A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential

Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 10056 - 13
Main Authors Zan, Guangtao, Jiang, Wei, Kim, HoYeon, Zhao, Kaiying, Li, Shengyou, Lee, Kyuho, Jang, Jihye, Kim, Gwanho, Shin, EunAe, Kim, Woojoong, Oh, Jin Woo, Kim, Yeonji, Park, Jong Woong, Kim, Taebin, Lee, Seonju, Oh, Ji Hye, Shin, Jowon, Kim, Hyeong Jun, Park, Cheolmin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm 2 , and a power density of 184 μW/cm 2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs. The authors present a core–shell fiber moisture-driven electric generator by a synergetic complex coacervation and built-in potential strategy, enabling self-powered human interactive sensors and synaptic devices.
AbstractList Abstract Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.The authors present a core–shell fiber moisture-driven electric generator by a synergetic complex coacervation and built-in potential strategy, enabling self-powered human interactive sensors and synaptic devices.
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm 2 , and a power density of 184 μW/cm 2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs. The authors present a core–shell fiber moisture-driven electric generator by a synergetic complex coacervation and built-in potential strategy, enabling self-powered human interactive sensors and synaptic devices.
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm , and a power density of 184 μW/cm at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.
ArticleNumber 10056
Author Shin, Jowon
Park, Cheolmin
Lee, Seonju
Lee, Kyuho
Jiang, Wei
Kim, Gwanho
Kim, Taebin
Shin, EunAe
Kim, Yeonji
Park, Jong Woong
Jang, Jihye
Oh, Jin Woo
Oh, Ji Hye
Zhao, Kaiying
Zan, Guangtao
Kim, HoYeon
Kim, Woojoong
Kim, Hyeong Jun
Li, Shengyou
Author_xml – sequence: 1
  givenname: Guangtao
  orcidid: 0000-0003-2712-9384
  surname: Zan
  fullname: Zan, Guangtao
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 2
  givenname: Wei
  surname: Jiang
  fullname: Jiang, Wei
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 3
  givenname: HoYeon
  orcidid: 0009-0002-0931-1019
  surname: Kim
  fullname: Kim, HoYeon
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 4
  givenname: Kaiying
  orcidid: 0000-0002-3387-077X
  surname: Zhao
  fullname: Zhao, Kaiying
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 5
  givenname: Shengyou
  orcidid: 0000-0002-2326-4194
  surname: Li
  fullname: Li, Shengyou
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 6
  givenname: Kyuho
  orcidid: 0000-0002-8262-3353
  surname: Lee
  fullname: Lee, Kyuho
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 7
  givenname: Jihye
  surname: Jang
  fullname: Jang, Jihye
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 8
  givenname: Gwanho
  surname: Kim
  fullname: Kim, Gwanho
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 9
  givenname: EunAe
  surname: Shin
  fullname: Shin, EunAe
  organization: Department of Materials Science and Engineering, Yonsei University, Korea Packaging Center, Korea Institute of Industrial Technology
– sequence: 10
  givenname: Woojoong
  surname: Kim
  fullname: Kim, Woojoong
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 11
  givenname: Jin Woo
  surname: Oh
  fullname: Oh, Jin Woo
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 12
  givenname: Yeonji
  surname: Kim
  fullname: Kim, Yeonji
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 13
  givenname: Jong Woong
  orcidid: 0000-0002-5692-4443
  surname: Park
  fullname: Park, Jong Woong
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 14
  givenname: Taebin
  surname: Kim
  fullname: Kim, Taebin
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 15
  givenname: Seonju
  surname: Lee
  fullname: Lee, Seonju
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 16
  givenname: Ji Hye
  surname: Oh
  fullname: Oh, Ji Hye
  organization: Department of Materials Science and Engineering, Yonsei University
– sequence: 17
  givenname: Jowon
  surname: Shin
  fullname: Shin, Jowon
  organization: Department of Chemical and Biomolecular Engineering, Sogang University
– sequence: 18
  givenname: Hyeong Jun
  orcidid: 0000-0003-1742-1349
  surname: Kim
  fullname: Kim, Hyeong Jun
  organization: Department of Chemical and Biomolecular Engineering, Sogang University
– sequence: 19
  givenname: Cheolmin
  orcidid: 0000-0002-6832-0284
  surname: Park
  fullname: Park, Cheolmin
  email: cmpark@yonsei.ac.kr
  organization: Department of Materials Science and Engineering, Yonsei University, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39567507$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEgEkJ-gAMaiQuXAb9mxnNCUcQjUiQucLbanp6NV157sT2r7I1_4A_zJXF2E0hyiC9tuatK5e56XR344LGq3lLykRIuPyVBRdc3hImmFUKwRryojhgRtKE94wcP7ofVSUpLUg4fqBTiVXXIh7brW9IfVdvT2oSI13_-pkt0rp6sxlivgk15jtiM0W7Q1-jQ5GhNvUCPEXKINXrQDsdab-u0LY8LzKVvwmrt8KpUMBg3kG3wNfgCm63LjfX1OmT02YJ7U72cwCU8uavH1a-vX36efW8ufnw7Pzu9aEwraG4GOkijJSGCM9kRGFvS9XyiHLXmIFoQfIJuGBmduKFtN1FJBwDJJiM75B0_rs73umOApVpHu4K4VQGs2j2EuFAQi3eHamAaaK-J4SMRMPJhpGzSOEmGnEiNRevzXms96xWOpvwkgnsk-rjj7aVahI2itO0HPsii8OFOIYbfM6asVjaZMnnwGOakOOW0LZ8VbYG-fwJdhjn6MqsdivCSgFvUu4eW_nm5X3EByD3AxJBSxEkZm3eLKQ6tU5So20CpfaBUCZTaBUqJQmVPqPfqz5L4npQK2C8w_rf9DOsGWDvfsw
CitedBy_id crossref_primary_10_1016_j_jcis_2025_02_094
crossref_primary_10_1016_j_est_2025_115978
crossref_primary_10_1039_D4EE03356F
crossref_primary_10_3390_nano15040315
crossref_primary_10_3390_nano15070481
crossref_primary_10_3390_nano15020114
crossref_primary_10_1016_j_est_2025_115425
crossref_primary_10_3390_nano15020098
Cites_doi 10.1021/jacs.5b11878
10.1002/adma.201501867
10.1002/jcc.22885
10.1016/j.cej.2021.129518
10.1002/EXP.20220061
10.1016/j.nanoen.2022.107709
10.1002/adfm.202301420
10.1039/C9TA13407G
10.1016/0263-7855(96)00018-5
10.1016/j.nanoen.2018.09.043
10.1016/j.ijbiomac.2021.10.159
10.1038/s41586-021-03295-8
10.1007/s11431-021-1969-y
10.1016/j.nanoen.2022.107017
10.1063/1.460447
10.1002/aenm.202204091
10.1016/j.micromeso.2011.08.020
10.1039/D1CS00778E
10.1039/C5EE03701H
10.1002/jcc.21224
10.1016/j.cej.2023.142322
10.1002/adma.202103897
10.1126/science.1137149
10.1021/acsami.7b12542
10.1016/j.nanoen.2016.12.062
10.1039/C8TA02505C
10.1039/C9EE00252A
10.1039/D4EE01881H
10.1016/j.nanoen.2019.104238
10.1038/s41565-021-00903-6
10.1002/agt2.293
10.1021/jacs.3c13159
10.1038/s41586-020-1985-6
10.1016/j.carbpol.2017.09.096
10.1007/s12274-023-5465-9
10.1038/s41586-020-2010-9
10.1016/j.nanoen.2023.108748
10.1016/j.nanoen.2020.105096
10.1039/D3EE03052K
10.1002/adma.202003722
10.1016/j.nanoen.2022.107591
10.1021/acsnano.2c10747
10.1002/adma.202304053
10.1007/s10853-018-3183-6
10.1021/acsnano.4c01179
10.1002/adma.202209661
10.1016/j.device.2024.100561
10.1002/aenm.202400590
10.1002/adfm.202308703
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-54442-4
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_92ba17b0c3d04ad39d12fbef82e308be
PMC11579398
39567507
10_1038_s41467_024_54442_4
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: RS-2024-00451891; RS-2024-00416938; 2022M3C1A3081211
  funderid: https://doi.org/10.13039/501100003725
– fundername: National Research Foundation of Korea (NRF)
  grantid: RS-2024-00451891
– fundername: National Research Foundation of Korea (NRF)
  grantid: RS-2024-00416938
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2022M3C1A3081211
GroupedDBID ---
0R~
39C
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-9198cb800432860ad50673f13ebb3a45a43fa69d21f3c156f1819aa82fc86e363
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:51 EDT 2025
Thu Aug 21 18:32:58 EDT 2025
Fri Jul 11 15:24:29 EDT 2025
Wed Aug 13 05:12:23 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Tue Jul 01 02:37:46 EDT 2025
Thu Apr 24 22:50:46 EDT 2025
Mon Jul 21 06:09:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-9198cb800432860ad50673f13ebb3a45a43fa69d21f3c156f1819aa82fc86e363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2712-9384
0000-0002-3387-077X
0000-0002-5692-4443
0009-0002-0931-1019
0000-0002-2326-4194
0000-0002-8262-3353
0000-0003-1742-1349
0000-0002-6832-0284
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-54442-4
PMID 39567507
PQID 3131034145
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_92ba17b0c3d04ad39d12fbef82e308be
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11579398
proquest_miscellaneous_3131500445
proquest_journals_3131034145
pubmed_primary_39567507
crossref_citationtrail_10_1038_s41467_024_54442_4
crossref_primary_10_1038_s41467_024_54442_4
springer_journals_10_1038_s41467_024_54442_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-20
PublicationDateYYYYMMDD 2024-11-20
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kim (CR8) 2024; 17
He (CR33) 2022; 95
Pan (CR26) 2020; 8
Liu (CR28) 2022; 102
Zhao, Cheng, Zhang, Jiang, Qu (CR17) 2015; 27
Shao (CR11) 2023; 13
Shao (CR40) 2018; 53
Reddy, Jang, Segalman, Majumdar (CR7) 2007; 315
Wang (CR29) 2022; 65
Qi (CR20) 2020; 77
CR4
Yan, Liu, Qi (CR9) 2022; 101
Jiang, Lee, Zan, Zhao, Park (CR3) 2024; 36
CR44
CR43
Liang (CR39) 2017; 32
Sun (CR38) 2023; 116
Martinez, Andrade, Birgin, Martinez (CR45) 2009; 30
Willems, Rycroft, Kazi, Meza, Haranczyk (CR47) 2012; 149
CR14
Shin (CR25) 2024; 17
Lu, Chen (CR48) 2012; 33
Zhao, Liang, Cheng, Jiang, Qu (CR18) 2016; 9
Xu (CR5) 2020; 578
Shen (CR15) 2020; 32
Xu (CR31) 2019; 12
Wang (CR41) 2024; 146
Zhao (CR30) 2023; 17
Zhang, MohebbiPour, Mao, Mao, Ni (CR24) 2021; 193
Shi (CR6) 2021; 591
Wang (CR12) 2022; 51
Humphrey, Dalke, Schulten (CR49) 1996; 14
Liu (CR16) 2023; 3
Bai (CR32) 2022; 34
CR27
Wang (CR34) 2020; 67
Liu (CR19) 2019; 54
Fu, Schlenoff (CR36) 2016; 138
Huang, Cheng, Shi, Qu (CR22) 2017; 9
Xiong (CR21) 2021; 418
Bediako (CR35) 2023; 462
Liu (CR1) 2020; 578
Wang (CR2) 2021; 16
Petersson, Allaham (CR46) 1991; 94
Wei (CR13) 2023; 16
Victoria Traffano-Schiffo, Castro-Giraldez, Fito, Perullini, Santagapita (CR42) 2018; 179
Cao, Xu, Li, Fu (CR10) 2023; 33
Chen, Guo, Yu (CR37) 2022; 3
Li (CR23) 2018; 6
D Shen (54442_CR15) 2020; 32
J Fu (54442_CR36) 2016; 138
Y Liang (54442_CR39) 2017; 32
L Martinez (54442_CR45) 2009; 30
K Zhao (54442_CR30) 2023; 17
54442_CR14
Z Liu (54442_CR16) 2023; 3
Y Huang (54442_CR22) 2017; 9
L Wang (54442_CR29) 2022; 65
G Kim (54442_CR8) 2024; 17
X Pan (54442_CR26) 2020; 8
W Jiang (54442_CR3) 2024; 36
X Wang (54442_CR12) 2022; 51
J Liu (54442_CR19) 2019; 54
Q Li (54442_CR23) 2018; 6
X Liu (54442_CR1) 2020; 578
C Xiong (54442_CR21) 2021; 418
Z Sun (54442_CR38) 2023; 116
Y Cao (54442_CR10) 2023; 33
C Shao (54442_CR40) 2018; 53
W Humphrey (54442_CR49) 1996; 14
J Liu (54442_CR28) 2022; 102
E Shin (54442_CR25) 2024; 17
X Qi (54442_CR20) 2020; 77
T Lu (54442_CR48) 2012; 33
54442_CR27
J Bai (54442_CR32) 2022; 34
JK Bediako (54442_CR35) 2023; 462
54442_CR4
W Xu (54442_CR5) 2020; 578
Y Zhang (54442_CR24) 2021; 193
GA Petersson (54442_CR46) 1991; 94
H Yan (54442_CR9) 2022; 101
P Reddy (54442_CR7) 2007; 315
X Shi (54442_CR6) 2021; 591
W He (54442_CR33) 2022; 95
H Wang (54442_CR2) 2021; 16
B Shao (54442_CR11) 2023; 13
H Wang (54442_CR34) 2020; 67
Z Wang (54442_CR41) 2024; 146
M Victoria Traffano-Schiffo (54442_CR42) 2018; 179
Q Wei (54442_CR13) 2023; 16
S Chen (54442_CR37) 2022; 3
F Zhao (54442_CR17) 2015; 27
54442_CR43
54442_CR44
T Xu (54442_CR31) 2019; 12
TF Willems (54442_CR47) 2012; 149
F Zhao (54442_CR18) 2016; 9
References_xml – volume: 138
  start-page: 980
  year: 2016
  end-page: 990
  ident: CR36
  article-title: Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11878
– volume: 27
  start-page: 4351
  year: 2015
  end-page: 4357
  ident: CR17
  article-title: Direct power generation from a graphene oxide film under moisture
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501867
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: CR48
  article-title: Multiwfn: a multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 418
  start-page: 129518
  year: 2021
  ident: CR21
  article-title: Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129518
– ident: CR4
– volume: 3
  year: 2023
  ident: CR16
  article-title: Recent advances in two-dimensional materials for hydrovoltaic energy technology
  publication-title: Exploration
  doi: 10.1002/EXP.20220061
– volume: 102
  year: 2022
  ident: CR28
  article-title: Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107709
– volume: 33
  start-page: 2301420
  year: 2023
  ident: CR10
  article-title: Advanced design of high-performance moist-electric generators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301420
– volume: 8
  start-page: 17498
  year: 2020
  end-page: 17506
  ident: CR26
  article-title: An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13407G
– volume: 14
  start-page: 33
  year: 1996
  end-page: 38
  ident: CR49
  article-title: VMD: visual molecular dynamics
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 53
  start-page: 698
  year: 2018
  end-page: 705
  ident: CR40
  article-title: Wearable fiberform hygroelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.043
– volume: 193
  start-page: 941
  year: 2021
  end-page: 947
  ident: CR24
  article-title: Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.10.159
– volume: 591
  start-page: 240
  year: 2021
  ident: CR6
  article-title: Large-area display textiles integrated with functional systems
  publication-title: Nature
  doi: 10.1038/s41586-021-03295-8
– volume: 65
  start-page: 450
  year: 2022
  end-page: 457
  ident: CR29
  article-title: Flexible, self-cleaning, and high-performance ceramic nanofiber-based moist-electric generator enabled by interfacial engineering
  publication-title: Sci. China Technol. Sc.
  doi: 10.1007/s11431-021-1969-y
– volume: 95
  year: 2022
  ident: CR33
  article-title: Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107017
– volume: 94
  start-page: 6081
  year: 1991
  end-page: 6090
  ident: CR46
  article-title: A complete basis set model chemistry 2. Open-shell systems and the total energies of the 1st-row atoms
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460447
– volume: 13
  start-page: 2204091
  year: 2023
  ident: CR11
  article-title: Electricity generation from phase transitions between liquid and gaseous water
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204091
– volume: 149
  start-page: 134
  year: 2012
  end-page: 141
  ident: CR47
  article-title: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.08.020
– volume: 51
  start-page: 4902
  year: 2022
  end-page: 4927
  ident: CR12
  article-title: Hydrovoltaic technology: from mechanism to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00778E
– volume: 9
  start-page: 912
  year: 2016
  end-page: 916
  ident: CR18
  article-title: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C5EE03701H
– volume: 30
  start-page: 2157
  year: 2009
  end-page: 2164
  ident: CR45
  article-title: PACKMOL: a Package for building initial configurations for molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 462
  start-page: 142322
  year: 2023
  ident: CR35
  article-title: Saloplastics and the polyelectrolyte complex continuum: advances, challenges and prospects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142322
– volume: 34
  start-page: 2103897
  year: 2022
  ident: CR32
  article-title: Sunlight-coordinated high-performance moisture power in natural conditions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103897
– volume: 315
  start-page: 1568
  year: 2007
  end-page: 1571
  ident: CR7
  article-title: Thermoelectricity in molecular junctions
  publication-title: Science
  doi: 10.1126/science.1137149
– volume: 9
  start-page: 38170
  year: 2017
  end-page: 38175
  ident: CR22
  article-title: Highly efficient moisture-triggered nanogenerator based on graphene quantum dots
  publication-title: ACS Appl. Mater. Int.
  doi: 10.1021/acsami.7b12542
– volume: 32
  start-page: 329
  year: 2017
  end-page: 335
  ident: CR39
  article-title: Self-powered wearable graphene fiber for information expression
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.062
– ident: CR43
– volume: 6
  start-page: 10639
  year: 2018
  end-page: 10643
  ident: CR23
  article-title: Flexible carbon dots composite paper for electricity generation from water vapor absorption
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02505C
– volume: 12
  start-page: 972
  year: 2019
  end-page: 978
  ident: CR31
  article-title: An efficient polymer moist-electric generator
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE00252A
– volume: 17
  start-page: 7165
  year: 2024
  end-page: 7181
  ident: CR25
  article-title: Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D4EE01881H
– ident: CR14
– volume: 67
  year: 2020
  ident: CR34
  article-title: Transparent, self-healing, arbitrary tailorable moist-electric film generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104238
– volume: 16
  start-page: 811
  year: 2021
  ident: CR2
  article-title: Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00903-6
– volume: 3
  year: 2022
  ident: CR37
  article-title: Bio-inspired functional coacervates
  publication-title: Aggregate
  doi: 10.1002/agt2.293
– volume: 146
  start-page: 1690
  year: 2024
  end-page: 1700
  ident: CR41
  article-title: Unipolar solution flow in calcium-organic frameworks for seawater-evaporation-induced electricity generation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13159
– volume: 578
  start-page: 392
  year: 2020
  ident: CR5
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 179
  start-page: 402
  year: 2018
  end-page: 407
  ident: CR42
  article-title: Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2017.09.096
– volume: 16
  start-page: 7496
  year: 2023
  end-page: 7510
  ident: CR13
  article-title: Moisture electricity generation: mechanisms, structures, and applications
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5465-9
– ident: CR27
– volume: 578
  start-page: 550
  year: 2020
  ident: CR1
  article-title: Power generation from ambient humidity using protein nanowires
  publication-title: Nature
  doi: 10.1038/s41586-020-2010-9
– ident: CR44
– volume: 116
  year: 2023
  ident: CR38
  article-title: Weavable yarn-shaped moisture-induced electric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108748
– volume: 77
  year: 2020
  ident: CR20
  article-title: Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105096
– volume: 17
  start-page: 134
  year: 2024
  end-page: 148
  ident: CR8
  article-title: A deformable complementary moisture and tribo energy harvester
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D3EE03052K
– volume: 32
  start-page: 2003722
  year: 2020
  ident: CR15
  article-title: Moisture-enabled electricity generation: from physics and materials to self-powered applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003722
– volume: 101
  start-page: 107591
  year: 2022
  ident: CR9
  article-title: A review of humidity gradient-based power generator: devices, materials and mechanisms
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107591
– volume: 17
  start-page: 5472
  year: 2023
  end-page: 5485
  ident: CR30
  article-title: Humidity-Tolerant Moisture-driven energy generator with mxene aerogel-organohydrogel Bilayer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c10747
– volume: 36
  start-page: 2304053
  year: 2024
  ident: CR3
  article-title: Alternating current electroluminescence for human-interactive sensing displays
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304053
– volume: 54
  start-page: 4831
  year: 2019
  end-page: 4841
  ident: CR19
  article-title: Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-3183-6
– ident: 54442_CR43
  doi: 10.1021/acsnano.4c01179
– volume: 578
  start-page: 392
  year: 2020
  ident: 54442_CR5
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 53
  start-page: 698
  year: 2018
  ident: 54442_CR40
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.09.043
– volume: 578
  start-page: 550
  year: 2020
  ident: 54442_CR1
  publication-title: Nature
  doi: 10.1038/s41586-020-2010-9
– volume: 32
  start-page: 329
  year: 2017
  ident: 54442_CR39
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.062
– volume: 30
  start-page: 2157
  year: 2009
  ident: 54442_CR45
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 17
  start-page: 134
  year: 2024
  ident: 54442_CR8
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D3EE03052K
– volume: 138
  start-page: 980
  year: 2016
  ident: 54442_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11878
– volume: 9
  start-page: 38170
  year: 2017
  ident: 54442_CR22
  publication-title: ACS Appl. Mater. Int.
  doi: 10.1021/acsami.7b12542
– volume: 102
  year: 2022
  ident: 54442_CR28
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107709
– volume: 3
  year: 2022
  ident: 54442_CR37
  publication-title: Aggregate
  doi: 10.1002/agt2.293
– volume: 65
  start-page: 450
  year: 2022
  ident: 54442_CR29
  publication-title: Sci. China Technol. Sc.
  doi: 10.1007/s11431-021-1969-y
– volume: 95
  year: 2022
  ident: 54442_CR33
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107017
– volume: 179
  start-page: 402
  year: 2018
  ident: 54442_CR42
  publication-title: Carbohyd. Polym.
  doi: 10.1016/j.carbpol.2017.09.096
– volume: 33
  start-page: 2301420
  year: 2023
  ident: 54442_CR10
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202301420
– volume: 3
  year: 2023
  ident: 54442_CR16
  publication-title: Exploration
  doi: 10.1002/EXP.20220061
– volume: 16
  start-page: 7496
  year: 2023
  ident: 54442_CR13
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-5465-9
– volume: 9
  start-page: 912
  year: 2016
  ident: 54442_CR18
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C5EE03701H
– volume: 14
  start-page: 33
  year: 1996
  ident: 54442_CR49
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/0263-7855(96)00018-5
– volume: 36
  start-page: 2304053
  year: 2024
  ident: 54442_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304053
– ident: 54442_CR14
  doi: 10.1002/adma.202209661
– volume: 13
  start-page: 2204091
  year: 2023
  ident: 54442_CR11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204091
– volume: 193
  start-page: 941
  year: 2021
  ident: 54442_CR24
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.10.159
– volume: 33
  start-page: 580
  year: 2012
  ident: 54442_CR48
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– ident: 54442_CR27
  doi: 10.1016/j.device.2024.100561
– volume: 67
  year: 2020
  ident: 54442_CR34
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.104238
– volume: 462
  start-page: 142322
  year: 2023
  ident: 54442_CR35
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142322
– volume: 116
  year: 2023
  ident: 54442_CR38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108748
– volume: 17
  start-page: 5472
  year: 2023
  ident: 54442_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c10747
– volume: 12
  start-page: 972
  year: 2019
  ident: 54442_CR31
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/C9EE00252A
– ident: 54442_CR44
  doi: 10.1002/aenm.202400590
– volume: 27
  start-page: 4351
  year: 2015
  ident: 54442_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501867
– volume: 94
  start-page: 6081
  year: 1991
  ident: 54442_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460447
– volume: 101
  start-page: 107591
  year: 2022
  ident: 54442_CR9
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107591
– volume: 149
  start-page: 134
  year: 2012
  ident: 54442_CR47
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2011.08.020
– volume: 77
  year: 2020
  ident: 54442_CR20
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105096
– ident: 54442_CR4
  doi: 10.1002/adfm.202308703
– volume: 418
  start-page: 129518
  year: 2021
  ident: 54442_CR21
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129518
– volume: 6
  start-page: 10639
  year: 2018
  ident: 54442_CR23
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02505C
– volume: 34
  start-page: 2103897
  year: 2022
  ident: 54442_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103897
– volume: 17
  start-page: 7165
  year: 2024
  ident: 54442_CR25
  publication-title: Energ. Environ. Sci.
  doi: 10.1039/D4EE01881H
– volume: 315
  start-page: 1568
  year: 2007
  ident: 54442_CR7
  publication-title: Science
  doi: 10.1126/science.1137149
– volume: 54
  start-page: 4831
  year: 2019
  ident: 54442_CR19
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-3183-6
– volume: 32
  start-page: 2003722
  year: 2020
  ident: 54442_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003722
– volume: 8
  start-page: 17498
  year: 2020
  ident: 54442_CR26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA13407G
– volume: 146
  start-page: 1690
  year: 2024
  ident: 54442_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13159
– volume: 16
  start-page: 811
  year: 2021
  ident: 54442_CR2
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-021-00903-6
– volume: 591
  start-page: 240
  year: 2021
  ident: 54442_CR6
  publication-title: Nature
  doi: 10.1038/s41586-021-03295-8
– volume: 51
  start-page: 4902
  year: 2022
  ident: 54442_CR12
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00778E
SSID ssj0000391844
Score 2.5556762
Snippet Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here...
Abstract Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10056
SubjectTerms 639/301/299
639/4077/4072
Alginic acid
Coacervation
Current carriers
Electric generators
Electric potential
Generators
Humanities and Social Sciences
Moisture
multidisciplinary
Nanoribbons
Performance degradation
Polyelectrolytes
Relative humidity
Science
Science (multidisciplinary)
Sodium alginate
Sodium channels (voltage-gated)
Surface charge
Synapses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivs26SgvetNnudCfpPq7isgh6cmFvTT91YMwsMxlwbv4H_6G_xKpOZtzxefEUSCqkqVdXpau-IuRZo6OQHVfMt7ViymXFnPac-ZSCyiGC38Te4bfv2rNz9eaiubgy6gtrwkZ44JFxx6b2TnSeBxm5clGaKOrsU9Z1klz7hN4X9rwryVTxwdJA6qKmLhku9fFKFZ8AWxJrlFI1U3s7UQHs_12U-Wux5E8npmUjOr1Fbk4RJD0ZV36bXEv9HXJ9nCm5uUs2JxSRKb99-brCGk-asSSEflqAONfLxOIS3Rsdp9_MAv1QYKch8aapdFFF6jd0tcGOQGxvpKXkPH2Gqwvb_7fU9UC2ns0HNuvp5WLAiiM3v0fOT1-_f3XGpvkKLDRKDODnjA5eF1Q-3XIXG5xak4VM3kunGqdkdq2JtcgyQJ6XIRowzuk6B90m2cr75KBf9OkhoQFYyjsItULQykinTavQtrmpXddFUxGx5bUNE_g4zsCY23IILrUd5WNBPrbIx6qKPN-9czlCb_yV-iWKcEeJsNnlBiiTnZTJ_kuZKnK0VQA72fLKSoGz2OCDTUWe7h6DFeLRiuvTYj3SNHg4DjQPRn3ZrURCCgpxWVcRvadJe0vdf9LPPhakb0RCMtLoirzYKt2Pdf2ZF4f_gxePyI0arUUI8KRH5GBYrtNjCMAG_6TY2ndYuC3h
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6txPEnsEyqIpUKCE5V6i_xKWWmbLJusxN74D_xDfgke51Etj54ixRPJ8Tw89sx8Q8jLXDouyhSYKTJgoGtgWpqUGe8t1NYFu4m1w58-Fyen8PEsPxsv3LoxrXKyidFQu9biHfmR4NgRCzjkb9bfGHaNwujq2ELjOrnBw06DKV1y8WG-Y0H0cwkw1sqkQh51EC1D2JhYDgAZg739KML2_8vX_Dtl8o-4adyOFnfI7dGPpMcD4--Sa765R24OnSV398numCI-5a8fPzvM9KQ1JobQizYwdbvxzG3QyNGhB87S0vMIPh2O39THWipHzY52O6wLxCJHGhPP_ffw1Ha6xaW6CWTb5apny4au2x7zjvTqATldvP_y7oSNXRaYzYH3wdopaY2M2HyySLXLsXdNzYU3RmjINYhaF8plvBY2nPbq4BMorWVWW1l4UYiH5KBpG_-YUBuWNC2Dw2WtBCW0VAWghqcq02XpVEL4tNaVHSHIsRPGqoqhcCGrgT9V4E8V-VNBQl7N36wHAI4rqd8iC2dKBM-OL9rNeTXqYqUyo3lpUitcCtoJ5XhWG1_LzItUGp-Qw0kAqlGju-pS_hLyYh4OuogBFt34djvQ5BgiDzSPBnmZZyLCQTR4Z2VC5J4k7U11f6RZfo1434iHpISSCXk9Cd3lvP6_Fk-u_o2n5FaGesB5sJSH5KDfbP2z4GD15nnUot-iFyQn
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7rLoIv4t3qKhF802BzaZs8juKyDOiLLuxbyHUdmG2XmQ44b_4H_6G_xJO0HRldBZ8KzQlNcy45Sc75DkIvK-kpb0pBbM0EESYKYqQtiQ3Bieg82M2UO_zhY316Jubn1fkBYlMuTA7az5CW2UxP0WFv1iKrNKwopBJCMCJuoKME1Q6yfTSbzT_NdycrCfNcCjFmyJRcXtN5bxXKYP3XeZh_Bkr-dluaF6GTO-j26D3i2TDeu-ggtPfQzaGe5PY-2s5wQqX88e37OsV34pjCQfBlB6yEXyV-lUwbHirfLBy-yJDTsOnGIWdQeWy3eL1N2YAptRHncPPwFZ7GTWe32LRAtlkse7Jo8VXXp2gjs3yAzk7ef353SsbaCsRVgvZg45R0VmZEPlmXxlepYk2kPFjLjaiM4NHUyjMauYM9XgRPQBkjWXSyDrzmD9Fh27XhMcIOprRswM1yTgrFjVS1SHpdKmaaxqsC0WmutRuBx1P9i6XOF-Bc6oE_GvijM3-0KNCrXZ-rAXbjn9RvEwt3lAkyO7_oVhd6FCGtmDW0saXjvhTGc-UpizZEyQIvpQ0FOp4EQI96vNacpjps8MGqQC92zaCB6VrFtKHbDDRVuhgHmkeDvOxGwmH7CT5ZUyC5J0l7Q91vaRdfMsp3QkFSXMkCvZ6E7te4_j4XT_6P_Cm6xZJeUAr28hgd9qtNeAZuVm-fj3r1E-HPI24
  priority: 102
  providerName: Springer Nature
Title A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential
URI https://link.springer.com/article/10.1038/s41467-024-54442-4
https://www.ncbi.nlm.nih.gov/pubmed/39567507
https://www.proquest.com/docview/3131034145
https://www.proquest.com/docview/3131500445
https://pubmed.ncbi.nlm.nih.gov/PMC11579398
https://doaj.org/article/92ba17b0c3d04ad39d12fbef82e308be
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bbtMw9GgXgfaCuJMxKiPxBoE4dhL7AaGuWpkqbUJApb5FtuOMSiXZehHr33PsJEWFjpdYco4Vy-cenwvAm0QUlGURD3Ua85CrkodK6CjU1hpemgLlpssdvrhMz8d8NEkme9C1O2oPcLHTtXP9pMbz2fvbm_UnZPiPTcq4-LDgnt1R24QJ5zwO-T4combKXEeDi9bc95KZSXRoeJs7s3vpEdxn6DOgIs22VJWv6L_LDP03mvKvK1WvqYYP4UFrYpJ-QxOPYM9Wj-Fe03Ry_QR-9YkrXRkuXAgoKV3ECPlZI7ZXOFnMnfQjTXOcqSFXvio1-uXE-iSrgug1WaxdwqDLfiQ-It3e4qhM93uXqArBVtPZMpxW5LpeuoAkNXsK4-HZ98F52LZfCE3C6RLFoBRGC1-0T6SRKhLX1KakzGrNFE8UZ6VKZRHTkhl0A0s0FqRSIi6NSC1L2TM4qOrKvgBi8GyjDC0xYwSXTAmZcsf6kYxVlhUyANqddG7a2uSuRcYs93fkTOQNonJEVO4RlfMA3m7WXDeVOf4LfeoQuIF0VbX9RD2_ylsmzWWsFc10ZFgRcVUwWdC41LYUsWWR0DaAkw79eUepOaOuVRt-MAng9eY1Mqm7eVGVrVcNTOLuzhHmeUMtm5101BaA2KKjra1uv6mmP3whcFcoSTIpAnjXkdyffd19Fsd37uElHMWOFyhF6XkCB8v5yr5Co2upe7CfTTJ8iuHnHhz2-6NvIxxPzy6_fMXZQTro-d8ZPc9xvwHCWixY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4ia2JPEPiBUHktLH6dW6i34lbLSkiz7EOyN_8D_4EfxS_A4yVbLo7eeVtrMrhzP056Zbwh5mgmb8iKBWOcMYlAVxEroJNbOGaiM9XYTe4cPDvOdY_hwkp2skZ99LwyWVfY2MRhq2xi8I9_iKU7EghSyV-MvMU6NwuxqP0KjFYs9t_jqj2zTl7tvPX-fMTZ4d_RmJ-6mCsQmg3TmtVsKo0XAohN5omyGs1qqlDutuYJMAa9ULi1LK2786abyPlAqJVhlRO54zv3_XiKXgXtPjp3pg_fLOx1EWxcAXW9OwsXWFIIl8o4wzgCAxbDi_8KYgH_Ftn-XaP6Rpw3ub3CDXO_iVrrdCtpNsubqW-RKO8lycZsstiniYf76_mOKlaW0wkIU-rnxQjSfuNhO0KjSdubO0NDTAHbtj_vUhd4tS_WCThfYh4hNlTQUurtv_lOZ_taYqtqTzYejWTys6biZYZ2TGt0hxxey_3fJet3U7h6hxm9pUvgAzxgBkishc0CLkkimisLKiKT9XpemgzzHyRujMqTeuShb_pSeP2XgTwkReb78zbgF_DiX-jWycEmJYN3hi2ZyWna6X0qmVVroxHCbgLJc2pRV2lWCOZ4I7SKy2QtA2VmQaXkm7xF5snzsdR8TOqp2zbylyTAl72k2WnlZroT7g6-PBouIiBVJWlnq6pN6-CngiyP-kuRSRORFL3Rn6_r_Xtw__zUek6s7Rwf75f7u4d4Dco2hTqSpt9KbZH02mbuHPrib6UdBoyj5eNEq_Bs5j1-l
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2jp3EOSDU0q5aCqsKUam3YDtOWWlJln0I9sZ_4N_wc_gleJxkq-XRW08rbWZXjmfm84znBfA0lgXjaSioTiJBhSoFVVKHVFtrRGkKh5tYO_xumOwfizcn8ckG_OxqYTCtssNED9RFbfCOvM8ZTsQSTMT9sk2LONodvJp8oThBCiOt3TiNRkQO7fKrc99mLw92Ha-fRdFg78PrfdpOGKAmFmzuND2TRkvfl04moSpinNtSMm615krESvBSJVkRsZIb5-mU7jzMlJJRaWRiecLd_16CzRS9oh5s7uwNj96vbniw97oUoq3UCbnsz4THJXcs0lgIEVGxdhr6oQH_snT_Ttj8I2rrD8PBdbjWWrFkuxG7G7Bhq5twuZlrubwFy22C3TF_ff8xwzxTUmJaCvlcO5FaTC0tpgixpJnAMzLk1Le-ds4_sb6SqyB6SWZLrErEEkvi097tN_epTHeHTFTlyBaj8ZyOKjKp55j1pMa34fhCOHAHelVd2XtAjNvSMHXmnjFSZFzJLBGIL2EWqTQtsgBYt9e5aRug4xyOce4D8VzmDX9yx5_c8ycXATxf_WbStP84l3oHWbiixNbd_ot6epq3SJBnkVYs1aHhRShUwbOCRaW2pYwsD6W2AWx1ApC3eDLLz6Q_gCerxw4JMLyjKlsvGpoYA_SO5m4jL6uVcOcGO9swDUCuSdLaUtefVKNPvts4dmPKeCYDeNEJ3dm6_r8X989_jcdwxalv_vZgePgArkaoEow5yN6C3ny6sA-dpTfXj1qVIvDxorX4N5tTZTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+core-shell+fiber+moisture-driven+electric+generator+enabled+by+synergetic+complex+coacervation+and+built-in+potential&rft.jtitle=Nature+communications&rft.au=Zan%2C+Guangtao&rft.au=Jiang%2C+Wei&rft.au=Kim%2C+HoYeon&rft.au=Zhao%2C+Kaiying&rft.date=2024-11-20&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=10056&rft_id=info:doi/10.1038%2Fs41467-024-54442-4&rft_id=info%3Apmid%2F39567507&rft.externalDocID=39567507
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon