Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review
Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the...
Saved in:
Published in | Multimedia tools and applications Vol. 83; no. 2; pp. 5893 - 5927 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
29.05.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations. |
---|---|
AbstractList | Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations. Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations.Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential to the management of diseases and the prediction of future occurrences. Many scientists and scholars have implemented DL techniques for the detection and prediction of pandemics, IDs and other healthcare-related purposes, these outcomes are with various limitations and research gaps. For the purpose of achieving an accurate, efficient and less complicated DL-based system for the detection and prediction of pandemics, therefore, this study carried out a systematic literature review (SLR) on the detection and prediction of pandemics using DL techniques. The survey is anchored by four objectives and a state-of-the-art review of forty-five papers out of seven hundred and ninety papers retrieved from different scholarly databases was carried out in this study to analyze and evaluate the trend of DL techniques application areas in the detection and prediction of pandemics. This study used various tables and graphs to analyze the extracted related articles from various online scholarly repositories and the analysis showed that DL techniques have a good tool in pandemic detection and prediction. Scopus and Web of Science repositories are given attention in this current because they contain suitable scientific findings in the subject area. Finally, the state-of-the-art review presents forty-four (44) studies of various DL technique performances. The challenges identified from the literature include the low performance of the model due to computational complexities, improper labeling and the absence of a high-quality dataset among others. This survey suggests possible solutions such as the development of improved DL-based techniques or the reduction of the output layer of DL-based architecture for the detection and prediction of pandemic-prone diseases as future considerations. |
Author | Adigun, Matthew O. Ajagbe, Sunday Adeola |
Author_xml | – sequence: 1 givenname: Sunday Adeola orcidid: 0000-0002-7010-5540 surname: Ajagbe fullname: Ajagbe, Sunday Adeola email: 230015266@stu.unizulu.ac.za organization: Department of Computer & Industrial Production Engineering, First Technical University Ibadan, Department of Computer Science, University of Zululand – sequence: 2 givenname: Matthew O. orcidid: 0000-0001-6256-5865 surname: Adigun fullname: Adigun, Matthew O. organization: Department of Computer Science, University of Zululand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37362693$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtvFSEYJaaNfegfcGFI3LgZywfDPNyYpj6TJt3UNaHMxy03MzACU9P-erlOrdpFV8DhnMP5OEdkzwePhLwC9g4Ya08SAKt5xbioQHZMVnfPyCHIVlRty2Gv7EXHqlYyOCBHKW0Zg0by-jk5EK1oeNOLQ7L9iDjTEXX0zm9oRnPt3Y8FE7Uh0gELkF3wVPuBzhEHtx6DpXOBcHKGDi6hTpjeU03Tbco46Vzg0WWMOi8RacQbhz9fkH2rx4Qv79dj8v3zp8uzr9X5xZdvZ6fnlZE15KrnvOut0axrdc-shL6RALUBgdBdST6gHQama4NdbcGiltzUYrBGNoz1LYhj8mH1nZerCQeDPkc9qjm6ScdbFbRT_994d6024UYB47xhvC8Ob-8dYtj9RVaTSwbHUXsMS1K8E4xDDbCjvnlE3YYl-jKf4j2U3L0QXWG9_jfSQ5Y_PRQCXwkmhpQi2gcKMLUrW61lq1K2-l22uiui7pHIuKx3_ZSx3Pi0VKzSVN7xG4x_Yz-h-gWL7sB_ |
CitedBy_id | crossref_primary_10_1007_s42979_023_02448_y crossref_primary_10_1016_j_array_2024_100345 crossref_primary_10_1109_ACCESS_2023_3305379 crossref_primary_10_1007_s11042_024_18364_z crossref_primary_10_1016_j_procs_2024_04_306 crossref_primary_10_1038_s41598_024_72005_x crossref_primary_10_1016_j_rineng_2024_101894 crossref_primary_10_1016_j_compbiomed_2025_109835 crossref_primary_10_24171_j_phrp_2023_0287 crossref_primary_10_1109_ACCESS_2023_3305670 crossref_primary_10_1007_s11042_024_20500_8 crossref_primary_10_1007_s10661_024_12410_x crossref_primary_10_1007_s13198_025_02735_2 crossref_primary_10_1177_14604582241275844 crossref_primary_10_1109_ACCESS_2023_3339542 crossref_primary_10_1007_s42979_023_02520_7 crossref_primary_10_1007_s42979_024_03554_1 crossref_primary_10_4108_eetsis_6232 crossref_primary_10_3233_JIFS_233381 crossref_primary_10_1109_ACCESS_2023_3289402 crossref_primary_10_55969_paradigmplus_v4n2a1 crossref_primary_10_11648_j_ajomis_20240901_12 crossref_primary_10_1109_ACCESS_2023_3320738 crossref_primary_10_1016_j_heliyon_2024_e41407 crossref_primary_10_1016_j_plrev_2024_12_002 crossref_primary_10_1155_hbe2_1376983 crossref_primary_10_1051_bioconf_202516301008 crossref_primary_10_1186_s13635_025_00197_4 crossref_primary_10_1007_s10115_024_02192_6 crossref_primary_10_36930_40340408 crossref_primary_10_1016_j_comcom_2024_107964 crossref_primary_10_1016_j_imu_2024_101571 crossref_primary_10_3390_info15120755 crossref_primary_10_3390_electronics13132630 crossref_primary_10_1016_j_procs_2024_04_266 |
Cites_doi | 10.1007/s11760-021-02098-8 10.1016/j.compbiomed.2022.105213 10.1007/978-3-030-96308-8_87 10.1017/ice.2020.61 10.1016/j.compbiomed.2021.104575 10.1007/s11042-021-11836-6 10.1016/j.compbiomed.2022.105244 10.1016/j.eswa.2022.118628 10.1016/j.compbiomed.2021.104585 10.1038/s41591-020-0824-5 10.1016/j.neucom.2021.10.035 10.1155/2022/2103975 10.3390/electronics11182964 10.1038/s41598-021-99015-3 10.1007/978-3-030-85030-2_46 10.3390/ijerph19042013 10.1016/j.compbiomed.2021.105047 10.36227/techrxiv.12743933 10.1109/CVPR.2017.195 10.1109/JSEN.2022.3199293 10.1007/978-3-030-88942-5_33 10.3390/v14091930 10.1016/j.ijmedinf.2020.104284 10.1155/2022/2564022 10.3390/jcm11185342 10.3389/fpubh.2022.805086 10.23956/ijarcsse.v8i2.569 10.1186/s44147-022-00125-0 10.1016/j.trac.2022.116585 10.1109/ICCCNT49239.2020.9225319 10.1148/radiol.2020200370 10.26599/BDMA.2022.9020010 10.1109/ACCESS.2020.3009058 10.1007/978-3-030-82800-4_3 10.3390/s22186780 10.19101/IJACR.2021.1152001 10.1016/j.eswa.2022.117549 10.3390/electronics11060904 10.3390/biology10111174 10.1016/j.compbiomed.2021.104895 10.1016/B978-0-12-817133-2.00018-5 10.1038/s41893-019-0293-3 10.1007/978-981-16-5640-8_43 10.1038/s41598-022-07954-2 10.11591/ijece.v11i1.pp365-374 10.3390/s21020455 10.1016/j.compbiomed.2022.105847 10.1038/s41598-021-83926-2 10.1007/978-3-031-13324-4_42 10.1016/j.asoc.2022.109401 10.32604/cmc.2022.019496 10.1016/j.compbiomed.2022.105682 10.1016/j.compbiomed.2022.105350 10.1108/BPMJ-06-2017-0173 10.1016/j.eswa.2022.117410 10.1007/s13246-020-00865-4 10.1016/j.compbiomed.2022.105233 10.3390/electronics11162520 10.3390/healthcare8010046 10.1016/j.procs.2016.09.149 10.1038/nature06536 10.1109/ICESC51422.2021.9532992 10.1016/j.eswa.2022.118604 10.1016/j.eij.2023.05.002 10.1007/978-3-031-19647-8_4 10.1007/978-981-19-3089-8_8 10.1007/s00521-022-07206-4 10.1016/j.compbiomed.2021.105127 10.1109/ACCESS.2020.3028012 10.3390/a15020071 10.1016/j.imu.2020.100395 10.1016/j.scitotenv.2022.153786 10.1016/j.asoc.2020.106754 10.1007/978-981-16-6723-7_47 10.3390/ijerph19010480 10.1016/j.scitotenv.2022.158448 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 The Author(s) 2023. The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s11042-023-15805-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ABI/INFORM Global (Corporate) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 5927 |
ExternalDocumentID | PMC10226029 37362693 10_1007_s11042_023_15805_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: University of Zululand – fundername: ; |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c541t-92289fca087a90f51965114c13e18b52defdd0a4ce84f1fea52c43dfc56009713 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:37:33 EDT 2025 Fri Jul 11 11:50:51 EDT 2025 Fri Jul 25 22:57:49 EDT 2025 Wed Feb 19 02:23:30 EST 2025 Tue Jul 01 04:13:23 EDT 2025 Thu Apr 24 23:06:26 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Optimization techniques Machine learning (ML) Pandemic Deep learning (DL) Artificial intelligence (AI) Infectious diseases (IDs) |
Language | English |
License | The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-92289fca087a90f51965114c13e18b52defdd0a4ce84f1fea52c43dfc56009713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6256-5865 0000-0002-7010-5540 |
OpenAccessLink | https://doi.org/10.1007/s11042-023-15805-z |
PMID | 37362693 |
PQID | 2911149338 |
PQPubID | 54626 |
PageCount | 35 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10226029 proquest_miscellaneous_2830214119 proquest_journals_2911149338 pubmed_primary_37362693 crossref_primary_10_1007_s11042_023_15805_z crossref_citationtrail_10_1007_s11042_023_15805_z springer_journals_10_1007_s11042_023_15805_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-29 |
PublicationDateYYYYMMDD | 2023-05-29 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Khan, Khan, Albattah, Qamar (CR54) 2021; 2021 Rodríguez, Cuevas, Zaldivar, Morales-Castañeda, Sarkar, Houssein (CR79) 2022; 148 Chakraborty, Murali, Mitra (CR33) 2022; 19 El-Dahshan, Bassiouni, Hagag, Chakrabortty, Loh, Acharya (CR39) 2022; 204 Sherif, Ahmed (CR83) 2022; 69 Aria, Nourani, Oskouei (CR22) 2022; 2022 Chakraborty, Bhatia, Bhattacharyya, Platos, Bag, Hassanien (CR32) 2020; 97 Gour, Jain (CR44) 2022; 140 Arora, Ng, Leekha, Darshan, Singh (CR24) 2021; 135 Bassiouni, Chakrabortty, Hussain, Rahman (CR29) 2022; 211 Ardakani, Kanafi, Acharya, Khadem, Mohammadi (CR21) 2020; 121 CR36 CR35 CR34 Ai, Shanmugam, Muthusamy, Viswanathan, Panchal, Krishnamoorthy, Elminaam, Orban (CR9) 2022; 11 Kim, Ahn (CR55) 2021; 11 Devnath, Luo, Summons, Wang, Shaukat, Hameed, Alrayes (CR37) 2022; 11 Oyelade, Ezugwu (CR74) 2020; 20 Arias-Garzón, Alzate-Grisales, Orozco-Arias, Arteaga-Arteaga, Bravo-Ortiz, Mora-Rubio, Saborit-Torres, Serrano, Vayá, Cardona-Morales, Tabares-Soto (CR23) 2021; 6 CR72 Gecgel, Ramanujam, Botte (CR41) 2022; 14 Abdel-Jaber, Devassy, Al Salam, Hidaytallah, EL-Amir (CR3) 2022; 15 El-Kenawy, Ibrahim, Mirjalili, Eid, Hussein (CR40) 2020; 8 Alshuwaier, Areshey, Poon (CR17) 2022; 15 Awotunde, Ajagbe, Idowu, Ndunagu (CR27) 2021 Malik, Anees, Din, Naeem (CR63) 2022; 82 Allam, Jones (CR15) 2020; 8 Akter, Shamrat, Chakraborty, Karim, Azam (CR12) 2021; 10 CR7 Nadeem, Goh, Hussain, Liew, Andonovic, Khan (CR68) 2022; 22 Rao, Vazquez (CR77) 2020; 41 Secundo, Toma, Schiuma, Passiante (CR81) 2018; 25 CR45 CR89 González-Pardo, Ceballos-Santos, Manzanas, Santibáñez, Fernández-Olmo (CR42) 2022; 823 CR43 CR87 CR86 Alshazly, Linse, Barth, Martinetz (CR16) 2021; 21 Madhav, Oppenheim, Gallivan (CR61) 2017 Abayomi-Alli, Damaševičius, Abbasi, Maskeliūnas (CR1) 2022; 11 Ahmad, Saudagar, Malik, Ahmad, Khan, Hasanat, AlTameem, AlKhathami, Sajjad (CR8) 2022; 19 Shaik, Cherukuri (CR82) 2022; 141 Loey, El-Sappagh, Mirjalili (CR60) 2022; 142 AlZu’bi, Zitar, Hawashin, Shanab, Zraiqat, Mughaid, Almotairi, Abualigah (CR18) 2022; 11 Ting, Carin, Dzau, Wong (CR85) 2020; 26 CR13 CR56 Naeem, Alshammari, Ullah (CR69) 2022; 2022 CR11 Amin, Uddin, Hassan, Khan, Nasser, Alharbi, Alyami (CR19) 2020; 8 Haq, Du, Jan (CR46) 2022; 81 CR51 Hung, Wang, Wang, Fang (CR49) 2022; 22 Kumar, Misra, Chan (CR58) 2022; 210 Oh, Zhou, O'Brien, Jamal, Wennerdahl, Schmidt (CR73) 2022; 852 CR91 Attallah, Samir (CR26) 2022; 128 Aslan, Sabanci, Durdu, Unlersen (CR25) 2022; 142 Aggarwal, Mishra, Fatimah, Singh, Gupta, Joshi (CR6) 2022; 144 Breve (CR31) 2022; 204 Kumar, Rajmohan, Pavithra, Ajagbe, Hodhod, Gaber (CR57) 2022; 11 Nayak, Nayak, Vimal, Arora, Sinha (CR71) 2021; 39 Roda, Varughese, Han, Li (CR78) 2020; 5 Nassif, Elnagar, Elgendy, Afadar (CR70) 2022; 34 Heidari, Mirniaharikandehei, Khuzani, Danala, Qiu, Zheng (CR48) 2020; 144 Yang, Martinez, Visuña, Khandhar, Bhatt, Carretero (CR90) 2021; 11 Abir, Alyafei, Chowdhury, Khandakar, Ahmed, Hossain (CR5) 2022; 147 CR28 Dey, Bhattacharya, Malakar, Mirjalili, Sarkar (CR38) 2021; 135 Rohr, Barrett, Civitello, Craft, Delius, DeLeo (CR80) 2019; 2 Pushkar, Ananth, Nagrath, Al-Amri, Vividha (CR76) 2022; 73 Bayram, Eleyan (CR30) 2022; 16 Hassan, Albahli, Javed, Irtaza (CR47) 2022; 10 CR67 Pan, Ye, Sun, Gui, Liang, Li (CR75) 2021; 295 Waheed, Saylan, Hassan, Kannout, Alsafar, Alazzam (CR88) 2022; 12 CR66 CR65 CR20 CR64 Jones, Patel, Levy, Storeygard, Balk, Gittleman, Daszak (CR53) 2008; 451 Iyawa, Herselman, Botha (CR50) 2016; 100 CR62 Subramanian, Elharrouss, Al-Maadeed, Chowdhury (CR84) 2022; 143 Kundu, Singh, Mirjalili, Sarkar (CR59) 2021; 138 Jimenez-Rodríguez, Silva-Lance, Parra-Arroyo, Medina-Salazar, Martínez-Ruiz, Melchor-Martínez, Martínez-Prado, Iqbal, Parra-Saldívar, Barcel, Sosa-Hernandez (CR52) 2022; 155 Abdelhamid, Abdelhalim, Mohamed, Khalifa (CR2) 2022; 142 Algarni, El-Shafai, El Banby, El-Samie, Soliman (CR14) 2022; 70 Ajagbe, Amuda, Oladipupo, Afe, Okesola (CR10) 2021; 11 Abdulmunem, Abutiheen, Aleqabi (CR4) 2021; 11 OO Abayomi-Alli (15805_CR1) 2022; 11 15805_CR72 RU Khan (15805_CR54) 2021; 2021 M Heidari (15805_CR48) 2020; 144 15805_CR35 15805_CR34 KE Jones (15805_CR53) 2008; 451 D Yang (15805_CR90) 2021; 11 IU Haq (15805_CR46) 2022; 81 MF Aslan (15805_CR25) 2022; 142 15805_CR36 F Hassan (15805_CR47) 2022; 10 W Waheed (15805_CR88) 2022; 12 ON Oyelade (15805_CR74) 2020; 20 MG Jimenez-Rodríguez (15805_CR52) 2022; 155 S Akter (15805_CR12) 2021; 10 FA Breve (15805_CR31) 2022; 204 SR Nayak (15805_CR71) 2021; 39 15805_CR7 MAS Ai (15805_CR9) 2022; 11 MM Bassiouni (15805_CR29) 2022; 211 C Oh (15805_CR73) 2022; 852 D Arias-Garzón (15805_CR23) 2021; 6 FF Sherif (15805_CR83) 2022; 69 V Arora (15805_CR24) 2021; 135 15805_CR62 C-H Hung (15805_CR49) 2022; 22 15805_CR20 GE Iyawa (15805_CR50) 2016; 100 15805_CR64 15805_CR66 15805_CR65 SA Ajagbe (15805_CR10) 2021; 11 M Gour (15805_CR44) 2022; 140 15805_CR67 ESA El-Dahshan (15805_CR39) 2022; 204 15805_CR28 G Secundo (15805_CR81) 2018; 25 NS Shaik (15805_CR82) 2022; 141 F Alshuwaier (15805_CR17) 2022; 15 J Kim (15805_CR55) 2021; 11 N Madhav (15805_CR61) 2017 AT Kumar (15805_CR57) 2022; 11 P Pushkar (15805_CR76) 2022; 73 L Devnath (15805_CR37) 2022; 11 FF Abir (15805_CR5) 2022; 147 N Subramanian (15805_CR84) 2022; 143 Z Allam (15805_CR15) 2020; 8 15805_CR51 A Kumar (15805_CR58) 2022; 210 15805_CR11 H Alshazly (15805_CR16) 2021; 21 MW Nadeem (15805_CR68) 2022; 22 15805_CR13 15805_CR56 DSW Ting (15805_CR85) 2020; 26 F Pan (15805_CR75) 2021; 295 O Gecgel (15805_CR41) 2022; 14 AB Nassif (15805_CR70) 2022; 34 S Amin (15805_CR19) 2020; 8 F Bayram (15805_CR30) 2022; 16 AA Abdulmunem (15805_CR4) 2021; 11 JB Awotunde (15805_CR27) 2021 15805_CR91 J González-Pardo (15805_CR42) 2022; 823 S Chakraborty (15805_CR33) 2022; 19 AA Abdelhamid (15805_CR2) 2022; 142 S Dey (15805_CR38) 2021; 135 15805_CR86 AD Algarni (15805_CR14) 2022; 70 15805_CR43 15805_CR87 15805_CR45 M Loey (15805_CR60) 2022; 142 15805_CR89 E-SM El-Kenawy (15805_CR40) 2020; 8 H Abdel-Jaber (15805_CR3) 2022; 15 P Aggarwal (15805_CR6) 2022; 144 J Ahmad (15805_CR8) 2022; 19 AA Ardakani (15805_CR21) 2020; 121 H Naeem (15805_CR69) 2022; 2022 M Aria (15805_CR22) 2022; 2022 R Kundu (15805_CR59) 2021; 138 H Malik (15805_CR63) 2022; 82 WC Roda (15805_CR78) 2020; 5 S AlZu’bi (15805_CR18) 2022; 11 O Attallah (15805_CR26) 2022; 128 K Chakraborty (15805_CR32) 2020; 97 ASS Rao (15805_CR77) 2020; 41 A Rodríguez (15805_CR79) 2022; 148 JR Rohr (15805_CR80) 2019; 2 |
References_xml | – ident: CR45 – volume: 11 start-page: 904 issue: 6 year: 2022 ident: CR57 article-title: Automatic Face Mask Detection System in Public Transportation in Smart Cities Using IoT and Deep Learning publication-title: Electronics – volume: 10 start-page: 1174 issue: 11 year: 2021 ident: CR12 article-title: COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images publication-title: Biology – volume: 148 start-page: 1 year: 2022 end-page: 24 ident: CR79 article-title: An agent-based transmission model of COVID-19 for re-opening policy design publication-title: Comput Biol Med – volume: 143 start-page: 105233 year: 2022 ident: CR84 article-title: A review of deep learning-based detection methods for COVID-19 publication-title: Comput Biol Med – ident: CR87 – volume: 11 start-page: 2520 issue: 16 year: 2022 ident: CR1 article-title: Detection of COVID-19 from Deep Breathing Sounds Using Sound Spectrum with Image Augmentation and Deep Learning Techniques publication-title: Electronics – start-page: 55 year: 2021 end-page: 76 ident: CR27 article-title: An Enhanced Cloud-IoMT-based and Machine Learning for Effective COVID-19 Diagnosis System publication-title: Intelligence of Things: AI-IoT Based Critical-Applications and Innovations – volume: 121 start-page: 103795 year: 2020 ident: CR21 article-title: Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: results of 10 convolutional neural networks publication-title: Comput. – ident: CR51 – volume: 211 start-page: 118604 year: 2022 ident: CR29 article-title: Advanced deep learning approaches to predict supply chain risks under COVID-19 restrictions publication-title: Expert Syst Appl – volume: 11 start-page: 1 issue: 14 year: 2022 end-page: 18 ident: CR9 article-title: Real-Time Facemask Detection for Preventing COVID-19 Spread Using Transfer Learning Based Deep Neural Network publication-title: Electroninc – volume: 5 start-page: 271 year: 2020 end-page: 281 ident: CR78 article-title: Why is it difficult to accurately predict the COVID-19 epidemic? publication-title: Infect Dis Model – volume: 142 start-page: 105244 year: 2022 ident: CR2 article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data publication-title: Comput Biol Med – ident: CR35 – volume: 10 start-page: 1 year: 2022 end-page: 18 ident: CR47 article-title: A Robust Framework for Epidemic Analysis, Prediction and Detection of COVID-19 publication-title: Front Public Health – volume: 8 start-page: 131522 year: 2020 end-page: 131533 ident: CR19 article-title: Recurrent Neural Networks with TF-IDF Embedding Technique for Detection and Classification in Tweets of Dengue Disease publication-title: IEEE Access – volume: 8 start-page: 179317 year: 2020 end-page: 179335 ident: CR40 article-title: Novel feature selection and voting classifier algorithms for COVID-19 classification in CT images publication-title: IEEE Access – volume: 25 start-page: 144 year: 2018 end-page: 163 ident: CR81 article-title: Knowledge transfer in open innovation: A classification framework for healthcare ecosystems publication-title: Bus Process Manag J – volume: 451 start-page: 990 issue: 7181 year: 2008 end-page: 993 ident: CR53 article-title: Global trends in emerging infectious diseases publication-title: Nature – volume: 823 start-page: 153786 year: 2022 ident: CR42 article-title: Estimating changes in air pollutant levels due to COVID-19 lockdown measures based on a business-as-usual prediction scenario using data mining models: A case-study for urban traffic sites in Spain publication-title: Sci Total Environ – volume: 14 start-page: 1930 issue: 9 year: 2022 ident: CR41 article-title: Selective Electrochemical Detection of SARS-CoV-2 Using Deep Learning publication-title: Viruses – volume: 15 start-page: 200090 year: 2022 ident: CR17 article-title: Applications and Enhancement of Document-Based Sentiment Analysis in Deep learning Methods: Systematic Literature Review publication-title: Intell Syst Appl – volume: 141 start-page: 105127 year: 2022 ident: CR82 article-title: Transfer learning based novel ensemble classifier for COVID-19 detection from chest CT-scans publication-title: Comput Biol Med – ident: CR67 – volume: 140 start-page: 105047 year: 2022 ident: CR44 article-title: Uncertainty-aware convolutional neural network for COVID-19 X-ray images classification publication-title: Comput Biol Med – volume: 155 start-page: 116585 year: 2022 ident: CR52 publication-title: Trends Anal Chem – volume: 82 start-page: 1 year: 2022 end-page: 26 ident: CR63 article-title: CDC_Net: multi-classification convolutional neural network model for detection of COVID-19, pneumothorax, pneumonia, lung Cancer, and tuberculosis using chest X-rays publication-title: Multimed Tools Appl – volume: 12 start-page: 1 issue: 1 year: 2022 end-page: 18 ident: CR88 article-title: A deep learning-driven low-power, accurate, and portable platform for rapid detection of COVID-19 using reverse-transcription loop-mediated isothermal amplification publication-title: Sci Rep – volume: 2 start-page: 445 issue: 6 year: 2019 end-page: 456 ident: CR80 article-title: Emerging human infectious diseases and the links to global food production publication-title: Nat Sustain – ident: CR11 – volume: 11 start-page: 2964 issue: 18 year: 2022 ident: CR18 article-title: A Novel Deep Learning Technique for Detecting Emotional Impact in Online Education publication-title: Electronics – volume: 22 start-page: 1 issue: 18 year: 2022 end-page: 18 ident: CR68 article-title: Deep Learning for Diabetic Retinopathy Analysis: A Review, Research Challenges, and Future Directions publication-title: Sensors – ident: CR36 – ident: CR64 – volume: 142 start-page: 105244 year: 2022 ident: CR25 article-title: COVID-19 diagnosis using state-of-the-art CNN architecture features and Bayesian Optimization publication-title: Comput Biol Med – volume: 16 start-page: 1 year: 2022 end-page: 8 ident: CR30 article-title: COVID-19 detection on chest radiographs using feature fusion based deep learning publication-title: SIViP – volume: 39 start-page: 1 year: 2021 end-page: 15 ident: CR71 article-title: An ensemble artificial intelligence-enabled MIoT for automated diagnosis of malaria parasite publication-title: Walley Expert Syst – volume: 22 start-page: 1 issue: 17 year: 2022 end-page: 18 ident: CR49 article-title: Using SincNet for Learning Pathological Voice Disorders publication-title: Sensors – volume: 81 start-page: 1 year: 2022 end-page: 21 ident: CR46 article-title: Implementation of smart social distancing for COVID-19 based on deep learning algorithm publication-title: Multimed Tools Appl – volume: 69 start-page: 23 issue: 1 year: 2022 end-page: 34 ident: CR83 article-title: Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder publication-title: J Eng Appl Sci – ident: CR43 – ident: CR66 – ident: CR91 – volume: 15 start-page: 71 issue: 2 year: 2022 end-page: 85 ident: CR3 article-title: A Review of Deep Learning Algorithms and Their Applications in Healthcare publication-title: Algorithms – volume: 70 start-page: 4393 year: 2022 end-page: 4410 ident: CR14 article-title: An efficient CNN-based hybrid classification and segmentation approach for COVID-19 detection publication-title: Comput Mater Contin – ident: CR72 – volume: 97 start-page: 106754 year: 2020 ident: CR32 article-title: Sentiment Analysis of COVID-19 tweets by Deep Learning Classifiers—A study to show how popularity is affecting accuracy in social media publication-title: Appl Soft Comput – volume: 19 start-page: 2013 issue: 4 year: 2022 ident: CR33 article-title: An efficient deep learning model to detect COVID-19 using chest X-ray images publication-title: Int J Environ Res Public Health – ident: CR89 – volume: 11 start-page: 365 issue: 1 year: 2021 end-page: 374 ident: CR4 article-title: Recognition of Corona virus disease (COVID-19) using deep learning network publication-title: Int J Electr Comput Eng (IJECE) – volume: 147 start-page: 105682 year: 2022 ident: CR5 article-title: PCovNet: A presymptomatic COVID-19 detection framework using deep learning model using wearables data publication-title: Comput Biol Med – volume: 2021 start-page: 1 year: 2021 end-page: 13 ident: CR54 article-title: Image-based detection of plant diseases: from classical machine learning to deep learning journey publication-title: Wirel Commun Mob Comput – volume: 34 start-page: 16019 issue: 18 year: 2022 end-page: 16032 ident: CR70 article-title: Arabic fake news detection based on deep contextualized embedding models publication-title: Neural Comput & Applic – volume: 11 start-page: 19638 year: 2021 ident: CR90 article-title: Detection and analysis of COVID-19 in medical images using deep learning techniques publication-title: Sci Rep – volume: 135 start-page: 104575 year: 2021 ident: CR24 article-title: Transfer learning-based approach for detecting COVID-19 ailment in lung CT scan publication-title: Comput Biol Med – volume: 128 start-page: 109401 year: 2022 ident: CR26 article-title: A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices publication-title: Appl Soft Comput – volume: 100 start-page: 244 year: 2016 end-page: 252 ident: CR50 article-title: Digital health innovation ecosystems: From systematic literature review to conceptual framework publication-title: Procedia Comput Sci – volume: 26 start-page: 459 issue: 4 year: 2020 end-page: 461 ident: CR85 article-title: Digital technology and COVID-19 publication-title: Nat Med – volume: 204 start-page: 117410 year: 2022 ident: CR39 article-title: RESCOVIDTCNnet: A residual neural network-based framework for COVID-19 detection using TCN and EWT with chest X-ray images publication-title: Expert Syst Appl – ident: CR56 – ident: CR86 – volume: 144 start-page: 104284 year: 2020 ident: CR48 article-title: Improving the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images with preprocessing algorithms publication-title: Int J Med Inform – volume: 852 start-page: 158448 year: 2022 ident: CR73 article-title: Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations publication-title: Sci Total Environ – volume: 204 start-page: 117549 year: 2022 ident: CR31 article-title: COVID-19 Detection on Chest X-Ray Images: A comparison of CNN architectures and ensembles publication-title: Expert Syst Appl – volume: 142 start-page: 105213 year: 2022 ident: CR60 article-title: Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data publication-title: Comput Biol Med – volume: 295 start-page: 715 issue: 3 year: 2021 end-page: 721 ident: CR75 article-title: Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia publication-title: Radiology – volume: 8 start-page: 46 issue: 1 year: 2020 ident: CR15 article-title: On the coronavirus (COVID-19) outbreak and the smart city network: universal data sharing standards coupled with artificial intelligence (AI) to benefit urban health monitoring and management publication-title: Healthcare – volume: 11 start-page: 51 issue: 53 year: 2021 end-page: 60 ident: CR10 article-title: Multi-classification of Alzheimer Disease on magnetic resonance images (MRI) using deep convolution neural network approaches publication-title: Int J Adv Comput Res (IJACR) – volume: 73 start-page: 1601 year: 2022 end-page: 1619 ident: CR76 article-title: Mutation Prediction for Coronaviruses Using Genome Sequence and Recurrent Neural Networks publication-title: CMC-Comput Mater Contin – volume: 11 start-page: 5342 issue: 18 year: 2022 ident: CR37 article-title: Deep Ensemble Learning for the Automatic Detection of Pneumoconiosis in Coal Worker’s Chest X-ray Radiography publication-title: J Clin Med – volume: 135 start-page: 104585 year: 2021 ident: CR38 article-title: Choquet fuzzy integral-based classifier ensemble technique for COVID-19 detection publication-title: Comput Biol Med – volume: 144 start-page: 105350 year: 2022 ident: CR6 article-title: COVID-19 image classification using deep learning: Advances, challenges and opportunities publication-title: Comput Biol Med – volume: 138 start-page: 104895 year: 2021 ident: CR59 article-title: COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN ensemble publication-title: Comput Biol Med – volume: 20 start-page: 100395 year: 2020 ident: CR74 article-title: A case-based reasoning framework for early detection and diagnosis of novel coronavirus publication-title: Inform Med Unlocked – ident: CR65 – volume: 19 start-page: 1 issue: 1 year: 2022 end-page: 16 ident: CR8 article-title: Disease Progression Detection via Deep Sequence Learning of Successive Radiographic Scans publication-title: Int J Environ Res Public Health – ident: CR13 – volume: 21 start-page: 455 issue: 2 year: 2021 ident: CR16 article-title: Explainable COVID-19 detection using chest CT scans and deep learning publication-title: Sensors – volume: 2022 start-page: 1 year: 2022 end-page: 17 ident: CR69 article-title: Explainable Artificial Intelligence-Based IoT Device Malware Detection Mechanism Using Image Visualization and Fine-Tuned CNN-Based Transfer Learning Model publication-title: Comput Intell Neurosci – ident: CR34 – volume: 41 start-page: 826 issue: 7 year: 2020 end-page: 834 ident: CR77 article-title: Identification of COVID-19 can be quicker through artificial intelligence framework using a mobile phone–based survey when cities and towns are under quarantine publication-title: Infect Control Hosp Epidemiol – volume: 2022 start-page: 2564022 year: 2022 ident: CR22 article-title: ADA-COVID: Adversarial Deep Domain Adaptation-Based Diagnosis of COVID-19 from Lung CT Scans Using Triplet Embeddings publication-title: Comput Intell Neurosci – volume: 11 start-page: 4413 year: 2021 ident: CR55 article-title: Infectious disease outbreak prediction using media articles with machine learning models publication-title: Sci Rep – volume: 6 start-page: 100136 year: 2021 ident: CR23 article-title: COVID-19 detection in X-ray images using convolutional neural networks publication-title: Mach Learn Appl – ident: CR7 – year: 2017 ident: CR61 article-title: Pandemics: Risks, Impacts, and Mitigation publication-title: Disease Control Priorities: Improving Health and Reducing Poverty – ident: CR28 – ident: CR62 – ident: CR20 – volume: 210 start-page: 118628 year: 2022 ident: CR58 article-title: Leveraging AI for advanced analytics to forecast altered tourism industry parameters: A COVID-19 motivated study publication-title: Expert Syst Appl – volume: 16 start-page: 1 year: 2022 ident: 15805_CR30 publication-title: SIViP doi: 10.1007/s11760-021-02098-8 – volume: 142 start-page: 105213 year: 2022 ident: 15805_CR60 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105213 – ident: 15805_CR51 doi: 10.1007/978-3-030-96308-8_87 – volume: 41 start-page: 826 issue: 7 year: 2020 ident: 15805_CR77 publication-title: Infect Control Hosp Epidemiol doi: 10.1017/ice.2020.61 – ident: 15805_CR89 – volume: 135 start-page: 104575 year: 2021 ident: 15805_CR24 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104575 – volume: 81 start-page: 1 year: 2022 ident: 15805_CR46 publication-title: Multimed Tools Appl doi: 10.1007/s11042-021-11836-6 – volume: 142 start-page: 105244 year: 2022 ident: 15805_CR2 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105244 – volume: 210 start-page: 118628 year: 2022 ident: 15805_CR58 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118628 – volume: 135 start-page: 104585 year: 2021 ident: 15805_CR38 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104585 – volume: 26 start-page: 459 issue: 4 year: 2020 ident: 15805_CR85 publication-title: Nat Med doi: 10.1038/s41591-020-0824-5 – ident: 15805_CR13 doi: 10.1016/j.neucom.2021.10.035 – volume-title: Disease Control Priorities: Improving Health and Reducing Poverty year: 2017 ident: 15805_CR61 – ident: 15805_CR64 doi: 10.1155/2022/2103975 – volume: 11 start-page: 2964 issue: 18 year: 2022 ident: 15805_CR18 publication-title: Electronics doi: 10.3390/electronics11182964 – volume: 11 start-page: 19638 year: 2021 ident: 15805_CR90 publication-title: Sci Rep doi: 10.1038/s41598-021-99015-3 – ident: 15805_CR66 doi: 10.1007/978-3-030-85030-2_46 – volume: 19 start-page: 2013 issue: 4 year: 2022 ident: 15805_CR33 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph19042013 – volume: 140 start-page: 105047 year: 2022 ident: 15805_CR44 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105047 – volume: 73 start-page: 1601 year: 2022 ident: 15805_CR76 publication-title: CMC-Comput Mater Contin – volume: 121 start-page: 103795 year: 2020 ident: 15805_CR21 publication-title: Comput. – volume: 82 start-page: 1 year: 2022 ident: 15805_CR63 publication-title: Multimed Tools Appl – ident: 15805_CR72 doi: 10.36227/techrxiv.12743933 – ident: 15805_CR34 doi: 10.1109/CVPR.2017.195 – volume: 22 start-page: 1 issue: 17 year: 2022 ident: 15805_CR49 publication-title: Sensors doi: 10.1109/JSEN.2022.3199293 – volume: 2022 start-page: 1 year: 2022 ident: 15805_CR69 publication-title: Comput Intell Neurosci – ident: 15805_CR67 doi: 10.1007/978-3-030-88942-5_33 – volume: 14 start-page: 1930 issue: 9 year: 2022 ident: 15805_CR41 publication-title: Viruses doi: 10.3390/v14091930 – volume: 144 start-page: 104284 year: 2020 ident: 15805_CR48 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2020.104284 – volume: 2022 start-page: 2564022 year: 2022 ident: 15805_CR22 publication-title: Comput Intell Neurosci doi: 10.1155/2022/2564022 – volume: 11 start-page: 5342 issue: 18 year: 2022 ident: 15805_CR37 publication-title: J Clin Med doi: 10.3390/jcm11185342 – volume: 10 start-page: 1 year: 2022 ident: 15805_CR47 publication-title: Front Public Health doi: 10.3389/fpubh.2022.805086 – ident: 15805_CR86 doi: 10.23956/ijarcsse.v8i2.569 – volume: 69 start-page: 23 issue: 1 year: 2022 ident: 15805_CR83 publication-title: J Eng Appl Sci doi: 10.1186/s44147-022-00125-0 – volume: 155 start-page: 116585 year: 2022 ident: 15805_CR52 publication-title: Trends Anal Chem doi: 10.1016/j.trac.2022.116585 – volume: 39 start-page: 1 year: 2021 ident: 15805_CR71 publication-title: Walley Expert Syst – ident: 15805_CR56 doi: 10.1109/ICCCNT49239.2020.9225319 – volume: 2021 start-page: 1 year: 2021 ident: 15805_CR54 publication-title: Wirel Commun Mob Comput – volume: 295 start-page: 715 issue: 3 year: 2021 ident: 15805_CR75 publication-title: Radiology doi: 10.1148/radiol.2020200370 – ident: 15805_CR91 doi: 10.26599/BDMA.2022.9020010 – volume: 8 start-page: 131522 year: 2020 ident: 15805_CR19 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009058 – start-page: 55 volume-title: Intelligence of Things: AI-IoT Based Critical-Applications and Innovations year: 2021 ident: 15805_CR27 doi: 10.1007/978-3-030-82800-4_3 – ident: 15805_CR35 – volume: 22 start-page: 1 issue: 18 year: 2022 ident: 15805_CR68 publication-title: Sensors doi: 10.3390/s22186780 – volume: 11 start-page: 51 issue: 53 year: 2021 ident: 15805_CR10 publication-title: Int J Adv Comput Res (IJACR) doi: 10.19101/IJACR.2021.1152001 – volume: 15 start-page: 200090 year: 2022 ident: 15805_CR17 publication-title: Intell Syst Appl – volume: 204 start-page: 117549 year: 2022 ident: 15805_CR31 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117549 – volume: 11 start-page: 904 issue: 6 year: 2022 ident: 15805_CR57 publication-title: Electronics doi: 10.3390/electronics11060904 – volume: 10 start-page: 1174 issue: 11 year: 2021 ident: 15805_CR12 publication-title: Biology doi: 10.3390/biology10111174 – volume: 138 start-page: 104895 year: 2021 ident: 15805_CR59 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104895 – ident: 15805_CR7 doi: 10.1016/B978-0-12-817133-2.00018-5 – volume: 2 start-page: 445 issue: 6 year: 2019 ident: 15805_CR80 publication-title: Nat Sustain doi: 10.1038/s41893-019-0293-3 – ident: 15805_CR45 doi: 10.1007/978-981-16-5640-8_43 – volume: 6 start-page: 100136 year: 2021 ident: 15805_CR23 publication-title: Mach Learn Appl – volume: 12 start-page: 1 issue: 1 year: 2022 ident: 15805_CR88 publication-title: Sci Rep doi: 10.1038/s41598-022-07954-2 – volume: 11 start-page: 365 issue: 1 year: 2021 ident: 15805_CR4 publication-title: Int J Electr Comput Eng (IJECE) doi: 10.11591/ijece.v11i1.pp365-374 – volume: 21 start-page: 455 issue: 2 year: 2021 ident: 15805_CR16 publication-title: Sensors doi: 10.3390/s21020455 – volume: 148 start-page: 1 year: 2022 ident: 15805_CR79 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105847 – volume: 11 start-page: 4413 year: 2021 ident: 15805_CR55 publication-title: Sci Rep doi: 10.1038/s41598-021-83926-2 – ident: 15805_CR87 doi: 10.1007/978-3-031-13324-4_42 – volume: 128 start-page: 109401 year: 2022 ident: 15805_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109401 – ident: 15805_CR62 doi: 10.32604/cmc.2022.019496 – volume: 147 start-page: 105682 year: 2022 ident: 15805_CR5 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105682 – volume: 144 start-page: 105350 year: 2022 ident: 15805_CR6 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105350 – volume: 25 start-page: 144 year: 2018 ident: 15805_CR81 publication-title: Bus Process Manag J doi: 10.1108/BPMJ-06-2017-0173 – volume: 204 start-page: 117410 year: 2022 ident: 15805_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117410 – volume: 11 start-page: 1 issue: 14 year: 2022 ident: 15805_CR9 publication-title: Electroninc – ident: 15805_CR20 doi: 10.1007/s13246-020-00865-4 – volume: 143 start-page: 105233 year: 2022 ident: 15805_CR84 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105233 – volume: 11 start-page: 2520 issue: 16 year: 2022 ident: 15805_CR1 publication-title: Electronics doi: 10.3390/electronics11162520 – volume: 8 start-page: 46 issue: 1 year: 2020 ident: 15805_CR15 publication-title: Healthcare doi: 10.3390/healthcare8010046 – volume: 142 start-page: 105244 year: 2022 ident: 15805_CR25 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2022.105244 – volume: 100 start-page: 244 year: 2016 ident: 15805_CR50 publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.09.149 – volume: 451 start-page: 990 issue: 7181 year: 2008 ident: 15805_CR53 publication-title: Nature doi: 10.1038/nature06536 – volume: 5 start-page: 271 year: 2020 ident: 15805_CR78 publication-title: Infect Dis Model – ident: 15805_CR65 doi: 10.1109/ICESC51422.2021.9532992 – volume: 70 start-page: 4393 year: 2022 ident: 15805_CR14 publication-title: Comput Mater Contin – volume: 211 start-page: 118604 year: 2022 ident: 15805_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118604 – ident: 15805_CR28 doi: 10.1016/j.eij.2023.05.002 – ident: 15805_CR11 doi: 10.1007/978-3-031-19647-8_4 – ident: 15805_CR43 doi: 10.1007/978-981-19-3089-8_8 – volume: 34 start-page: 16019 issue: 18 year: 2022 ident: 15805_CR70 publication-title: Neural Comput & Applic doi: 10.1007/s00521-022-07206-4 – volume: 141 start-page: 105127 year: 2022 ident: 15805_CR82 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.105127 – volume: 8 start-page: 179317 year: 2020 ident: 15805_CR40 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3028012 – volume: 15 start-page: 71 issue: 2 year: 2022 ident: 15805_CR3 publication-title: Algorithms doi: 10.3390/a15020071 – volume: 20 start-page: 100395 year: 2020 ident: 15805_CR74 publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100395 – volume: 823 start-page: 153786 year: 2022 ident: 15805_CR42 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.153786 – volume: 97 start-page: 106754 year: 2020 ident: 15805_CR32 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106754 – ident: 15805_CR36 doi: 10.1007/978-981-16-6723-7_47 – volume: 19 start-page: 1 issue: 1 year: 2022 ident: 15805_CR8 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph19010480 – volume: 852 start-page: 158448 year: 2022 ident: 15805_CR73 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.158448 |
SSID | ssj0016524 |
Score | 2.4879208 |
Snippet | Deep learning (DL) is becoming a fast-growing field in the medical domain and it helps in the timely detection of any infectious disease (IDs) and is essential... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5893 |
SubjectTerms | Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Infectious diseases Literature reviews Multimedia Information Systems Pandemics Repositories Special Purpose and Application-Based Systems State-of-the-art reviews Systematic review Track 2: Medical Applications of Multimedia |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VeoEDbZcCKQ8ZiVtrNXbsxO4NLSDUAydW4hY5tgNUkF2xu5f99R1nvdkuFCSOUSbOY2Yy33jsbwBOLBPet5PuKbdUeKepEbmkkplCqEo5XrULZK_yy4H4fSNvIk1O2AvzrH7_c4zhSXCKkYUyqVJJZ2vwUbKsCG0a-nm_qxjkMjawVSnFKMjiBpn_j7EahF4gy5cLJJ9VSdvgc_EZtiJqJKdzNX-BD77pwadFRwYSHbQHm__QC27DnzPvRyT2hbglHV3rmCBSJc5P2mVYDTGNI6OnULFpD4c1GYWp5cd7S2L9ZvyLGLIkfSYPHRkzme99-QqDi_Pr_iWNvRWolYJNqOaYadXWpKowOq1lIBbE1MiyzDNVSe587VxqhPVK1Kz2RnIrMlfbgJA0ZrY7sN4MG78HhOmqsggr07ziwuFwUntbGIWwvcpqrxJgi49d2kg8HvpfPJRLyuSgoBIVVLYKKmcJfO-uGc1pN96UPljosIwuOC55-I0LjSl4AsfdaXSeUBExjR9OUSawnzHBmE5gd67y7nZZEZh6dJaAWjGGTiAQc6-eae7vWoLukEXnKcdBfyzsZvlcr7_Gt_eJ78MGDzaNBs31AaxPnqb-EBHSpDpqXeMvnwgIrw priority: 102 providerName: Springer Nature |
Title | Deep learning techniques for detection and prediction of pandemic diseases: a systematic literature review |
URI | https://link.springer.com/article/10.1007/s11042-023-15805-z https://www.ncbi.nlm.nih.gov/pubmed/37362693 https://www.proquest.com/docview/2911149338 https://www.proquest.com/docview/2830214119 https://pubmed.ncbi.nlm.nih.gov/PMC10226029 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUe-BhfgVEZiTewiB07dXhBbWk3gVQhRKXxFDm2A0MjDWv3sr-ec-KklIm9JIrsOLHvzr7z-X4H8Mow4Vyz6R5zQ4WzGdUilVQyPRaqUJYXzQHZZXqyEh9P5WnYcNuEY5XdnNhM1HZt_B75W-6lUqD5rd7Xv6nPGuW9qyGFxgEMcQpWagDD6Xz5-UvvR0hlSGurYoprIwthM23wHPOhKbhmUSZVLOnV_tJ0Td-8fmzyH99psyQt7sPdoEuSSUv8B3DLVYdwr8vTQILYHsKdv0AHH8LPD87VJGSL-E56ENcNQf2VWLdtDmdVRFeW1Bfej9M8rktS-w3nX2eGBK_O5h3RZAcFTc57iGbSRsQ8gtVi_nV2QkPGBWqkYFuacbS_SqNjNdZZXEoPN4ijbljimCokt660NtbCOCVKVjotuRGJLY3XmzK0dx_DoFpX7ikQlhWFQWUzTgsuLDYnM2fGWqEyXySlUxGwbrBzE-DIfVaM83wHpOwJlCOB8oZA-VUEr_t36haM48baRx0N8yCYm3zHRhG87ItRpLyfRFdufYl1PCYaE4xlETxpSd5_Lhl7_J4siUDtMUNfwcN175dUZz8a2G5vW6cxx0bfdHyz-6__d-PZzd14Dre552FkYJ4dwWB7celeoJ60LUZwoBbHIxhOFtPp0t-Pv32aj4KIYOksneF1xSd_AFvNFo4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOPMorUMBIcAKL2LGzDhJCiLJsaemplXpLHduBopIN3a0Q_VH8RmbyWpaK3nqM4jhx5u3xfAPwzAkVQrPpHkvHVfAZtyrVXAs7UqYwXhbNAdmddLKnPu3r_RX43dfC0LHKXic2itpPHe2Rv5IklQrDb_O2_sGpaxRlV_sWGi1bbIVfPzFkm73Z3ED6Ppdy_GH3_YR3XQW400rMeSYxxiidjc3IZnGpCVIPZ3YiCcIUWvpQeh9b5YJRpSiD1dKpxJeOfIMMYzqc9xJcVglacqpMH38cshap7prompijJRZdkU5bqieoEAYtJBfaxJqfLhvCM97t2UOa_2RqGwM4vgnXO8-VvWtZ7RashGoNbvRdIVinJNbg2l8Qh7fh20YINet6U3xhA2TsjKG3zHyYN0fBKmYrz-pjyho1l9OS1bS9_f3QsS6HNHvNLFsAT7OjARCatfU3d2DvQihxF1araRXuAxNZUTh0beO0kMrjdDoLbmQNhg5FUgYTgeh_du468HPqwXGUL2CbiUA5EihvCJSfRvBieKZuoT_OHb3e0zDv1MAsXzBtBE-H2yjAlJWxVZie4BhCYBNKiCyCey3Jh9clI0ILypIIzBIzDAMIHHz5TnX4tQEJp0g-jSVO-rLnm8V3_X8ZD85fxhO4Mtn9vJ1vb-5sPYSrkvgZmVlm67A6Pz4Jj9BDmxePG7FgcHDRcvgHml5MDg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTULwwMf4KgwIEjxBtCZNeikSQsDttDF0mhCT9lbSJN2GRq_sbkLsT-Ovw2nTHsfE3vZYJU2a2k7s2P4Z4Llhwrnm0j3mhgpnM6pFKqlkeihUoSwvmgDZSbq1Jz7uy_0V-N3lwviwym5PbDZqOzX-jnyDe6kUaH6rjTKEReyOxm_rH9RXkPKe1q6cRssiO-7XTzTfZm-2R0jrF5yPN7982KKhwgA1UrA5zTjaG6XRsRrqLC6lh9fDWQxLHFOF5NaV1sZaGKdEyUqnJTcisaXxekKG9h2OewVWh94qGsDq-83J7ufeh5HKUFJXxRTPZRZSdtrEPebTYvC8pEyqWNKz5WPxnK57PmTzH79tcxyOb8GNoMeSdy3j3YYVV63Bza5GBAlbxhpc_wvw8A58GzlXk1Cp4oD0ALIzgrozsW7eBIZVRFeW1Cfeh9Q8TktS-8vu70eGBI_S7DXRZAFDTY57eGjSZuPchb1LocU9GFTTyj0AwrKiMKjoxmnBhcXhZObMUCs0JIqkdCoC1v3s3AQodF-R4zhfgDh7AuVIoLwhUH4Wwcv-nboFArmw93pHwzxsCrN8wcIRPOubUZy9j0ZXbnqKfTweGxOMZRHcb0neT5cMPXZQlkSglpih7-ChwpdbqqPDBjLc2_VpzHHQVx3fLL7r_8t4ePEynsJVlMH80_Zk5xFc456dkZd5tg6D-cmpe4zq2rx4EuSCwNfLFsU_rkdRoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+techniques+for+detection+and+prediction+of+pandemic+diseases%3A+a+systematic+literature+review&rft.jtitle=Multimedia+tools+and+applications&rft.au=Ajagbe%2C+Sunday+Adeola&rft.au=Adigun%2C+Matthew+O&rft.date=2023-05-29&rft.issn=1380-7501&rft.spage=1&rft_id=info:doi/10.1007%2Fs11042-023-15805-z&rft_id=info%3Apmid%2F37362693&rft.externalDocID=37362693 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |