Preliminary study on modelling, fabrication by photo-chemical etching and in vivo testing of biodegradable magnesium AZ31 stents

Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent on...

Full description

Saved in:
Bibliographic Details
Published inBioactive materials Vol. 6; no. 6; pp. 1663 - 1675
Main Authors Kandala, Bala Subramanya Pavan Kumar, Zhang, Guangqi, LCorriveau, Capucine, Paquin, Mark, Chagnon, Madeleine, Begun, Dana, Shanov, Vesselin
Format Journal Article
LanguageEnglish
Published China Elsevier B.V 01.06.2021
KeAi Publishing
KeAi Communications Co., Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25–28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed. [Display omitted]
AbstractList Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25–28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed. Image 1
Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.
Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.
Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25–28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed. [Display omitted]
Author Kandala, Bala Subramanya Pavan Kumar
Chagnon, Madeleine
Begun, Dana
Shanov, Vesselin
Paquin, Mark
LCorriveau, Capucine
Zhang, Guangqi
Author_xml – sequence: 1
  givenname: Bala Subramanya Pavan Kumar
  orcidid: 0000-0002-3771-3368
  surname: Kandala
  fullname: Kandala, Bala Subramanya Pavan Kumar
  organization: Department of Mechanical and Materials Engineering, University of Cincinnati, OH, 45221, USA
– sequence: 2
  givenname: Guangqi
  surname: Zhang
  fullname: Zhang, Guangqi
  organization: Department of Mechanical and Materials Engineering, University of Cincinnati, OH, 45221, USA
– sequence: 3
  givenname: Capucine
  surname: LCorriveau
  fullname: LCorriveau, Capucine
  organization: Charles River Laboratories Montreal ULC, Boisbriand, Quebec, J7H 1N8, Canada
– sequence: 4
  givenname: Mark
  surname: Paquin
  fullname: Paquin, Mark
  organization: Medical Products Market Consulting, Inc, Indianapolis, IN, 46202, USA
– sequence: 5
  givenname: Madeleine
  surname: Chagnon
  fullname: Chagnon, Madeleine
  organization: Charles River Laboratories Montreal ULC, Boisbriand, Quebec, J7H 1N8, Canada
– sequence: 6
  givenname: Dana
  surname: Begun
  fullname: Begun, Dana
  organization: Waygate Technologies, Baker Hughes, Cincinnati, OH, 45241, USA
– sequence: 7
  givenname: Vesselin
  surname: Shanov
  fullname: Shanov, Vesselin
  email: shanovvn@ucmail.uc.edu
  organization: Department of Mechanical and Materials Engineering, University of Cincinnati, OH, 45221, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33313446$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEiWkp_AbxkQYIfM_Z4AVJU8ahUCRYgITaWH3cSRzN2sJ1I2fHpOE1btWy68Vhnzj3H9577sjkJMUDTvCF4TjDh79dz46O2ZdJlTjGtKJljQp81Z7Tt6IxI-evkwf20uch5jTEmoh5YvGhOGWOEtS0_a_5-TzD6yQed9iiXrdujGNAUHYyjD8t3aNAmeauLr7DZo80qljizK5gqOCIodlVpSAeHfEA7v4uoQC4HLA6ovtPBMmmnzQho0ssA2W8ntPjNSHWDUPKr5vmgxwwXt9_z5ufnTz8uv86uv325ulxcz2zXkjKTRGPWE0o55ZI5AkDpYBkepOHS9hT6gRDTEY5FL1xLwfDOctNKh0F3lLHz5uqo66Jeq03yU-1YRe3VDRDTUulUvB1BiR46rmlv-ta0vRCGmm6QktYZU8kxrlofj1qbrZnA2dpH0uMj0cd_gl-pZdwpIXDPpagCb28FUvyzrfNSk8-2jlwHiNusaFujoqzrSKW-fuh1b3IXYSV8OBJsijknGJT15Savau1HRbA6bI1aq_utUYetUYSo2lGtF__V31k8Xbk4VkLNbechqWw9BAvOJ7ClDtY_qfEP-Z3iXw
CitedBy_id crossref_primary_10_1016_j_bioactmat_2021_09_025
crossref_primary_10_1016_j_jma_2025_01_025
crossref_primary_10_1016_j_jallcom_2022_166377
crossref_primary_10_1515_mt_2023_0138
crossref_primary_10_3389_fbioe_2022_940172
crossref_primary_10_1016_j_jma_2023_07_020
crossref_primary_10_3389_fbioe_2022_891632
crossref_primary_10_1016_j_mtcomm_2022_103467
crossref_primary_10_2139_ssrn_4349298
crossref_primary_10_1002_adfm_202205634
crossref_primary_10_1021_acsabm_2c00167
crossref_primary_10_1016_j_intermet_2022_107594
crossref_primary_10_1016_j_cjmeam_2022_100020
crossref_primary_10_1007_s13239_022_00619_1
Cites_doi 10.1002/jbm.a.31170
10.1056/NEJM199408253310802
10.1016/j.biomaterials.2005.10.012
10.1177/0300985811402846
10.1016/S0098-2997(02)00089-4
10.1002/jbm.b.33248
10.1016/j.mseb.2011.02.010
10.1111/j.1540-8183.2007.00319.x
10.1111/j.1540-8183.2004.04081.x
10.1016/S0167-577X(03)00500-7
10.1016/j.biomaterials.2008.12.001
10.1016/j.ijfatigue.2016.02.026
10.1161/01.CIR.102.4.399
10.1016/j.actbio.2014.08.034
10.1002/ccd.20727
10.1002/jbm.a.31293
10.1016/j.actbio.2014.07.005
10.1557/jmr.2009.0323
10.1016/j.bioactmat.2020.01.002
10.1002/mawe.200600027
10.1016/j.jtcvs.2018.09.128
10.1016/j.jmst.2020.02.006
10.1161/01.CIR.0000033485.20594.6F
10.1021/acs.langmuir.8b01623
10.1002/jbm.b.32501
10.1002/wnan.123
10.1016/j.actbio.2010.12.004
10.18103/mra.v8i3.2067
10.1002/adem.200800035
10.1016/j.jmst.2019.12.011
10.1016/j.bioactmat.2019.01.001
10.3390/app9214503
10.1016/j.biomaterials.2004.09.049
10.1016/j.jmst.2013.03.004
10.1016/j.colsurfb.2016.03.086
10.1016/S0924-0136(01)01127-X
10.1016/j.actbio.2009.10.008
10.1111/j.1540-8183.2010.00567.x
10.1016/j.jma.2019.09.008
10.1016/j.msec.2011.03.012
10.1016/S0140-6736(07)60853-8
10.1002/ccd.20950
10.1002/(SICI)1522-726X(199903)46:3<380::AID-CCD27>3.0.CO;2-J
10.1016/j.jmbbm.2015.12.020
10.1155/2016/9673174
10.1038/s41598-017-01214-4
10.1186/s12938-016-0307-6
10.1016/j.bioactmat.2019.12.001
10.1002/jbm.b.32680
ContentType Journal Article
Copyright 2020 The Authors
2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 The Authors
Copyright_xml – notice: 2020 The Authors
– notice: 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
– notice: 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.bioactmat.2020.11.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2452-199X
EndPage 1675
ExternalDocumentID oai_doaj_org_article_78e56a28b84b4877b2b5f99201229600
PMC7708697
33313446
10_1016_j_bioactmat_2020_11_012
S2452199X20303030
Genre Journal Article
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
0R~
AAYWO
AAYXX
ABJCF
ACVFH
ADCNI
ADMLS
ADVLN
AEUPX
AFKRA
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
HCIFZ
KB.
M7P
M~E
PDBOC
PHGZM
PHGZT
PIMPY
NPM
PQGLB
7X8
5PM
ID FETCH-LOGICAL-c541t-91a03812262693d1ee22fc30f9b69c82e8f11b5160787d42eb65c6b49d0ea5233
IEDL.DBID DOA
ISSN 2452-199X
IngestDate Wed Aug 27 01:32:03 EDT 2025
Thu Aug 21 18:26:15 EDT 2025
Fri Jul 11 00:51:21 EDT 2025
Mon Jul 21 06:02:26 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Tue Jul 01 02:11:24 EDT 2025
Tue May 16 22:30:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Micro-CT
Histology
Stents
FEA modelling
Photo-chemically etching
Magnesium alloy
Language English
License This is an open access article under the CC BY-NC-ND license.
2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-91a03812262693d1ee22fc30f9b69c82e8f11b5160787d42eb65c6b49d0ea5233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3771-3368
OpenAccessLink https://doaj.org/article/78e56a28b84b4877b2b5f99201229600
PMID 33313446
PQID 2470023551
PQPubID 23479
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_78e56a28b84b4877b2b5f99201229600
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708697
proquest_miscellaneous_2470023551
pubmed_primary_33313446
crossref_citationtrail_10_1016_j_bioactmat_2020_11_012
crossref_primary_10_1016_j_bioactmat_2020_11_012
elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_11_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace China
PublicationPlace_xml – name: China
PublicationTitle Bioactive materials
PublicationTitleAlternate Bioact Mater
PublicationYear 2021
Publisher Elsevier B.V
KeAi Publishing
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Publishing
– name: KeAi Communications Co., Ltd
References Koo, Tiasha, Shanov, Yun (bib48) 2017; 7
Li, Yan, Zhou, Xiong, Wang, Yuan, Zheng, Cheng (bib13) 2019; 4
Kandala, Zhang, Hopkins, An, Pixley, Shanov (bib30) 2019; 9
Guerchais, Scalet, Constantinescu, Auricchio (bib5) 2016; 87
Swindle, Makin, Herron, Clubb, Frazier (bib53) 2012; 49
Biber, Pauser, Geßlein, Bail (bib15) 2016; 2016
Di Mario, Griffiths, Goktekin, Peeters, Verbist, Bosiers, Deloose, Heublein, Rohde, Kasese, Ilsley, Erbel, Di Mario, Griffiths, Goktekin, Peeters, Verbist, Bosiers, Deloose, Heublein, Rohde, Kasese, Ilsley, Erbel (bib37) 2004; 17
Witte, Ulrich, Rudert, Willbold (bib40) 2006; 81
Könneker, Krockenberger, Pieh, Von Falck, Brandewiede, Vogt, Kirschner, Ziegler (bib14) 2019; 20
Willbold, Kaya, Kaya, Beckmann, Witte (bib29) 2011; 176
Wang, Cui, Ren, Zou, Ma, Wang, Zheng, Chen, Zeng, Zheng (bib32) 2020; 47
Wang, Zhang, Li, Liu, Guan (bib11) 2020; 5
Rieu, Paul, Masson, Jean (bib55) 1999; 46
Demir, Previtali, Biffi (bib26) 2013; 2013
Dreher, Nagaraja, Batchelor (bib8) 2016; 59
Witte, Hort, Feyerabend, Vogt (bib21) 2011
Waksman, Pakala, Baffour, Seabron, Hellinga, Tio (bib19) 2008; 21
Chen, Xu, Smith, Sankar (bib7) 2014; 10
Xin, Hu, Chu (bib22) 2011; 7
Erbel, Di Mario, Bartunek, Bonnier, de Bruyne, Eberli, Erne, Haude, Heublein, Horrigan, Ilsley, Böse, Koolen, Lüscher, Weissman, Waksman (bib36) 2007; 17
Coyan, D'Amore, Matsumura, Pedersen, Luketich, Shanov, Katz, David, Wagner, Badhwar (bib52) 2019; 157
Wang, Giridharan, Shanov, Xu, Collins, White, Jang, Sankar, Huang, Yun (bib46) 2014; 10
Schwartz, Edelman, Carter, Chronos, Rogers, Robinson, Waksman, Weinberger, Wilensky, Jensen, Zuckerman, Virmani (bib54) 2002; 106
Aoki, Nakazawa, Tanabe, Hoye, Yamamoto, Nakayama, Onuma, Higashikuni, Otsuki, Yagishita, Yachi, Nakajima, Hara (bib4) 2007; 69
Wu, Li, Cheng, Zheng, Han (bib45) 2013; 29
Witte, Reifenrath, Müller, Crostack, Nellesen, Bach, Bormann, Rudert (bib43) 2006; 37
Zeng, Dietzel, Witte, Hort, Blawert (bib24) 2008; 10
Nevzati (bib16) 2017; 2
Kun, Zhi-yong, Xiao-yan, Ti, Wen-xian (bib28) 2010; 4
Vormann (bib23) 2003; 24
Wen, Yamada, Shimojima, Chino, Hosokawa, Mabuchi (bib41) 2004; 58
Yang, Fang, Liu, Hou, Wang, Zhou, Zhu, Zeng, Zheng, Guan (bib49) 2020; 46
Kandala, Zhang, An, Pixley, Shanov (bib31) 2020; 8
Li, Liu, Wang, Zhao, Qiao, Wang, Gu, Li, Zhu (bib2) 2017; 16
Ye, Chen, Mao, Gu, Shankarraman, Hong, Shanov, Wagner (bib44) 2019; 35
Witte, Ulrich, Palm, Willbold (bib42) 2007; 81
Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth, Windhagen (bib39) 2005; 26
Tamai, Igaki, Kyo, Kosuga (bib17) 2000; 102
Waksman, Pakala, Kuchulakanti, Baffour, Hellinga, Seabron, Tio, Wittchow, Hartwig, Harder, Rohde, Heublein, Andreae, Waldmann, Haverich (bib34) 2006; 68
ASTM (bib56) 2011
Gu, Mao, Ye, Koo, Yun, Tiasha, Shanov, Wagner (bib47) 2016; 144
AL-Mangour, Mongrain, Yue (bib1) 2013
Yin, Qi, Zeng, Chen, Gu, Guan, Zheng (bib33) 2020; 8
Hänzi, Metlar, Schinhammer, Aguib, Lüth, Löffler, Uggowitzer (bib10) 2011; 31
Ng, Ng, Zhu, Lim, Venkatraman (bib12) 2012; 100 B
Dreher, Nagaraja, Li (bib18) 2015; 103
Hänzi, Gerber, Schinhammer, Löffler, Uggowitzer (bib58) 2010; 6
Fischman, Leon, Baim, Schatz, Savage, Penn, Detre, Veltri, Ricci, Nobuyoshi, Cleman, Heuser, Almond, Teirstein, Fish, Colombo, Brinker, Moses, Shaknovich, Hirshfeld, Bailey, Ellis, Rake, Goldberg (bib3) 2002; 331
Li, Yu, Zeng, Zhang, Cui, Wan, Xia (bib50) 2020; 5
Xin, Huo, Hu, Tang, Chu (bib57) 2009; 24
Walker, Shadanbaz, Kirkland, Stace, Woodfield, Staiger, Dias (bib20) 2012; 100 B
Xu, Pan, Yu, Yang, Zhang, Yang (bib38) 2009; 30
Shanov, Roy-Chaudhury, Schulz, Yin, Campos-Naciff, Wang (bib27) 2013
Waksman, Erbel, Di Mario, Bartunek, de Bruyne, Eberli, Erne, Haude, Horrigan, Ilsley, Böse, Bonnier, Koolen, Lüscher, Weissman (bib35) 2009; 2
Marrey, Burgermeister, Grishaber, Ritchie (bib9) 2006; 27
Martinez, Chaikof (bib25) 2011; 3
Adlakha, Sheikh, Wu, Burket, Pandya, Colyer, Eltahawy, Cooper (bib6) 2010; 23
Chua, Mac Donald, Hashmi (bib51) 2002; 120
Di Mario (10.1016/j.bioactmat.2020.11.012_bib37) 2004; 17
Li (10.1016/j.bioactmat.2020.11.012_bib2) 2017; 16
Gu (10.1016/j.bioactmat.2020.11.012_bib47) 2016; 144
Willbold (10.1016/j.bioactmat.2020.11.012_bib29) 2011; 176
Walker (10.1016/j.bioactmat.2020.11.012_bib20) 2012; 100 B
Rieu (10.1016/j.bioactmat.2020.11.012_bib55) 1999; 46
Dreher (10.1016/j.bioactmat.2020.11.012_bib8) 2016; 59
Martinez (10.1016/j.bioactmat.2020.11.012_bib25) 2011; 3
AL-Mangour (10.1016/j.bioactmat.2020.11.012_bib1) 2013
Dreher (10.1016/j.bioactmat.2020.11.012_bib18) 2015; 103
Chua (10.1016/j.bioactmat.2020.11.012_bib51) 2002; 120
Hänzi (10.1016/j.bioactmat.2020.11.012_bib58) 2010; 6
Li (10.1016/j.bioactmat.2020.11.012_bib50) 2020; 5
Aoki (10.1016/j.bioactmat.2020.11.012_bib4) 2007; 69
Waksman (10.1016/j.bioactmat.2020.11.012_bib19) 2008; 21
Kandala (10.1016/j.bioactmat.2020.11.012_bib30) 2019; 9
Guerchais (10.1016/j.bioactmat.2020.11.012_bib5) 2016; 87
Yin (10.1016/j.bioactmat.2020.11.012_bib33) 2020; 8
Xin (10.1016/j.bioactmat.2020.11.012_bib22) 2011; 7
Vormann (10.1016/j.bioactmat.2020.11.012_bib23) 2003; 24
Li (10.1016/j.bioactmat.2020.11.012_bib13) 2019; 4
Wang (10.1016/j.bioactmat.2020.11.012_bib32) 2020; 47
Hänzi (10.1016/j.bioactmat.2020.11.012_bib10) 2011; 31
Kun (10.1016/j.bioactmat.2020.11.012_bib28) 2010; 4
Erbel (10.1016/j.bioactmat.2020.11.012_bib36) 2007; 17
ASTM (10.1016/j.bioactmat.2020.11.012_bib56) 2011
Waksman (10.1016/j.bioactmat.2020.11.012_bib35) 2009; 2
Wen (10.1016/j.bioactmat.2020.11.012_bib41) 2004; 58
Marrey (10.1016/j.bioactmat.2020.11.012_bib9) 2006; 27
Wu (10.1016/j.bioactmat.2020.11.012_bib45) 2013; 29
Xu (10.1016/j.bioactmat.2020.11.012_bib38) 2009; 30
Tamai (10.1016/j.bioactmat.2020.11.012_bib17) 2000; 102
Könneker (10.1016/j.bioactmat.2020.11.012_bib14) 2019; 20
Ye (10.1016/j.bioactmat.2020.11.012_bib44) 2019; 35
Yang (10.1016/j.bioactmat.2020.11.012_bib49) 2020; 46
Biber (10.1016/j.bioactmat.2020.11.012_bib15) 2016; 2016
Fischman (10.1016/j.bioactmat.2020.11.012_bib3) 2002; 331
Witte (10.1016/j.bioactmat.2020.11.012_bib39) 2005; 26
Chen (10.1016/j.bioactmat.2020.11.012_bib7) 2014; 10
Witte (10.1016/j.bioactmat.2020.11.012_bib40) 2006; 81
Demir (10.1016/j.bioactmat.2020.11.012_bib26) 2013; 2013
Schwartz (10.1016/j.bioactmat.2020.11.012_bib54) 2002; 106
Coyan (10.1016/j.bioactmat.2020.11.012_bib52) 2019; 157
Kandala (10.1016/j.bioactmat.2020.11.012_bib31) 2020; 8
Nevzati (10.1016/j.bioactmat.2020.11.012_bib16) 2017; 2
Shanov (10.1016/j.bioactmat.2020.11.012_bib27) 2013
Wang (10.1016/j.bioactmat.2020.11.012_bib46) 2014; 10
Witte (10.1016/j.bioactmat.2020.11.012_bib21) 2011
Swindle (10.1016/j.bioactmat.2020.11.012_bib53) 2012; 49
Xin (10.1016/j.bioactmat.2020.11.012_bib57) 2009; 24
Waksman (10.1016/j.bioactmat.2020.11.012_bib34) 2006; 68
Witte (10.1016/j.bioactmat.2020.11.012_bib42) 2007; 81
Koo (10.1016/j.bioactmat.2020.11.012_bib48) 2017; 7
Ng (10.1016/j.bioactmat.2020.11.012_bib12) 2012; 100 B
Witte (10.1016/j.bioactmat.2020.11.012_bib43) 2006; 37
Adlakha (10.1016/j.bioactmat.2020.11.012_bib6) 2010; 23
Zeng (10.1016/j.bioactmat.2020.11.012_bib24) 2008; 10
Wang (10.1016/j.bioactmat.2020.11.012_bib11) 2020; 5
38973994 - Bioact Mater. 2024 Jun 14;40:275-279. doi: 10.1016/j.bioactmat.2024.06.006
References_xml – volume: 9
  year: 2019
  ident: bib30
  article-title: In vitro and in vivo testing of zinc as a biodegradable material for stents fabricated by photo-chemical etching
  publication-title: Appl. Sci.
– volume: 24
  start-page: 2711
  year: 2009
  end-page: 2719
  ident: bib57
  article-title: Corrosion products on biomedical magnesium alloy soaked in simulated body fluids
  publication-title: J. Mater. Res.
– volume: 21
  start-page: 15
  year: 2008
  end-page: 20
  ident: bib19
  article-title: Short-term effects of biocorrodible iron stents in porcine coronary arteries
  publication-title: J. Intervent. Cardiol.
– volume: 5
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib11
  article-title: Investigation of Mg–Zn–Y–Nd alloy for potential application of biodegradable esophageal stent material
  publication-title: Bioact. Mater.
– volume: 68
  start-page: 607
  year: 2006
  end-page: 617
  ident: bib34
  article-title: Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter
  publication-title: Cardiovasc. Interv.
– volume: 8
  start-page: 42
  year: 2020
  end-page: 65
  ident: bib33
  article-title: Advances in coatings on biodegradable magnesium alloys
  publication-title: J. Magnes. Alloy.
– volume: 20
  start-page: 1
  year: 2019
  ident: bib14
  article-title: Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: protocol for the randomized controlled SCAMAG clinical trial
  publication-title: BMC Muscoskel. Disord.
– volume: 2
  start-page: 312
  year: 2009
  end-page: 320
  ident: bib35
  article-title: Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC cardiovasc
  publication-title: Interv
– volume: 16
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib2
  article-title: Design optimization of stent and its dilatation balloon using kriging surrogate model
  publication-title: Biomed. Eng. Online
– volume: 4
  start-page: 114
  year: 2019
  end-page: 119
  ident: bib13
  article-title: In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis
  publication-title: Bioact. Mater.
– volume: 10
  start-page: 5213
  year: 2014
  end-page: 5223
  ident: bib46
  article-title: Flow-induced corrosion behavior of absorbable magnesium-based stents
  publication-title: Acta Biomater.
– volume: 31
  start-page: 1098
  year: 2011
  end-page: 1103
  ident: bib10
  article-title: Biodegradable wound-closing devices for gastrointestinal interventions: degradation performance of the magnesium tip
  publication-title: Mater. Sci. Eng. C
– start-page: 606
  year: 2013
  end-page: 621
  ident: bib1
  article-title: Coronary stents fracture: an engineering approach (review)
  publication-title: Mater. Sci. Appl.
– volume: 35
  start-page: 1421
  year: 2019
  end-page: 1429
  ident: bib44
  article-title: Biodegradable zwitterionic polymer coatings for magnesium alloy stents
  publication-title: Langmuir
– volume: 7
  start-page: 1
  year: 2017
  ident: bib48
  article-title: Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models
  publication-title: Sci. Rep.
– volume: 102
  start-page: 399
  year: 2000
  end-page: 404
  ident: bib17
  article-title: Initial and 6-month results of biodegradable poly- l -lactic
  publication-title: Circulation
– volume: 331
  start-page: 496
  year: 2002
  end-page: 501
  ident: bib3
  article-title: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease
  publication-title: N. Engl. J. Med.
– volume: 29
  start-page: 545
  year: 2013
  end-page: 550
  ident: bib45
  article-title: Invitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite
  publication-title: J. Mater. Sci. Technol.
– volume: 103
  start-page: 700
  year: 2015
  end-page: 708
  ident: bib18
  article-title: Creep loading during degradation attenuates mechanical property loss in PLGA
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 81
  start-page: 757
  year: 2007
  end-page: 765
  ident: bib42
  article-title: Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling
  publication-title: J. Biomed. Mater. Res.
– volume: 87
  start-page: 405
  year: 2016
  end-page: 417
  ident: bib5
  article-title: Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue
  publication-title: Int. J. Fatig.
– volume: 5
  start-page: 34
  year: 2020
  end-page: 43
  ident: bib50
  article-title: In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition
  publication-title: Bioact. Mater.
– volume: 26
  start-page: 3557
  year: 2005
  end-page: 3563
  ident: bib39
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
– volume: 46
  start-page: 380
  year: 1999
  end-page: 391
  ident: bib55
  article-title: Vincent garitey, marc silvestri, pierre roquebert, radial force of coronary stents: a comparative analysis, catheter
  publication-title: Cardiovasc. Interv.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 11
  ident: bib26
  article-title: Fibre laser cutting and chemical etching of AZ31 for manufacturing biodegradable stents
  publication-title: Ann. Mater. Sci. Eng.
– volume: 24
  start-page: 27
  year: 2003
  end-page: 37
  ident: bib23
  article-title: Magnesium: nutrition and metabolism
  publication-title: Mol. Aspect. Med.
– volume: 144
  start-page: 170
  year: 2016
  end-page: 179
  ident: bib47
  article-title: Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents
  publication-title: Colloids Surf. B Biointerfaces
– volume: 176
  start-page: 1835
  year: 2011
  end-page: 1840
  ident: bib29
  article-title: Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site
  publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
– volume: 81
  start-page: 748
  year: 2006
  end-page: 756
  ident: bib40
  article-title: Biodegradable magnesium scaffolds: Part I: appropriate inflammatory response
  publication-title: J. Biomed. Mater. Res.
– volume: 37
  start-page: 504
  year: 2006
  end-page: 508
  ident: bib43
  article-title: Cartilage repair on magnesium scaffolds used as a subchondral bone replacement
  publication-title: Mater. Werkst.
– volume: 100 B
  start-page: 693
  year: 2012
  end-page: 699
  ident: bib12
  article-title: A fully degradable tracheal stent: in vitro and in vivo characterization of material degradation
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– start-page: 2011
  year: 2011
  ident: bib56
  article-title: Standard practice for laboratory immersion corrosion testing of metals
  publication-title: Annu. B. ASTM Stand
– volume: 47
  start-page: 52
  year: 2020
  end-page: 67
  ident: bib32
  article-title: In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31
  publication-title: J. Mater. Sci. Technol.
– volume: 157
  start-page: 1809
  year: 2019
  end-page: 1816
  ident: bib52
  article-title: In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve
  publication-title: J. Thorac. Cardiovasc. Surg.
– volume: 106
  start-page: 1867
  year: 2002
  end-page: 1873
  ident: bib54
  article-title: Drug-eluting stents in preclinical studies recommended evaluation from a consensus group
  publication-title: Circulation
– volume: 46
  start-page: 114
  year: 2020
  end-page: 126
  ident: bib49
  article-title: Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent
  publication-title: J. Mater. Sci. Technol.
– volume: 30
  start-page: 1512
  year: 2009
  end-page: 1523
  ident: bib38
  article-title: In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy
  publication-title: Biomaterials
– volume: 6
  start-page: 1824
  year: 2010
  end-page: 1833
  ident: bib58
  article-title: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys
  publication-title: Acta Biomater.
– volume: 58
  start-page: 357
  year: 2004
  end-page: 360
  ident: bib41
  article-title: Compressibility of porous magnesium foam: dependency on porosity and pore size
  publication-title: Mater. Lett.
– volume: 3
  start-page: 256
  year: 2011
  end-page: 268
  ident: bib25
  article-title: Microfabrication and nanotechnology in stent design
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 23
  start-page: 411
  year: 2010
  end-page: 419
  ident: bib6
  article-title: Stent fracture in the coronary and peripheral arteries
  publication-title: J. Intervent. Cardiol.
– year: 2013
  ident: bib27
  article-title: Making Magnesium Biodegradable Stent for Medical Implant Applications
– volume: 49
  start-page: 344
  year: 2012
  end-page: 356
  ident: bib53
  article-title: Swine as models in biomedical research and toxicology testing
  publication-title: Vet. Pathol.
– volume: 59
  start-page: 139
  year: 2016
  end-page: 145
  ident: bib8
  article-title: Effects of fatigue on the chemical and mechanical degradation of model stent sub-units
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 10
  start-page: 4561
  year: 2014
  end-page: 4573
  ident: bib7
  article-title: Recent advances on the development of magnesium alloys for biodegradable implants
  publication-title: Acta Biomater.
– volume: 120
  start-page: 335
  year: 2002
  end-page: 340
  ident: bib51
  article-title: Finite-element simulation of stent expansion
  publication-title: J. Mater. Process. Technol.
– volume: 8
  year: 2020
  ident: bib31
  article-title: Effect of surface-modification on in vitro corrosion of biodegradable magnesium-based helical stent fabricated by photo-chemical etching
  publication-title: Med. Res. Arch.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 4
  ident: bib15
  article-title: Magnesium-based absorbable metal screws for intra-articular fracture fixation
  publication-title: Case Rep. Orthop.
– volume: 100 B
  start-page: 1134
  year: 2012
  end-page: 1141
  ident: bib20
  article-title: Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
– volume: 17
  start-page: 391
  year: 2004
  end-page: 395
  ident: bib37
  article-title: Drug-eluting bioabsorbable magnesium stent
  publication-title: J. Intervent. Cardiol.
– start-page: 403
  year: 2011
  ident: bib21
  article-title: Corrosion of magnesium alloys
  publication-title: Corros. Magnes. Alloy.
– volume: 17
  start-page: 1869
  year: 2007
  end-page: 1875
  ident: bib36
  article-title: Temporary scaff olding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial
  publication-title: Lancet
– volume: 69
  start-page: 380
  year: 2007
  end-page: 386
  ident: bib4
  article-title: Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation, Catheter
  publication-title: Cardiovasc. Interv.
– volume: 2
  start-page: 210
  year: 2017
  end-page: 216
  ident: bib16
  article-title: Biodegradable magnesium stent treatment of saccular aneurysms in a rat model - introduction of the surgical technique
  publication-title: JoVE
– volume: 10
  start-page: 3
  year: 2008
  end-page: 14
  ident: bib24
  article-title: Progress and challenge for magnesium alloys as biomaterials
  publication-title: Adv. Eng. Mater.
– volume: 4
  start-page: 1129
  year: 2010
  end-page: 1132
  ident: bib28
  article-title: Constitutive analysis of AZ31 magnesium alloy plate
  publication-title: J. Cent. South Univ. Technol.
– volume: 27
  start-page: 1988
  year: 2006
  end-page: 2000
  ident: bib9
  article-title: Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis
  publication-title: Biomaterials
– volume: 7
  start-page: 1452
  year: 2011
  end-page: 1459
  ident: bib22
  article-title: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review
  publication-title: Acta Biomater.
– volume: 81
  start-page: 748
  issue: 3
  year: 2006
  ident: 10.1016/j.bioactmat.2020.11.012_bib40
  article-title: Biodegradable magnesium scaffolds: Part I: appropriate inflammatory response
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.31170
– volume: 331
  start-page: 496
  year: 2002
  ident: 10.1016/j.bioactmat.2020.11.012_bib3
  article-title: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199408253310802
– volume: 27
  start-page: 1988
  year: 2006
  ident: 10.1016/j.bioactmat.2020.11.012_bib9
  article-title: Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.012
– volume: 49
  start-page: 344
  year: 2012
  ident: 10.1016/j.bioactmat.2020.11.012_bib53
  article-title: Swine as models in biomedical research and toxicology testing
  publication-title: Vet. Pathol.
  doi: 10.1177/0300985811402846
– volume: 24
  start-page: 27
  year: 2003
  ident: 10.1016/j.bioactmat.2020.11.012_bib23
  article-title: Magnesium: nutrition and metabolism
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/S0098-2997(02)00089-4
– volume: 103
  start-page: 700
  year: 2015
  ident: 10.1016/j.bioactmat.2020.11.012_bib18
  article-title: Creep loading during degradation attenuates mechanical property loss in PLGA
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.33248
– volume: 2
  start-page: 312
  year: 2009
  ident: 10.1016/j.bioactmat.2020.11.012_bib35
  article-title: Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC cardiovasc
  publication-title: Interv
– start-page: 606
  year: 2013
  ident: 10.1016/j.bioactmat.2020.11.012_bib1
  article-title: Coronary stents fracture: an engineering approach (review)
  publication-title: Mater. Sci. Appl.
– volume: 176
  start-page: 1835
  year: 2011
  ident: 10.1016/j.bioactmat.2020.11.012_bib29
  article-title: Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site
  publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol.
  doi: 10.1016/j.mseb.2011.02.010
– volume: 21
  start-page: 15
  year: 2008
  ident: 10.1016/j.bioactmat.2020.11.012_bib19
  article-title: Short-term effects of biocorrodible iron stents in porcine coronary arteries
  publication-title: J. Intervent. Cardiol.
  doi: 10.1111/j.1540-8183.2007.00319.x
– volume: 20
  start-page: 1
  year: 2019
  ident: 10.1016/j.bioactmat.2020.11.012_bib14
  article-title: Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: protocol for the randomized controlled SCAMAG clinical trial
  publication-title: BMC Muscoskel. Disord.
– volume: 17
  start-page: 391
  year: 2004
  ident: 10.1016/j.bioactmat.2020.11.012_bib37
  article-title: Drug-eluting bioabsorbable magnesium stent
  publication-title: J. Intervent. Cardiol.
  doi: 10.1111/j.1540-8183.2004.04081.x
– volume: 58
  start-page: 357
  year: 2004
  ident: 10.1016/j.bioactmat.2020.11.012_bib41
  article-title: Compressibility of porous magnesium foam: dependency on porosity and pore size
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(03)00500-7
– volume: 30
  start-page: 1512
  year: 2009
  ident: 10.1016/j.bioactmat.2020.11.012_bib38
  article-title: In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.001
– volume: 87
  start-page: 405
  year: 2016
  ident: 10.1016/j.bioactmat.2020.11.012_bib5
  article-title: Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue
  publication-title: Int. J. Fatig.
  doi: 10.1016/j.ijfatigue.2016.02.026
– volume: 102
  start-page: 399
  year: 2000
  ident: 10.1016/j.bioactmat.2020.11.012_bib17
  article-title: Initial and 6-month results of biodegradable poly- l -lactic
  publication-title: Circulation
  doi: 10.1161/01.CIR.102.4.399
– year: 2013
  ident: 10.1016/j.bioactmat.2020.11.012_bib27
– volume: 10
  start-page: 5213
  year: 2014
  ident: 10.1016/j.bioactmat.2020.11.012_bib46
  article-title: Flow-induced corrosion behavior of absorbable magnesium-based stents
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.08.034
– volume: 68
  start-page: 607
  year: 2006
  ident: 10.1016/j.bioactmat.2020.11.012_bib34
  article-title: Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter
  publication-title: Cardiovasc. Interv.
  doi: 10.1002/ccd.20727
– volume: 81
  start-page: 757
  issue: 3
  year: 2007
  ident: 10.1016/j.bioactmat.2020.11.012_bib42
  article-title: Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.a.31293
– volume: 10
  start-page: 4561
  year: 2014
  ident: 10.1016/j.bioactmat.2020.11.012_bib7
  article-title: Recent advances on the development of magnesium alloys for biodegradable implants
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.07.005
– volume: 24
  start-page: 2711
  year: 2009
  ident: 10.1016/j.bioactmat.2020.11.012_bib57
  article-title: Corrosion products on biomedical magnesium alloy soaked in simulated body fluids
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2009.0323
– volume: 5
  start-page: 1
  year: 2020
  ident: 10.1016/j.bioactmat.2020.11.012_bib11
  article-title: Investigation of Mg–Zn–Y–Nd alloy for potential application of biodegradable esophageal stent material
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2020.01.002
– volume: 37
  start-page: 504
  year: 2006
  ident: 10.1016/j.bioactmat.2020.11.012_bib43
  article-title: Cartilage repair on magnesium scaffolds used as a subchondral bone replacement
  publication-title: Mater. Werkst.
  doi: 10.1002/mawe.200600027
– volume: 157
  start-page: 1809
  year: 2019
  ident: 10.1016/j.bioactmat.2020.11.012_bib52
  article-title: In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2018.09.128
– volume: 47
  start-page: 52
  year: 2020
  ident: 10.1016/j.bioactmat.2020.11.012_bib32
  article-title: In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.02.006
– volume: 106
  start-page: 1867
  year: 2002
  ident: 10.1016/j.bioactmat.2020.11.012_bib54
  article-title: Drug-eluting stents in preclinical studies recommended evaluation from a consensus group
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000033485.20594.6F
– volume: 35
  start-page: 1421
  year: 2019
  ident: 10.1016/j.bioactmat.2020.11.012_bib44
  article-title: Biodegradable zwitterionic polymer coatings for magnesium alloy stents
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b01623
– volume: 100 B
  start-page: 693
  year: 2012
  ident: 10.1016/j.bioactmat.2020.11.012_bib12
  article-title: A fully degradable tracheal stent: in vitro and in vivo characterization of material degradation
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.32501
– volume: 2
  start-page: 210
  year: 2017
  ident: 10.1016/j.bioactmat.2020.11.012_bib16
  article-title: Biodegradable magnesium stent treatment of saccular aneurysms in a rat model - introduction of the surgical technique
  publication-title: JoVE
– start-page: 403
  year: 2011
  ident: 10.1016/j.bioactmat.2020.11.012_bib21
  article-title: Corrosion of magnesium alloys
– volume: 3
  start-page: 256
  year: 2011
  ident: 10.1016/j.bioactmat.2020.11.012_bib25
  article-title: Microfabrication and nanotechnology in stent design
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.123
– volume: 7
  start-page: 1452
  year: 2011
  ident: 10.1016/j.bioactmat.2020.11.012_bib22
  article-title: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.12.004
– volume: 8
  year: 2020
  ident: 10.1016/j.bioactmat.2020.11.012_bib31
  article-title: Effect of surface-modification on in vitro corrosion of biodegradable magnesium-based helical stent fabricated by photo-chemical etching
  publication-title: Med. Res. Arch.
  doi: 10.18103/mra.v8i3.2067
– volume: 10
  start-page: 3
  year: 2008
  ident: 10.1016/j.bioactmat.2020.11.012_bib24
  article-title: Progress and challenge for magnesium alloys as biomaterials
  publication-title: Adv. Eng. Mater.
  doi: 10.1002/adem.200800035
– volume: 46
  start-page: 114
  year: 2020
  ident: 10.1016/j.bioactmat.2020.11.012_bib49
  article-title: Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2019.12.011
– volume: 4
  start-page: 114
  year: 2019
  ident: 10.1016/j.bioactmat.2020.11.012_bib13
  article-title: In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2019.01.001
– volume: 9
  year: 2019
  ident: 10.1016/j.bioactmat.2020.11.012_bib30
  article-title: In vitro and in vivo testing of zinc as a biodegradable material for stents fabricated by photo-chemical etching
  publication-title: Appl. Sci.
  doi: 10.3390/app9214503
– volume: 26
  start-page: 3557
  year: 2005
  ident: 10.1016/j.bioactmat.2020.11.012_bib39
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.049
– volume: 29
  start-page: 545
  year: 2013
  ident: 10.1016/j.bioactmat.2020.11.012_bib45
  article-title: Invitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2013.03.004
– volume: 144
  start-page: 170
  year: 2016
  ident: 10.1016/j.bioactmat.2020.11.012_bib47
  article-title: Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2016.03.086
– volume: 120
  start-page: 335
  year: 2002
  ident: 10.1016/j.bioactmat.2020.11.012_bib51
  article-title: Finite-element simulation of stent expansion
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/S0924-0136(01)01127-X
– volume: 6
  start-page: 1824
  year: 2010
  ident: 10.1016/j.bioactmat.2020.11.012_bib58
  article-title: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.10.008
– volume: 23
  start-page: 411
  year: 2010
  ident: 10.1016/j.bioactmat.2020.11.012_bib6
  article-title: Stent fracture in the coronary and peripheral arteries
  publication-title: J. Intervent. Cardiol.
  doi: 10.1111/j.1540-8183.2010.00567.x
– volume: 8
  start-page: 42
  year: 2020
  ident: 10.1016/j.bioactmat.2020.11.012_bib33
  article-title: Advances in coatings on biodegradable magnesium alloys
  publication-title: J. Magnes. Alloy.
  doi: 10.1016/j.jma.2019.09.008
– volume: 31
  start-page: 1098
  year: 2011
  ident: 10.1016/j.bioactmat.2020.11.012_bib10
  article-title: Biodegradable wound-closing devices for gastrointestinal interventions: degradation performance of the magnesium tip
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2011.03.012
– volume: 17
  start-page: 1869
  year: 2007
  ident: 10.1016/j.bioactmat.2020.11.012_bib36
  article-title: Temporary scaff olding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(07)60853-8
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.bioactmat.2020.11.012_bib26
  article-title: Fibre laser cutting and chemical etching of AZ31 for manufacturing biodegradable stents
  publication-title: Ann. Mater. Sci. Eng.
– volume: 69
  start-page: 380
  year: 2007
  ident: 10.1016/j.bioactmat.2020.11.012_bib4
  article-title: Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation, Catheter
  publication-title: Cardiovasc. Interv.
  doi: 10.1002/ccd.20950
– volume: 46
  start-page: 380
  year: 1999
  ident: 10.1016/j.bioactmat.2020.11.012_bib55
  article-title: Vincent garitey, marc silvestri, pierre roquebert, radial force of coronary stents: a comparative analysis, catheter
  publication-title: Cardiovasc. Interv.
  doi: 10.1002/(SICI)1522-726X(199903)46:3<380::AID-CCD27>3.0.CO;2-J
– start-page: 2011
  year: 2011
  ident: 10.1016/j.bioactmat.2020.11.012_bib56
  article-title: Standard practice for laboratory immersion corrosion testing of metals
– volume: 59
  start-page: 139
  year: 2016
  ident: 10.1016/j.bioactmat.2020.11.012_bib8
  article-title: Effects of fatigue on the chemical and mechanical degradation of model stent sub-units
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2015.12.020
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.bioactmat.2020.11.012_bib15
  article-title: Magnesium-based absorbable metal screws for intra-articular fracture fixation
  publication-title: Case Rep. Orthop.
  doi: 10.1155/2016/9673174
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.bioactmat.2020.11.012_bib48
  article-title: Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01214-4
– volume: 16
  start-page: 1
  year: 2017
  ident: 10.1016/j.bioactmat.2020.11.012_bib2
  article-title: Design optimization of stent and its dilatation balloon using kriging surrogate model
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-016-0307-6
– volume: 4
  start-page: 1129
  year: 2010
  ident: 10.1016/j.bioactmat.2020.11.012_bib28
  article-title: Constitutive analysis of AZ31 magnesium alloy plate
  publication-title: J. Cent. South Univ. Technol.
– volume: 5
  start-page: 34
  year: 2020
  ident: 10.1016/j.bioactmat.2020.11.012_bib50
  article-title: In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2019.12.001
– volume: 100 B
  start-page: 1134
  year: 2012
  ident: 10.1016/j.bioactmat.2020.11.012_bib20
  article-title: Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing
  publication-title: J. Biomed. Mater. Res. B Appl. Biomater.
  doi: 10.1002/jbm.b.32680
– reference: 38973994 - Bioact Mater. 2024 Jun 14;40:275-279. doi: 10.1016/j.bioactmat.2024.06.006
SSID ssj0001700007
Score 2.2931516
Snippet Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1663
SubjectTerms FEA modelling
Histology
Magnesium alloy
Micro-CT
Photo-chemically etching
Stents
Title Preliminary study on modelling, fabrication by photo-chemical etching and in vivo testing of biodegradable magnesium AZ31 stents
URI https://dx.doi.org/10.1016/j.bioactmat.2020.11.012
https://www.ncbi.nlm.nih.gov/pubmed/33313446
https://www.proquest.com/docview/2470023551
https://pubmed.ncbi.nlm.nih.gov/PMC7708697
https://doaj.org/article/78e56a28b84b4877b2b5f99201229600
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIF7hURmJI4H4kTjmtiCqikoIISpWXCy_QlO1SbVkK_XGT2fGya42cNgL18RObM_Y8409_oaQVyxqxZqmzl0Vi1yWSuZWeJsHzHYUuW10TFG-n6vjU_lpWS53Un1hTNhIDzwO3FtVx7KyvHa1dACuleOubLTmeCQE6Dt562Dzdpyp85EUBq0fZpaTJcdoiuUsuMu1vfUDYELwEDmuG28KxmemKTH4zyzUvwj070DKHct0dI_cnSAlXYxduU9uxe4B-f1lFS9Sxq7VDU0csrTvaMp7gxfQX9PGutW0X0fdDb0664c-9xN9AEVhQjFqu0Dbjl631z0dkJADnvUNhY4FZJkIePGKXtqfsGC260u6-CEY_A2DMx6S06OP3z4c51O2hdyXkg2w6lk8NQQ4xistAouR88aLotGu0r7msW4YcyUS0tUqSB5dVfrKSR2KaMGdFY_IQdd38QmhPATbFFZomN9SRIWbJr6Cqe6jcjrEjFSbgTZ-oiLHjBgXZhNzdm62EjIoIXBUDEgoI8W24tXIxrG_ynuU5LY40mmnB6BkZlIys0_JMvJuowdmQiYj4oBPtftb8HKjOQbmLh7I2C7261-GS5X4hkqWkcejJm3bKYRgAnz1jKiZjs06Mn_TtWeJH1wp8FO1evo_ev6M3OEYxZP2nZ6Tg2G1ji8Ahg3ukNxenHz9fnKYZt4fgNcwzg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+study+on+modelling%2C+fabrication+by+photo-chemical+etching+and+in+vivo+testing+of+biodegradable+magnesium+AZ31+stents&rft.jtitle=Bioactive+materials&rft.au=Kandala%2C+Bala+Subramanya+Pavan+Kumar&rft.au=Zhang%2C+Guangqi&rft.au=LCorriveau%2C+Capucine&rft.au=Paquin%2C+Mark&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=6&rft.issue=6&rft.spage=1663&rft.epage=1675&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.11.012&rft.externalDocID=S2452199X20303030
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon