Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review

Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 2; pp. 5893 - 5927
Main Authors Ajagbe, Sunday Adeola, Adigun, Matthew O.
Format Journal Article
LanguageEnglish
Published New York Springer US 29.05.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.
AbstractList Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.
Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.
Author Adigun, Matthew O.
Ajagbe, Sunday Adeola
Author_xml – sequence: 1
  givenname: Sunday Adeola
  orcidid: 0000-0002-7010-5540
  surname: Ajagbe
  fullname: Ajagbe, Sunday Adeola
  email: 230015266@stu.unizulu.ac.za
  organization: Department of Computer & Industrial Production Engineering, First Technical University Ibadan, Department of Computer Science, University of Zululand
– sequence: 2
  givenname: Matthew O.
  orcidid: 0000-0001-6256-5865
  surname: Adigun
  fullname: Adigun, Matthew O.
  organization: Department of Computer Science, University of Zululand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37362693$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtvFSEYJaaNfegfcGFI3LgZywfDPNyYpj6TJt3UNaHMxy03MzACU9P-erlOrdpFV8DhnMP5OEdkzwePhLwC9g4Ya08SAKt5xbioQHZMVnfPyCHIVlRty2Gv7EXHqlYyOCBHKW0Zg0by-jk5EK1oeNOLQ7L9iDjTEXX0zm9oRnPt3Y8FE7Uh0gELkF3wVPuBzhEHtx6DpXOBcHKGDi6hTpjeU03Tbco46Vzg0WWMOi8RacQbhz9fkH2rx4Qv79dj8v3zp8uzr9X5xZdvZ6fnlZE15KrnvOut0axrdc-shL6RALUBgdBdST6gHQama4NdbcGiltzUYrBGNoz1LYhj8mH1nZerCQeDPkc9qjm6ScdbFbRT_994d6024UYB47xhvC8Ob-8dYtj9RVaTSwbHUXsMS1K8E4xDDbCjvnlE3YYl-jKf4j2U3L0QXWG9_jfSQ5Y_PRQCXwkmhpQi2gcKMLUrW61lq1K2-l22uiui7pHIuKx3_ZSx3Pi0VKzSVN7xG4x_Yz-h-gWL7sB_
CitedBy_id crossref_primary_10_1007_s42979_023_02448_y
crossref_primary_10_1016_j_array_2024_100345
crossref_primary_10_1109_ACCESS_2023_3305379
crossref_primary_10_1007_s11042_024_18364_z
crossref_primary_10_1016_j_procs_2024_04_306
crossref_primary_10_1038_s41598_024_72005_x
crossref_primary_10_1016_j_rineng_2024_101894
crossref_primary_10_1016_j_compbiomed_2025_109835
crossref_primary_10_24171_j_phrp_2023_0287
crossref_primary_10_1109_ACCESS_2023_3305670
crossref_primary_10_1007_s11042_024_20500_8
crossref_primary_10_1007_s10661_024_12410_x
crossref_primary_10_1007_s13198_025_02735_2
crossref_primary_10_1177_14604582241275844
crossref_primary_10_1109_ACCESS_2023_3339542
crossref_primary_10_1007_s42979_023_02520_7
crossref_primary_10_1007_s42979_024_03554_1
crossref_primary_10_4108_eetsis_6232
crossref_primary_10_3233_JIFS_233381
crossref_primary_10_1109_ACCESS_2023_3289402
crossref_primary_10_55969_paradigmplus_v4n2a1
crossref_primary_10_11648_j_ajomis_20240901_12
crossref_primary_10_1109_ACCESS_2023_3320738
crossref_primary_10_1016_j_heliyon_2024_e41407
crossref_primary_10_1016_j_plrev_2024_12_002
crossref_primary_10_1155_hbe2_1376983
crossref_primary_10_1051_bioconf_202516301008
crossref_primary_10_1186_s13635_025_00197_4
crossref_primary_10_1007_s10115_024_02192_6
crossref_primary_10_36930_40340408
crossref_primary_10_1016_j_comcom_2024_107964
crossref_primary_10_1016_j_imu_2024_101571
crossref_primary_10_3390_info15120755
crossref_primary_10_3390_electronics13132630
crossref_primary_10_1016_j_procs_2024_04_266
Cites_doi 10.1007/s11760-021-02098-8
10.1016/j.compbiomed.2022.105213
10.1007/978-3-030-96308-8_87
10.1017/ice.2020.61
10.1016/j.compbiomed.2021.104575
10.1007/s11042-021-11836-6
10.1016/j.compbiomed.2022.105244
10.1016/j.eswa.2022.118628
10.1016/j.compbiomed.2021.104585
10.1038/s41591-020-0824-5
10.1016/j.neucom.2021.10.035
10.1155/2022/2103975
10.3390/electronics11182964
10.1038/s41598-021-99015-3
10.1007/978-3-030-85030-2_46
10.3390/ijerph19042013
10.1016/j.compbiomed.2021.105047
10.36227/techrxiv.12743933
10.1109/CVPR.2017.195
10.1109/JSEN.2022.3199293
10.1007/978-3-030-88942-5_33
10.3390/v14091930
10.1016/j.ijmedinf.2020.104284
10.1155/2022/2564022
10.3390/jcm11185342
10.3389/fpubh.2022.805086
10.23956/ijarcsse.v8i2.569
10.1186/s44147-022-00125-0
10.1016/j.trac.2022.116585
10.1109/ICCCNT49239.2020.9225319
10.1148/radiol.2020200370
10.26599/BDMA.2022.9020010
10.1109/ACCESS.2020.3009058
10.1007/978-3-030-82800-4_3
10.3390/s22186780
10.19101/IJACR.2021.1152001
10.1016/j.eswa.2022.117549
10.3390/electronics11060904
10.3390/biology10111174
10.1016/j.compbiomed.2021.104895
10.1016/B978-0-12-817133-2.00018-5
10.1038/s41893-019-0293-3
10.1007/978-981-16-5640-8_43
10.1038/s41598-022-07954-2
10.11591/ijece.v11i1.pp365-374
10.3390/s21020455
10.1016/j.compbiomed.2022.105847
10.1038/s41598-021-83926-2
10.1007/978-3-031-13324-4_42
10.1016/j.asoc.2022.109401
10.32604/cmc.2022.019496
10.1016/j.compbiomed.2022.105682
10.1016/j.compbiomed.2022.105350
10.1108/BPMJ-06-2017-0173
10.1016/j.eswa.2022.117410
10.1007/s13246-020-00865-4
10.1016/j.compbiomed.2022.105233
10.3390/electronics11162520
10.3390/healthcare8010046
10.1016/j.procs.2016.09.149
10.1038/nature06536
10.1109/ICESC51422.2021.9532992
10.1016/j.eswa.2022.118604
10.1016/j.eij.2023.05.002
10.1007/978-3-031-19647-8_4
10.1007/978-981-19-3089-8_8
10.1007/s00521-022-07206-4
10.1016/j.compbiomed.2021.105127
10.1109/ACCESS.2020.3028012
10.3390/a15020071
10.1016/j.imu.2020.100395
10.1016/j.scitotenv.2022.153786
10.1016/j.asoc.2020.106754
10.1007/978-981-16-6723-7_47
10.3390/ijerph19010480
10.1016/j.scitotenv.2022.158448
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023.
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023.
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s11042-023-15805-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

ABI/INFORM Global (Corporate)
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 5927
ExternalDocumentID PMC10226029
37362693
10_1007_s11042_023_15805_z
Genre Journal Article
GrantInformation_xml – fundername: University of Zululand
– fundername: ;
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c541t-92289fca087a90f51965114c13e18b52defdd0a4ce84f1fea52c43dfc56009713
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 18:37:33 EDT 2025
Fri Jul 11 11:50:51 EDT 2025
Fri Jul 25 22:57:49 EDT 2025
Wed Feb 19 02:23:30 EST 2025
Tue Jul 01 04:13:23 EDT 2025
Thu Apr 24 23:06:26 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Optimization techniques
Machine learning (ML)
Pandemic
Deep learning (DL)
Artificial intelligence (AI)
Infectious diseases (IDs)
Language English
License The Author(s) 2023.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-92289fca087a90f51965114c13e18b52defdd0a4ce84f1fea52c43dfc56009713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6256-5865
0000-0002-7010-5540
OpenAccessLink https://doi.org/10.1007/s11042-023-15805-z
PMID 37362693
PQID 2911149338
PQPubID 54626
PageCount 35
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10226029
proquest_miscellaneous_2830214119
proquest_journals_2911149338
pubmed_primary_37362693
crossref_primary_10_1007_s11042_023_15805_z
crossref_citationtrail_10_1007_s11042_023_15805_z
springer_journals_10_1007_s11042_023_15805_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-29
PublicationDateYYYYMMDD 2023-05-29
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-29
  day: 29
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Khan, Khan, Albattah, Qamar (CR54) 2021; 2021
Rodríguez, Cuevas, Zaldivar, Morales-Castañeda, Sarkar, Houssein (CR79) 2022; 148
Chakraborty, Murali, Mitra (CR33) 2022; 19
El-Dahshan, Bassiouni, Hagag, Chakrabortty, Loh, Acharya (CR39) 2022; 204
Sherif, Ahmed (CR83) 2022; 69
Aria, Nourani, Oskouei (CR22) 2022; 2022
Chakraborty, Bhatia, Bhattacharyya, Platos, Bag, Hassanien (CR32) 2020; 97
Gour, Jain (CR44) 2022; 140
Arora, Ng, Leekha, Darshan, Singh (CR24) 2021; 135
Bassiouni, Chakrabortty, Hussain, Rahman (CR29) 2022; 211
Ardakani, Kanafi, Acharya, Khadem, Mohammadi (CR21) 2020; 121
CR36
CR35
CR34
Ai, Shanmugam, Muthusamy, Viswanathan, Panchal, Krishnamoorthy, Elminaam, Orban (CR9) 2022; 11
Kim, Ahn (CR55) 2021; 11
Devnath, Luo, Summons, Wang, Shaukat, Hameed, Alrayes (CR37) 2022; 11
Oyelade, Ezugwu (CR74) 2020; 20
Arias-Garzón, Alzate-Grisales, Orozco-Arias, Arteaga-Arteaga, Bravo-Ortiz, Mora-Rubio, Saborit-Torres, Serrano, Vayá, Cardona-Morales, Tabares-Soto (CR23) 2021; 6
CR72
Gecgel, Ramanujam, Botte (CR41) 2022; 14
Abdel-Jaber, Devassy, Al Salam, Hidaytallah, EL-Amir (CR3) 2022; 15
El-Kenawy, Ibrahim, Mirjalili, Eid, Hussein (CR40) 2020; 8
Alshuwaier, Areshey, Poon (CR17) 2022; 15
Awotunde, Ajagbe, Idowu, Ndunagu (CR27) 2021
Malik, Anees, Din, Naeem (CR63) 2022; 82
Allam, Jones (CR15) 2020; 8
Akter, Shamrat, Chakraborty, Karim, Azam (CR12) 2021; 10
CR7
Nadeem, Goh, Hussain, Liew, Andonovic, Khan (CR68) 2022; 22
Rao, Vazquez (CR77) 2020; 41
Secundo, Toma, Schiuma, Passiante (CR81) 2018; 25
CR45
CR89
González-Pardo, Ceballos-Santos, Manzanas, Santibáñez, Fernández-Olmo (CR42) 2022; 823
CR43
CR87
CR86
Alshazly, Linse, Barth, Martinetz (CR16) 2021; 21
Madhav, Oppenheim, Gallivan (CR61) 2017
Abayomi-Alli, Damaševičius, Abbasi, Maskeliūnas (CR1) 2022; 11
Ahmad, Saudagar, Malik, Ahmad, Khan, Hasanat, AlTameem, AlKhathami, Sajjad (CR8) 2022; 19
Shaik, Cherukuri (CR82) 2022; 141
Loey, El-Sappagh, Mirjalili (CR60) 2022; 142
AlZu’bi, Zitar, Hawashin, Shanab, Zraiqat, Mughaid, Almotairi, Abualigah (CR18) 2022; 11
Ting, Carin, Dzau, Wong (CR85) 2020; 26
CR13
CR56
Naeem, Alshammari, Ullah (CR69) 2022; 2022
CR11
Amin, Uddin, Hassan, Khan, Nasser, Alharbi, Alyami (CR19) 2020; 8
Haq, Du, Jan (CR46) 2022; 81
CR51
Hung, Wang, Wang, Fang (CR49) 2022; 22
Kumar, Misra, Chan (CR58) 2022; 210
Oh, Zhou, O'Brien, Jamal, Wennerdahl, Schmidt (CR73) 2022; 852
CR91
Attallah, Samir (CR26) 2022; 128
Aslan, Sabanci, Durdu, Unlersen (CR25) 2022; 142
Aggarwal, Mishra, Fatimah, Singh, Gupta, Joshi (CR6) 2022; 144
Breve (CR31) 2022; 204
Kumar, Rajmohan, Pavithra, Ajagbe, Hodhod, Gaber (CR57) 2022; 11
Nayak, Nayak, Vimal, Arora, Sinha (CR71) 2021; 39
Roda, Varughese, Han, Li (CR78) 2020; 5
Nassif, Elnagar, Elgendy, Afadar (CR70) 2022; 34
Heidari, Mirniaharikandehei, Khuzani, Danala, Qiu, Zheng (CR48) 2020; 144
Yang, Martinez, Visuña, Khandhar, Bhatt, Carretero (CR90) 2021; 11
Abir, Alyafei, Chowdhury, Khandakar, Ahmed, Hossain (CR5) 2022; 147
CR28
Dey, Bhattacharya, Malakar, Mirjalili, Sarkar (CR38) 2021; 135
Rohr, Barrett, Civitello, Craft, Delius, DeLeo (CR80) 2019; 2
Pushkar, Ananth, Nagrath, Al-Amri, Vividha (CR76) 2022; 73
Bayram, Eleyan (CR30) 2022; 16
Hassan, Albahli, Javed, Irtaza (CR47) 2022; 10
CR67
Pan, Ye, Sun, Gui, Liang, Li (CR75) 2021; 295
Waheed, Saylan, Hassan, Kannout, Alsafar, Alazzam (CR88) 2022; 12
CR66
CR65
CR20
CR64
Jones, Patel, Levy, Storeygard, Balk, Gittleman, Daszak (CR53) 2008; 451
Iyawa, Herselman, Botha (CR50) 2016; 100
CR62
Subramanian, Elharrouss, Al-Maadeed, Chowdhury (CR84) 2022; 143
Kundu, Singh, Mirjalili, Sarkar (CR59) 2021; 138
Jimenez-Rodríguez, Silva-Lance, Parra-Arroyo, Medina-Salazar, Martínez-Ruiz, Melchor-Martínez, Martínez-Prado, Iqbal, Parra-Saldívar, Barcel, Sosa-Hernandez (CR52) 2022; 155
Abdelhamid, Abdelhalim, Mohamed, Khalifa (CR2) 2022; 142
Algarni, El-Shafai, El Banby, El-Samie, Soliman (CR14) 2022; 70
Ajagbe, Amuda, Oladipupo, Afe, Okesola (CR10) 2021; 11
Abdulmunem, Abutiheen, Aleqabi (CR4) 2021; 11
OO Abayomi-Alli (15805_CR1) 2022; 11
15805_CR72
RU Khan (15805_CR54) 2021; 2021
M Heidari (15805_CR48) 2020; 144
15805_CR35
15805_CR34
KE Jones (15805_CR53) 2008; 451
D Yang (15805_CR90) 2021; 11
IU Haq (15805_CR46) 2022; 81
MF Aslan (15805_CR25) 2022; 142
15805_CR36
F Hassan (15805_CR47) 2022; 10
W Waheed (15805_CR88) 2022; 12
ON Oyelade (15805_CR74) 2020; 20
MG Jimenez-Rodríguez (15805_CR52) 2022; 155
S Akter (15805_CR12) 2021; 10
FA Breve (15805_CR31) 2022; 204
SR Nayak (15805_CR71) 2021; 39
15805_CR7
MAS Ai (15805_CR9) 2022; 11
MM Bassiouni (15805_CR29) 2022; 211
C Oh (15805_CR73) 2022; 852
D Arias-Garzón (15805_CR23) 2021; 6
FF Sherif (15805_CR83) 2022; 69
V Arora (15805_CR24) 2021; 135
15805_CR62
C-H Hung (15805_CR49) 2022; 22
15805_CR20
GE Iyawa (15805_CR50) 2016; 100
15805_CR64
15805_CR66
15805_CR65
SA Ajagbe (15805_CR10) 2021; 11
M Gour (15805_CR44) 2022; 140
15805_CR67
ESA El-Dahshan (15805_CR39) 2022; 204
15805_CR28
G Secundo (15805_CR81) 2018; 25
NS Shaik (15805_CR82) 2022; 141
F Alshuwaier (15805_CR17) 2022; 15
J Kim (15805_CR55) 2021; 11
N Madhav (15805_CR61) 2017
AT Kumar (15805_CR57) 2022; 11
P Pushkar (15805_CR76) 2022; 73
L Devnath (15805_CR37) 2022; 11
FF Abir (15805_CR5) 2022; 147
N Subramanian (15805_CR84) 2022; 143
Z Allam (15805_CR15) 2020; 8
15805_CR51
A Kumar (15805_CR58) 2022; 210
15805_CR11
H Alshazly (15805_CR16) 2021; 21
MW Nadeem (15805_CR68) 2022; 22
15805_CR13
15805_CR56
DSW Ting (15805_CR85) 2020; 26
F Pan (15805_CR75) 2021; 295
O Gecgel (15805_CR41) 2022; 14
AB Nassif (15805_CR70) 2022; 34
S Amin (15805_CR19) 2020; 8
F Bayram (15805_CR30) 2022; 16
AA Abdulmunem (15805_CR4) 2021; 11
JB Awotunde (15805_CR27) 2021
15805_CR91
J González-Pardo (15805_CR42) 2022; 823
S Chakraborty (15805_CR33) 2022; 19
AA Abdelhamid (15805_CR2) 2022; 142
S Dey (15805_CR38) 2021; 135
15805_CR86
AD Algarni (15805_CR14) 2022; 70
15805_CR43
15805_CR87
15805_CR45
M Loey (15805_CR60) 2022; 142
15805_CR89
E-SM El-Kenawy (15805_CR40) 2020; 8
H Abdel-Jaber (15805_CR3) 2022; 15
P Aggarwal (15805_CR6) 2022; 144
J Ahmad (15805_CR8) 2022; 19
AA Ardakani (15805_CR21) 2020; 121
H Naeem (15805_CR69) 2022; 2022
M Aria (15805_CR22) 2022; 2022
R Kundu (15805_CR59) 2021; 138
H Malik (15805_CR63) 2022; 82
WC Roda (15805_CR78) 2020; 5
S AlZu’bi (15805_CR18) 2022; 11
O Attallah (15805_CR26) 2022; 128
K Chakraborty (15805_CR32) 2020; 97
ASS Rao (15805_CR77) 2020; 41
A Rodríguez (15805_CR79) 2022; 148
JR Rohr (15805_CR80) 2019; 2
References_xml – ident: CR45
– volume: 11
  start-page: 904
  issue: 6
  year: 2022
  ident: CR57
  article-title: Automatic Face Mask Detection System in Public Transportation in Smart Cities Using IoT and Deep Learning
  publication-title: Electronics
– volume: 10
  start-page: 1174
  issue: 11
  year: 2021
  ident: CR12
  article-title: COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
  publication-title: Biology
– volume: 148
  start-page: 1
  year: 2022
  end-page: 24
  ident: CR79
  article-title: An agent-based transmission model of COVID-19 for re-opening policy design
  publication-title: Comput Biol Med
– volume: 143
  start-page: 105233
  year: 2022
  ident: CR84
  article-title: A review of deep learning-based detection methods for COVID-19
  publication-title: Comput Biol Med
– ident: CR87
– volume: 11
  start-page: 2520
  issue: 16
  year: 2022
  ident: CR1
  article-title: Detection of COVID-19 from Deep Breathing Sounds Using Sound Spectrum with Image Augmentation and Deep Learning Techniques
  publication-title: Electronics
– start-page: 55
  year: 2021
  end-page: 76
  ident: CR27
  article-title: An Enhanced Cloud-IoMT-based and Machine Learning for Effective COVID-19 Diagnosis System
  publication-title: Intelligence of Things: AI-IoT Based Critical-Applications and Innovations
– volume: 121
  start-page: 103795
  year: 2020
  ident: CR21
  article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks
  publication-title: Comput.
– ident: CR51
– volume: 211
  start-page: 118604
  year: 2022
  ident: CR29
  article-title: Advanced deep learning approaches to predict supply chain risks under COVID-19 restrictions
  publication-title: Expert Syst Appl
– volume: 11
  start-page: 1
  issue: 14
  year: 2022
  end-page: 18
  ident: CR9
  article-title: Real-Time Facemask Detection for Preventing COVID-19 Spread Using Transfer Learning Based Deep Neural Network
  publication-title: Electroninc
– volume: 5
  start-page: 271
  year: 2020
  end-page: 281
  ident: CR78
  article-title: Why is it difficult to accurately predict the COVID-19 epidemic?
  publication-title: Infect Dis Model
– volume: 142
  start-page: 105244
  year: 2022
  ident: CR2
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Comput Biol Med
– ident: CR35
– volume: 10
  start-page: 1
  year: 2022
  end-page: 18
  ident: CR47
  article-title: A Robust Framework for Epidemic Analysis, Prediction and Detection of COVID-19
  publication-title: Front Public Health
– volume: 8
  start-page: 131522
  year: 2020
  end-page: 131533
  ident: CR19
  article-title: Recurrent Neural Networks with TF-IDF Embedding Technique for Detection and Classification in Tweets of Dengue Disease
  publication-title: IEEE Access
– volume: 8
  start-page: 179317
  year: 2020
  end-page: 179335
  ident: CR40
  article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images
  publication-title: IEEE Access
– volume: 25
  start-page: 144
  year: 2018
  end-page: 163
  ident: CR81
  article-title: Knowledge transfer in open innovation: A classification framework for healthcare ecosystems
  publication-title: Bus Process Manag J
– volume: 451
  start-page: 990
  issue: 7181
  year: 2008
  end-page: 993
  ident: CR53
  article-title: Global trends in emerging infectious diseases
  publication-title: Nature
– volume: 823
  start-page: 153786
  year: 2022
  ident: CR42
  article-title: Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain
  publication-title: Sci Total Environ
– volume: 14
  start-page: 1930
  issue: 9
  year: 2022
  ident: CR41
  article-title: Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning
  publication-title: Viruses
– volume: 15
  start-page: 200090
  year: 2022
  ident: CR17
  article-title: Applications and Enhancement of Document-Based Sentiment Analysis in Deep learning Methods: Systematic Literature Review
  publication-title: Intell Syst Appl
– volume: 141
  start-page: 105127
  year: 2022
  ident: CR82
  article-title: Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans
  publication-title: Comput Biol Med
– ident: CR67
– volume: 140
  start-page: 105047
  year: 2022
  ident: CR44
  article-title: Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification
  publication-title: Comput Biol Med
– volume: 155
  start-page: 116585
  year: 2022
  ident: CR52
  publication-title: Trends Anal Chem
– volume: 82
  start-page: 1
  year: 2022
  end-page: 26
  ident: CR63
  article-title: CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays
  publication-title: Multimed Tools Appl
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  end-page: 18
  ident: CR88
  article-title: A deep learning-driven low-power, accurate, and portable platform for rapid detection of COVID-19 using reverse-transcription loop-mediated isothermal amplification
  publication-title: Sci Rep
– volume: 2
  start-page: 445
  issue: 6
  year: 2019
  end-page: 456
  ident: CR80
  article-title: Emerging human infectious diseases and the links to global food production
  publication-title: Nat Sustain
– ident: CR11
– volume: 11
  start-page: 2964
  issue: 18
  year: 2022
  ident: CR18
  article-title: A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education
  publication-title: Electronics
– volume: 22
  start-page: 1
  issue: 18
  year: 2022
  end-page: 18
  ident: CR68
  article-title: Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions
  publication-title: Sensors
– ident: CR36
– ident: CR64
– volume: 142
  start-page: 105244
  year: 2022
  ident: CR25
  article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization
  publication-title: Comput Biol Med
– volume: 16
  start-page: 1
  year: 2022
  end-page: 8
  ident: CR30
  article-title: COVID-19 detection on chest radiographs using feature fusion based deep learning
  publication-title: SIViP
– volume: 39
  start-page: 1
  year: 2021
  end-page: 15
  ident: CR71
  article-title: An ensemble artificial intelligence-enabled MIoT for automated diagnosis of malaria parasite
  publication-title: Walley Expert Syst
– volume: 22
  start-page: 1
  issue: 17
  year: 2022
  end-page: 18
  ident: CR49
  article-title: Using SincNet for Learning Pathological Voice Disorders
  publication-title: Sensors
– volume: 81
  start-page: 1
  year: 2022
  end-page: 21
  ident: CR46
  article-title: Implementation of smart social distancing for COVID-19 based on deep learning algorithm
  publication-title: Multimed Tools Appl
– volume: 69
  start-page: 23
  issue: 1
  year: 2022
  end-page: 34
  ident: CR83
  article-title: Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
  publication-title: J Eng Appl Sci
– ident: CR43
– ident: CR66
– ident: CR91
– volume: 15
  start-page: 71
  issue: 2
  year: 2022
  end-page: 85
  ident: CR3
  article-title: A Review of Deep Learning Algorithms and Their Applications in Healthcare
  publication-title: Algorithms
– volume: 70
  start-page: 4393
  year: 2022
  end-page: 4410
  ident: CR14
  article-title: An efficient CNN-based hybrid classification and segmentation approach for COVID-19 detection
  publication-title: Comput Mater Contin
– ident: CR72
– volume: 97
  start-page: 106754
  year: 2020
  ident: CR32
  article-title: Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers—A study to show how popularity is affecting accuracy in social media
  publication-title: Appl Soft Comput
– volume: 19
  start-page: 2013
  issue: 4
  year: 2022
  ident: CR33
  article-title: An efficient deep learning model to detect COVID-19 using chest X-ray images
  publication-title: Int J Environ Res Public Health
– ident: CR89
– volume: 11
  start-page: 365
  issue: 1
  year: 2021
  end-page: 374
  ident: CR4
  article-title: Recognition of Corona virus disease (COVID-19) using deep learning network
  publication-title: Int J Electr Comput Eng (IJECE)
– volume: 147
  start-page: 105682
  year: 2022
  ident: CR5
  article-title: PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data
  publication-title: Comput Biol Med
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 13
  ident: CR54
  article-title: Image-based detection of plant diseases: from classical machine learning to deep learning journey
  publication-title: Wirel Commun Mob Comput
– volume: 34
  start-page: 16019
  issue: 18
  year: 2022
  end-page: 16032
  ident: CR70
  article-title: Arabic fake news detection based on deep contextualized embedding models
  publication-title: Neural Comput & Applic
– volume: 11
  start-page: 19638
  year: 2021
  ident: CR90
  article-title: Detection and analysis of COVID-19 in medical images using deep learning techniques
  publication-title: Sci Rep
– volume: 135
  start-page: 104575
  year: 2021
  ident: CR24
  article-title: Transfer learning-based approach for detecting COVID-19 ailment in lung CT scan
  publication-title: Comput Biol Med
– volume: 128
  start-page: 109401
  year: 2022
  ident: CR26
  article-title: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices
  publication-title: Appl Soft Comput
– volume: 100
  start-page: 244
  year: 2016
  end-page: 252
  ident: CR50
  article-title: Digital health innovation ecosystems: From systematic literature review to conceptual framework
  publication-title: Procedia Comput Sci
– volume: 26
  start-page: 459
  issue: 4
  year: 2020
  end-page: 461
  ident: CR85
  article-title: Digital technology and COVID-19
  publication-title: Nat Med
– volume: 204
  start-page: 117410
  year: 2022
  ident: CR39
  article-title: RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images
  publication-title: Expert Syst Appl
– ident: CR56
– ident: CR86
– volume: 144
  start-page: 104284
  year: 2020
  ident: CR48
  article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms
  publication-title: Int J Med Inform
– volume: 852
  start-page: 158448
  year: 2022
  ident: CR73
  article-title: Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations
  publication-title: Sci Total Environ
– volume: 204
  start-page: 117549
  year: 2022
  ident: CR31
  article-title: COVID-19 Detection on Chest X-Ray Images: A comparison of CNN architectures and ensembles
  publication-title: Expert Syst Appl
– volume: 142
  start-page: 105213
  year: 2022
  ident: CR60
  article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data
  publication-title: Comput Biol Med
– volume: 295
  start-page: 715
  issue: 3
  year: 2021
  end-page: 721
  ident: CR75
  article-title: Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia
  publication-title: Radiology
– volume: 8
  start-page: 46
  issue: 1
  year: 2020
  ident: CR15
  article-title: On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management
  publication-title: Healthcare
– volume: 11
  start-page: 51
  issue: 53
  year: 2021
  end-page: 60
  ident: CR10
  article-title: Multi-classification of Alzheimer Disease on magnetic resonance images (MRI) using deep convolution neural network approaches
  publication-title: Int J Adv Comput Res (IJACR)
– volume: 73
  start-page: 1601
  year: 2022
  end-page: 1619
  ident: CR76
  article-title: Mutation Prediction for Coronaviruses Using Genome Sequence and Recurrent Neural Networks
  publication-title: CMC-Comput Mater Contin
– volume: 11
  start-page: 5342
  issue: 18
  year: 2022
  ident: CR37
  article-title: Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-ray Radiography
  publication-title: J Clin Med
– volume: 135
  start-page: 104585
  year: 2021
  ident: CR38
  article-title: Choquet fuzzy integral-based classifier ensemble technique for COVID-19 detection
  publication-title: Comput Biol Med
– volume: 144
  start-page: 105350
  year: 2022
  ident: CR6
  article-title: COVID-19 image classification using deep learning: Advances, challenges and opportunities
  publication-title: Comput Biol Med
– volume: 138
  start-page: 104895
  year: 2021
  ident: CR59
  article-title: COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN ensemble
  publication-title: Comput Biol Med
– volume: 20
  start-page: 100395
  year: 2020
  ident: CR74
  article-title: A case-based reasoning framework for early detection and diagnosis of novel coronavirus
  publication-title: Inform Med Unlocked
– ident: CR65
– volume: 19
  start-page: 1
  issue: 1
  year: 2022
  end-page: 16
  ident: CR8
  article-title: Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans
  publication-title: Int J Environ Res Public Health
– ident: CR13
– volume: 21
  start-page: 455
  issue: 2
  year: 2021
  ident: CR16
  article-title: Explainable COVID-19 detection using chest CT scans and deep learning
  publication-title: Sensors
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 17
  ident: CR69
  article-title: Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model
  publication-title: Comput Intell Neurosci
– ident: CR34
– volume: 41
  start-page: 826
  issue: 7
  year: 2020
  end-page: 834
  ident: CR77
  article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine
  publication-title: Infect Control Hosp Epidemiol
– volume: 2022
  start-page: 2564022
  year: 2022
  ident: CR22
  article-title: ADA-COVID: Adversarial Deep Domain Adaptation-Based Diagnosis of COVID-19 from Lung CT Scans Using Triplet Embeddings
  publication-title: Comput Intell Neurosci
– volume: 11
  start-page: 4413
  year: 2021
  ident: CR55
  article-title: Infectious disease outbreak prediction using media articles with machine learning models
  publication-title: Sci Rep
– volume: 6
  start-page: 100136
  year: 2021
  ident: CR23
  article-title: COVID-19 detection in X-ray images using convolutional neural networks
  publication-title: Mach Learn Appl
– ident: CR7
– year: 2017
  ident: CR61
  article-title: Pandemics: Risks, Impacts, and Mitigation
  publication-title: Disease Control Priorities: Improving Health and Reducing Poverty
– ident: CR28
– ident: CR62
– ident: CR20
– volume: 210
  start-page: 118628
  year: 2022
  ident: CR58
  article-title: Leveraging AI for advanced analytics to forecast altered tourism industry parameters: A COVID-19 motivated study
  publication-title: Expert Syst Appl
– volume: 16
  start-page: 1
  year: 2022
  ident: 15805_CR30
  publication-title: SIViP
  doi: 10.1007/s11760-021-02098-8
– volume: 142
  start-page: 105213
  year: 2022
  ident: 15805_CR60
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105213
– ident: 15805_CR51
  doi: 10.1007/978-3-030-96308-8_87
– volume: 41
  start-page: 826
  issue: 7
  year: 2020
  ident: 15805_CR77
  publication-title: Infect Control Hosp Epidemiol
  doi: 10.1017/ice.2020.61
– ident: 15805_CR89
– volume: 135
  start-page: 104575
  year: 2021
  ident: 15805_CR24
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104575
– volume: 81
  start-page: 1
  year: 2022
  ident: 15805_CR46
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-021-11836-6
– volume: 142
  start-page: 105244
  year: 2022
  ident: 15805_CR2
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105244
– volume: 210
  start-page: 118628
  year: 2022
  ident: 15805_CR58
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118628
– volume: 135
  start-page: 104585
  year: 2021
  ident: 15805_CR38
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104585
– volume: 26
  start-page: 459
  issue: 4
  year: 2020
  ident: 15805_CR85
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0824-5
– ident: 15805_CR13
  doi: 10.1016/j.neucom.2021.10.035
– volume-title: Disease Control Priorities: Improving Health and Reducing Poverty
  year: 2017
  ident: 15805_CR61
– ident: 15805_CR64
  doi: 10.1155/2022/2103975
– volume: 11
  start-page: 2964
  issue: 18
  year: 2022
  ident: 15805_CR18
  publication-title: Electronics
  doi: 10.3390/electronics11182964
– volume: 11
  start-page: 19638
  year: 2021
  ident: 15805_CR90
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99015-3
– ident: 15805_CR66
  doi: 10.1007/978-3-030-85030-2_46
– volume: 19
  start-page: 2013
  issue: 4
  year: 2022
  ident: 15805_CR33
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19042013
– volume: 140
  start-page: 105047
  year: 2022
  ident: 15805_CR44
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105047
– volume: 73
  start-page: 1601
  year: 2022
  ident: 15805_CR76
  publication-title: CMC-Comput Mater Contin
– volume: 121
  start-page: 103795
  year: 2020
  ident: 15805_CR21
  publication-title: Comput.
– volume: 82
  start-page: 1
  year: 2022
  ident: 15805_CR63
  publication-title: Multimed Tools Appl
– ident: 15805_CR72
  doi: 10.36227/techrxiv.12743933
– ident: 15805_CR34
  doi: 10.1109/CVPR.2017.195
– volume: 22
  start-page: 1
  issue: 17
  year: 2022
  ident: 15805_CR49
  publication-title: Sensors
  doi: 10.1109/JSEN.2022.3199293
– volume: 2022
  start-page: 1
  year: 2022
  ident: 15805_CR69
  publication-title: Comput Intell Neurosci
– ident: 15805_CR67
  doi: 10.1007/978-3-030-88942-5_33
– volume: 14
  start-page: 1930
  issue: 9
  year: 2022
  ident: 15805_CR41
  publication-title: Viruses
  doi: 10.3390/v14091930
– volume: 144
  start-page: 104284
  year: 2020
  ident: 15805_CR48
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2020.104284
– volume: 2022
  start-page: 2564022
  year: 2022
  ident: 15805_CR22
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2022/2564022
– volume: 11
  start-page: 5342
  issue: 18
  year: 2022
  ident: 15805_CR37
  publication-title: J Clin Med
  doi: 10.3390/jcm11185342
– volume: 10
  start-page: 1
  year: 2022
  ident: 15805_CR47
  publication-title: Front Public Health
  doi: 10.3389/fpubh.2022.805086
– ident: 15805_CR86
  doi: 10.23956/ijarcsse.v8i2.569
– volume: 69
  start-page: 23
  issue: 1
  year: 2022
  ident: 15805_CR83
  publication-title: J Eng Appl Sci
  doi: 10.1186/s44147-022-00125-0
– volume: 155
  start-page: 116585
  year: 2022
  ident: 15805_CR52
  publication-title: Trends Anal Chem
  doi: 10.1016/j.trac.2022.116585
– volume: 39
  start-page: 1
  year: 2021
  ident: 15805_CR71
  publication-title: Walley Expert Syst
– ident: 15805_CR56
  doi: 10.1109/ICCCNT49239.2020.9225319
– volume: 2021
  start-page: 1
  year: 2021
  ident: 15805_CR54
  publication-title: Wirel Commun Mob Comput
– volume: 295
  start-page: 715
  issue: 3
  year: 2021
  ident: 15805_CR75
  publication-title: Radiology
  doi: 10.1148/radiol.2020200370
– ident: 15805_CR91
  doi: 10.26599/BDMA.2022.9020010
– volume: 8
  start-page: 131522
  year: 2020
  ident: 15805_CR19
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009058
– start-page: 55
  volume-title: Intelligence of Things: AI-IoT Based Critical-Applications and Innovations
  year: 2021
  ident: 15805_CR27
  doi: 10.1007/978-3-030-82800-4_3
– ident: 15805_CR35
– volume: 22
  start-page: 1
  issue: 18
  year: 2022
  ident: 15805_CR68
  publication-title: Sensors
  doi: 10.3390/s22186780
– volume: 11
  start-page: 51
  issue: 53
  year: 2021
  ident: 15805_CR10
  publication-title: Int J Adv Comput Res (IJACR)
  doi: 10.19101/IJACR.2021.1152001
– volume: 15
  start-page: 200090
  year: 2022
  ident: 15805_CR17
  publication-title: Intell Syst Appl
– volume: 204
  start-page: 117549
  year: 2022
  ident: 15805_CR31
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117549
– volume: 11
  start-page: 904
  issue: 6
  year: 2022
  ident: 15805_CR57
  publication-title: Electronics
  doi: 10.3390/electronics11060904
– volume: 10
  start-page: 1174
  issue: 11
  year: 2021
  ident: 15805_CR12
  publication-title: Biology
  doi: 10.3390/biology10111174
– volume: 138
  start-page: 104895
  year: 2021
  ident: 15805_CR59
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104895
– ident: 15805_CR7
  doi: 10.1016/B978-0-12-817133-2.00018-5
– volume: 2
  start-page: 445
  issue: 6
  year: 2019
  ident: 15805_CR80
  publication-title: Nat Sustain
  doi: 10.1038/s41893-019-0293-3
– ident: 15805_CR45
  doi: 10.1007/978-981-16-5640-8_43
– volume: 6
  start-page: 100136
  year: 2021
  ident: 15805_CR23
  publication-title: Mach Learn Appl
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: 15805_CR88
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-07954-2
– volume: 11
  start-page: 365
  issue: 1
  year: 2021
  ident: 15805_CR4
  publication-title: Int J Electr Comput Eng (IJECE)
  doi: 10.11591/ijece.v11i1.pp365-374
– volume: 21
  start-page: 455
  issue: 2
  year: 2021
  ident: 15805_CR16
  publication-title: Sensors
  doi: 10.3390/s21020455
– volume: 148
  start-page: 1
  year: 2022
  ident: 15805_CR79
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105847
– volume: 11
  start-page: 4413
  year: 2021
  ident: 15805_CR55
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-83926-2
– ident: 15805_CR87
  doi: 10.1007/978-3-031-13324-4_42
– volume: 128
  start-page: 109401
  year: 2022
  ident: 15805_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109401
– ident: 15805_CR62
  doi: 10.32604/cmc.2022.019496
– volume: 147
  start-page: 105682
  year: 2022
  ident: 15805_CR5
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105682
– volume: 144
  start-page: 105350
  year: 2022
  ident: 15805_CR6
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105350
– volume: 25
  start-page: 144
  year: 2018
  ident: 15805_CR81
  publication-title: Bus Process Manag J
  doi: 10.1108/BPMJ-06-2017-0173
– volume: 204
  start-page: 117410
  year: 2022
  ident: 15805_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117410
– volume: 11
  start-page: 1
  issue: 14
  year: 2022
  ident: 15805_CR9
  publication-title: Electroninc
– ident: 15805_CR20
  doi: 10.1007/s13246-020-00865-4
– volume: 143
  start-page: 105233
  year: 2022
  ident: 15805_CR84
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105233
– volume: 11
  start-page: 2520
  issue: 16
  year: 2022
  ident: 15805_CR1
  publication-title: Electronics
  doi: 10.3390/electronics11162520
– volume: 8
  start-page: 46
  issue: 1
  year: 2020
  ident: 15805_CR15
  publication-title: Healthcare
  doi: 10.3390/healthcare8010046
– volume: 142
  start-page: 105244
  year: 2022
  ident: 15805_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105244
– volume: 100
  start-page: 244
  year: 2016
  ident: 15805_CR50
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.09.149
– volume: 451
  start-page: 990
  issue: 7181
  year: 2008
  ident: 15805_CR53
  publication-title: Nature
  doi: 10.1038/nature06536
– volume: 5
  start-page: 271
  year: 2020
  ident: 15805_CR78
  publication-title: Infect Dis Model
– ident: 15805_CR65
  doi: 10.1109/ICESC51422.2021.9532992
– volume: 70
  start-page: 4393
  year: 2022
  ident: 15805_CR14
  publication-title: Comput Mater Contin
– volume: 211
  start-page: 118604
  year: 2022
  ident: 15805_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118604
– ident: 15805_CR28
  doi: 10.1016/j.eij.2023.05.002
– ident: 15805_CR11
  doi: 10.1007/978-3-031-19647-8_4
– ident: 15805_CR43
  doi: 10.1007/978-981-19-3089-8_8
– volume: 34
  start-page: 16019
  issue: 18
  year: 2022
  ident: 15805_CR70
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-022-07206-4
– volume: 141
  start-page: 105127
  year: 2022
  ident: 15805_CR82
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.105127
– volume: 8
  start-page: 179317
  year: 2020
  ident: 15805_CR40
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3028012
– volume: 15
  start-page: 71
  issue: 2
  year: 2022
  ident: 15805_CR3
  publication-title: Algorithms
  doi: 10.3390/a15020071
– volume: 20
  start-page: 100395
  year: 2020
  ident: 15805_CR74
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100395
– volume: 823
  start-page: 153786
  year: 2022
  ident: 15805_CR42
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.153786
– volume: 97
  start-page: 106754
  year: 2020
  ident: 15805_CR32
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106754
– ident: 15805_CR36
  doi: 10.1007/978-981-16-6723-7_47
– volume: 19
  start-page: 1
  issue: 1
  year: 2022
  ident: 15805_CR8
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19010480
– volume: 852
  start-page: 158448
  year: 2022
  ident: 15805_CR73
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.158448
SSID ssj0016524
Score 2.4879208
Snippet Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5893
SubjectTerms Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Infectious diseases
Literature reviews
Multimedia Information Systems
Pandemics
Repositories
Special Purpose and Application-Based Systems
State-of-the-art reviews
Systematic review
Track 2: Medical Applications of Multimedia
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VeoEDbZcCKQ8ZiVtrNXbsxO4NLSDUAydW4hY5tgNUkF2xu5f99R1nvdkuFCSOUSbOY2Yy33jsbwBOLBPet5PuKbdUeKepEbmkkplCqEo5XrULZK_yy4H4fSNvIk1O2AvzrH7_c4zhSXCKkYUyqVJJZ2vwUbKsCG0a-nm_qxjkMjawVSnFKMjiBpn_j7EahF4gy5cLJJ9VSdvgc_EZtiJqJKdzNX-BD77pwadFRwYSHbQHm__QC27DnzPvRyT2hbglHV3rmCBSJc5P2mVYDTGNI6OnULFpD4c1GYWp5cd7S2L9ZvyLGLIkfSYPHRkzme99-QqDi_Pr_iWNvRWolYJNqOaYadXWpKowOq1lIBbE1MiyzDNVSe587VxqhPVK1Kz2RnIrMlfbgJA0ZrY7sN4MG78HhOmqsggr07ziwuFwUntbGIWwvcpqrxJgi49d2kg8HvpfPJRLyuSgoBIVVLYKKmcJfO-uGc1pN96UPljosIwuOC55-I0LjSl4AsfdaXSeUBExjR9OUSawnzHBmE5gd67y7nZZEZh6dJaAWjGGTiAQc6-eae7vWoLukEXnKcdBfyzsZvlcr7_Gt_eJ78MGDzaNBs31AaxPnqb-EBHSpDpqXeMvnwgIrw
  priority: 102
  providerName: Springer Nature
Title Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review
URI https://link.springer.com/article/10.1007/s11042-023-15805-z
https://www.ncbi.nlm.nih.gov/pubmed/37362693
https://www.proquest.com/docview/2911149338
https://www.proquest.com/docview/2830214119
https://pubmed.ncbi.nlm.nih.gov/PMC10226029
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUe-BhfgVEZiTewiB07dXhBbWk3gVQhRKXxFDm2A0MjDWv3sr-ec-KklIm9JIrsOLHvzr7z-X4H8Mow4Vyz6R5zQ4WzGdUilVQyPRaqUJYXzQHZZXqyEh9P5WnYcNuEY5XdnNhM1HZt_B75W-6lUqD5rd7Xv6nPGuW9qyGFxgEMcQpWagDD6Xz5-UvvR0hlSGurYoprIwthM23wHPOhKbhmUSZVLOnV_tJ0Td-8fmzyH99psyQt7sPdoEuSSUv8B3DLVYdwr8vTQILYHsKdv0AHH8LPD87VJGSL-E56ENcNQf2VWLdtDmdVRFeW1Bfej9M8rktS-w3nX2eGBK_O5h3RZAcFTc57iGbSRsQ8gtVi_nV2QkPGBWqkYFuacbS_SqNjNdZZXEoPN4ijbljimCokt660NtbCOCVKVjotuRGJLY3XmzK0dx_DoFpX7ikQlhWFQWUzTgsuLDYnM2fGWqEyXySlUxGwbrBzE-DIfVaM83wHpOwJlCOB8oZA-VUEr_t36haM48baRx0N8yCYm3zHRhG87ItRpLyfRFdufYl1PCYaE4xlETxpSd5_Lhl7_J4siUDtMUNfwcN175dUZz8a2G5vW6cxx0bfdHyz-6__d-PZzd14Dre552FkYJ4dwWB7celeoJ60LUZwoBbHIxhOFtPp0t-Pv32aj4KIYOksneF1xSd_AFvNFo4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPMorUMBIcAKL2LGzDhJCiLJsaemplXpLHduBopIN3a0Q_VH8RmbyWpaK3nqM4jhx5u3xfAPwzAkVQrPpHkvHVfAZtyrVXAs7UqYwXhbNAdmddLKnPu3r_RX43dfC0LHKXic2itpPHe2Rv5IklQrDb_O2_sGpaxRlV_sWGi1bbIVfPzFkm73Z3ED6Ppdy_GH3_YR3XQW400rMeSYxxiidjc3IZnGpCVIPZ3YiCcIUWvpQeh9b5YJRpSiD1dKpxJeOfIMMYzqc9xJcVglacqpMH38cshap7prompijJRZdkU5bqieoEAYtJBfaxJqfLhvCM97t2UOa_2RqGwM4vgnXO8-VvWtZ7RashGoNbvRdIVinJNbg2l8Qh7fh20YINet6U3xhA2TsjKG3zHyYN0fBKmYrz-pjyho1l9OS1bS9_f3QsS6HNHvNLFsAT7OjARCatfU3d2DvQihxF1araRXuAxNZUTh0beO0kMrjdDoLbmQNhg5FUgYTgeh_du468HPqwXGUL2CbiUA5EihvCJSfRvBieKZuoT_OHb3e0zDv1MAsXzBtBE-H2yjAlJWxVZie4BhCYBNKiCyCey3Jh9clI0ILypIIzBIzDAMIHHz5TnX4tQEJp0g-jSVO-rLnm8V3_X8ZD85fxhO4Mtn9vJ1vb-5sPYSrkvgZmVlm67A6Pz4Jj9BDmxePG7FgcHDRcvgHml5MDg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTULwwMf4KgwIEjxBtCZNeikSQsDttDF0mhCT9lbSJN2GRq_sbkLsT-Ovw2nTHsfE3vZYJU2a2k7s2P4Z4Llhwrnm0j3mhgpnM6pFKqlkeihUoSwvmgDZSbq1Jz7uy_0V-N3lwviwym5PbDZqOzX-jnyDe6kUaH6rjTKEReyOxm_rH9RXkPKe1q6cRssiO-7XTzTfZm-2R0jrF5yPN7982KKhwgA1UrA5zTjaG6XRsRrqLC6lh9fDWQxLHFOF5NaV1sZaGKdEyUqnJTcisaXxekKG9h2OewVWh94qGsDq-83J7ufeh5HKUFJXxRTPZRZSdtrEPebTYvC8pEyqWNKz5WPxnK57PmTzH79tcxyOb8GNoMeSdy3j3YYVV63Bza5GBAlbxhpc_wvw8A58GzlXk1Cp4oD0ALIzgrozsW7eBIZVRFeW1Cfeh9Q8TktS-8vu70eGBI_S7DXRZAFDTY57eGjSZuPchb1LocU9GFTTyj0AwrKiMKjoxmnBhcXhZObMUCs0JIqkdCoC1v3s3AQodF-R4zhfgDh7AuVIoLwhUH4Wwcv-nboFArmw93pHwzxsCrN8wcIRPOubUZy9j0ZXbnqKfTweGxOMZRHcb0neT5cMPXZQlkSglpih7-ChwpdbqqPDBjLc2_VpzHHQVx3fLL7r_8t4ePEynsJVlMH80_Zk5xFc456dkZd5tg6D-cmpe4zq2rx4EuSCwNfLFsU_rkdRoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+techniques+for+detection+and+prediction+of+pandemic+diseases%3A+a+systematic+literature+review&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ajagbe%2C+Sunday+Adeola&rft.au=Adigun%2C+Matthew+O&rft.date=2023-05-29&rft.issn=1380-7501&rft.spage=1&rft_id=info:doi/10.1007%2Fs11042-023-15805-z&rft_id=info%3Apmid%2F37362693&rft.externalDocID=37362693
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon