 doi: 10.1057/s41599-022-01353-8 – volume: 87 start-page: 103 issue: 1 year: 2017 ident: 32548_CR64 publication-title: Nat. Hazards doi: 10.1007/s11069-017-2755-0 – ident: 32548_CR13 doi: 10.1007/s00521-020-05487-1 – volume: 403 start-page: 348 year: 2020 ident: 32548_CR44 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.04.110 – volume: 1333 start-page: 3 year: 2020 ident: 32548_CR59 publication-title: Commun. Comput. Inf. Sci. – volume: 21 start-page: 3848 issue: 9 year: 2020 ident: 32548_CR45 publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2019.2935152 – volume: 88 start-page: 1347 issue: 3 year: 2017 ident: 32548_CR8 publication-title: Nat. Hazards doi: 10.1007/s11069-017-2927-y – ident: 32548_CR34 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 32548_CR18 publication-title: Sci. Rep. doi: 10.1038/s41598-021-93077-z – volume: 541 start-page: 401 year: 2016 ident: 32548_CR47 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.10.047 – volume: 4 start-page: 295 issue: 2 year: 2004 ident: 32548_CR72 publication-title: Nat. Hazards Earth Syst. Sci. doi: 10.5194/nhess-4-295-2004 – volume: 10 start-page: 1014 issue: 9 year: 2021 ident: 32548_CR58 publication-title: Electron doi: 10.3390/electronics10091014 – volume: 711 start-page: 135161 year: 2020 ident: 32548_CR24 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135161 – volume: 27 start-page: 1129 issue: 5 year: 2015 ident: 32548_CR27 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1930-z – volume: 452 start-page: 48 year: 2021 ident: 32548_CR46 publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.03.091 – volume: 36 start-page: 4293 issue: 11 year: 2022 ident: 32548_CR38 publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03255-5 – volume: 46 start-page: 313 issue: 3 year: 2019 ident: 32548_CR68 publication-title: J. Inf. Sci. doi: 10.1177/0165551519828620 – volume: 575 start-page: 911 year: 2019 ident: 32548_CR31 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.05.087 – volume: 13 start-page: 367 issue: 3 year: 2009 ident: 32548_CR50 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-13-367-2009 – volume: 25 start-page: 4081 issue: 7 year: 2021 ident: 32548_CR49 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-4081-2021 – volume: 4 start-page: 1549 issue: 3 year: 2015 ident: 32548_CR67 publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi4031549 – volume: 42 start-page: 13 year: 2018 ident: 32548_CR87 publication-title: Int. J. Inf. Manag. doi: 10.1016/j.ijinfomgt.2018.05.004 – volume: 68 start-page: 97 year: 2018 ident: 32548_CR7 publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2017.11.004 – volume: 88 start-page: 101628 year: 2021 ident: 32548_CR28 publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2021.101628 – ident: 32548_CR60 – volume: 67 start-page: 208 year: 2021 ident: 32548_CR54 publication-title: Inf. Fusion doi: 10.1016/j.inffus.2020.10.004 – ident: 32548_CR17 doi: 10.1109/BigData.2015.7364069 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 32548_CR36 publication-title: Sci. Rep. doi: 10.1038/s41598-021-90964-3 – ident: 32548_CR85 – volume: 56 start-page: 4691 issue: 8 year: 2018 ident: 32548_CR69 publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2835306 – ident: 32548_CR79 – volume: 26 start-page: 997 issue: 3 year: 2013 ident: 32548_CR30 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2012.05.023 – ident: 32548_CR42 doi: 10.31223/OSF.IO/E9XQR – volume: 524 start-page: 489 year: 2015 ident: 32548_CR22 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.02.049 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 32548_CR35 publication-title: Nature doi: 10.1038/nature14539 – volume: 32 start-page: 1486 issue: 8 year: 2015 ident: 32548_CR1 publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-14-00213.1 – volume: 12 start-page: 787 issue: 3 year: 2020 ident: 32548_CR25 publication-title: Water doi: 10.3390/w12030787 – volume-title: Flood Forecasting Using Machine Learning Methods year: 2019 ident: 32548_CR32 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 32548_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-020-70524-x – volume: 15 start-page: 136 issue: 1 year: 2022 ident: 32548_CR37 publication-title: IEEE Intell. Transp. Syst. Mag. doi: 10.1109/MITS.2022.3162901 – ident: 32548_CR41 doi: 10.1109/BigMM.2017.29 – volume: 141 start-page: 105051 year: 2021 ident: 32548_CR48 publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2021.105051 |
SSID | ssj0000529419 |
Score | 2.5695136 |
Snippet | Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective of this... Abstract Flood nowcasting refers to near-future prediction of flood status as an extreme weather event unfolds to enhance situational awareness. The objective... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6768 |
SubjectTerms | 639/166/986 704/4111 Census Computer applications Deep learning Extreme weather Floods Humanities and Social Sciences Hurricanes Hydrologic data multidisciplinary Physics Rainfall intensity Science Science (multidisciplinary) Spatial discrimination learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYsKvbUmHmn80DENCaHQnhrITejlprB4Q7xLk1v-Q_5hf0lHkneb7fPSoy0J5JlvrE9o9A1jr6UHMF0g8KrOlgg9xVwlTYkorfAKZAPx7vCHj83xCb4_rU9vlfqKOWFZHjgbbg8tePSICk2PVtSGKL0y3nXKYRUqH_--lapubaayqrdQCGq6JVPJbm-klSreJhOylLQp6srLjZUoCfb_jmX-miz504lpWoiOHrD7E4Pk-3nm2-xOGB6yu7mm5NUjttznY8ySNrNv1zeT8NSMJ11q7kM451OdiM88FcHhRFr58sKagfcxh50P86_OjDEZmnoSzlMVI34Ws2bmBLYwX47c5VsliyvehyQMOj5mJ0eHnw6Oy6m2QulqhEWpfGvomxorUdEPEYwKDbW0rTPQO-Wt8xW4XjWWHuKmsAdoiQxJDEJabOUTtjXMh_CMcevr2gpwNkq_VA4MbbidNQBWOI9OFQxWdtZuEh6P9S9mOh2Ay05n32jyjU6-0ZcFe7Mec55lN_7a-11037pnlMxOLwhIegKS_heQCra7cr6e4njUoiM-2xIFwoK9WjdTBMZjFZNsTn0A6yiEBwV7mrGynolsIx9qaHS3gaKNqW62DF_Okso3xDNlIpAFe7sC3I95_dkWz_-HLXbYPREjpcJS1Ltsa3GxDC-IfC3syxRn3wELui4e priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEF5qi-CLeDdaZQXfNDST3Vz2QaSVliJ4ELHQt7C3tIVDcjw5B9s3_4P_0F_izOZSjpe-JdkN7OWb3dmdmW8Yey0cgC49gleVJpZQo8wlQsdSCpM6BSIHih3-NMuPT-TH0-x0i83GWBhyqxzXxLBQu9bSHfleWqJmUeBmJN8vvsWUNYqsq2MKDT2kVnDvAsXYLbaDS3KJuN85OJx9_jLdupBdS4IaomcSUe51uINRlFkqYoGHpTK-3NihApH_v7TPv50o_7Ckhg3q6B67O2iWfL-Hwn225ZsH7Hafa_IKn4Kvp-0esvU-78iPWs9__fg5UFPNeWCu5s77BR8ySZzxkCaHo1rL10ujG16Tlztv2u9Wd-QujTVREkKeI35OfjUtwtG3647bPu5kdcVrH6hDu0fs5Ojw64fjeMi-ENtMwipWrtDYu9wIqXDJBK18jiVFYTXUVjljXQK2VrnBFzo21gAFqktC-lQYWYjHbLtpG_-UceOyzKRgDZHDJBY0Hsmt0QAmtU5aFTEYR7yyAzU5ZciYV8FELsqqn6UKZ6kKs1RdRuzN9M-iJ-a4sfYBTeRUk0i1w4d2eVYNMlpJA046KZXUtTRppvH0qLSzpbIy8YmL2O4Ig2qQ9K66xmXEXk3FKKNkeNFhzLEOyIyo8iBiT3rUTC0RBWlMOf5dbuBpo6mbJc3FeeABB7I6o4oZsbcj9K7b9f-xeHZzN56zOylJQyLjNNtl26vl2r9AxWtlXg7S9Bs6sS7C priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7LLIIX8W3rKhG8aWNXUv3IcRSXZUAvurC3Jq_eFYbuZXoG3Zv_wX_oL7GSfsjoKnjsSQXSqarOl6mqrxh7IR2ArjwZr6pMitCQz2VSp4jSCKdAFhBqh99_KE5OcXWWnx0wMdXCxKT9SGkZP9NTdtjrng6aUAwmZCrpTlOlhBsPKzr-xIIdLperj6v5n5UQu0JQY4VMJqtrJu-dQpGs_zqE-Wei5G_R0ngIHd9mt0b0yJfDeu-wA9_eZTeGfpJX99huyfuQIa3XP759H0mn1jxyUnPn_SUfe0Sc89gAhxNg5buN0S1vQv46b7svVvchEZokycZjByN-ETJmOjI03-16boeKku0Vb3zcwf4-Oz1-9-ntSTr2VUhtjrBNlSs1vVNhJCr6GIJWvqCRsrQaGqucsS4D26jC0EO4EDYAJQEhiV5Ig6V8wBZt1_pHjBuX50aANYH2JbOg6bJtjQYwwjq0KmEw7XNtR9Lx0PtiXcfgt6zqQTc16aaOuqm_JuzlPOdyoNz4p_SboL5ZMtBlxx-6zXk9mk-NBhw6RIW6QSNyTfdCpZ2tlMXMZy5hR5Py69GH-1pUhGVLgj-YsOfzMHlfCKnouOckA5gHEjxI2MPBVuaVyDJgoYJmV3tWtLfU_ZH280Vk-IYQTybwmLBXk8H9Wtff9-Lx_4k_YTdF8IkMU5EfscV2s_NPCWJtzbPRp34Cyawk6Q priority: 102 providerName: Springer Nature |
Title | A spatial–temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features |
URI | https://link.springer.com/article/10.1038/s41598-023-32548-x https://www.ncbi.nlm.nih.gov/pubmed/37185364 https://www.proquest.com/docview/2805772444 https://www.proquest.com/docview/2814523671 https://pubmed.ncbi.nlm.nih.gov/PMC10130063 https://doaj.org/article/4b1d4d4494af4b25a1499adc89c40e0d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELZKKyQuiDcLJTISN1jYsb0PHxBKo1ZVpFYIiJTbyq9tkaLdkk1Ec-M_8A_5JYy9m6BA6GkftiU_ZtbfrGe-IeQVtwCqcCi8stCxgAp1LuEqFoJrZiXwDHzs8Nl5djoR42k63SPrdEf9BLY7TTufT2oyn729_rb6gAr_vgsZL961uAn5QDHGY472ThEjpjzAnSnzxthZD_c7rm8mBcg-dmZ30639KdD478Ke_7pQ_nWOGrank3vkbo8r6bAThPtkz9UPyO0u0-QK74Knp2kfkuWQtt6LWs1-_fjZE1PNaOCtpta5K9rnkbigIUkORVBLl3Otalp5H3daN9-Nar2zNNZEPQhZjuil96ppUBhds2yp6aJOFitauUAc2j4ik5PjL6PTuM-9EJtUwCKWNlc4ukxzIfGDCUq6DEvy3CiojLTa2ARMJTOND95orAByBEtcOMa1yPljsl83tXtKqLZpqhkY7alhEgMKDXKjFYBmxgojIwLrGS9NT0zu82PMynBAzouyW6USV6kMq1ReR-T1ps1VR8txY-0jv5Cbmp5SO7xo5hdlr6Gl0GCFFUIKVQnNUoW2o1TWFNKIxCU2IodrMSjXYlqyAvFujhBJROTlphg11B-7qDDnWAdE6onyICJPOqnZ9ITnHi9l2LrYkqetrm6X1F8vAws4-DNnBJgRebMWvT_9-v9cPLt5GM_JHea1IRExSw_J_mK-dC8Qdi30gNzKp_mAHAyH489jvB4dn3_8hG9H2WgQfmUMgrb9BghTMYo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVAguiJ1AASPBCaLGsbP4UKEWWk1pO0KolXpzvaVFGiXDZEbt3PgP_B9-DL-EZ2ephqW33iZjJ3L8Fr-Xt3wIvaaGEJlbYF6eq5CRAmQuojJkjKrYcEJT4mqHD0bp8Ih9Ok6OV9DPrhbGpVV2OtEralNp9418Pc7BssjgMGLvJ99ChxrloqsdhIZsoRXMhm8x1hZ27NnFObhw9cbuR6D3mzje2T78MAxblIFQJ4zMQm4yaY1OFWXgf8PSuE1hJMu0JIXmRmkTEV3wVMGFc48KQjIwCyizMVUso_DcG2iVuQrXAVrd2h59_tJ_5XFxNEZ4W60T0Xy9hhPTVbXFNKTgnOXhxdKJ6IED_mXt_p20-Ufk1h-IO3fRndaSxZsN691DK7a8j2422JYL-OVzS3X9AM03ce3ytuX41_cfbSusMfadsrGxdoJb5IpT7GF5MJjReD5VssSFy6rHZXWuZe3Ss2EmSJ7HVcJnLo-nAva31bzGuqlzmS1wYX2r0vohOroWOjxCg7Iq7ROElUkSFROtXDOaSBOZ8kgrSYiKtWGaB4h0Oy502wrdIXKMhQ_J01w0VBJAJeGpJC4C9La_Z9I0Arly9pYjZD_TNfH2f1TTU9HqBMEUMcwwxpksmIoTCd4ql0bnXLPIRiZAax0biFaz1OJSDgL0qh8GneACPdLvOcwhLHGt-UiAHjdc06-EZs5CS-HufImflpa6PFJ-PfN9x4mLcoNJG6B3Hetdruv_e_H06td4iW4NDw_2xf7uaO8Zuh07yYhYGCdraDCbzu1zMPpm6kUrWRidXLcw_wYgKmvX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLbKVCAuiJ1AASPBCaKJY2fxoUIt7ailMKoQlXoL3tIijZJhMqN2bvwH_hU_g1_Cs-OkGpbeepuMncjxW_xe3vIh9JJqQkRugHl5LkNGSpC5iIqQMSpjzQlNia0d_jhO947Y--PkeA397GphbFplpxOdota1st_Ih3EOlkUGhxEblj4t4nBn9Hb6LbQIUjbS2sFpCA-zoDdduzFf5HFglmfgzjWb-ztA-1dxPNr9_G4v9IgDoUoYmYdcZ8JolUrKwBeHZXKTwkiWKUFKxbVUOiKq5KmEC-sqlYRkYCJQZmIqWUbhudfQeganJBug9e3d8eGn_ouPjakxwn3lTkTzYQOnp61wi2lIwVHLw_OV09GBCPzL8v07gfOPKK47HEe30S1v1eKtlg3voDVT3UXXW5zLJfxyeaaquYcWW7ixOdxi8uv7D98Wa4Jd12ysjZlij2Jxgh1EDwaTGi9mUlS4tBn2uKrPlGhsqjbMBCl0GEv41Ob01CAKpl40WLU1L_MlLo1rW9rcR0dXQocHaFDVlXmEsNRJImOipG1MEykiUh4pKQiRsdJM8QCRbscL5duiW3SOSeHC8zQvWioVQKXCUak4D9Dr_p5p2xTk0tnblpD9TNvQ2_1Rz04Krx8KJolmmjHORMlknAjwXLnQKueKRSbSAdro2KDwWqYpLmQiQC_6YdAPNugj3J7DHMIS26aPBOhhyzX9SmhmrbUU7s5X-Gllqasj1ddT14Oc2Ig3mLcBetOx3sW6_r8Xjy9_jefoBgh18WF_fPAE3YytYEQsjJMNNJjPFuYp2H9z-cwLFkZfrlqWfwPfT3AD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+spatial%E2%80%93temporal+graph+deep+learning+model+for+urban+flood+nowcasting+leveraging+heterogeneous+community+features&rft.jtitle=Scientific+reports&rft.au=Farahmand%2C+Hamed&rft.au=Xu%2C+Yuanchang&rft.au=Mostafavi%2C+Ali&rft.date=2023-04-25&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=6768&rft_id=info:doi/10.1038%2Fs41598-023-32548-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |