Human Posture Transition-Time Detection Based upon Inertial Measurement Unit and Long Short-Term Memory Neural Networks

As human–robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked....

Full description

Saved in:
Bibliographic Details
Published inBiomimetics (Basel, Switzerland) Vol. 8; no. 6; p. 471
Main Authors Kuo, Chun-Ting, Lin, Jun-Ji, Jen, Kuo-Kuang, Hsu, Wei-Li, Wang, Fu-Cheng, Tsao, Tsu-Chin, Yen, Jia-Yush
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As human–robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked. This study explores using two deep-learning methods, the linear Feedforward Neural Network (FNN) and Long Short-Term Memory (LSTM), to detect changes in human posture among three different movements: standing, walking, and sitting. To explore the possibility of rapid posture-change detection upon human intention, the authors introduced transition stages as distinct features for the identification. During the experiment, the subject wore an inertial measurement unit (IMU) on their right leg to measure joint parameters. The measurement data were used to train the two machine learning networks, and their performances were tested. This study also examined the effect of the sampling rates on the LSTM network. The results indicate that both methods achieved high detection accuracies. Still, the LSTM model outperformed the FNN in terms of speed and accuracy, achieving 91% and 95% accuracy for data sampled at 25 Hz and 100 Hz, respectively. Additionally, the network trained for one test subject was able to detect posture changes in other subjects, demonstrating the feasibility of personalized or generalized deep learning models for detecting human intentions. The accuracies for posture transition time and identification at a sampling rate of 100 Hz were 0.17 s and 94.44%, respectively. In summary, this study achieved some good outcomes and laid a crucial foundation for the engineering application of digital twins, exoskeletons, and human intention control.
AbstractList As human–robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked. This study explores using two deep-learning methods, the linear Feedforward Neural Network (FNN) and Long Short-Term Memory (LSTM), to detect changes in human posture among three different movements: standing, walking, and sitting. To explore the possibility of rapid posture-change detection upon human intention, the authors introduced transition stages as distinct features for the identification. During the experiment, the subject wore an inertial measurement unit (IMU) on their right leg to measure joint parameters. The measurement data were used to train the two machine learning networks, and their performances were tested. This study also examined the effect of the sampling rates on the LSTM network. The results indicate that both methods achieved high detection accuracies. Still, the LSTM model outperformed the FNN in terms of speed and accuracy, achieving 91% and 95% accuracy for data sampled at 25 Hz and 100 Hz, respectively. Additionally, the network trained for one test subject was able to detect posture changes in other subjects, demonstrating the feasibility of personalized or generalized deep learning models for detecting human intentions. The accuracies for posture transition time and identification at a sampling rate of 100 Hz were 0.17 s and 94.44%, respectively. In summary, this study achieved some good outcomes and laid a crucial foundation for the engineering application of digital twins, exoskeletons, and human intention control.
As human-robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked. This study explores using two deep-learning methods, the linear Feedforward Neural Network (FNN) and Long Short-Term Memory (LSTM), to detect changes in human posture among three different movements: standing, walking, and sitting. To explore the possibility of rapid posture-change detection upon human intention, the authors introduced transition stages as distinct features for the identification. During the experiment, the subject wore an inertial measurement unit (IMU) on their right leg to measure joint parameters. The measurement data were used to train the two machine learning networks, and their performances were tested. This study also examined the effect of the sampling rates on the LSTM network. The results indicate that both methods achieved high detection accuracies. Still, the LSTM model outperformed the FNN in terms of speed and accuracy, achieving 91% and 95% accuracy for data sampled at 25 Hz and 100 Hz, respectively. Additionally, the network trained for one test subject was able to detect posture changes in other subjects, demonstrating the feasibility of personalized or generalized deep learning models for detecting human intentions. The accuracies for posture transition time and identification at a sampling rate of 100 Hz were 0.17 s and 94.44%, respectively. In summary, this study achieved some good outcomes and laid a crucial foundation for the engineering application of digital twins, exoskeletons, and human intention control.As human-robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial. While recognizing human actions has been extensively studied, the transition between different postures or movements has been largely overlooked. This study explores using two deep-learning methods, the linear Feedforward Neural Network (FNN) and Long Short-Term Memory (LSTM), to detect changes in human posture among three different movements: standing, walking, and sitting. To explore the possibility of rapid posture-change detection upon human intention, the authors introduced transition stages as distinct features for the identification. During the experiment, the subject wore an inertial measurement unit (IMU) on their right leg to measure joint parameters. The measurement data were used to train the two machine learning networks, and their performances were tested. This study also examined the effect of the sampling rates on the LSTM network. The results indicate that both methods achieved high detection accuracies. Still, the LSTM model outperformed the FNN in terms of speed and accuracy, achieving 91% and 95% accuracy for data sampled at 25 Hz and 100 Hz, respectively. Additionally, the network trained for one test subject was able to detect posture changes in other subjects, demonstrating the feasibility of personalized or generalized deep learning models for detecting human intentions. The accuracies for posture transition time and identification at a sampling rate of 100 Hz were 0.17 s and 94.44%, respectively. In summary, this study achieved some good outcomes and laid a crucial foundation for the engineering application of digital twins, exoskeletons, and human intention control.
Audience Academic
Author Wang, Fu-Cheng
Kuo, Chun-Ting
Yen, Jia-Yush
Jen, Kuo-Kuang
Hsu, Wei-Li
Tsao, Tsu-Chin
Lin, Jun-Ji
AuthorAffiliation 2 Missile and Rocket Research Division, National Chung Shan Institute of Science and Technology, Taoyuan 325204, Taiwan
3 School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei 106319, Taiwan
1 Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan
5 Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106319, Taiwan
4 Mechanical and Aerospace Engineering, Samueli School of Engineering, UCLA, Los Angeles, CA 90095, USA
AuthorAffiliation_xml – name: 3 School and Graduate Institute of Physical Therapy, National Taiwan University, Taipei 106319, Taiwan
– name: 2 Missile and Rocket Research Division, National Chung Shan Institute of Science and Technology, Taoyuan 325204, Taiwan
– name: 1 Department of Mechanical Engineering, National Taiwan University, Taipei 106319, Taiwan
– name: 5 Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106319, Taiwan
– name: 4 Mechanical and Aerospace Engineering, Samueli School of Engineering, UCLA, Los Angeles, CA 90095, USA
Author_xml – sequence: 1
  givenname: Chun-Ting
  orcidid: 0000-0002-5783-8141
  surname: Kuo
  fullname: Kuo, Chun-Ting
– sequence: 2
  givenname: Jun-Ji
  orcidid: 0000-0002-5151-113X
  surname: Lin
  fullname: Lin, Jun-Ji
– sequence: 3
  givenname: Kuo-Kuang
  surname: Jen
  fullname: Jen, Kuo-Kuang
– sequence: 4
  givenname: Wei-Li
  orcidid: 0000-0003-4577-140X
  surname: Hsu
  fullname: Hsu, Wei-Li
– sequence: 5
  givenname: Fu-Cheng
  orcidid: 0000-0001-5011-7934
  surname: Wang
  fullname: Wang, Fu-Cheng
– sequence: 6
  givenname: Tsu-Chin
  surname: Tsao
  fullname: Tsao, Tsu-Chin
– sequence: 7
  givenname: Jia-Yush
  surname: Yen
  fullname: Yen, Jia-Yush
BookMark eNp9ks1u1DAUhS1URMvQF2AViQ2bFDuO42SFSvnpSENBYrq2HOdm6iGxB9uh6ttzwxTBFIQSKY5zvuMc-zwlR847IOQ5o2ecN_RVa_1oR0jWxJpWtJTsETkpOOO5rCQ_-mN8TE5j3FJKWVOJsqRPyDGXdS0rWpyQ28tp1C777GOaAmTroF20yXqXr9E9ewsJzPyavdERumza4XDpICSrh-wj6IjUCC5l186mTLsuW3m3yb7c-JDyNYQRRaMPd9kVTAGRK0i3PnyNz8jjXg8RTu-fC3L9_t364jJfffqwvDhf5UaULOWNafDWnWg64KC54SANZ6IpgNK-q9peasEaXTcFN5RJKFpBERGS6x51fEGWe9_O663aBTvqcKe8turnhA8bpTGMGUCVheFt1zFRG13WrGoLIxmIVletEFRw9Hq999pN7QidwdgY6cD08IuzN2rjvys2HxDnFB1e3jsE_22CmNRoo4Fh0A78FFVR11xIKcX84y8eSLd-Cg73alYVXEo8xN-qjcYE1vUeFzazqTqXkjWMSazBgpz9Q4VXB6M12Kve4vwBUO8BE3yMAXplbNJzDxC0AwZScwnV3yVEtHiA_tqf_0A_AIBe5AU
CitedBy_id crossref_primary_10_3390_biomimetics8080591
crossref_primary_10_1007_s12206_024_0731_7
crossref_primary_10_3390_biomimetics9050263
crossref_primary_10_3390_act13080284
crossref_primary_10_3390_s24020686
Cites_doi 10.1109/ACCESS.2020.3010644
10.1109/SURV.2012.110112.00192
10.1109/ICCV.2013.441
10.3389/fbioe.2020.00664
10.1007/978-3-031-38854-5
10.3390/s22041690
10.3390/app12147243
10.5220/0010896400003123
10.1007/s11263-022-01594-9
10.1016/j.imavis.2017.01.010
10.1109/TNSRE.2021.3087135
10.1109/IJCNN55064.2022.9892963
10.23919/EUSIPCO54536.2021.9616298
10.1016/j.inffus.2021.11.006
10.3390/app112412101
10.1109/TNSRE.2021.3086843
10.5220/0011927700003414
10.1007/s40846-021-00634-y
10.1016/j.engappai.2023.105855
10.1080/01691864.2018.1490200
10.1016/j.gaitpost.2018.04.015
10.1088/2058-8585/ac6a96
10.1109/ICPECA53709.2022.9719317
10.1109/MeMeA57477.2023.10171888
10.1155/2020/8024789
10.1016/j.engappai.2022.105655
10.3390/act11030073
10.1016/j.measurement.2022.111442
10.1007/s10846-019-01049-3
10.1109/TPAMI.2007.70711
10.1016/j.engappai.2022.105702
10.3390/electronics11091320
10.1109/MCE.2016.2614423
10.1109/34.910878
10.3390/bios12121182
10.1016/j.procir.2021.03.088
10.3390/electronics9122176
10.1016/j.patrec.2018.02.010
10.3389/frobt.2021.749274
10.1609/aaai.v32i1.12328
10.3390/s21165253
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/biomimetics8060471
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList CrossRef


Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2313-7673
ExternalDocumentID oai_doaj_org_article_42c3bdd158ca4816b2c71e5ba6b55053
PMC10604330
A771911731
10_3390_biomimetics8060471
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: the National Science and Technology Council, R.O.C
  grantid: 108-2221-E-011 -166 -MY3
GroupedDBID 53G
8FE
8FH
AADQD
AAFWJ
AAYXX
ABDBF
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
IHR
INH
ITC
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-9c99c9ad59de3ea3c3e7c31592e00fd6bf7a519a8923c017e2b5099c573af3153
IEDL.DBID DOA
ISSN 2313-7673
IngestDate Wed Aug 27 01:24:13 EDT 2025
Thu Aug 21 18:36:18 EDT 2025
Fri Jul 11 00:02:20 EDT 2025
Fri Jul 25 11:49:16 EDT 2025
Tue Jun 17 22:23:25 EDT 2025
Tue Jun 10 21:16:43 EDT 2025
Thu Apr 24 23:04:31 EDT 2025
Tue Jul 01 04:26:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-9c99c9ad59de3ea3c3e7c31592e00fd6bf7a519a8923c017e2b5099c573af3153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4577-140X
0000-0002-5151-113X
0000-0001-5011-7934
0000-0002-5783-8141
OpenAccessLink https://doaj.org/article/42c3bdd158ca4816b2c71e5ba6b55053
PMID 37887602
PQID 2882377378
PQPubID 2055439
ParticipantIDs doaj_primary_oai_doaj_org_article_42c3bdd158ca4816b2c71e5ba6b55053
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10604330
proquest_miscellaneous_2883577755
proquest_journals_2882377378
gale_infotracmisc_A771911731
gale_infotracacademiconefile_A771911731
crossref_citationtrail_10_3390_biomimetics8060471
crossref_primary_10_3390_biomimetics8060471
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Biomimetics (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Dallel (ref_3) 2023; 118
Lee (ref_7) 2022; 7
Chen (ref_31) 2021; 54
ref_14
ref_36
Archetti (ref_32) 2020; 2
Qiu (ref_47) 2022; 80
Bobick (ref_12) 2001; 23
ref_33
Ding (ref_8) 2020; 8
ref_19
Gorelick (ref_13) 2007; 29
ref_17
Ito (ref_18) 2018; 32
ref_39
ref_38
He (ref_37) 2020; 2020
Lara (ref_1) 2013; 15
Khodabandelou (ref_15) 2023; 118
Papi (ref_16) 2018; 62
Bruinsma (ref_20) 2021; 29
Peng (ref_40) 2022; 39
Younsi (ref_11) 2023; 120
Piche (ref_46) 2022; 198
Lee (ref_6) 2021; 41
Zhang (ref_5) 2019; 2019
ref_23
ref_45
ref_22
ref_44
ref_21
Liu (ref_41) 2021; 29
ref_43
ref_42
Wang (ref_30) 2019; 119
Li (ref_34) 2020; 97
ref_2
Lindemann (ref_35) 2021; 99
ref_28
ref_27
ref_26
ref_48
ref_9
Harris (ref_24) 2022; 8
Kong (ref_29) 2022; 130
Cangelosi (ref_4) 2017; 6
Herath (ref_10) 2017; 60
Kececi (ref_25) 2020; 23
References_xml – volume: 8
  start-page: 138642
  year: 2020
  ident: ref_8
  article-title: Control of Walking Assist Exoskeleton with Time-delay Based on the Prediction of Plantar Force
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010644
– volume: 15
  start-page: 1192
  year: 2013
  ident: ref_1
  article-title: A Survey on Human Activity Recognition using Wearable Sensors
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– ident: ref_9
  doi: 10.1109/ICCV.2013.441
– ident: ref_2
  doi: 10.3389/fbioe.2020.00664
– ident: ref_26
  doi: 10.1007/978-3-031-38854-5
– ident: ref_22
  doi: 10.3390/s22041690
– volume: 2019
  start-page: 3679174
  year: 2019
  ident: ref_5
  article-title: sEMG Based Human Motion Intention Recognition
  publication-title: J. Robot.
– ident: ref_39
  doi: 10.3390/app12147243
– ident: ref_48
  doi: 10.5220/0010896400003123
– volume: 130
  start-page: 1366
  year: 2022
  ident: ref_29
  article-title: Human Action Recognition and Prediction: A Survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-022-01594-9
– volume: 60
  start-page: 4
  year: 2017
  ident: ref_10
  article-title: Going deeper into action recognition: A survey
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.01.010
– volume: 29
  start-page: 1089
  year: 2021
  ident: ref_41
  article-title: A Muscle Synergy-Inspired Method of Detecting Human Movement Intentions Based on Wearable Sensor Fusion
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3087135
– ident: ref_36
  doi: 10.1109/IJCNN55064.2022.9892963
– ident: ref_28
  doi: 10.23919/EUSIPCO54536.2021.9616298
– volume: 80
  start-page: 241
  year: 2022
  ident: ref_47
  article-title: Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.11.006
– ident: ref_43
  doi: 10.3390/app112412101
– volume: 29
  start-page: 1079
  year: 2021
  ident: ref_20
  article-title: IMU-Based Deep Neural Networks: Prediction of Locomotor and Transition Intentions of an Osseointegrated Transfemoral Amputee
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3086843
– ident: ref_21
  doi: 10.5220/0011927700003414
– volume: 41
  start-page: 856
  year: 2021
  ident: ref_6
  article-title: Realization of Natural Human Motion on a 3D Biped Robot For Studying the Exoskeleton Effective
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-021-00634-y
– volume: 120
  start-page: 105855
  year: 2023
  ident: ref_11
  article-title: Comparative study of orthogonal moments for human postures recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.105855
– ident: ref_23
– volume: 32
  start-page: 635
  year: 2018
  ident: ref_18
  article-title: Evaluation of active wearable assistive devices with human posture reproduction using a humanoid robot
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2018.1490200
– volume: 62
  start-page: 480
  year: 2018
  ident: ref_16
  article-title: A flexible wearable sensor for knee flexion assessment during gait
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2018.04.015
– volume: 7
  start-page: 023002
  year: 2022
  ident: ref_7
  article-title: Recent advances in wearable exoskeletons for human strength augmentation
  publication-title: Flex. Print. Electron.
  doi: 10.1088/2058-8585/ac6a96
– volume: 2
  start-page: 13
  year: 2020
  ident: ref_32
  article-title: Inclusive Human Intention Prediction with Wearable Sensors: Machine Learning Techniques for the Reaching Task Use Case
  publication-title: Eng. Proc.
– ident: ref_42
  doi: 10.1109/ICPECA53709.2022.9719317
– ident: ref_45
  doi: 10.1109/MeMeA57477.2023.10171888
– volume: 2020
  start-page: 8024789
  year: 2020
  ident: ref_37
  article-title: An LSTM-Based Prediction Method for Lower Limb Intention Perception by Integrative Analysis of Kinect Visual Signal
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/8024789
– volume: 118
  start-page: 105655
  year: 2023
  ident: ref_3
  article-title: Digital twin of an industrial workstation: A novel method of an auto-labeled data generator using virtual reality for human action recognition in the context of human–robot collaboration
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105655
– ident: ref_38
  doi: 10.3390/act11030073
– volume: 198
  start-page: 111442
  year: 2022
  ident: ref_46
  article-title: Validity and repeatability of a new inertial measurement unit system for gait analysis on kinematic parameters: Comparison with an optoelectronic system
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111442
– volume: 97
  start-page: 95
  year: 2020
  ident: ref_34
  article-title: Deep-Learning-Based Human Intention Prediction Using RGB Images and Optical Flow
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-019-01049-3
– volume: 29
  start-page: 2247
  year: 2007
  ident: ref_13
  article-title: Actions as Space-Time Shapes
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.70711
– volume: 23
  start-page: 931
  year: 2020
  ident: ref_25
  article-title: Implementation of machine learning algorithms for gait recognition
  publication-title: Eng. Sci. Technol. Int. J.
– volume: 118
  start-page: 105702
  year: 2023
  ident: ref_15
  article-title: A fuzzy convolutional attention-based GRU network for human activity recognition
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105702
– ident: ref_44
  doi: 10.3390/electronics11091320
– volume: 6
  start-page: 24
  year: 2017
  ident: ref_4
  article-title: Human-Robot Interaction and Neuroprosthetics: A review of new technologies
  publication-title: IEEE Consum. Electron. Mag.
  doi: 10.1109/MCE.2016.2614423
– volume: 23
  start-page: 257
  year: 2001
  ident: ref_12
  article-title: The recognition of human movement using temporal templates
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.910878
– ident: ref_17
– ident: ref_27
  doi: 10.3390/bios12121182
– volume: 99
  start-page: 650
  year: 2021
  ident: ref_35
  article-title: A survey on long short-term memory networks for time series prediction
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2021.03.088
– ident: ref_19
  doi: 10.3390/electronics9122176
– volume: 119
  start-page: 3
  year: 2019
  ident: ref_30
  article-title: Deep learning for sensor-based activity recognition: A survey
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 8
  start-page: 749274
  year: 2022
  ident: ref_24
  article-title: A Survey of Human Gait-Based Artificial Intelligence Applications
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2021.749274
– volume: 54
  start-page: 77
  year: 2021
  ident: ref_31
  article-title: Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges, and Opportunities
  publication-title: ACM Comput. Surv.
– ident: ref_14
  doi: 10.1609/aaai.v32i1.12328
– volume: 39
  start-page: 8
  year: 2022
  ident: ref_40
  article-title: A survey of feature extraction methods in human action recognition
  publication-title: Comput. Appl. Softwire
– ident: ref_33
  doi: 10.3390/s21165253
SSID ssj0001965440
Score 2.2745435
Snippet As human–robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial....
As human-robot interaction becomes more prevalent in industrial and clinical settings, detecting changes in human posture has become increasingly crucial....
SourceID doaj
pubmedcentral
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 471
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Deep learning
Discriminant analysis
Electromyography
Exoskeleton
Feedback
feedforward neural network (FNN)
Gait
human posture change detection
inertial measurement unit (IMU)
internal sensing
Long short-term memory
long short-term memory (LSTM)
Machine learning
Measurement
Neural networks
Performance evaluation
Posture
Robots
Sampling
Sensors
Statistical methods
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELege-EFAQMRGMhICB5QtCSOY-cJtbBpIFYh2KS9Rf7KNok6pR9C---5c9yWMGlSHqr4LCc53_nuevc7Qt6qPKtdhdkNrpJpWXGXKi1U2ipnhFXasIDTfTqtTs7Lrxf8IgbcljGtcqMTg6K2ncEY-WEhEVZFMCE_zn-n2DUK_12NLTTukz1QwVKOyN7kaPr9xy7KUle8LLO-WoaBf3-IVe3XMywQXEoEjhH54EQKwP231fP_KZP_nEHHj8jDaDzScc_tx-Se80_I_tiD4zy7oe9oSOcMcfJ98ieE5yk2410vHA1nUkjPSrHqg352q5CE5ekEzjFL13P4-cVjljWscLqLHFK0Sqnyln7r_CX9eQX2enoG-hyIZt3ihiK8B0yZ9vnky6fk_Pjo7NNJGrsspIaX-SqtTQ2Xsry2jjnFDHMCOMTrwmVZayvdCgVmnpJgChqQX1doMDJqwwVTLdCxZ2TkO--eE9pqyUBpSZsJC4ZBVrfGCVuJ0hpTaeESkm--dGMiBDl2wvjVgCuC3GlucychH7Zz5j0Ax53UE2TglhLBs8ONbnHZRFlsysIwbW3OJUK655UujMgd16rS6K-xhLxH9jco4vB4RsVKBXhJBMtqxkKAl5sLBssdDChBNM1weLOBmqgals1uIyfkzXYYZ2K6m3fdOtAwLoTgPCFysPEGbzYc8ddXAR48x0_BWPbi7tVfkgcFGGx9YuIBGa0Wa_cKDKyVfh2l6C9YTivR
  priority: 102
  providerName: ProQuest
Title Human Posture Transition-Time Detection Based upon Inertial Measurement Unit and Long Short-Term Memory Neural Networks
URI https://www.proquest.com/docview/2882377378
https://www.proquest.com/docview/2883577755
https://pubmed.ncbi.nlm.nih.gov/PMC10604330
https://doaj.org/article/42c3bdd158ca4816b2c71e5ba6b55053
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kvvgiahVja1mh6IOEJtlsJnm82B6t2EO0hb6F_Ypt6e2V-0D63zuzSc-LBX0RDnJkZ0myM7vzm2Xmt4ztqzSpXEHZDa4o47yQLlYaVNwqZ8AqbUTg6T6dFMfn-ecLebFx1BflhHX0wN3AHeSZEdraVJbEv50WOjOQOqlVoQlcB55P9HkbwdR1R_oi8zzpqmQExvUHVM1-NaXCwEVJhDGQDjxRIOx_uCz_mSq54XvGz9jTHjTyUfeyz9kj51-w7ZHHgHl6x9_zkMYZ9se32c-wLc_pEN7V3PHgi0JaVkzVHvzQLUPylec1-i_LV7f498RTdjU-4fT3jiEnNMqVt_zLzP_g3y8Rp8dnuI6j0HQ2v-NE64FdJl0e-eIlOx8fnX06jvvTFWIj83QZV6bCn7Kysk44JYxwgJqRVeaSpLWFbkEhvFMlQkCD89ZlGsFFZSQI1aKceMW2_My714y3uhS4WJU2AYuAIKla48AWkFtjCg0uYun9SDempx6nEzBuGgxBSDvNQ-1E7OO6z21HvPFX6ZoUuJYk0uxwA02p6U2p-ZcpRewDqb-hqY2vZ1RfoYAfSSRZzQgAo9sUBD5udyCJU9IMm-8NqOmXhEWTlcQLBALKiL1bN1NPSnPzbrYKMkICgJQRKweGN_iyYYu_ugy04CkNhRDJm_8xFjvsSYZwrktb3GVby_nKvUX4tdR77PGoPqzHeK2PJl-_7YWZ9wve-DXT
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXBBREoMAi8Tggq7bX67UPCCW0VUKTCEEq9ebuy20lYoc8VOVP8RuZWTsJplJvlXKwsrNee2d3HuuZbwh5JwM_tTFGN9g48aKYW08qIb1cWi2MVJo5nO7hKO6dRt_O-NkO-bPOhcGwyrVMdILalBrPyA_CBGFVBBPJl-lvD6tG4dfVdQmNalmc2NU1uGzzz_1D4O_7MDw-Gn_teXVVAU_zKFh4qU7hJw1PjWVWMs2sgCfiaWh9PzexyoUEs0YmYPpoWK82VKBUU80FkznQMbjvPbIbsdgPW2S3ezT6_mN7qpPGPIr8KjuHsdQ_wCz6qwkmJM4TBKoRQUMDukIBN9XB_yGa_-i840fkYW2s0k61uh6THVs8IXudAhz1yYp-oC581J3L75Fr9zmAYvHf5cxSpwNdOJiHWSb00C5c0FdBu6A3DV1O4bJfYFQ3jDDcnlRStIKpLAwdlMUF_XkJ_oE3Bv0BRJNytqIIJwJdRlX8-vwpOb2T-X9GWkVZ2OeE5iphICQT4wsDhoif5toKE4vIaB0rYdskWM90pmvIc6y88SsD1we5k93kTpt82vSZVoAft1J3kYEbSgTrdn-Us4us3vtZFGqmjAl4ghDyQaxCLQLLlYwV-oesTT4i-zMUKfB4WtaZEfCSCM6VdYQArzoQDIbbb1CCKNDN5vUCympRNM-2G6dN3m6asSeG1xW2XDoaxoUQnLdJ0lh4jTdrthRXlw6OPMCpYMx_cfvob8j93ng4yAb90clL8iAEY7EKitwnrcVsaV-BcbdQr-sdRcn5XW_iv1nTaIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJyFeEDAQZQOMxMcDiprEcZw8INTSVSvbqgk2aW_BX9km0aTrh6b-a_x13DlpS5i0t0l9iOpznPjs-3B-d0fIexn4qY0R3WDjxItibj2phPRyabUwUmnm8nQfj-KDs-j7OT_fIn9WsTAIq1zJRCeoTanxjLwTJphWRTCRdPIaFnHSH3ydXHtYQQq_tK7KaVRL5NAub8B9m30Z9oHXH8JwsH_67cCrKwx4mkfB3Et1Cj9peGoss5JpZgU8HU9D6_u5iVUuJJg4MgEzSMPataECBZtqLpjMgY7BfR-QbYFeUYts9_ZHJz82JzxpzKPIryJ1GEv9DkbUX40xOHGWYNIaETS0oSsacFs1_A_X_Ef_DZ6Qx7XhSrvVSntKtmzxjOx0C3Dax0v6kTooqTuj3yE37tMAxULAi6mlTh86aJiHESe0b-cOAFbQHuhQQxcTuBwWiPCGEY43p5YULWIqC0OPyuKC_rwEX8E7BV0CRONyuqSYWgS6jCos--w5ObuX-X9BWkVZ2JeE5iphIDAT4wsDRomf5toKE4vIaB0rYdskWM10puv051iF43cGbhByJ7vNnTb5vO4zqZJ_3EndQwauKTFxt_ujnF5ktRzIolAzZUzAE0wnH8Qq1CKwXMlYoa_I2uQTsj9D8QKPp2UdJQEviYm6sq4Q4GEHgsFwew1KEAu62bxaQFktlmbZZhO1ybt1M_ZEqF1hy4WjYVwIwXmbJI2F13izZktxdelSkwc4FYz5r-4e_S15CJs3OxqODnfJoxDsxgofuUda8-nCvgY7b67e1BuKkl_3vYf_At4mbME
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Posture+Transition-Time+Detection+Based+upon+Inertial+Measurement+Unit+and+Long+Short-Term+Memory+Neural+Networks&rft.jtitle=Biomimetics+%28Basel%2C+Switzerland%29&rft.au=Kuo%2C+Chun-Ting&rft.au=Lin%2C+Jun-Ji&rft.au=Jen%2C+Kuo-Kuang&rft.au=Hsu%2C+Wei-Li&rft.date=2023-10-01&rft.pub=MDPI&rft.eissn=2313-7673&rft.volume=8&rft.issue=6&rft_id=info:doi/10.3390%2Fbiomimetics8060471&rft_id=info%3Apmid%2F37887602&rft.externalDocID=PMC10604330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-7673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-7673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-7673&client=summon