Preliminary study on modelling, fabrication by photo-chemical etching and in vivo testing of biodegradable magnesium AZ31 stents
Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent on...
Saved in:
Published in | Bioactive materials Vol. 6; no. 6; pp. 1663 - 1675 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
China
Elsevier B.V
01.06.2021
KeAi Publishing KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25–28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.
[Display omitted] |
---|---|
AbstractList | Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25–28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.
Image 1 Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed.Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed. Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25-28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed. Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents by laser cutting has become an industry standard. Our alternative approach uses photo-chemical etching to transfer a pattern of the stent onto a Mg sheet. In this study, we present three stages of creating and validating a stent prototype, which includes design and simulation using finite element analysis (FEA), followed by fabrication based on AZ31 alloy and, finally, in vivo testing in peripheral arteries of domestic pigs. Due to the preliminary character of this study, only six stents were implanted in two domestic farm pigs weighing 25–28 kg and they were evaluated after 28 days, with an interim follow-up on day 14. The left and right superficial femoral, the left iliac, and the right renal artery were selected for this study. The diameters of the stented artery segments were evaluated at the time of implantation, on day 14 and then, finally, on day 28, by quantitative vessel analysis (QVA) using fluoroscopic imaging. Optical Coherence Tomography (OCT) imaging displayed some malposition, breaks, stacking, and protrusion into the lumen at the proximal, distal, and mid-sections of the stented arteries. The stents degraded with time, but simultaneously became embedded in the intima. After 28 days, the animals were euthanized, and explanted vessels were fixed for micro-CT imaging and histology studies. Micro-CT imaging revealed stent morphological and volumetric changes due to the in-body degradation. An in vivo corrosion rate of 0.75 mm/year was obtained by the CT evaluation. The histology suggested no-life threatening effects, although moderate injury, inflammation, and endothelialization scores were observed. [Display omitted] |
Author | Kandala, Bala Subramanya Pavan Kumar Chagnon, Madeleine Begun, Dana Shanov, Vesselin Paquin, Mark LCorriveau, Capucine Zhang, Guangqi |
Author_xml | – sequence: 1 givenname: Bala Subramanya Pavan Kumar orcidid: 0000-0002-3771-3368 surname: Kandala fullname: Kandala, Bala Subramanya Pavan Kumar organization: Department of Mechanical and Materials Engineering, University of Cincinnati, OH, 45221, USA – sequence: 2 givenname: Guangqi surname: Zhang fullname: Zhang, Guangqi organization: Department of Mechanical and Materials Engineering, University of Cincinnati, OH, 45221, USA – sequence: 3 givenname: Capucine surname: LCorriveau fullname: LCorriveau, Capucine organization: Charles River Laboratories Montreal ULC, Boisbriand, Quebec, J7H 1N8, Canada – sequence: 4 givenname: Mark surname: Paquin fullname: Paquin, Mark organization: Medical Products Market Consulting, Inc, Indianapolis, IN, 46202, USA – sequence: 5 givenname: Madeleine surname: Chagnon fullname: Chagnon, Madeleine organization: Charles River Laboratories Montreal ULC, Boisbriand, Quebec, J7H 1N8, Canada – sequence: 6 givenname: Dana surname: Begun fullname: Begun, Dana organization: Waygate Technologies, Baker Hughes, Cincinnati, OH, 45241, USA – sequence: 7 givenname: Vesselin surname: Shanov fullname: Shanov, Vesselin email: shanovvn@ucmail.uc.edu organization: Department of Mechanical and Materials Engineering, University of Cincinnati, OH, 45221, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33313446$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstuEzEUHaEiWkp_AbxkQYIfM_Z4AVJU8ahUCRYgITaWH3cSRzN2sJ1I2fHpOE1btWy68Vhnzj3H9577sjkJMUDTvCF4TjDh79dz46O2ZdJlTjGtKJljQp81Z7Tt6IxI-evkwf20uch5jTEmoh5YvGhOGWOEtS0_a_5-TzD6yQed9iiXrdujGNAUHYyjD8t3aNAmeauLr7DZo80qljizK5gqOCIodlVpSAeHfEA7v4uoQC4HLA6ovtPBMmmnzQho0ssA2W8ntPjNSHWDUPKr5vmgxwwXt9_z5ufnTz8uv86uv325ulxcz2zXkjKTRGPWE0o55ZI5AkDpYBkepOHS9hT6gRDTEY5FL1xLwfDOctNKh0F3lLHz5uqo66Jeq03yU-1YRe3VDRDTUulUvB1BiR46rmlv-ta0vRCGmm6QktYZU8kxrlofj1qbrZnA2dpH0uMj0cd_gl-pZdwpIXDPpagCb28FUvyzrfNSk8-2jlwHiNusaFujoqzrSKW-fuh1b3IXYSV8OBJsijknGJT15Savau1HRbA6bI1aq_utUYetUYSo2lGtF__V31k8Xbk4VkLNbechqWw9BAvOJ7ClDtY_qfEP-Z3iXw |
CitedBy_id | crossref_primary_10_1016_j_bioactmat_2021_09_025 crossref_primary_10_1016_j_jma_2025_01_025 crossref_primary_10_1016_j_jallcom_2022_166377 crossref_primary_10_1515_mt_2023_0138 crossref_primary_10_3389_fbioe_2022_940172 crossref_primary_10_1016_j_jma_2023_07_020 crossref_primary_10_3389_fbioe_2022_891632 crossref_primary_10_1016_j_mtcomm_2022_103467 crossref_primary_10_2139_ssrn_4349298 crossref_primary_10_1002_adfm_202205634 crossref_primary_10_1021_acsabm_2c00167 crossref_primary_10_1016_j_intermet_2022_107594 crossref_primary_10_1016_j_cjmeam_2022_100020 crossref_primary_10_1007_s13239_022_00619_1 |
Cites_doi | 10.1002/jbm.a.31170 10.1056/NEJM199408253310802 10.1016/j.biomaterials.2005.10.012 10.1177/0300985811402846 10.1016/S0098-2997(02)00089-4 10.1002/jbm.b.33248 10.1016/j.mseb.2011.02.010 10.1111/j.1540-8183.2007.00319.x 10.1111/j.1540-8183.2004.04081.x 10.1016/S0167-577X(03)00500-7 10.1016/j.biomaterials.2008.12.001 10.1016/j.ijfatigue.2016.02.026 10.1161/01.CIR.102.4.399 10.1016/j.actbio.2014.08.034 10.1002/ccd.20727 10.1002/jbm.a.31293 10.1016/j.actbio.2014.07.005 10.1557/jmr.2009.0323 10.1016/j.bioactmat.2020.01.002 10.1002/mawe.200600027 10.1016/j.jtcvs.2018.09.128 10.1016/j.jmst.2020.02.006 10.1161/01.CIR.0000033485.20594.6F 10.1021/acs.langmuir.8b01623 10.1002/jbm.b.32501 10.1002/wnan.123 10.1016/j.actbio.2010.12.004 10.18103/mra.v8i3.2067 10.1002/adem.200800035 10.1016/j.jmst.2019.12.011 10.1016/j.bioactmat.2019.01.001 10.3390/app9214503 10.1016/j.biomaterials.2004.09.049 10.1016/j.jmst.2013.03.004 10.1016/j.colsurfb.2016.03.086 10.1016/S0924-0136(01)01127-X 10.1016/j.actbio.2009.10.008 10.1111/j.1540-8183.2010.00567.x 10.1016/j.jma.2019.09.008 10.1016/j.msec.2011.03.012 10.1016/S0140-6736(07)60853-8 10.1002/ccd.20950 10.1002/(SICI)1522-726X(199903)46:3<380::AID-CCD27>3.0.CO;2-J 10.1016/j.jmbbm.2015.12.020 10.1155/2016/9673174 10.1038/s41598-017-01214-4 10.1186/s12938-016-0307-6 10.1016/j.bioactmat.2019.12.001 10.1002/jbm.b.32680 |
ContentType | Journal Article |
Copyright | 2020 The Authors 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors – notice: 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. – notice: 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1016/j.bioactmat.2020.11.012 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2452-199X |
EndPage | 1675 |
ExternalDocumentID | oai_doaj_org_article_78e56a28b84b4877b2b5f99201229600 PMC7708697 33313446 10_1016_j_bioactmat_2020_11_012 S2452199X20303030 |
Genre | Journal Article |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ 0R~ AAYWO AAYXX ABJCF ACVFH ADCNI ADMLS ADVLN AEUPX AFKRA AFPUW AIGII AKBMS AKRWK AKYEP BBNVY BENPR BGLVJ BHPHI CCPQU CITATION HCIFZ KB. M7P M~E PDBOC PHGZM PHGZT PIMPY NPM PQGLB 7X8 5PM |
ID | FETCH-LOGICAL-c541t-91a03812262693d1ee22fc30f9b69c82e8f11b5160787d42eb65c6b49d0ea5233 |
IEDL.DBID | DOA |
ISSN | 2452-199X |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Thu Aug 21 18:26:15 EDT 2025 Fri Jul 11 00:51:21 EDT 2025 Mon Jul 21 06:02:26 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Tue Jul 01 02:11:24 EDT 2025 Tue May 16 22:30:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Micro-CT Histology Stents FEA modelling Photo-chemically etching Magnesium alloy |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-91a03812262693d1ee22fc30f9b69c82e8f11b5160787d42eb65c6b49d0ea5233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3771-3368 |
OpenAccessLink | https://doaj.org/article/78e56a28b84b4877b2b5f99201229600 |
PMID | 33313446 |
PQID | 2470023551 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_78e56a28b84b4877b2b5f99201229600 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7708697 proquest_miscellaneous_2470023551 pubmed_primary_33313446 crossref_citationtrail_10_1016_j_bioactmat_2020_11_012 crossref_primary_10_1016_j_bioactmat_2020_11_012 elsevier_sciencedirect_doi_10_1016_j_bioactmat_2020_11_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | China |
PublicationPlace_xml | – name: China |
PublicationTitle | Bioactive materials |
PublicationTitleAlternate | Bioact Mater |
PublicationYear | 2021 |
Publisher | Elsevier B.V KeAi Publishing KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Publishing – name: KeAi Communications Co., Ltd |
References | Koo, Tiasha, Shanov, Yun (bib48) 2017; 7 Li, Yan, Zhou, Xiong, Wang, Yuan, Zheng, Cheng (bib13) 2019; 4 Kandala, Zhang, Hopkins, An, Pixley, Shanov (bib30) 2019; 9 Guerchais, Scalet, Constantinescu, Auricchio (bib5) 2016; 87 Swindle, Makin, Herron, Clubb, Frazier (bib53) 2012; 49 Biber, Pauser, Geßlein, Bail (bib15) 2016; 2016 Di Mario, Griffiths, Goktekin, Peeters, Verbist, Bosiers, Deloose, Heublein, Rohde, Kasese, Ilsley, Erbel, Di Mario, Griffiths, Goktekin, Peeters, Verbist, Bosiers, Deloose, Heublein, Rohde, Kasese, Ilsley, Erbel (bib37) 2004; 17 Witte, Ulrich, Rudert, Willbold (bib40) 2006; 81 Könneker, Krockenberger, Pieh, Von Falck, Brandewiede, Vogt, Kirschner, Ziegler (bib14) 2019; 20 Willbold, Kaya, Kaya, Beckmann, Witte (bib29) 2011; 176 Wang, Cui, Ren, Zou, Ma, Wang, Zheng, Chen, Zeng, Zheng (bib32) 2020; 47 Wang, Zhang, Li, Liu, Guan (bib11) 2020; 5 Rieu, Paul, Masson, Jean (bib55) 1999; 46 Demir, Previtali, Biffi (bib26) 2013; 2013 Dreher, Nagaraja, Batchelor (bib8) 2016; 59 Witte, Hort, Feyerabend, Vogt (bib21) 2011 Waksman, Pakala, Baffour, Seabron, Hellinga, Tio (bib19) 2008; 21 Chen, Xu, Smith, Sankar (bib7) 2014; 10 Xin, Hu, Chu (bib22) 2011; 7 Erbel, Di Mario, Bartunek, Bonnier, de Bruyne, Eberli, Erne, Haude, Heublein, Horrigan, Ilsley, Böse, Koolen, Lüscher, Weissman, Waksman (bib36) 2007; 17 Coyan, D'Amore, Matsumura, Pedersen, Luketich, Shanov, Katz, David, Wagner, Badhwar (bib52) 2019; 157 Wang, Giridharan, Shanov, Xu, Collins, White, Jang, Sankar, Huang, Yun (bib46) 2014; 10 Schwartz, Edelman, Carter, Chronos, Rogers, Robinson, Waksman, Weinberger, Wilensky, Jensen, Zuckerman, Virmani (bib54) 2002; 106 Aoki, Nakazawa, Tanabe, Hoye, Yamamoto, Nakayama, Onuma, Higashikuni, Otsuki, Yagishita, Yachi, Nakajima, Hara (bib4) 2007; 69 Wu, Li, Cheng, Zheng, Han (bib45) 2013; 29 Witte, Reifenrath, Müller, Crostack, Nellesen, Bach, Bormann, Rudert (bib43) 2006; 37 Zeng, Dietzel, Witte, Hort, Blawert (bib24) 2008; 10 Nevzati (bib16) 2017; 2 Kun, Zhi-yong, Xiao-yan, Ti, Wen-xian (bib28) 2010; 4 Vormann (bib23) 2003; 24 Wen, Yamada, Shimojima, Chino, Hosokawa, Mabuchi (bib41) 2004; 58 Yang, Fang, Liu, Hou, Wang, Zhou, Zhu, Zeng, Zheng, Guan (bib49) 2020; 46 Kandala, Zhang, An, Pixley, Shanov (bib31) 2020; 8 Li, Liu, Wang, Zhao, Qiao, Wang, Gu, Li, Zhu (bib2) 2017; 16 Ye, Chen, Mao, Gu, Shankarraman, Hong, Shanov, Wagner (bib44) 2019; 35 Witte, Ulrich, Palm, Willbold (bib42) 2007; 81 Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth, Windhagen (bib39) 2005; 26 Tamai, Igaki, Kyo, Kosuga (bib17) 2000; 102 Waksman, Pakala, Kuchulakanti, Baffour, Hellinga, Seabron, Tio, Wittchow, Hartwig, Harder, Rohde, Heublein, Andreae, Waldmann, Haverich (bib34) 2006; 68 ASTM (bib56) 2011 Gu, Mao, Ye, Koo, Yun, Tiasha, Shanov, Wagner (bib47) 2016; 144 AL-Mangour, Mongrain, Yue (bib1) 2013 Yin, Qi, Zeng, Chen, Gu, Guan, Zheng (bib33) 2020; 8 Hänzi, Metlar, Schinhammer, Aguib, Lüth, Löffler, Uggowitzer (bib10) 2011; 31 Ng, Ng, Zhu, Lim, Venkatraman (bib12) 2012; 100 B Dreher, Nagaraja, Li (bib18) 2015; 103 Hänzi, Gerber, Schinhammer, Löffler, Uggowitzer (bib58) 2010; 6 Fischman, Leon, Baim, Schatz, Savage, Penn, Detre, Veltri, Ricci, Nobuyoshi, Cleman, Heuser, Almond, Teirstein, Fish, Colombo, Brinker, Moses, Shaknovich, Hirshfeld, Bailey, Ellis, Rake, Goldberg (bib3) 2002; 331 Li, Yu, Zeng, Zhang, Cui, Wan, Xia (bib50) 2020; 5 Xin, Huo, Hu, Tang, Chu (bib57) 2009; 24 Walker, Shadanbaz, Kirkland, Stace, Woodfield, Staiger, Dias (bib20) 2012; 100 B Xu, Pan, Yu, Yang, Zhang, Yang (bib38) 2009; 30 Shanov, Roy-Chaudhury, Schulz, Yin, Campos-Naciff, Wang (bib27) 2013 Waksman, Erbel, Di Mario, Bartunek, de Bruyne, Eberli, Erne, Haude, Horrigan, Ilsley, Böse, Bonnier, Koolen, Lüscher, Weissman (bib35) 2009; 2 Marrey, Burgermeister, Grishaber, Ritchie (bib9) 2006; 27 Martinez, Chaikof (bib25) 2011; 3 Adlakha, Sheikh, Wu, Burket, Pandya, Colyer, Eltahawy, Cooper (bib6) 2010; 23 Chua, Mac Donald, Hashmi (bib51) 2002; 120 Di Mario (10.1016/j.bioactmat.2020.11.012_bib37) 2004; 17 Li (10.1016/j.bioactmat.2020.11.012_bib2) 2017; 16 Gu (10.1016/j.bioactmat.2020.11.012_bib47) 2016; 144 Willbold (10.1016/j.bioactmat.2020.11.012_bib29) 2011; 176 Walker (10.1016/j.bioactmat.2020.11.012_bib20) 2012; 100 B Rieu (10.1016/j.bioactmat.2020.11.012_bib55) 1999; 46 Dreher (10.1016/j.bioactmat.2020.11.012_bib8) 2016; 59 Martinez (10.1016/j.bioactmat.2020.11.012_bib25) 2011; 3 AL-Mangour (10.1016/j.bioactmat.2020.11.012_bib1) 2013 Dreher (10.1016/j.bioactmat.2020.11.012_bib18) 2015; 103 Chua (10.1016/j.bioactmat.2020.11.012_bib51) 2002; 120 Hänzi (10.1016/j.bioactmat.2020.11.012_bib58) 2010; 6 Li (10.1016/j.bioactmat.2020.11.012_bib50) 2020; 5 Aoki (10.1016/j.bioactmat.2020.11.012_bib4) 2007; 69 Waksman (10.1016/j.bioactmat.2020.11.012_bib19) 2008; 21 Kandala (10.1016/j.bioactmat.2020.11.012_bib30) 2019; 9 Guerchais (10.1016/j.bioactmat.2020.11.012_bib5) 2016; 87 Yin (10.1016/j.bioactmat.2020.11.012_bib33) 2020; 8 Xin (10.1016/j.bioactmat.2020.11.012_bib22) 2011; 7 Vormann (10.1016/j.bioactmat.2020.11.012_bib23) 2003; 24 Li (10.1016/j.bioactmat.2020.11.012_bib13) 2019; 4 Wang (10.1016/j.bioactmat.2020.11.012_bib32) 2020; 47 Hänzi (10.1016/j.bioactmat.2020.11.012_bib10) 2011; 31 Kun (10.1016/j.bioactmat.2020.11.012_bib28) 2010; 4 Erbel (10.1016/j.bioactmat.2020.11.012_bib36) 2007; 17 ASTM (10.1016/j.bioactmat.2020.11.012_bib56) 2011 Waksman (10.1016/j.bioactmat.2020.11.012_bib35) 2009; 2 Wen (10.1016/j.bioactmat.2020.11.012_bib41) 2004; 58 Marrey (10.1016/j.bioactmat.2020.11.012_bib9) 2006; 27 Wu (10.1016/j.bioactmat.2020.11.012_bib45) 2013; 29 Xu (10.1016/j.bioactmat.2020.11.012_bib38) 2009; 30 Tamai (10.1016/j.bioactmat.2020.11.012_bib17) 2000; 102 Könneker (10.1016/j.bioactmat.2020.11.012_bib14) 2019; 20 Ye (10.1016/j.bioactmat.2020.11.012_bib44) 2019; 35 Yang (10.1016/j.bioactmat.2020.11.012_bib49) 2020; 46 Biber (10.1016/j.bioactmat.2020.11.012_bib15) 2016; 2016 Fischman (10.1016/j.bioactmat.2020.11.012_bib3) 2002; 331 Witte (10.1016/j.bioactmat.2020.11.012_bib39) 2005; 26 Chen (10.1016/j.bioactmat.2020.11.012_bib7) 2014; 10 Witte (10.1016/j.bioactmat.2020.11.012_bib40) 2006; 81 Demir (10.1016/j.bioactmat.2020.11.012_bib26) 2013; 2013 Schwartz (10.1016/j.bioactmat.2020.11.012_bib54) 2002; 106 Coyan (10.1016/j.bioactmat.2020.11.012_bib52) 2019; 157 Kandala (10.1016/j.bioactmat.2020.11.012_bib31) 2020; 8 Nevzati (10.1016/j.bioactmat.2020.11.012_bib16) 2017; 2 Shanov (10.1016/j.bioactmat.2020.11.012_bib27) 2013 Wang (10.1016/j.bioactmat.2020.11.012_bib46) 2014; 10 Witte (10.1016/j.bioactmat.2020.11.012_bib21) 2011 Swindle (10.1016/j.bioactmat.2020.11.012_bib53) 2012; 49 Xin (10.1016/j.bioactmat.2020.11.012_bib57) 2009; 24 Waksman (10.1016/j.bioactmat.2020.11.012_bib34) 2006; 68 Witte (10.1016/j.bioactmat.2020.11.012_bib42) 2007; 81 Koo (10.1016/j.bioactmat.2020.11.012_bib48) 2017; 7 Ng (10.1016/j.bioactmat.2020.11.012_bib12) 2012; 100 B Witte (10.1016/j.bioactmat.2020.11.012_bib43) 2006; 37 Adlakha (10.1016/j.bioactmat.2020.11.012_bib6) 2010; 23 Zeng (10.1016/j.bioactmat.2020.11.012_bib24) 2008; 10 Wang (10.1016/j.bioactmat.2020.11.012_bib11) 2020; 5 38973994 - Bioact Mater. 2024 Jun 14;40:275-279. doi: 10.1016/j.bioactmat.2024.06.006 |
References_xml | – volume: 9 year: 2019 ident: bib30 article-title: In vitro and in vivo testing of zinc as a biodegradable material for stents fabricated by photo-chemical etching publication-title: Appl. Sci. – volume: 24 start-page: 2711 year: 2009 end-page: 2719 ident: bib57 article-title: Corrosion products on biomedical magnesium alloy soaked in simulated body fluids publication-title: J. Mater. Res. – volume: 21 start-page: 15 year: 2008 end-page: 20 ident: bib19 article-title: Short-term effects of biocorrodible iron stents in porcine coronary arteries publication-title: J. Intervent. Cardiol. – volume: 5 start-page: 1 year: 2020 end-page: 8 ident: bib11 article-title: Investigation of Mg–Zn–Y–Nd alloy for potential application of biodegradable esophageal stent material publication-title: Bioact. Mater. – volume: 68 start-page: 607 year: 2006 end-page: 617 ident: bib34 article-title: Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter publication-title: Cardiovasc. Interv. – volume: 8 start-page: 42 year: 2020 end-page: 65 ident: bib33 article-title: Advances in coatings on biodegradable magnesium alloys publication-title: J. Magnes. Alloy. – volume: 20 start-page: 1 year: 2019 ident: bib14 article-title: Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: protocol for the randomized controlled SCAMAG clinical trial publication-title: BMC Muscoskel. Disord. – volume: 2 start-page: 312 year: 2009 end-page: 320 ident: bib35 article-title: Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC cardiovasc publication-title: Interv – volume: 16 start-page: 1 year: 2017 end-page: 17 ident: bib2 article-title: Design optimization of stent and its dilatation balloon using kriging surrogate model publication-title: Biomed. Eng. Online – volume: 4 start-page: 114 year: 2019 end-page: 119 ident: bib13 article-title: In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis publication-title: Bioact. Mater. – volume: 10 start-page: 5213 year: 2014 end-page: 5223 ident: bib46 article-title: Flow-induced corrosion behavior of absorbable magnesium-based stents publication-title: Acta Biomater. – volume: 31 start-page: 1098 year: 2011 end-page: 1103 ident: bib10 article-title: Biodegradable wound-closing devices for gastrointestinal interventions: degradation performance of the magnesium tip publication-title: Mater. Sci. Eng. C – start-page: 606 year: 2013 end-page: 621 ident: bib1 article-title: Coronary stents fracture: an engineering approach (review) publication-title: Mater. Sci. Appl. – volume: 35 start-page: 1421 year: 2019 end-page: 1429 ident: bib44 article-title: Biodegradable zwitterionic polymer coatings for magnesium alloy stents publication-title: Langmuir – volume: 7 start-page: 1 year: 2017 ident: bib48 article-title: Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models publication-title: Sci. Rep. – volume: 102 start-page: 399 year: 2000 end-page: 404 ident: bib17 article-title: Initial and 6-month results of biodegradable poly- l -lactic publication-title: Circulation – volume: 331 start-page: 496 year: 2002 end-page: 501 ident: bib3 article-title: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease publication-title: N. Engl. J. Med. – volume: 29 start-page: 545 year: 2013 end-page: 550 ident: bib45 article-title: Invitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite publication-title: J. Mater. Sci. Technol. – volume: 103 start-page: 700 year: 2015 end-page: 708 ident: bib18 article-title: Creep loading during degradation attenuates mechanical property loss in PLGA publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 81 start-page: 757 year: 2007 end-page: 765 ident: bib42 article-title: Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling publication-title: J. Biomed. Mater. Res. – volume: 87 start-page: 405 year: 2016 end-page: 417 ident: bib5 article-title: Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue publication-title: Int. J. Fatig. – volume: 5 start-page: 34 year: 2020 end-page: 43 ident: bib50 article-title: In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition publication-title: Bioact. Mater. – volume: 26 start-page: 3557 year: 2005 end-page: 3563 ident: bib39 article-title: In vivo corrosion of four magnesium alloys and the associated bone response publication-title: Biomaterials – volume: 46 start-page: 380 year: 1999 end-page: 391 ident: bib55 article-title: Vincent garitey, marc silvestri, pierre roquebert, radial force of coronary stents: a comparative analysis, catheter publication-title: Cardiovasc. Interv. – volume: 2013 start-page: 1 year: 2013 end-page: 11 ident: bib26 article-title: Fibre laser cutting and chemical etching of AZ31 for manufacturing biodegradable stents publication-title: Ann. Mater. Sci. Eng. – volume: 24 start-page: 27 year: 2003 end-page: 37 ident: bib23 article-title: Magnesium: nutrition and metabolism publication-title: Mol. Aspect. Med. – volume: 144 start-page: 170 year: 2016 end-page: 179 ident: bib47 article-title: Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents publication-title: Colloids Surf. B Biointerfaces – volume: 176 start-page: 1835 year: 2011 end-page: 1840 ident: bib29 article-title: Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. – volume: 81 start-page: 748 year: 2006 end-page: 756 ident: bib40 article-title: Biodegradable magnesium scaffolds: Part I: appropriate inflammatory response publication-title: J. Biomed. Mater. Res. – volume: 37 start-page: 504 year: 2006 end-page: 508 ident: bib43 article-title: Cartilage repair on magnesium scaffolds used as a subchondral bone replacement publication-title: Mater. Werkst. – volume: 100 B start-page: 693 year: 2012 end-page: 699 ident: bib12 article-title: A fully degradable tracheal stent: in vitro and in vivo characterization of material degradation publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – start-page: 2011 year: 2011 ident: bib56 article-title: Standard practice for laboratory immersion corrosion testing of metals publication-title: Annu. B. ASTM Stand – volume: 47 start-page: 52 year: 2020 end-page: 67 ident: bib32 article-title: In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 publication-title: J. Mater. Sci. Technol. – volume: 157 start-page: 1809 year: 2019 end-page: 1816 ident: bib52 article-title: In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve publication-title: J. Thorac. Cardiovasc. Surg. – volume: 106 start-page: 1867 year: 2002 end-page: 1873 ident: bib54 article-title: Drug-eluting stents in preclinical studies recommended evaluation from a consensus group publication-title: Circulation – volume: 46 start-page: 114 year: 2020 end-page: 126 ident: bib49 article-title: Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent publication-title: J. Mater. Sci. Technol. – volume: 30 start-page: 1512 year: 2009 end-page: 1523 ident: bib38 article-title: In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy publication-title: Biomaterials – volume: 6 start-page: 1824 year: 2010 end-page: 1833 ident: bib58 article-title: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys publication-title: Acta Biomater. – volume: 58 start-page: 357 year: 2004 end-page: 360 ident: bib41 article-title: Compressibility of porous magnesium foam: dependency on porosity and pore size publication-title: Mater. Lett. – volume: 3 start-page: 256 year: 2011 end-page: 268 ident: bib25 article-title: Microfabrication and nanotechnology in stent design publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 23 start-page: 411 year: 2010 end-page: 419 ident: bib6 article-title: Stent fracture in the coronary and peripheral arteries publication-title: J. Intervent. Cardiol. – year: 2013 ident: bib27 article-title: Making Magnesium Biodegradable Stent for Medical Implant Applications – volume: 49 start-page: 344 year: 2012 end-page: 356 ident: bib53 article-title: Swine as models in biomedical research and toxicology testing publication-title: Vet. Pathol. – volume: 59 start-page: 139 year: 2016 end-page: 145 ident: bib8 article-title: Effects of fatigue on the chemical and mechanical degradation of model stent sub-units publication-title: J. Mech. Behav. Biomed. Mater. – volume: 10 start-page: 4561 year: 2014 end-page: 4573 ident: bib7 article-title: Recent advances on the development of magnesium alloys for biodegradable implants publication-title: Acta Biomater. – volume: 120 start-page: 335 year: 2002 end-page: 340 ident: bib51 article-title: Finite-element simulation of stent expansion publication-title: J. Mater. Process. Technol. – volume: 8 year: 2020 ident: bib31 article-title: Effect of surface-modification on in vitro corrosion of biodegradable magnesium-based helical stent fabricated by photo-chemical etching publication-title: Med. Res. Arch. – volume: 2016 start-page: 1 year: 2016 end-page: 4 ident: bib15 article-title: Magnesium-based absorbable metal screws for intra-articular fracture fixation publication-title: Case Rep. Orthop. – volume: 100 B start-page: 1134 year: 2012 end-page: 1141 ident: bib20 article-title: Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing publication-title: J. Biomed. Mater. Res. B Appl. Biomater. – volume: 17 start-page: 391 year: 2004 end-page: 395 ident: bib37 article-title: Drug-eluting bioabsorbable magnesium stent publication-title: J. Intervent. Cardiol. – start-page: 403 year: 2011 ident: bib21 article-title: Corrosion of magnesium alloys publication-title: Corros. Magnes. Alloy. – volume: 17 start-page: 1869 year: 2007 end-page: 1875 ident: bib36 article-title: Temporary scaff olding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial publication-title: Lancet – volume: 69 start-page: 380 year: 2007 end-page: 386 ident: bib4 article-title: Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation, Catheter publication-title: Cardiovasc. Interv. – volume: 2 start-page: 210 year: 2017 end-page: 216 ident: bib16 article-title: Biodegradable magnesium stent treatment of saccular aneurysms in a rat model - introduction of the surgical technique publication-title: JoVE – volume: 10 start-page: 3 year: 2008 end-page: 14 ident: bib24 article-title: Progress and challenge for magnesium alloys as biomaterials publication-title: Adv. Eng. Mater. – volume: 4 start-page: 1129 year: 2010 end-page: 1132 ident: bib28 article-title: Constitutive analysis of AZ31 magnesium alloy plate publication-title: J. Cent. South Univ. Technol. – volume: 27 start-page: 1988 year: 2006 end-page: 2000 ident: bib9 article-title: Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis publication-title: Biomaterials – volume: 7 start-page: 1452 year: 2011 end-page: 1459 ident: bib22 article-title: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review publication-title: Acta Biomater. – volume: 81 start-page: 748 issue: 3 year: 2006 ident: 10.1016/j.bioactmat.2020.11.012_bib40 article-title: Biodegradable magnesium scaffolds: Part I: appropriate inflammatory response publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.31170 – volume: 331 start-page: 496 year: 2002 ident: 10.1016/j.bioactmat.2020.11.012_bib3 article-title: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199408253310802 – volume: 27 start-page: 1988 year: 2006 ident: 10.1016/j.bioactmat.2020.11.012_bib9 article-title: Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.012 – volume: 49 start-page: 344 year: 2012 ident: 10.1016/j.bioactmat.2020.11.012_bib53 article-title: Swine as models in biomedical research and toxicology testing publication-title: Vet. Pathol. doi: 10.1177/0300985811402846 – volume: 24 start-page: 27 year: 2003 ident: 10.1016/j.bioactmat.2020.11.012_bib23 article-title: Magnesium: nutrition and metabolism publication-title: Mol. Aspect. Med. doi: 10.1016/S0098-2997(02)00089-4 – volume: 103 start-page: 700 year: 2015 ident: 10.1016/j.bioactmat.2020.11.012_bib18 article-title: Creep loading during degradation attenuates mechanical property loss in PLGA publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.33248 – volume: 2 start-page: 312 year: 2009 ident: 10.1016/j.bioactmat.2020.11.012_bib35 article-title: Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries, JACC cardiovasc publication-title: Interv – start-page: 606 year: 2013 ident: 10.1016/j.bioactmat.2020.11.012_bib1 article-title: Coronary stents fracture: an engineering approach (review) publication-title: Mater. Sci. Appl. – volume: 176 start-page: 1835 year: 2011 ident: 10.1016/j.bioactmat.2020.11.012_bib29 article-title: Corrosion of magnesium alloy AZ31 screws is dependent on the implantation site publication-title: Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. doi: 10.1016/j.mseb.2011.02.010 – volume: 21 start-page: 15 year: 2008 ident: 10.1016/j.bioactmat.2020.11.012_bib19 article-title: Short-term effects of biocorrodible iron stents in porcine coronary arteries publication-title: J. Intervent. Cardiol. doi: 10.1111/j.1540-8183.2007.00319.x – volume: 20 start-page: 1 year: 2019 ident: 10.1016/j.bioactmat.2020.11.012_bib14 article-title: Comparison of SCAphoid fracture osteosynthesis by MAGnesium-based headless Herbert screws with titanium Herbert screws: protocol for the randomized controlled SCAMAG clinical trial publication-title: BMC Muscoskel. Disord. – volume: 17 start-page: 391 year: 2004 ident: 10.1016/j.bioactmat.2020.11.012_bib37 article-title: Drug-eluting bioabsorbable magnesium stent publication-title: J. Intervent. Cardiol. doi: 10.1111/j.1540-8183.2004.04081.x – volume: 58 start-page: 357 year: 2004 ident: 10.1016/j.bioactmat.2020.11.012_bib41 article-title: Compressibility of porous magnesium foam: dependency on porosity and pore size publication-title: Mater. Lett. doi: 10.1016/S0167-577X(03)00500-7 – volume: 30 start-page: 1512 year: 2009 ident: 10.1016/j.bioactmat.2020.11.012_bib38 article-title: In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.001 – volume: 87 start-page: 405 year: 2016 ident: 10.1016/j.bioactmat.2020.11.012_bib5 article-title: Micromechanical modeling for the probabilistic failure prediction of stents in high-cycle fatigue publication-title: Int. J. Fatig. doi: 10.1016/j.ijfatigue.2016.02.026 – volume: 102 start-page: 399 year: 2000 ident: 10.1016/j.bioactmat.2020.11.012_bib17 article-title: Initial and 6-month results of biodegradable poly- l -lactic publication-title: Circulation doi: 10.1161/01.CIR.102.4.399 – year: 2013 ident: 10.1016/j.bioactmat.2020.11.012_bib27 – volume: 10 start-page: 5213 year: 2014 ident: 10.1016/j.bioactmat.2020.11.012_bib46 article-title: Flow-induced corrosion behavior of absorbable magnesium-based stents publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.08.034 – volume: 68 start-page: 607 year: 2006 ident: 10.1016/j.bioactmat.2020.11.012_bib34 article-title: Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries, Catheter publication-title: Cardiovasc. Interv. doi: 10.1002/ccd.20727 – volume: 81 start-page: 757 issue: 3 year: 2007 ident: 10.1016/j.bioactmat.2020.11.012_bib42 article-title: Biodegradable magnesium scaffolds: Part II: peri-implant bone remodeling publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.a.31293 – volume: 10 start-page: 4561 year: 2014 ident: 10.1016/j.bioactmat.2020.11.012_bib7 article-title: Recent advances on the development of magnesium alloys for biodegradable implants publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.07.005 – volume: 24 start-page: 2711 year: 2009 ident: 10.1016/j.bioactmat.2020.11.012_bib57 article-title: Corrosion products on biomedical magnesium alloy soaked in simulated body fluids publication-title: J. Mater. Res. doi: 10.1557/jmr.2009.0323 – volume: 5 start-page: 1 year: 2020 ident: 10.1016/j.bioactmat.2020.11.012_bib11 article-title: Investigation of Mg–Zn–Y–Nd alloy for potential application of biodegradable esophageal stent material publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.01.002 – volume: 37 start-page: 504 year: 2006 ident: 10.1016/j.bioactmat.2020.11.012_bib43 article-title: Cartilage repair on magnesium scaffolds used as a subchondral bone replacement publication-title: Mater. Werkst. doi: 10.1002/mawe.200600027 – volume: 157 start-page: 1809 year: 2019 ident: 10.1016/j.bioactmat.2020.11.012_bib52 article-title: In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2018.09.128 – volume: 47 start-page: 52 year: 2020 ident: 10.1016/j.bioactmat.2020.11.012_bib32 article-title: In vitro and in vivo biodegradation and biocompatibility of an MMT/BSA composite coating upon magnesium alloy AZ31 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.02.006 – volume: 106 start-page: 1867 year: 2002 ident: 10.1016/j.bioactmat.2020.11.012_bib54 article-title: Drug-eluting stents in preclinical studies recommended evaluation from a consensus group publication-title: Circulation doi: 10.1161/01.CIR.0000033485.20594.6F – volume: 35 start-page: 1421 year: 2019 ident: 10.1016/j.bioactmat.2020.11.012_bib44 article-title: Biodegradable zwitterionic polymer coatings for magnesium alloy stents publication-title: Langmuir doi: 10.1021/acs.langmuir.8b01623 – volume: 100 B start-page: 693 year: 2012 ident: 10.1016/j.bioactmat.2020.11.012_bib12 article-title: A fully degradable tracheal stent: in vitro and in vivo characterization of material degradation publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.32501 – volume: 2 start-page: 210 year: 2017 ident: 10.1016/j.bioactmat.2020.11.012_bib16 article-title: Biodegradable magnesium stent treatment of saccular aneurysms in a rat model - introduction of the surgical technique publication-title: JoVE – start-page: 403 year: 2011 ident: 10.1016/j.bioactmat.2020.11.012_bib21 article-title: Corrosion of magnesium alloys – volume: 3 start-page: 256 year: 2011 ident: 10.1016/j.bioactmat.2020.11.012_bib25 article-title: Microfabrication and nanotechnology in stent design publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.123 – volume: 7 start-page: 1452 year: 2011 ident: 10.1016/j.bioactmat.2020.11.012_bib22 article-title: In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.12.004 – volume: 8 year: 2020 ident: 10.1016/j.bioactmat.2020.11.012_bib31 article-title: Effect of surface-modification on in vitro corrosion of biodegradable magnesium-based helical stent fabricated by photo-chemical etching publication-title: Med. Res. Arch. doi: 10.18103/mra.v8i3.2067 – volume: 10 start-page: 3 year: 2008 ident: 10.1016/j.bioactmat.2020.11.012_bib24 article-title: Progress and challenge for magnesium alloys as biomaterials publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200800035 – volume: 46 start-page: 114 year: 2020 ident: 10.1016/j.bioactmat.2020.11.012_bib49 article-title: Biodegradation, hemocompatibility and covalent bonding mechanism of electrografting polyethylacrylate coating on Mg alloy for cardiovascular stent publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2019.12.011 – volume: 4 start-page: 114 year: 2019 ident: 10.1016/j.bioactmat.2020.11.012_bib13 article-title: In vitro degradation and biocompatibility evaluation of typical biodegradable metals (Mg/Zn/Fe) for the application of tracheobronchial stenosis publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2019.01.001 – volume: 9 year: 2019 ident: 10.1016/j.bioactmat.2020.11.012_bib30 article-title: In vitro and in vivo testing of zinc as a biodegradable material for stents fabricated by photo-chemical etching publication-title: Appl. Sci. doi: 10.3390/app9214503 – volume: 26 start-page: 3557 year: 2005 ident: 10.1016/j.bioactmat.2020.11.012_bib39 article-title: In vivo corrosion of four magnesium alloys and the associated bone response publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.049 – volume: 29 start-page: 545 year: 2013 ident: 10.1016/j.bioactmat.2020.11.012_bib45 article-title: Invitro study on biodegradable AZ31 magnesium alloy fibers reinforced PLGA composite publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2013.03.004 – volume: 144 start-page: 170 year: 2016 ident: 10.1016/j.bioactmat.2020.11.012_bib47 article-title: Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2016.03.086 – volume: 120 start-page: 335 year: 2002 ident: 10.1016/j.bioactmat.2020.11.012_bib51 article-title: Finite-element simulation of stent expansion publication-title: J. Mater. Process. Technol. doi: 10.1016/S0924-0136(01)01127-X – volume: 6 start-page: 1824 year: 2010 ident: 10.1016/j.bioactmat.2020.11.012_bib58 article-title: On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.10.008 – volume: 23 start-page: 411 year: 2010 ident: 10.1016/j.bioactmat.2020.11.012_bib6 article-title: Stent fracture in the coronary and peripheral arteries publication-title: J. Intervent. Cardiol. doi: 10.1111/j.1540-8183.2010.00567.x – volume: 8 start-page: 42 year: 2020 ident: 10.1016/j.bioactmat.2020.11.012_bib33 article-title: Advances in coatings on biodegradable magnesium alloys publication-title: J. Magnes. Alloy. doi: 10.1016/j.jma.2019.09.008 – volume: 31 start-page: 1098 year: 2011 ident: 10.1016/j.bioactmat.2020.11.012_bib10 article-title: Biodegradable wound-closing devices for gastrointestinal interventions: degradation performance of the magnesium tip publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2011.03.012 – volume: 17 start-page: 1869 year: 2007 ident: 10.1016/j.bioactmat.2020.11.012_bib36 article-title: Temporary scaff olding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial publication-title: Lancet doi: 10.1016/S0140-6736(07)60853-8 – volume: 2013 start-page: 1 year: 2013 ident: 10.1016/j.bioactmat.2020.11.012_bib26 article-title: Fibre laser cutting and chemical etching of AZ31 for manufacturing biodegradable stents publication-title: Ann. Mater. Sci. Eng. – volume: 69 start-page: 380 year: 2007 ident: 10.1016/j.bioactmat.2020.11.012_bib4 article-title: Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation, Catheter publication-title: Cardiovasc. Interv. doi: 10.1002/ccd.20950 – volume: 46 start-page: 380 year: 1999 ident: 10.1016/j.bioactmat.2020.11.012_bib55 article-title: Vincent garitey, marc silvestri, pierre roquebert, radial force of coronary stents: a comparative analysis, catheter publication-title: Cardiovasc. Interv. doi: 10.1002/(SICI)1522-726X(199903)46:3<380::AID-CCD27>3.0.CO;2-J – start-page: 2011 year: 2011 ident: 10.1016/j.bioactmat.2020.11.012_bib56 article-title: Standard practice for laboratory immersion corrosion testing of metals – volume: 59 start-page: 139 year: 2016 ident: 10.1016/j.bioactmat.2020.11.012_bib8 article-title: Effects of fatigue on the chemical and mechanical degradation of model stent sub-units publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2015.12.020 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.bioactmat.2020.11.012_bib15 article-title: Magnesium-based absorbable metal screws for intra-articular fracture fixation publication-title: Case Rep. Orthop. doi: 10.1155/2016/9673174 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.bioactmat.2020.11.012_bib48 article-title: Expandable Mg-based helical stent assessment using static, dynamic, and porcine ex vivo models publication-title: Sci. Rep. doi: 10.1038/s41598-017-01214-4 – volume: 16 start-page: 1 year: 2017 ident: 10.1016/j.bioactmat.2020.11.012_bib2 article-title: Design optimization of stent and its dilatation balloon using kriging surrogate model publication-title: Biomed. Eng. Online doi: 10.1186/s12938-016-0307-6 – volume: 4 start-page: 1129 year: 2010 ident: 10.1016/j.bioactmat.2020.11.012_bib28 article-title: Constitutive analysis of AZ31 magnesium alloy plate publication-title: J. Cent. South Univ. Technol. – volume: 5 start-page: 34 year: 2020 ident: 10.1016/j.bioactmat.2020.11.012_bib50 article-title: In vitro corrosion resistance of a Ta2O5 nanofilm on MAO coated magnesium alloy AZ31 by atomic layer deposition publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2019.12.001 – volume: 100 B start-page: 1134 year: 2012 ident: 10.1016/j.bioactmat.2020.11.012_bib20 article-title: Magnesium alloys: predicting in vivo corrosion with in vitro immersion testing publication-title: J. Biomed. Mater. Res. B Appl. Biomater. doi: 10.1002/jbm.b.32680 – reference: 38973994 - Bioact Mater. 2024 Jun 14;40:275-279. doi: 10.1016/j.bioactmat.2024.06.006 |
SSID | ssj0001700007 |
Score | 2.2931516 |
Snippet | Magnesium metal (Mg) is a promising material for stent applications due to its biocompatibility and ability to be resorbed by the body. Manufacturing of stents... |
SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1663 |
SubjectTerms | FEA modelling Histology Magnesium alloy Micro-CT Photo-chemically etching Stents |
Title | Preliminary study on modelling, fabrication by photo-chemical etching and in vivo testing of biodegradable magnesium AZ31 stents |
URI | https://dx.doi.org/10.1016/j.bioactmat.2020.11.012 https://www.ncbi.nlm.nih.gov/pubmed/33313446 https://www.proquest.com/docview/2470023551 https://pubmed.ncbi.nlm.nih.gov/PMC7708697 https://doaj.org/article/78e56a28b84b4877b2b5f99201229600 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQuXBBIF7hURmJI4H4kTjmtiCqikoIISpWXCy_QlO1SbVkK_XGT2fGya42cNgL18RObM_Y8409_oaQVyxqxZqmzl0Vi1yWSuZWeJsHzHYUuW10TFG-n6vjU_lpWS53Un1hTNhIDzwO3FtVx7KyvHa1dACuleOubLTmeCQE6Dt562Dzdpyp85EUBq0fZpaTJcdoiuUsuMu1vfUDYELwEDmuG28KxmemKTH4zyzUvwj070DKHct0dI_cnSAlXYxduU9uxe4B-f1lFS9Sxq7VDU0csrTvaMp7gxfQX9PGutW0X0fdDb0664c-9xN9AEVhQjFqu0Dbjl631z0dkJADnvUNhY4FZJkIePGKXtqfsGC260u6-CEY_A2DMx6S06OP3z4c51O2hdyXkg2w6lk8NQQ4xistAouR88aLotGu0r7msW4YcyUS0tUqSB5dVfrKSR2KaMGdFY_IQdd38QmhPATbFFZomN9SRIWbJr6Cqe6jcjrEjFSbgTZ-oiLHjBgXZhNzdm62EjIoIXBUDEgoI8W24tXIxrG_ynuU5LY40mmnB6BkZlIys0_JMvJuowdmQiYj4oBPtftb8HKjOQbmLh7I2C7261-GS5X4hkqWkcejJm3bKYRgAnz1jKiZjs06Mn_TtWeJH1wp8FO1evo_ev6M3OEYxZP2nZ6Tg2G1ji8Ahg3ukNxenHz9fnKYZt4fgNcwzg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Preliminary+study+on+modelling%2C+fabrication+by+photo-chemical+etching+and+in+vivo+testing+of+biodegradable+magnesium+AZ31+stents&rft.jtitle=Bioactive+materials&rft.au=Kandala%2C+Bala+Subramanya+Pavan+Kumar&rft.au=Zhang%2C+Guangqi&rft.au=LCorriveau%2C+Capucine&rft.au=Paquin%2C+Mark&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=2452-199X&rft.eissn=2452-199X&rft.volume=6&rft.issue=6&rft.spage=1663&rft.epage=1675&rft_id=info:doi/10.1016%2Fj.bioactmat.2020.11.012&rft.externalDocID=S2452199X20303030 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2452-199X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2452-199X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2452-199X&client=summon |