Confining donor conformation distributions for efficient thermally activated delayed fluorescence with fast spin-flipping
Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules,...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 2564 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.05.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 10
6
s
−1
, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off.
The distribution of dihedral angles in film state has significant influence on excited state lifetimes of thermally activated delayed fluorescence emitters. Here authors report conformation distribution confinement strategy to achieve fast spin-flipping for efficient organic light-emitting diodes. |
---|---|
AbstractList | Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 10
6
s
−1
, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off. Abstract Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s−1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off. Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s−1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off.The distribution of dihedral angles in film state has significant influence on excited state lifetimes of thermally activated delayed fluorescence emitters. Here authors report conformation distribution confinement strategy to achieve fast spin-flipping for efficient organic light-emitting diodes. Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 10 6 s −1 , which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off. The distribution of dihedral angles in film state has significant influence on excited state lifetimes of thermally activated delayed fluorescence emitters. Here authors report conformation distribution confinement strategy to achieve fast spin-flipping for efficient organic light-emitting diodes. Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s-1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off.Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 106 s-1, which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off. Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high efficiency, low efficiency roll-off and long operating lifetime. In common donor-acceptor type thermally activated delayed fluorescence molecules, the distribution of dihedral angles in the film state would have significant influence on the photo-physical properties, which are usually neglected by researches. Herein, we find that the excited state lifetimes of thermally activated delayed fluorescence emitters are subjected to conformation distributions in the host-guest system. Acridine-type flexible donors have a broad conformation distribution or bimodal distribution, in which some conformers feature large singlet-triplet energy gap, leading to long excited state lifetime. Utilization of rigid donors with steric hindrance can restrict the conformation distributions in the film to achieve degenerate singlet and triplet states, which is beneficial to efficient reverse intersystem crossing. Based on this principle, three prototype thermally activated delayed fluorescence emitters with confined conformation distributions are developed, achieving high reverse intersystem crossing rate constants greater than 10 s , which enable highly efficient solution-processed organic light-emitting diodes with suppressed efficiency roll-off. |
ArticleNumber | 2564 |
Author | Liang, Baoyan Qiu, Weidong Su, Shi-Jian Chen, Jiting Li, Wei Pu, Junrong Wang, Zhiheng Chen, Zijian Peng, Xiaomei Li, Deli He, Yanmei Qiao, Zhenyang Liu, Denghui Cai, Xinyi Gu, Qing Xie, Wentao Gan, Yiyang Jiao, Yihang Li, Mengke |
Author_xml | – sequence: 1 givenname: Weidong orcidid: 0000-0002-5021-4432 surname: Qiu fullname: Qiu, Weidong organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 2 givenname: Denghui surname: Liu fullname: Liu, Denghui organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 3 givenname: Mengke orcidid: 0000-0001-9393-140X surname: Li fullname: Li, Mengke email: limk@scut.edu.cn organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 4 givenname: Xinyi surname: Cai fullname: Cai, Xinyi organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 5 givenname: Zijian surname: Chen fullname: Chen, Zijian organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 6 givenname: Yanmei surname: He fullname: He, Yanmei organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 7 givenname: Baoyan surname: Liang fullname: Liang, Baoyan organization: Ji Hua Laboratory – sequence: 8 givenname: Xiaomei surname: Peng fullname: Peng, Xiaomei organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 9 givenname: Zhenyang surname: Qiao fullname: Qiao, Zhenyang organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 10 givenname: Jiting surname: Chen fullname: Chen, Jiting organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 11 givenname: Wei surname: Li fullname: Li, Wei organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 12 givenname: Junrong surname: Pu fullname: Pu, Junrong organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 13 givenname: Wentao surname: Xie fullname: Xie, Wentao organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 14 givenname: Zhiheng surname: Wang fullname: Wang, Zhiheng organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Ji Hua Laboratory – sequence: 15 givenname: Deli surname: Li fullname: Li, Deli organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 16 givenname: Yiyang surname: Gan fullname: Gan, Yiyang organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 17 givenname: Yihang surname: Jiao fullname: Jiao, Yihang organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 18 givenname: Qing surname: Gu fullname: Gu, Qing organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology – sequence: 19 givenname: Shi-Jian orcidid: 0000-0002-6545-9002 surname: Su fullname: Su, Shi-Jian email: mssjsu@scut.edu.cn organization: State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37142564$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v3CAQtapUTZrmD_RQIfXSi1swGJtTVa36ESlSL-0ZYRh2WbGwBZzI_75kN02THMKBYeC9xwy8181JiAGa5i3BHwmm46fMCONDizva0pGIoV1eNGcdZqQlQ0dPHqxPm4uct7gOKsjI2KvmlA6EdT1nZ82yisG64MIamRhiQrrmMe1UcTEg43JJbppvk4zqPgJrnXYQCiobqDDvF6R0cdeqgEEGvFpqtH6OCbKGoAHduLJBVuWC8t6F1nq3r3H9pnlplc9wcRfPm9_fvv5a_Wivfn6_XH25anXPSGmFGqngYlQcupEogUFz1ms1DXTSnaWGcgEjMDFZw2DqNZk0DHjqjWJ9p4CeN5dHXRPVVu6T26m0yKicPGzEtJYqFac9SGJ4zyfTM0E1Y2OnFFHU4Gnkne2Bk6r1-ai1n6cdmNpfSco_En18EtxGruO1JJhwXKeq8OFOIcU_M-Qid66-k_cqQJyzrD1iQQQdRIW-fwLdxjmF-lYVhQVllA-sot49LOm-ln9fXAHdEaBTzDmBvYcQLG-tJI9WktVK8mAluVTS-ISkXTl4orbl_PNUeqTmek9YQ_pf9jOsv7zb4bI |
CitedBy_id | crossref_primary_10_1103_PhysRevApplied_21_044037 crossref_primary_10_1002_ange_202415680 crossref_primary_10_1002_anie_202415856 crossref_primary_10_1002_adma_202403584 crossref_primary_10_1002_ange_202409580 crossref_primary_10_1016_j_dyepig_2023_111927 crossref_primary_10_1002_anie_202312451 crossref_primary_10_1021_acs_jpcc_4c06442 crossref_primary_10_1002_adma_202403061 crossref_primary_10_1002_adfm_202312930 crossref_primary_10_1002_ange_202415856 crossref_primary_10_1002_anie_202415680 crossref_primary_10_1021_acs_chemmater_3c01624 crossref_primary_10_1002_adom_202403459 crossref_primary_10_1038_s41467_024_53740_1 crossref_primary_10_1007_s11426_024_2427_y crossref_primary_10_1039_D4TC04139A crossref_primary_10_1002_anie_202409580 crossref_primary_10_1016_j_cej_2023_147977 crossref_primary_10_1038_s41578_024_00704_y crossref_primary_10_1016_j_xcrp_2024_102045 crossref_primary_10_1002_adom_202401819 crossref_primary_10_1002_ange_202312451 crossref_primary_10_1002_lpor_202300758 crossref_primary_10_1021_acs_nanolett_3c04069 crossref_primary_10_1039_D3TC02347H crossref_primary_10_1016_j_cej_2025_160077 crossref_primary_10_1016_j_matt_2024_07_004 crossref_primary_10_1016_j_snb_2024_137115 crossref_primary_10_1021_jacs_3c11719 |
Cites_doi | 10.1038/s41566-020-0668-z 10.1002/adma.201701476 10.1038/nature11687 10.1021/j100142a004 10.1002/anie.201806323 10.1002/adfm.201802031 10.1038/s41563-022-01321-2 10.31635/ccschem.021.202101033 10.1126/sciadv.aao6910 10.1002/anie.202109041 10.1038/s41467-020-17777-2 10.1021/acsami.2c02623 10.1002/adma.202103293 10.1002/adfm.202201772 10.1016/j.cej.2021.128574 10.1038/s41566-018-0112-9 10.1002/adom.202200290 10.1039/C9SC04492B 10.1039/C7CC06045A 10.1038/nphoton.2014.12 10.1126/sciadv.abe5769 10.1021/acs.jpclett.2c01864 10.1002/adfm.201808088 10.1103/PhysRevMaterials.1.075602 10.1039/C7TC04099G 10.1038/s41563-019-0465-6 10.1038/s41566-020-0667-0 10.1021/jacs.0c10081 10.1038/s41467-022-32607-3 10.1002/adma.201908355 10.1002/adfm.201802558 10.1002/adfm.201704927 10.1002/adma.202005630 10.1021/acsami.0c19302 10.1002/anie.202205684 10.1002/anie.201809945 10.1038/s41566-019-0476-5 10.1021/acs.jctc.6b00915 10.1038/nmat4154 10.1002/advs.201600080 10.1021/jacs.2c05537 10.1063/1.2408420 10.1002/anie.202108943 10.1002/cjoc.202000226 10.1021/acs.chemmater.1c01011 10.1021/acs.jpca.0c11322 10.1016/0263-7855(96)00018-5 10.1038/s41467-020-15558-5 10.1021/acs.jpcc.8b08169 10.1038/s41566-022-01083-y 10.1038/ncomms13680 10.1016/j.carbon.2020.05.023 10.1002/anie.201609459 10.1126/sciadv.1603282 10.1016/j.cej.2021.130224 10.1038/s41566-020-00745-z 10.1039/D0MH01316A 10.1002/anie.201811703 10.1002/jcc.22885 10.1002/jcc.20035 10.1021/ct700301q 10.1002/adma.201803524 10.1002/anie.202204652 10.1002/adma.201701987 10.1002/adma.202207454 10.1002/adfm.202000580 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-38197-y |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1d656bd5493c4482aa1a3d0b862f5e61 PMC10160101 37142564 10_1038_s41467_023_38197_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China (2020YFA0714600) Basic and Applied Basic Research Foundation of Guangdong Province (2019B1515120023) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52273179, 51625301, 91833304, and 51861145301 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52273179, 51625301, 91833304, and 51861145301 – fundername: ; – fundername: ; grantid: 52273179, 51625301, 91833304, and 51861145301 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-9a839698a6e281a90ec645cab73bc2f3d369e8e49bfd4eb5c1bce70b5da452ae3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:15:37 EDT 2025 Thu Aug 21 18:37:20 EDT 2025 Tue Aug 05 10:02:02 EDT 2025 Wed Aug 13 05:28:34 EDT 2025 Thu Apr 03 07:02:23 EDT 2025 Tue Jul 01 00:58:50 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-9a839698a6e281a90ec645cab73bc2f3d369e8e49bfd4eb5c1bce70b5da452ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6545-9002 0000-0001-9393-140X 0000-0002-5021-4432 |
OpenAccessLink | https://doaj.org/article/1d656bd5493c4482aa1a3d0b862f5e61 |
PMID | 37142564 |
PQID | 2809343674 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d656bd5493c4482aa1a3d0b862f5e61 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10160101 proquest_miscellaneous_2810919379 proquest_journals_2809343674 pubmed_primary_37142564 crossref_primary_10_1038_s41467_023_38197_y crossref_citationtrail_10_1038_s41467_023_38197_y springer_journals_10_1038_s41467_023_38197_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-04 |
PublicationDateYYYYMMDD | 2023-05-04 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR6) 2021; 13 Aizawa, Matsumoto, Yasuda (CR24) 2021; 7 Wu (CR33) 2018; 12 Min, Park, Yasuda (CR32) 2022; 10 Gillett (CR35) 2022; 21 Woo, Kim, Kim (CR42) 2021; 33 Hong (CR1) 2021; 33 Huang (CR11) 2021; 60 Wang (CR48) 2017; 29 Shi (CR40) 2021; 60 Hirata (CR3) 2015; 14 Liang (CR55) 2018; 57 Liu (CR57) 2017; 53 Gao (CR62) 2017; 13 Cui (CR19) 2020; 14 Phan Huu (CR34) 2022; 33 Kreiza (CR27) 2021; 412 Aizawa, Harabuchi, Maeda, Pu (CR25) 2020; 11 Cai, Su (CR9) 2018; 28 Matsuo, Yasuda (CR49) 2019; 10 Chen (CR5) 2021; 33 Bayly, Cieplak, Cornell, Kollman (CR66) 1993; 97 Wada, Nakagawa, Matsumoto, Wakisaka, Kaji (CR16) 2020; 14 Wang, Wolf, Caldwell, Kollman, Case (CR65) 2004; 25 Xu (CR56) 2022; 61 Uoyama, Goushi, Shizu, Nomura, Adachi (CR2) 2012; 492 Kim (CR26) 2020; 11 Hosokai (CR21) 2017; 3 Kukhta, Bryce (CR44) 2021; 8 Etherington, Gibson, Higginbotham, Penfold, Monkman (CR23) 2016; 7 Yang, Park, Yasuda (CR53) 2020; 142 Jeon, Lee, Yook, Lee (CR8) 2019; 31 Park, Min, Yasuda (CR14) 2022; 61 Li (CR45) 2019; 58 Cai (CR46) 2018; 28 Zhang (CR12) 2020; 32 Gan (CR20) 2019; 29 Olivier (CR41) 2017; 1 Xu (CR47) 2022; 4 Park, Matsuo, Aizawa, Yasuda (CR30) 2018; 28 Dias (CR22) 2016; 3 CR15 CR58 Chan (CR13) 2021; 15 Kondo (CR52) 2019; 13 CR10 Woo, Kim (CR39) 2021; 125 CR51 Chen (CR43) 2018; 57 Yersin (CR29) 2022; 32 Cui (CR50) 2017; 56 Bussi, Donadio, Parrinello (CR67) 2007; 126 Noda (CR17) 2019; 18 Liu, Lu, Chen (CR59) 2020; 165 Kelly, Franca, Stavrou, Danos, Monkman (CR37) 2022; 13 Humphrey, Dalke, Schulten (CR61) 1996; 14 Hu (CR7) 2022; 16 Liu (CR31) 2022; 14 CR68 Hess, Kutzner, van der Spoel, Lindahl (CR64) 2008; 4 Noda, Nakanotani, Adachi (CR18) 2018; 4 Northey, Stacey, Penfold (CR36) 2017; 5 Zhang (CR4) 2014; 8 Shuai (CR63) 2020; 38 Lu, Chen (CR60) 2012; 33 Liu (CR54) 2022; 13 Lee (CR28) 2021; 423 Hu, Han, Tu, Duan, Yi (CR38) 2018; 122 SJ Woo (38197_CR42) 2021; 33 M Yang (38197_CR53) 2020; 142 H Noda (38197_CR17) 2019; 18 G Kreiza (38197_CR27) 2021; 412 FB Dias (38197_CR22) 2016; 3 X Cai (38197_CR9) 2018; 28 NA Kukhta (38197_CR44) 2021; 8 Y Chen (38197_CR5) 2021; 33 Y Kondo (38197_CR52) 2019; 13 MK Etherington (38197_CR23) 2016; 7 H Noda (38197_CR18) 2018; 4 W Li (38197_CR45) 2019; 58 XY Cai (38197_CR46) 2018; 28 Z Liu (38197_CR59) 2020; 165 L Gan (38197_CR20) 2019; 29 B Hess (38197_CR64) 2008; 4 T Huang (38197_CR11) 2021; 60 YH Lee (38197_CR28) 2021; 423 JU Kim (38197_CR26) 2020; 11 J Liu (38197_CR57) 2017; 53 D Kelly (38197_CR37) 2022; 13 G Hong (38197_CR1) 2021; 33 38197_CR68 C-Y Chan (38197_CR13) 2021; 15 H Min (38197_CR32) 2022; 10 SK Jeon (38197_CR8) 2019; 31 W Li (38197_CR6) 2021; 13 Q Zhang (38197_CR4) 2014; 8 Y Xu (38197_CR47) 2022; 4 K Matsuo (38197_CR49) 2019; 10 H Uoyama (38197_CR2) 2012; 492 T Northey (38197_CR36) 2017; 5 38197_CR15 J Wang (38197_CR65) 2004; 25 38197_CR10 YX Hu (38197_CR7) 2022; 16 38197_CR51 Z Shuai (38197_CR63) 2020; 38 T Liu (38197_CR31) 2022; 14 DKA Phan Huu (38197_CR34) 2022; 33 J Liu (38197_CR54) 2022; 13 38197_CR58 C Chen (38197_CR43) 2018; 57 K Wang (38197_CR48) 2017; 29 T-L Wu (38197_CR33) 2018; 12 X Gao (38197_CR62) 2017; 13 N Aizawa (38197_CR24) 2021; 7 W Humphrey (38197_CR61) 1996; 14 Y Olivier (38197_CR41) 2017; 1 IS Park (38197_CR14) 2022; 61 AJ Gillett (38197_CR35) 2022; 21 S Hirata (38197_CR3) 2015; 14 Y Xu (38197_CR56) 2022; 61 N Aizawa (38197_CR25) 2020; 11 SJ Woo (38197_CR39) 2021; 125 YZ Shi (38197_CR40) 2021; 60 X Liang (38197_CR55) 2018; 57 LS Cui (38197_CR19) 2020; 14 T Hu (38197_CR38) 2018; 122 CI Bayly (38197_CR66) 1993; 97 Y Wada (38197_CR16) 2020; 14 IS Park (38197_CR30) 2018; 28 T Hosokai (38197_CR21) 2017; 3 H Yersin (38197_CR29) 2022; 32 T Lu (38197_CR60) 2012; 33 D Zhang (38197_CR12) 2020; 32 LS Cui (38197_CR50) 2017; 56 G Bussi (38197_CR67) 2007; 126 |
References_xml | – ident: CR68 – volume: 14 start-page: 636 year: 2020 end-page: 642 ident: CR19 article-title: Fast spin-flip enables efficient and stable organic electroluminescence from charge-transfer states publication-title: Nat. Photon. doi: 10.1038/s41566-020-0668-z – ident: CR51 – volume: 29 start-page: 1701476 year: 2017 ident: CR48 article-title: Avoiding energy loss on TADF emitters: controlling the dual conformations of D-A structure molecules based on the pseudoplanar segments publication-title: Adv. Mater. doi: 10.1002/adma.201701476 – volume: 492 start-page: 234 year: 2012 end-page: 238 ident: CR2 article-title: Highly efficient organic light-emitting diodes from delayed fluorescence publication-title: Nature doi: 10.1038/nature11687 – volume: 97 start-page: 10269 year: 1993 end-page: 10280 ident: CR66 article-title: A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model publication-title: J. Phys. Chem. doi: 10.1021/j100142a004 – volume: 61 start-page: e202204652 year: 2022 ident: CR56 article-title: Constructing organic electroluminescent material with very high color purity and efficiency based on polycyclization of the multiple resonance parent core publication-title: Angew. Chem. Int. Ed. – volume: 57 start-page: 11316 year: 2018 end-page: 11320 ident: CR55 article-title: Peripheral amplification of multi-resonance induced thermally activated delayed fluorescence for highly efficient oleds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806323 – ident: CR58 – volume: 28 start-page: 1802031 year: 2018 ident: CR30 article-title: High-performance dibenzoheteraborin-based thermally activated delayed fluorescence emitters: molecular architectonics for concurrently achieving narrowband emission and efficient triplet-singlet spin conversion publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802031 – volume: 21 start-page: 1150 year: 2022 end-page: 1157 ident: CR35 article-title: Dielectric control of reverse intersystem crossing in thermally activated delayed fluorescence emitters publication-title: Nat. Mater. doi: 10.1038/s41563-022-01321-2 – volume: 4 start-page: 2065 year: 2022 end-page: 2079 ident: CR47 article-title: Highly efficient electroluminescent materials with high color purity based on strong acceptor attachment onto B–N-containing multiple resonance frameworks publication-title: CCS Chem. doi: 10.31635/ccschem.021.202101033 – volume: 4 start-page: eaao6910 year: 2018 ident: CR18 article-title: Excited state engineering for efficient reverse intersystem crossing publication-title: Sci. Adv. doi: 10.1126/sciadv.aao6910 – volume: 60 start-page: 23771 year: 2021 end-page: 23776 ident: CR11 article-title: Simultaneously enhanced reverse intersystem crossing and radiative decay in thermally activated delayed fluorophors with multiple through-space charge transfers publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109041 – volume: 11 year: 2020 ident: CR25 article-title: Kinetic prediction of reverse intersystem crossing in organic donor-acceptor molecules publication-title: Nat. Commun. doi: 10.1038/s41467-020-17777-2 – ident: CR15 – volume: 14 start-page: 22332 year: 2022 end-page: 22340 ident: CR31 article-title: Zero-zero energy-dominated degradation in blue organic light-emitting diodes employing thermally activated delayed fluorescence publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c02623 – volume: 33 start-page: e2103293 year: 2021 ident: CR5 article-title: Approaching nearly 40% external quantum efficiency in organic light emitting diodes utilizing a green thermally activated delayed fluorescence emitter with an extended linear donor-acceptor-donor structure publication-title: Adv. Mater. doi: 10.1002/adma.202103293 – volume: 32 start-page: 2201772 year: 2022 ident: CR29 article-title: Eliminating the reverse ISC bottleneck of tadf through excited state engineering and environment‐tuning toward state resonance leading to mono‐exponential sub‐µs decay. High OLED external quantum efficiency confirms efficient exciton harvesting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201772 – volume: 412 start-page: 128574 year: 2021 ident: CR27 article-title: High efficiency and extremely low roll-off solution- and vacuum-processed OLEDs based on isophthalonitrile blue TADF emitter publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128574 – volume: 12 start-page: 235 year: 2018 end-page: 240 ident: CR33 article-title: Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off publication-title: Nat. Photon. doi: 10.1038/s41566-018-0112-9 – volume: 10 start-page: 2200290 year: 2022 ident: CR32 article-title: Blue thermally activated delayed fluorescence with sub-microsecond short exciton lifetimes: Acceleration of triplet-singlet spin interconversion via quadrupolar charge-transfer states publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200290 – volume: 10 start-page: 10687 year: 2019 end-page: 10697 ident: CR49 article-title: Blue thermally activated delayed fluorescence emitters incorporating acridan analogues with heavy group 14 elements for high-efficiency doped and non-doped OLEDs publication-title: Chem. Sci. doi: 10.1039/C9SC04492B – volume: 53 start-page: 11476 year: 2017 end-page: 11479 ident: CR57 article-title: A water-soluble two-photon ratiometric triarylboron probe with nucleolar targeting by preferential rna binding publication-title: Chem. Commun. doi: 10.1039/C7CC06045A – volume: 8 start-page: 326 year: 2014 end-page: 332 ident: CR4 article-title: Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.12 – volume: 7 start-page: eabe5769 year: 2021 ident: CR24 article-title: Thermal equilibration between singlet and triplet excited states in organic fluorophore for submicrosecond delayed fluorescence publication-title: Sci. Adv. doi: 10.1126/sciadv.abe5769 – volume: 13 start-page: 6981 year: 2022 end-page: 6986 ident: CR37 article-title: Laplace transform fitting as a tool to uncover distributions of reverse intersystem crossing rates in TADF systems publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c01864 – volume: 29 start-page: 1808088 year: 2019 ident: CR20 article-title: Utilizing a spiro tadf moiety as a functional electron donor in tadf molecular design toward efficient “multichannel” reverse intersystem crossing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808088 – volume: 1 start-page: 075602 year: 2017 ident: CR41 article-title: Nature of the singlet and triplet excitations mediating thermally activated delayed fluorescence publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.075602 – volume: 5 start-page: 11001 year: 2017 end-page: 11009 ident: CR36 article-title: The role of solid state solvation on the charge transfer state of a thermally activated delayed fluorescence emitter publication-title: J. Mater. Chem. C. doi: 10.1039/C7TC04099G – volume: 18 start-page: 1084 year: 2019 end-page: 1090 ident: CR17 article-title: Critical role of intermediate electronic states for spin-flip processes in charge-transfer-type organic molecules with multiple donors and acceptors publication-title: Nat. Mater. doi: 10.1038/s41563-019-0465-6 – volume: 14 start-page: 643 year: 2020 end-page: 649 ident: CR16 article-title: Organic light emitters exhibiting very fast reverse intersystem crossing publication-title: Nat. Photon. doi: 10.1038/s41566-020-0667-0 – volume: 142 start-page: 19468 year: 2020 end-page: 19472 ident: CR53 article-title: Full-color, narrowband, and high-efficiency electroluminescence from boron and carbazole embedded polycyclic heteroaromatics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10081 – ident: CR10 – volume: 13 year: 2022 ident: CR54 article-title: Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy publication-title: Nat. Commun. doi: 10.1038/s41467-022-32607-3 – volume: 32 start-page: e1908355 year: 2020 ident: CR12 article-title: Efficient and stable deep-blue fluorescent organic light-emitting diodes employing a sensitizer with fast triplet upconversion publication-title: Adv. Mater. doi: 10.1002/adma.201908355 – volume: 28 start-page: 1802558 year: 2018 ident: CR9 article-title: Marching toward highly efficient, pure-blue, and stable thermally activated delayed fluorescent organic light-emitting diodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802558 – volume: 28 start-page: 1704927 year: 2018 ident: CR46 article-title: “Trade-off” hidden in condensed state solvation: multiradiative channels design for highly efficient solution-processed purely organic electroluminescence at high brightness publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704927 – volume: 33 start-page: 2005630 year: 2021 ident: CR1 article-title: A brief history of OLEDs-emitter development and industry milestones publication-title: Adv. Mater. doi: 10.1002/adma.202005630 – volume: 13 start-page: 5302 year: 2021 end-page: 5311 ident: CR6 article-title: Spiral donor design strategy for blue thermally activated delayed fluorescence emitters publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19302 – volume: 61 start-page: e202205684 year: 2022 ident: CR14 article-title: Ultrafast triplet-singlet exciton interconversion in narrowband blue organoboron emitters doped with heavy chalcogens publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205684 – volume: 57 start-page: 16407 year: 2018 end-page: 16411 ident: CR43 article-title: Intramolecular charge transfer controls switching between room temperature phosphorescence and thermally activated delayed fluorescence publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809945 – volume: 13 start-page: 678 year: 2019 ident: CR52 article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter publication-title: Nat. Photon. doi: 10.1038/s41566-019-0476-5 – volume: 13 start-page: 515 year: 2017 end-page: 524 ident: CR62 article-title: Evaluation of spin-orbit couplings with linear-response time-dependent density functional methods publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00915 – volume: 14 start-page: 330 year: 2015 end-page: 336 ident: CR3 article-title: Highly efficient blue electroluminescence based on thermally activated delayed fluorescence publication-title: Nat. Mater. doi: 10.1038/nmat4154 – volume: 3 start-page: 1600080 year: 2016 ident: CR22 article-title: The role of local triplet excited states and D-A relative orientation in thermally activated delayed fluorescence: photophysics and devices publication-title: Adv. Sci. doi: 10.1002/advs.201600080 – volume: 33 start-page: 15211 year: 2022 end-page: 15222 ident: CR34 article-title: Thermally activated delayed fluorescence: polarity, rigidity, and disorder in condensed phases publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05537 – volume: 126 start-page: 014101 year: 2007 ident: CR67 article-title: Canonical sampling through velocity rescaling publication-title: J. Phys. Chem. doi: 10.1063/1.2408420 – volume: 60 start-page: 25878 year: 2021 end-page: 25883 ident: CR40 article-title: Characterizing the conformational distribution in an amorphous film of an organic emitter and its application in a “self-doping” organic light-emitting diode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108943 – volume: 38 start-page: 1223 year: 2020 end-page: 1232 ident: CR63 article-title: Thermal vibration correlation function formalism for molecular excited state decay rates publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000226 – volume: 33 start-page: 5618 year: 2021 end-page: 5630 ident: CR42 article-title: Dihedral angle distribution of thermally activated delayed fluorescence molecules in solids induces dual phosphorescence from charge-transfer and local triplet states publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c01011 – volume: 125 start-page: 1234 year: 2021 end-page: 1242 ident: CR39 article-title: TD-DFT and experimental methods for unraveling the energy distribution of charge-transfer triplet/singlet states of a tadf molecule in a frozen matrix publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c11322 – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR61 article-title: Vmd: visual molecular dynamics publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 11 year: 2020 ident: CR26 article-title: Nanosecond-time-scale delayed fluorescence molecule for deep-blue OLEDs with small efficiency roll-off publication-title: Nat. Commun. doi: 10.1038/s41467-020-15558-5 – volume: 122 start-page: 27191 year: 2018 end-page: 27197 ident: CR38 article-title: Origin of high efficiencies for thermally activated delayed fluorescence organic light-emitting diodes: atomistic insight into molecular orientation and torsional disorder publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b08169 – volume: 16 start-page: 803 year: 2022 ident: CR7 article-title: Efficient selenium-integrated TADF OLEDs with reduced roll-off publication-title: Nat. Photon. doi: 10.1038/s41566-022-01083-y – volume: 7 year: 2016 ident: CR23 article-title: Revealing the spin-vibronic coupling mechanism of thermally activated delayed fluorescence publication-title: Nat. Commun. doi: 10.1038/ncomms13680 – volume: 165 start-page: 461 year: 2020 end-page: 467 ident: CR59 article-title: An -hybridized all-carboatomic ring, cyclo[18]carbon: electronic structure, electronic spectrum, and optical nonlinearity publication-title: Carbon doi: 10.1016/j.carbon.2020.05.023 – volume: 56 start-page: 1571 year: 2017 end-page: 1575 ident: CR50 article-title: Controlling singlet-triplet energy splitting for deep-blue thermally activated delayed fluorescence emitters publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609459 – volume: 3 start-page: e1603282 year: 2017 ident: CR21 article-title: Evidence and mechanism of efficient thermally activated delayed fluorescence promoted by delocalized excited states publication-title: Sci. Adv. doi: 10.1126/sciadv.1603282 – volume: 423 start-page: 130224 year: 2021 ident: CR28 article-title: Managing local triplet excited states of boron-based tadf emitters for fast spin-flip process: toward highly efficient TADF-OLEDs with low efficiency roll-off publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130224 – volume: 15 start-page: 203 year: 2021 end-page: 207 ident: CR13 article-title: Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission publication-title: Nat. Photon. doi: 10.1038/s41566-020-00745-z – volume: 8 start-page: 33 year: 2021 end-page: 55 ident: CR44 article-title: Dual emission in purely organic materials for optoelectronic applications publication-title: Mater. Horiz. doi: 10.1039/D0MH01316A – volume: 58 start-page: 582 year: 2019 end-page: 586 ident: CR45 article-title: Adamantane-substituted acridine donor for blue dual fluorescence and efficient organic light-emitting diodes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811703 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR60 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 25 start-page: 1157 year: 2004 end-page: 1174 ident: CR65 article-title: Development and testing of a general amber force field publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 – volume: 4 start-page: 435 year: 2008 end-page: 447 ident: CR64 article-title: Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 31 start-page: e1803524 year: 2019 ident: CR8 article-title: Recent progress of the lifetime of organic light-emitting diodes based on thermally activated delayed fluorescent material publication-title: Adv. Mater. doi: 10.1002/adma.201803524 – volume: 14 start-page: 22332 year: 2022 ident: 38197_CR31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c02623 – volume: 29 start-page: 1701476 year: 2017 ident: 38197_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.201701476 – volume: 13 start-page: 515 year: 2017 ident: 38197_CR62 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.6b00915 – volume: 492 start-page: 234 year: 2012 ident: 38197_CR2 publication-title: Nature doi: 10.1038/nature11687 – volume: 61 start-page: e202205684 year: 2022 ident: 38197_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202205684 – volume: 28 start-page: 1802031 year: 2018 ident: 38197_CR30 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802031 – volume: 61 start-page: e202204652 year: 2022 ident: 38197_CR56 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202204652 – volume: 4 start-page: 435 year: 2008 ident: 38197_CR64 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 7 start-page: eabe5769 year: 2021 ident: 38197_CR24 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe5769 – volume: 56 start-page: 1571 year: 2017 ident: 38197_CR50 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609459 – volume: 29 start-page: 1808088 year: 2019 ident: 38197_CR20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808088 – volume: 28 start-page: 1802558 year: 2018 ident: 38197_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802558 – volume: 32 start-page: 2201772 year: 2022 ident: 38197_CR29 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202201772 – volume: 21 start-page: 1150 year: 2022 ident: 38197_CR35 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01321-2 – volume: 5 start-page: 11001 year: 2017 ident: 38197_CR36 publication-title: J. Mater. Chem. C. doi: 10.1039/C7TC04099G – volume: 57 start-page: 11316 year: 2018 ident: 38197_CR55 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806323 – volume: 31 start-page: e1803524 year: 2019 ident: 38197_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201803524 – volume: 412 start-page: 128574 year: 2021 ident: 38197_CR27 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128574 – volume: 53 start-page: 11476 year: 2017 ident: 38197_CR57 publication-title: Chem. Commun. doi: 10.1039/C7CC06045A – volume: 13 start-page: 6981 year: 2022 ident: 38197_CR37 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.2c01864 – volume: 14 start-page: 33 year: 1996 ident: 38197_CR61 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00018-5 – volume: 18 start-page: 1084 year: 2019 ident: 38197_CR17 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0465-6 – volume: 14 start-page: 636 year: 2020 ident: 38197_CR19 publication-title: Nat. Photon. doi: 10.1038/s41566-020-0668-z – volume: 7 year: 2016 ident: 38197_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms13680 – volume: 122 start-page: 27191 year: 2018 ident: 38197_CR38 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.8b08169 – volume: 142 start-page: 19468 year: 2020 ident: 38197_CR53 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10081 – volume: 14 start-page: 330 year: 2015 ident: 38197_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat4154 – volume: 13 year: 2022 ident: 38197_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32607-3 – ident: 38197_CR15 doi: 10.1002/adma.201701987 – volume: 33 start-page: 15211 year: 2022 ident: 38197_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05537 – volume: 3 start-page: e1603282 year: 2017 ident: 38197_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603282 – volume: 3 start-page: 1600080 year: 2016 ident: 38197_CR22 publication-title: Adv. Sci. doi: 10.1002/advs.201600080 – volume: 12 start-page: 235 year: 2018 ident: 38197_CR33 publication-title: Nat. Photon. doi: 10.1038/s41566-018-0112-9 – ident: 38197_CR58 – volume: 11 year: 2020 ident: 38197_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15558-5 – volume: 14 start-page: 643 year: 2020 ident: 38197_CR16 publication-title: Nat. Photon. doi: 10.1038/s41566-020-0667-0 – volume: 13 start-page: 5302 year: 2021 ident: 38197_CR6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19302 – volume: 97 start-page: 10269 year: 1993 ident: 38197_CR66 publication-title: J. Phys. Chem. doi: 10.1021/j100142a004 – volume: 1 start-page: 075602 year: 2017 ident: 38197_CR41 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.075602 – volume: 38 start-page: 1223 year: 2020 ident: 38197_CR63 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.202000226 – ident: 38197_CR68 – volume: 125 start-page: 1234 year: 2021 ident: 38197_CR39 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c11322 – ident: 38197_CR51 doi: 10.1002/adma.202207454 – volume: 57 start-page: 16407 year: 2018 ident: 38197_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809945 – volume: 8 start-page: 326 year: 2014 ident: 38197_CR4 publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.12 – volume: 16 start-page: 803 year: 2022 ident: 38197_CR7 publication-title: Nat. Photon. doi: 10.1038/s41566-022-01083-y – volume: 32 start-page: e1908355 year: 2020 ident: 38197_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201908355 – volume: 28 start-page: 1704927 year: 2018 ident: 38197_CR46 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704927 – volume: 423 start-page: 130224 year: 2021 ident: 38197_CR28 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130224 – volume: 33 start-page: 580 year: 2012 ident: 38197_CR60 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 126 start-page: 014101 year: 2007 ident: 38197_CR67 publication-title: J. Phys. Chem. doi: 10.1063/1.2408420 – volume: 13 start-page: 678 year: 2019 ident: 38197_CR52 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0476-5 – volume: 15 start-page: 203 year: 2021 ident: 38197_CR13 publication-title: Nat. Photon. doi: 10.1038/s41566-020-00745-z – volume: 11 year: 2020 ident: 38197_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17777-2 – volume: 33 start-page: 5618 year: 2021 ident: 38197_CR42 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.1c01011 – volume: 4 start-page: eaao6910 year: 2018 ident: 38197_CR18 publication-title: Sci. Adv. doi: 10.1126/sciadv.aao6910 – volume: 33 start-page: 2005630 year: 2021 ident: 38197_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.202005630 – volume: 4 start-page: 2065 year: 2022 ident: 38197_CR47 publication-title: CCS Chem. doi: 10.31635/ccschem.021.202101033 – volume: 8 start-page: 33 year: 2021 ident: 38197_CR44 publication-title: Mater. Horiz. doi: 10.1039/D0MH01316A – volume: 58 start-page: 582 year: 2019 ident: 38197_CR45 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811703 – volume: 165 start-page: 461 year: 2020 ident: 38197_CR59 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.023 – volume: 10 start-page: 10687 year: 2019 ident: 38197_CR49 publication-title: Chem. Sci. doi: 10.1039/C9SC04492B – volume: 33 start-page: e2103293 year: 2021 ident: 38197_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.202103293 – volume: 60 start-page: 23771 year: 2021 ident: 38197_CR11 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109041 – ident: 38197_CR10 doi: 10.1002/adfm.202000580 – volume: 10 start-page: 2200290 year: 2022 ident: 38197_CR32 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200290 – volume: 60 start-page: 25878 year: 2021 ident: 38197_CR40 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202108943 – volume: 25 start-page: 1157 year: 2004 ident: 38197_CR65 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20035 |
SSID | ssj0000391844 |
Score | 2.555468 |
Snippet | Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward high... Abstract Fast spin-flipping is the key to exploit the triplet excitons in thermally activated delayed fluorescence based organic light-emitting diodes toward... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2564 |
SubjectTerms | 119/118 639/301/1005/1007 639/301/1019/1020/1091 639/638/440/949 Conformation Efficiency Emitters Energy gap Excitation Excitons Fluorescence Humanities and Social Sciences Light emitting diodes multidisciplinary Organic light emitting diodes Physical properties Rate constants Science Science (multidisciplinary) Steric hindrance Supramolecular compounds |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJvGq5t0jR9EhWPQ9AnD_at5PM8qO263RX63zuTZnusH_fSQprQtDOT_CbJ_IaQ17rmHiY2zgqlORMueGZK6ZgNylijQ2McBjh_-SrPzsXnVbVKC25jOla5HxPjQO0Gi2vkJ6UC31twWYt3658Ms0bh7mpKoXGT3ELqMjzSVa_qZY0F2c-VEClWJufqZBRxZICJiqGrUrPpYD6KtP3_wpp_H5n8Y980Tken98jdhCPp-1nw98kN3z8gt-fMktNDMmEkX8z9QN3QDxsKbu8Sp0gdsuWmRFcjhXLqI5MEvJUiIPyhu26iGPLwC6Coo8gkOcE9dLthE_mfrKe4gkuDHrd0XF_2LHSR6uHiETk__fTt4xlLWRaYrUSxZY0GjCQbpaUvVaGb3FspKqtNzY0tA3dcNl550ZjghDeVLYz1dW4qp0VVas8fk6N-6P1TQoUUpvQgJuRFk7LWeVUFrWUTpLd14TNS7P91axMFOWbC6Nq4Fc5VO8unBfm0UT7tlJE3S5v1TMBxbe0PKMKlJpJnx4Jhc9EmW2wLByDWOPCMuQXvtNS60NzlBpy7UHlZZOR4rwBtsuixvdK_jLxaHoMt4gaL7v2wwzpIswqAr8nIk1lflp4gMyLAS2itDjTpoKuHT_rL75HvO7IAwiUjb_dKd9Wv__-LZ9d_xnNyp0Q7wMOb4pgcbTc7_wIA1ta8jFb0Gz78J-I priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA7riuCLeLe6SgTftHrapGnzIKLisgjrkwf2LeS6LtR2bc8R---dSS9y9OiTLy3kQtNkpvNNk_mGkGe6ZB4MG0uzSrOUu-BTkwuX2lAZa3SQxmGA8-kncbLmH8-KswMypzuaJrDf69phPql1V7_88W14Awr_egwZr171PKo7WJ8U_Y8yHa6Qq2CZSlTU0wnuxy8zk-DQ8Cl2Zn_XHfsUafz3Yc8_j1D-to8azdPxTXJjwpX07SgIt8iBb26Ta2OmyeEOGTCyL-aCoK5t2o6CG7zELVKH7LlT4queQjn1kVkCnkoRIH7VdT1QDIH4DtDUUWSWHOAe6m3bRT4o6yn-0aVB9xvaX140aagj9cP5XbI-_vD5_Uk6ZV1IbcGzTSo1YCYhKy18XmVarrwVvLDalMzYPDDHhPSV59IEx70pbGasL1emcJoXufbsHjls2sY_IJQLbnIvGUeeNCFKvSqKoLWQQXhbZj4h2TzXyk6U5JgZo1Zxa5xValwfBeuj4vqoISHPlz6XIyHHP1u_wyVcWiKZdixou3M16abKHIBa48BTZha81VzrTDO3MuDshcKLLCFHswCoWUBVXq3gxZgoeUKeLtWgm7jhohvfbrEN0q4CAJQJuT_KyzISZEoEuAm9qx1J2hnqbk1z8SXyf0dWQLgk5MUsdL_G9fe5ePg_5uIRuZ6jtuCRT35EDjfd1j8GWLYxT6Ku_QS-9jgm priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9UwEA7riuCLeN-uq0TwTYNtk6bpox5cFkGfXNi3kOu6cGyX03OE_vudSS9ydBV8aaFJ6DSZab5JMt8Q8sbUPMDExlmhDGfCx8BsKT1zUVlnTWysxwDnL1_l2bn4fFFdHJByjoVJh_YTpWX6Tc-nw973Ipk0zDAMfYyaDXfIXaRuR61eydWyroKM50qIKT4m5-qWpntzUKLqvw1f_nlM8re90jQFnT4kDybsSD-M0j4iB6F9TO6N2SSHJ2TA6L2U74H6ru02FFzdJTaRemTInZJb9RSe05DYI-CtFEHgD7NeDxTDHH4C_PQU2SMHuMf1rtskzicXKK7a0mj6Le2vr1oW14ne4fIpOT_99G11xqbMCsxVotiyxgAuko0yMpSqME0enBSVM7bm1pWRey6boIJobPQi2MoV1oU6t5U3oipN4M_IYdu14YhQIYUtQ8MFcqFJWZu8qqIxsokyuLoIGSnmvtZuoh3H7Bdrnba_udLj-GgYH53GRw8Zebu0uR5JN_5Z-yMO4VITCbPTg25zqScF0oUH4Go9eMPcgUdaGlMY7nMLDl2sgiwycjIrgJ6suNelyuHDuKxFRl4vxWB_uKli2tDtsA5SqwLIazLyfNSXRRJkQwRICa3Vnibtibpf0l59TxzfifkPLhl5NyvdL7n-3hfH_1f9Bblfol3gAU5xQg63m114CSBra18lq7oBpHsmOg priority: 102 providerName: Springer Nature |
Title | Confining donor conformation distributions for efficient thermally activated delayed fluorescence with fast spin-flipping |
URI | https://link.springer.com/article/10.1038/s41467-023-38197-y https://www.ncbi.nlm.nih.gov/pubmed/37142564 https://www.proquest.com/docview/2809343674 https://www.proquest.com/docview/2810919379 https://pubmed.ncbi.nlm.nih.gov/PMC10160101 https://doaj.org/article/1d656bd5493c4482aa1a3d0b862f5e61 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA66Ivgi3q2uQwTftGzbpGnyODvsuAzsIurCvIVc3YXaLtMZof_ek7Qz7nh98SWBXGianPR8p8n5DkJvVEUcKDaS5lyRlFrvUl0wmxrPtdHKC22Dg_PZOTu9oItlubwR6ivcCRvogYeJO8otIA5twYwhBkyJQqlcEZtpQOK-dIPhAzrvhjEVv8FEgOlCRy-ZjPCjjsZvAqioNBgpVdrvaaJI2P87lPnrZcmfTkyjIpo_QPdHBImnw8gfoluueYTuDjEl-8eoDz58MeoDtm3TrjAYvDsPRWwDT-4Y4qrDUI5d5JCAp-IABb-quu5xcHb4BiDU4sAh2UPu6027isxPxuHw7xZ71a1xd33VpL6OJA9fnqCL-cnn2Wk6xldITUnzdSoUoCMmuGKu4LkSmTOMlkbpimhTeGIJE447KrS31OnS5Nq4KtOlVbQslCNP0UHTNu45wpRRXThBaGBEY6xSWVl6pZjwzJkqdwnKt3MtzUg-HmJg1DIeghMuh_WRsD4yro_sE_R21-d6oN74a-vjsIS7loE2OxaAMMlRmOS_hClBh1sBkONe7mTBM3gxwiqaoNe7atiF4WhFNa7dhDaBYBWgnkjQs0FediMJnIgALKE335OkvaHu1zRXl5HpO_L_QZKgd1uh-zGuP8_Fi_8xFy_RvSLslnC5kx6ig_Vq414BAFvrCbpdLStI-fz9BN2ZThefFpAfn5x_-AilMzabxN0I6Rnl3wGBVzap |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFGT2HGSA0K8qi19nFppb8HPUmmbbDe7oPwpfiMzzqNaHr31sislzsbrmfF8Y3u-IeSVzJgFx8bCOJcs5MbZUCXChNrlSivpCmUwwfngUEyO-ddpOt0gv4ZcGDxWOcyJfqI2tcY18u0kh9ibM5Hx9_PzEKtG4e7qUEKjU4s92_6EkK15t_sZ5Ps6SXa-HH2ahH1VgVCnPF6GhQRMIIpcCpvksSwiqwVPtVQZUzpxzDBR2NzyQjnDrUp1rLTNIpUaydNEWga_e41cB8cboUVl02xc00G29ZzzPjcnYvl2w_1MBI4xxNAoC9s1_-fLBPwL2_59RPOPfVrv_nbukNs9bqUfOkW7SzZsdY_c6CpZtvdJi5mDvtYENXVVLyiE2WNeJDXIztsX1mooXKfWM1fAWykC0DM5m7UUUyx-APQ1FJkrW_h2s1W98HxT2lJcMaZONkvazE-r0M08tcTJA3J8JeP_kGxWdWUfE8oFV4kFtUAeNiEyGaWpk1IUTlidxTYg8TDWpe4pz7Hyxqz0W-8sLzv5lCCf0sunbAPyZnxm3hF-XNr6I4pwbIlk3f5CvTgpe9svYwOgWRmIxJmGaDiRMpbMRAqCSZdaEQdka1CAsp9BmvJC3wPycrwNto8bOrKy9QrbIK0rAMwiII86fRl7gkyMAGfh6XxNk9a6un6nOv3u-cU96yB8BOTtoHQX_fr_WDy5_G-8IDcnRwf75f7u4d5TcitBm8CDo3yLbC4XK_sMwN1SPfcWRcm3qzbh3-5rZnM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkCBYwEJ4g2iR0nOSAElFVLoeJApb0FP0ulJVk2u6D8NX4dM86jWh699bIrJc7G63n4G9vzDSFPZcYsTGwsjHPJQm6cDVUiTKhdrrSSrlAGE5w_Hon9Y_5-ls62yK8hFwaPVQ4-0TtqU2tcI58kOcTenImMT1x_LOLT3vTV4nuIFaRwp3Uop9GpyKFtf0L41rw82ANZP0uS6bvPb_fDvsJAqFMer8JCAj4QRS6FTfJYFpHVgqdaqowpnThmmChsbnmhnOFWpTpW2maRSo3kaSItg9-9RC5nLI3RxrJZNq7vIPN6znmfpxOxfNJw75VgkgwxTMrCdmMu9CUD_oVz_z6u-ceerZ8KpzfI9R7D0ted0t0kW7a6Ra50VS3b26TFLEJfd4KauqqXFELuMUeSGmTq7YtsNRSuU-tZLOCtFMHoNzmftxTTLX4ADDYUWSxb-Hbzdb303FPaUlw9pk42K9osTqvQzT3NxMkdcnwh43-XbFd1Ze8RygVXiQUVQU42ITIZpamTUhROWJ3FNiDxMNal7unPsQrHvPTb8CwvO_mUIJ_Sy6dsA_J8fGbRkX-c2_oNinBsicTd_kK9PCl7P1DGBgC0MhCVMw2RcSJlLJmJFASWLrUiDsjuoABl702a8kz3A_JkvA1-ADd3ZGXrNbZBilcAm0VAdjp9GXuCrIwAbeHpfEOTNrq6eac6_eq5xj0DIXwE5MWgdGf9-v9Y3D__bzwmV8F4yw8HR4cPyLUETQLPkPJdsr1aru1DwHkr9cgbFCVfLtqCfwN3l2qp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confining+donor+conformation+distributions+for+efficient+thermally+activated+delayed+fluorescence+with+fast+spin-flipping&rft.jtitle=Nature+communications&rft.au=Weidong+Qiu&rft.au=Denghui+Liu&rft.au=Mengke+Li&rft.au=Xinyi+Cai&rft.date=2023-05-04&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1038%2Fs41467-023-38197-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1d656bd5493c4482aa1a3d0b862f5e61 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |