A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential
Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 10056 - 13 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.11.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm
2
, and a power density of 184 μW/cm
2
at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.
The authors present a core–shell fiber moisture-driven electric generator by a synergetic complex coacervation and built-in potential strategy, enabling self-powered human interactive sensors and synaptic devices. |
---|---|
AbstractList | Abstract Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs. Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.The authors present a core–shell fiber moisture-driven electric generator by a synergetic complex coacervation and built-in potential strategy, enabling self-powered human interactive sensors and synaptic devices. Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core’s surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm 2 , and a power density of 184 μW/cm 2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs. The authors present a core–shell fiber moisture-driven electric generator by a synergetic complex coacervation and built-in potential strategy, enabling self-powered human interactive sensors and synaptic devices. Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm , and a power density of 184 μW/cm at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs. Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs.Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here we present a novel complex coacervation with built-in potential strategy for developing a high-performance uniaxial MEG, featuring a core of poly(3,4-ethylenedioxythiophene) (PEDOT) with a built-in charge potential and a gel shell composed of poly(diallyldimethylammonium chloride) (PDDA) and sodium alginate (NaAlg) coacervate. The complex coacervation of two oppositely charged polyelectrolytes produces extra mobile carriers and free volume in the device; meanwhile, the PEDOT core's surface charge significantly accelerates carrier diffusion. Consequently, the uniaxial fiber-based MEG demonstrates breakthrough performance, achieving an output voltage of up to 0.8 V, a maximum current density of 1.05 mA/cm2, and a power density of 184 μW/cm2 at 20% relative humidity. Moreover, the mechanical robustness is ensured for the PEDOT nanoribbon substrate without performance degradation even after 100,000 folding cycles, making it suitable for self-powered human interactive sensor and synapse. Notably, we have constructed the inaugural MEG-synapse self-powered device, with a fiber-based MEG successfully operating a synaptic memristor, thereby emulating autonomous human synapses linked with fibrous neurons. Overall, this work pioneers innovative design strategies and application scenarios for high-performance MEGs. |
ArticleNumber | 10056 |
Author | Shin, Jowon Park, Cheolmin Lee, Seonju Lee, Kyuho Jiang, Wei Kim, Gwanho Kim, Taebin Shin, EunAe Kim, Yeonji Park, Jong Woong Jang, Jihye Oh, Jin Woo Oh, Ji Hye Zhao, Kaiying Zan, Guangtao Kim, HoYeon Kim, Woojoong Kim, Hyeong Jun Li, Shengyou |
Author_xml | – sequence: 1 givenname: Guangtao orcidid: 0000-0003-2712-9384 surname: Zan fullname: Zan, Guangtao organization: Department of Materials Science and Engineering, Yonsei University – sequence: 2 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: Department of Materials Science and Engineering, Yonsei University – sequence: 3 givenname: HoYeon orcidid: 0009-0002-0931-1019 surname: Kim fullname: Kim, HoYeon organization: Department of Materials Science and Engineering, Yonsei University – sequence: 4 givenname: Kaiying orcidid: 0000-0002-3387-077X surname: Zhao fullname: Zhao, Kaiying organization: Department of Materials Science and Engineering, Yonsei University – sequence: 5 givenname: Shengyou orcidid: 0000-0002-2326-4194 surname: Li fullname: Li, Shengyou organization: Department of Materials Science and Engineering, Yonsei University – sequence: 6 givenname: Kyuho orcidid: 0000-0002-8262-3353 surname: Lee fullname: Lee, Kyuho organization: Department of Materials Science and Engineering, Yonsei University – sequence: 7 givenname: Jihye surname: Jang fullname: Jang, Jihye organization: Department of Materials Science and Engineering, Yonsei University – sequence: 8 givenname: Gwanho surname: Kim fullname: Kim, Gwanho organization: Department of Materials Science and Engineering, Yonsei University – sequence: 9 givenname: EunAe surname: Shin fullname: Shin, EunAe organization: Department of Materials Science and Engineering, Yonsei University, Korea Packaging Center, Korea Institute of Industrial Technology – sequence: 10 givenname: Woojoong surname: Kim fullname: Kim, Woojoong organization: Department of Materials Science and Engineering, Yonsei University – sequence: 11 givenname: Jin Woo surname: Oh fullname: Oh, Jin Woo organization: Department of Materials Science and Engineering, Yonsei University – sequence: 12 givenname: Yeonji surname: Kim fullname: Kim, Yeonji organization: Department of Materials Science and Engineering, Yonsei University – sequence: 13 givenname: Jong Woong orcidid: 0000-0002-5692-4443 surname: Park fullname: Park, Jong Woong organization: Department of Materials Science and Engineering, Yonsei University – sequence: 14 givenname: Taebin surname: Kim fullname: Kim, Taebin organization: Department of Materials Science and Engineering, Yonsei University – sequence: 15 givenname: Seonju surname: Lee fullname: Lee, Seonju organization: Department of Materials Science and Engineering, Yonsei University – sequence: 16 givenname: Ji Hye surname: Oh fullname: Oh, Ji Hye organization: Department of Materials Science and Engineering, Yonsei University – sequence: 17 givenname: Jowon surname: Shin fullname: Shin, Jowon organization: Department of Chemical and Biomolecular Engineering, Sogang University – sequence: 18 givenname: Hyeong Jun orcidid: 0000-0003-1742-1349 surname: Kim fullname: Kim, Hyeong Jun organization: Department of Chemical and Biomolecular Engineering, Sogang University – sequence: 19 givenname: Cheolmin orcidid: 0000-0002-6832-0284 surname: Park fullname: Park, Cheolmin email: cmpark@yonsei.ac.kr organization: Department of Materials Science and Engineering, Yonsei University, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39567507$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQHKEgEkJ-gAMaiQuXAb9mxnNCUcQjUiQucLbanp6NV157sT2r7I1_4A_zJXF2E0hyiC9tuatK5e56XR344LGq3lLykRIuPyVBRdc3hImmFUKwRryojhgRtKE94wcP7ofVSUpLUg4fqBTiVXXIh7brW9IfVdvT2oSI13_-pkt0rp6sxlivgk15jtiM0W7Q1-jQ5GhNvUCPEXKINXrQDsdab-u0LY8LzKVvwmrt8KpUMBg3kG3wNfgCm63LjfX1OmT02YJ7U72cwCU8uavH1a-vX36efW8ufnw7Pzu9aEwraG4GOkijJSGCM9kRGFvS9XyiHLXmIFoQfIJuGBmduKFtN1FJBwDJJiM75B0_rs73umOApVpHu4K4VQGs2j2EuFAQi3eHamAaaK-J4SMRMPJhpGzSOEmGnEiNRevzXms96xWOpvwkgnsk-rjj7aVahI2itO0HPsii8OFOIYbfM6asVjaZMnnwGOakOOW0LZ8VbYG-fwJdhjn6MqsdivCSgFvUu4eW_nm5X3EByD3AxJBSxEkZm3eLKQ6tU5So20CpfaBUCZTaBUqJQmVPqPfqz5L4npQK2C8w_rf9DOsGWDvfsw |
CitedBy_id | crossref_primary_10_1016_j_jcis_2025_02_094 crossref_primary_10_1016_j_est_2025_115978 crossref_primary_10_1039_D4EE03356F crossref_primary_10_3390_nano15040315 crossref_primary_10_3390_nano15070481 crossref_primary_10_3390_nano15020114 crossref_primary_10_1016_j_est_2025_115425 crossref_primary_10_3390_nano15020098 |
Cites_doi | 10.1021/jacs.5b11878 10.1002/adma.201501867 10.1002/jcc.22885 10.1016/j.cej.2021.129518 10.1002/EXP.20220061 10.1016/j.nanoen.2022.107709 10.1002/adfm.202301420 10.1039/C9TA13407G 10.1016/0263-7855(96)00018-5 10.1016/j.nanoen.2018.09.043 10.1016/j.ijbiomac.2021.10.159 10.1038/s41586-021-03295-8 10.1007/s11431-021-1969-y 10.1016/j.nanoen.2022.107017 10.1063/1.460447 10.1002/aenm.202204091 10.1016/j.micromeso.2011.08.020 10.1039/D1CS00778E 10.1039/C5EE03701H 10.1002/jcc.21224 10.1016/j.cej.2023.142322 10.1002/adma.202103897 10.1126/science.1137149 10.1021/acsami.7b12542 10.1016/j.nanoen.2016.12.062 10.1039/C8TA02505C 10.1039/C9EE00252A 10.1039/D4EE01881H 10.1016/j.nanoen.2019.104238 10.1038/s41565-021-00903-6 10.1002/agt2.293 10.1021/jacs.3c13159 10.1038/s41586-020-1985-6 10.1016/j.carbpol.2017.09.096 10.1007/s12274-023-5465-9 10.1038/s41586-020-2010-9 10.1016/j.nanoen.2023.108748 10.1016/j.nanoen.2020.105096 10.1039/D3EE03052K 10.1002/adma.202003722 10.1016/j.nanoen.2022.107591 10.1021/acsnano.2c10747 10.1002/adma.202304053 10.1007/s10853-018-3183-6 10.1021/acsnano.4c01179 10.1002/adma.202209661 10.1016/j.device.2024.100561 10.1002/aenm.202400590 10.1002/adfm.202308703 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-54442-4 |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_92ba17b0c3d04ad39d12fbef82e308be PMC11579398 39567507 10_1038_s41467_024_54442_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: RS-2024-00451891; RS-2024-00416938; 2022M3C1A3081211 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea (NRF) grantid: RS-2024-00451891 – fundername: National Research Foundation of Korea (NRF) grantid: RS-2024-00416938 – fundername: National Research Foundation of Korea (NRF) grantid: 2022M3C1A3081211 |
GroupedDBID | --- 0R~ 39C 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ AASML ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-9198cb800432860ad50673f13ebb3a45a43fa69d21f3c156f1819aa82fc86e363 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:51 EDT 2025 Thu Aug 21 18:32:58 EDT 2025 Fri Jul 11 15:24:29 EDT 2025 Wed Aug 13 05:12:23 EDT 2025 Mon Jul 21 06:03:35 EDT 2025 Tue Jul 01 02:37:46 EDT 2025 Thu Apr 24 22:50:46 EDT 2025 Mon Jul 21 06:09:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-9198cb800432860ad50673f13ebb3a45a43fa69d21f3c156f1819aa82fc86e363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2712-9384 0000-0002-3387-077X 0000-0002-5692-4443 0009-0002-0931-1019 0000-0002-2326-4194 0000-0002-8262-3353 0000-0003-1742-1349 0000-0002-6832-0284 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-54442-4 |
PMID | 39567507 |
PQID | 3131034145 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_92ba17b0c3d04ad39d12fbef82e308be pubmedcentral_primary_oai_pubmedcentral_nih_gov_11579398 proquest_miscellaneous_3131500445 proquest_journals_3131034145 pubmed_primary_39567507 crossref_citationtrail_10_1038_s41467_024_54442_4 crossref_primary_10_1038_s41467_024_54442_4 springer_journals_10_1038_s41467_024_54442_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-20 |
PublicationDateYYYYMMDD | 2024-11-20 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kim (CR8) 2024; 17 He (CR33) 2022; 95 Pan (CR26) 2020; 8 Liu (CR28) 2022; 102 Zhao, Cheng, Zhang, Jiang, Qu (CR17) 2015; 27 Shao (CR11) 2023; 13 Shao (CR40) 2018; 53 Reddy, Jang, Segalman, Majumdar (CR7) 2007; 315 Wang (CR29) 2022; 65 Qi (CR20) 2020; 77 CR4 Yan, Liu, Qi (CR9) 2022; 101 Jiang, Lee, Zan, Zhao, Park (CR3) 2024; 36 CR44 CR43 Liang (CR39) 2017; 32 Sun (CR38) 2023; 116 Martinez, Andrade, Birgin, Martinez (CR45) 2009; 30 Willems, Rycroft, Kazi, Meza, Haranczyk (CR47) 2012; 149 CR14 Shin (CR25) 2024; 17 Lu, Chen (CR48) 2012; 33 Zhao, Liang, Cheng, Jiang, Qu (CR18) 2016; 9 Xu (CR5) 2020; 578 Shen (CR15) 2020; 32 Xu (CR31) 2019; 12 Wang (CR41) 2024; 146 Zhao (CR30) 2023; 17 Zhang, MohebbiPour, Mao, Mao, Ni (CR24) 2021; 193 Shi (CR6) 2021; 591 Wang (CR12) 2022; 51 Humphrey, Dalke, Schulten (CR49) 1996; 14 Liu (CR16) 2023; 3 Bai (CR32) 2022; 34 CR27 Wang (CR34) 2020; 67 Liu (CR19) 2019; 54 Fu, Schlenoff (CR36) 2016; 138 Huang, Cheng, Shi, Qu (CR22) 2017; 9 Xiong (CR21) 2021; 418 Bediako (CR35) 2023; 462 Liu (CR1) 2020; 578 Wang (CR2) 2021; 16 Petersson, Allaham (CR46) 1991; 94 Wei (CR13) 2023; 16 Victoria Traffano-Schiffo, Castro-Giraldez, Fito, Perullini, Santagapita (CR42) 2018; 179 Cao, Xu, Li, Fu (CR10) 2023; 33 Chen, Guo, Yu (CR37) 2022; 3 Li (CR23) 2018; 6 D Shen (54442_CR15) 2020; 32 J Fu (54442_CR36) 2016; 138 Y Liang (54442_CR39) 2017; 32 L Martinez (54442_CR45) 2009; 30 K Zhao (54442_CR30) 2023; 17 54442_CR14 Z Liu (54442_CR16) 2023; 3 Y Huang (54442_CR22) 2017; 9 L Wang (54442_CR29) 2022; 65 G Kim (54442_CR8) 2024; 17 X Pan (54442_CR26) 2020; 8 W Jiang (54442_CR3) 2024; 36 X Wang (54442_CR12) 2022; 51 J Liu (54442_CR19) 2019; 54 Q Li (54442_CR23) 2018; 6 X Liu (54442_CR1) 2020; 578 C Xiong (54442_CR21) 2021; 418 Z Sun (54442_CR38) 2023; 116 Y Cao (54442_CR10) 2023; 33 C Shao (54442_CR40) 2018; 53 W Humphrey (54442_CR49) 1996; 14 J Liu (54442_CR28) 2022; 102 E Shin (54442_CR25) 2024; 17 X Qi (54442_CR20) 2020; 77 T Lu (54442_CR48) 2012; 33 54442_CR27 J Bai (54442_CR32) 2022; 34 JK Bediako (54442_CR35) 2023; 462 54442_CR4 W Xu (54442_CR5) 2020; 578 Y Zhang (54442_CR24) 2021; 193 GA Petersson (54442_CR46) 1991; 94 H Yan (54442_CR9) 2022; 101 P Reddy (54442_CR7) 2007; 315 X Shi (54442_CR6) 2021; 591 W He (54442_CR33) 2022; 95 H Wang (54442_CR2) 2021; 16 B Shao (54442_CR11) 2023; 13 H Wang (54442_CR34) 2020; 67 Z Wang (54442_CR41) 2024; 146 M Victoria Traffano-Schiffo (54442_CR42) 2018; 179 Q Wei (54442_CR13) 2023; 16 S Chen (54442_CR37) 2022; 3 F Zhao (54442_CR17) 2015; 27 54442_CR43 54442_CR44 T Xu (54442_CR31) 2019; 12 TF Willems (54442_CR47) 2012; 149 F Zhao (54442_CR18) 2016; 9 |
References_xml | – volume: 138 start-page: 980 year: 2016 end-page: 990 ident: CR36 article-title: Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11878 – volume: 27 start-page: 4351 year: 2015 end-page: 4357 ident: CR17 article-title: Direct power generation from a graphene oxide film under moisture publication-title: Adv. Mater. doi: 10.1002/adma.201501867 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR48 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 418 start-page: 129518 year: 2021 ident: CR21 article-title: Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129518 – ident: CR4 – volume: 3 year: 2023 ident: CR16 article-title: Recent advances in two-dimensional materials for hydrovoltaic energy technology publication-title: Exploration doi: 10.1002/EXP.20220061 – volume: 102 year: 2022 ident: CR28 article-title: Moisture-enabled hydrovoltaic power generation with milk protein nanofibrils publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107709 – volume: 33 start-page: 2301420 year: 2023 ident: CR10 article-title: Advanced design of high-performance moist-electric generators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202301420 – volume: 8 start-page: 17498 year: 2020 end-page: 17506 ident: CR26 article-title: An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13407G – volume: 14 start-page: 33 year: 1996 end-page: 38 ident: CR49 article-title: VMD: visual molecular dynamics publication-title: J. Mol. Graph. Model. doi: 10.1016/0263-7855(96)00018-5 – volume: 53 start-page: 698 year: 2018 end-page: 705 ident: CR40 article-title: Wearable fiberform hygroelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.043 – volume: 193 start-page: 941 year: 2021 end-page: 947 ident: CR24 article-title: Lignin reinforced hydrogels with multi-functional sensing and moist-electric generating applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.10.159 – volume: 591 start-page: 240 year: 2021 ident: CR6 article-title: Large-area display textiles integrated with functional systems publication-title: Nature doi: 10.1038/s41586-021-03295-8 – volume: 65 start-page: 450 year: 2022 end-page: 457 ident: CR29 article-title: Flexible, self-cleaning, and high-performance ceramic nanofiber-based moist-electric generator enabled by interfacial engineering publication-title: Sci. China Technol. Sc. doi: 10.1007/s11431-021-1969-y – volume: 95 year: 2022 ident: CR33 article-title: Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107017 – volume: 94 start-page: 6081 year: 1991 end-page: 6090 ident: CR46 article-title: A complete basis set model chemistry 2. Open-shell systems and the total energies of the 1st-row atoms publication-title: J. Chem. Phys. doi: 10.1063/1.460447 – volume: 13 start-page: 2204091 year: 2023 ident: CR11 article-title: Electricity generation from phase transitions between liquid and gaseous water publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204091 – volume: 149 start-page: 134 year: 2012 end-page: 141 ident: CR47 article-title: Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.08.020 – volume: 51 start-page: 4902 year: 2022 end-page: 4927 ident: CR12 article-title: Hydrovoltaic technology: from mechanism to applications publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00778E – volume: 9 start-page: 912 year: 2016 end-page: 916 ident: CR18 article-title: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks publication-title: Energ. Environ. Sci. doi: 10.1039/C5EE03701H – volume: 30 start-page: 2157 year: 2009 end-page: 2164 ident: CR45 article-title: PACKMOL: a Package for building initial configurations for molecular dynamics simulations publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 462 start-page: 142322 year: 2023 ident: CR35 article-title: Saloplastics and the polyelectrolyte complex continuum: advances, challenges and prospects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142322 – volume: 34 start-page: 2103897 year: 2022 ident: CR32 article-title: Sunlight-coordinated high-performance moisture power in natural conditions publication-title: Adv. Mater. doi: 10.1002/adma.202103897 – volume: 315 start-page: 1568 year: 2007 end-page: 1571 ident: CR7 article-title: Thermoelectricity in molecular junctions publication-title: Science doi: 10.1126/science.1137149 – volume: 9 start-page: 38170 year: 2017 end-page: 38175 ident: CR22 article-title: Highly efficient moisture-triggered nanogenerator based on graphene quantum dots publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b12542 – volume: 32 start-page: 329 year: 2017 end-page: 335 ident: CR39 article-title: Self-powered wearable graphene fiber for information expression publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.062 – ident: CR43 – volume: 6 start-page: 10639 year: 2018 end-page: 10643 ident: CR23 article-title: Flexible carbon dots composite paper for electricity generation from water vapor absorption publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02505C – volume: 12 start-page: 972 year: 2019 end-page: 978 ident: CR31 article-title: An efficient polymer moist-electric generator publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE00252A – volume: 17 start-page: 7165 year: 2024 end-page: 7181 ident: CR25 article-title: Environmentally sustainable moisture energy harvester with chemically networked cellulose nanofiber publication-title: Energ. Environ. Sci. doi: 10.1039/D4EE01881H – ident: CR14 – volume: 67 year: 2020 ident: CR34 article-title: Transparent, self-healing, arbitrary tailorable moist-electric film generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104238 – volume: 16 start-page: 811 year: 2021 ident: CR2 article-title: Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00903-6 – volume: 3 year: 2022 ident: CR37 article-title: Bio-inspired functional coacervates publication-title: Aggregate doi: 10.1002/agt2.293 – volume: 146 start-page: 1690 year: 2024 end-page: 1700 ident: CR41 article-title: Unipolar solution flow in calcium-organic frameworks for seawater-evaporation-induced electricity generation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13159 – volume: 578 start-page: 392 year: 2020 ident: CR5 article-title: A droplet-based electricity generator with high instantaneous power density publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 179 start-page: 402 year: 2018 end-page: 407 ident: CR42 article-title: Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2017.09.096 – volume: 16 start-page: 7496 year: 2023 end-page: 7510 ident: CR13 article-title: Moisture electricity generation: mechanisms, structures, and applications publication-title: Nano Res. doi: 10.1007/s12274-023-5465-9 – ident: CR27 – volume: 578 start-page: 550 year: 2020 ident: CR1 article-title: Power generation from ambient humidity using protein nanowires publication-title: Nature doi: 10.1038/s41586-020-2010-9 – ident: CR44 – volume: 116 year: 2023 ident: CR38 article-title: Weavable yarn-shaped moisture-induced electric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108748 – volume: 77 year: 2020 ident: CR20 article-title: Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105096 – volume: 17 start-page: 134 year: 2024 end-page: 148 ident: CR8 article-title: A deformable complementary moisture and tribo energy harvester publication-title: Energ. Environ. Sci. doi: 10.1039/D3EE03052K – volume: 32 start-page: 2003722 year: 2020 ident: CR15 article-title: Moisture-enabled electricity generation: from physics and materials to self-powered applications publication-title: Adv. Mater. doi: 10.1002/adma.202003722 – volume: 101 start-page: 107591 year: 2022 ident: CR9 article-title: A review of humidity gradient-based power generator: devices, materials and mechanisms publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107591 – volume: 17 start-page: 5472 year: 2023 end-page: 5485 ident: CR30 article-title: Humidity-Tolerant Moisture-driven energy generator with mxene aerogel-organohydrogel Bilayer publication-title: ACS Nano doi: 10.1021/acsnano.2c10747 – volume: 36 start-page: 2304053 year: 2024 ident: CR3 article-title: Alternating current electroluminescence for human-interactive sensing displays publication-title: Adv. Mater. doi: 10.1002/adma.202304053 – volume: 54 start-page: 4831 year: 2019 end-page: 4841 ident: CR19 article-title: Moisture-enabled electricity generation from gradient polyoxometalates-modified sponge-like graphene oxide monolith publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-3183-6 – ident: 54442_CR43 doi: 10.1021/acsnano.4c01179 – volume: 578 start-page: 392 year: 2020 ident: 54442_CR5 publication-title: Nature doi: 10.1038/s41586-020-1985-6 – volume: 53 start-page: 698 year: 2018 ident: 54442_CR40 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.09.043 – volume: 578 start-page: 550 year: 2020 ident: 54442_CR1 publication-title: Nature doi: 10.1038/s41586-020-2010-9 – volume: 32 start-page: 329 year: 2017 ident: 54442_CR39 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.062 – volume: 30 start-page: 2157 year: 2009 ident: 54442_CR45 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21224 – volume: 17 start-page: 134 year: 2024 ident: 54442_CR8 publication-title: Energ. Environ. Sci. doi: 10.1039/D3EE03052K – volume: 138 start-page: 980 year: 2016 ident: 54442_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11878 – volume: 9 start-page: 38170 year: 2017 ident: 54442_CR22 publication-title: ACS Appl. Mater. Int. doi: 10.1021/acsami.7b12542 – volume: 102 year: 2022 ident: 54442_CR28 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107709 – volume: 3 year: 2022 ident: 54442_CR37 publication-title: Aggregate doi: 10.1002/agt2.293 – volume: 65 start-page: 450 year: 2022 ident: 54442_CR29 publication-title: Sci. China Technol. Sc. doi: 10.1007/s11431-021-1969-y – volume: 95 year: 2022 ident: 54442_CR33 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107017 – volume: 179 start-page: 402 year: 2018 ident: 54442_CR42 publication-title: Carbohyd. Polym. doi: 10.1016/j.carbpol.2017.09.096 – volume: 33 start-page: 2301420 year: 2023 ident: 54442_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202301420 – volume: 3 year: 2023 ident: 54442_CR16 publication-title: Exploration doi: 10.1002/EXP.20220061 – volume: 16 start-page: 7496 year: 2023 ident: 54442_CR13 publication-title: Nano Res. doi: 10.1007/s12274-023-5465-9 – volume: 9 start-page: 912 year: 2016 ident: 54442_CR18 publication-title: Energ. Environ. Sci. doi: 10.1039/C5EE03701H – volume: 14 start-page: 33 year: 1996 ident: 54442_CR49 publication-title: J. Mol. Graph. Model. doi: 10.1016/0263-7855(96)00018-5 – volume: 36 start-page: 2304053 year: 2024 ident: 54442_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202304053 – ident: 54442_CR14 doi: 10.1002/adma.202209661 – volume: 13 start-page: 2204091 year: 2023 ident: 54442_CR11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204091 – volume: 193 start-page: 941 year: 2021 ident: 54442_CR24 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.10.159 – volume: 33 start-page: 580 year: 2012 ident: 54442_CR48 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – ident: 54442_CR27 doi: 10.1016/j.device.2024.100561 – volume: 67 year: 2020 ident: 54442_CR34 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.104238 – volume: 462 start-page: 142322 year: 2023 ident: 54442_CR35 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142322 – volume: 116 year: 2023 ident: 54442_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108748 – volume: 17 start-page: 5472 year: 2023 ident: 54442_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.2c10747 – volume: 12 start-page: 972 year: 2019 ident: 54442_CR31 publication-title: Energ. Environ. Sci. doi: 10.1039/C9EE00252A – ident: 54442_CR44 doi: 10.1002/aenm.202400590 – volume: 27 start-page: 4351 year: 2015 ident: 54442_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201501867 – volume: 94 start-page: 6081 year: 1991 ident: 54442_CR46 publication-title: J. Chem. Phys. doi: 10.1063/1.460447 – volume: 101 start-page: 107591 year: 2022 ident: 54442_CR9 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107591 – volume: 149 start-page: 134 year: 2012 ident: 54442_CR47 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2011.08.020 – volume: 77 year: 2020 ident: 54442_CR20 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105096 – ident: 54442_CR4 doi: 10.1002/adfm.202308703 – volume: 418 start-page: 129518 year: 2021 ident: 54442_CR21 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129518 – volume: 6 start-page: 10639 year: 2018 ident: 54442_CR23 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02505C – volume: 34 start-page: 2103897 year: 2022 ident: 54442_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.202103897 – volume: 17 start-page: 7165 year: 2024 ident: 54442_CR25 publication-title: Energ. Environ. Sci. doi: 10.1039/D4EE01881H – volume: 315 start-page: 1568 year: 2007 ident: 54442_CR7 publication-title: Science doi: 10.1126/science.1137149 – volume: 54 start-page: 4831 year: 2019 ident: 54442_CR19 publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-3183-6 – volume: 32 start-page: 2003722 year: 2020 ident: 54442_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.202003722 – volume: 8 start-page: 17498 year: 2020 ident: 54442_CR26 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA13407G – volume: 146 start-page: 1690 year: 2024 ident: 54442_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13159 – volume: 16 start-page: 811 year: 2021 ident: 54442_CR2 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00903-6 – volume: 591 start-page: 240 year: 2021 ident: 54442_CR6 publication-title: Nature doi: 10.1038/s41586-021-03295-8 – volume: 51 start-page: 4902 year: 2022 ident: 54442_CR12 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00778E |
SSID | ssj0000391844 |
Score | 2.5556762 |
Snippet | Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been demonstrated. Here... Abstract Moisture-driven electricity generators (MEGs) have been extensively researched; however, high-performance flexible variants have seldom been... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10056 |
SubjectTerms | 639/301/299 639/4077/4072 Alginic acid Coacervation Current carriers Electric generators Electric potential Generators Humanities and Social Sciences Moisture multidisciplinary Nanoribbons Performance degradation Polyelectrolytes Relative humidity Science Science (multidisciplinary) Sodium alginate Sodium channels (voltage-gated) Surface charge Synapses |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kQfAivs26SgvetNnudCfpPq7isgh6cmFvTT91YMwsMxlwbv4H_6G_xKpOZtzxefEUSCqkqVdXpau-IuRZo6OQHVfMt7ViymXFnPac-ZSCyiGC38Te4bfv2rNz9eaiubgy6gtrwkZ44JFxx6b2TnSeBxm5clGaKOrsU9Z1klz7hN4X9rwryVTxwdJA6qKmLhku9fFKFZ8AWxJrlFI1U3s7UQHs_12U-Wux5E8npmUjOr1Fbk4RJD0ZV36bXEv9HXJ9nCm5uUs2JxSRKb99-brCGk-asSSEflqAONfLxOIS3Rsdp9_MAv1QYKch8aapdFFF6jd0tcGOQGxvpKXkPH2Gqwvb_7fU9UC2ns0HNuvp5WLAiiM3v0fOT1-_f3XGpvkKLDRKDODnjA5eF1Q-3XIXG5xak4VM3kunGqdkdq2JtcgyQJ6XIRowzuk6B90m2cr75KBf9OkhoQFYyjsItULQykinTavQtrmpXddFUxGx5bUNE_g4zsCY23IILrUd5WNBPrbIx6qKPN-9czlCb_yV-iWKcEeJsNnlBiiTnZTJ_kuZKnK0VQA72fLKSoGz2OCDTUWe7h6DFeLRiuvTYj3SNHg4DjQPRn3ZrURCCgpxWVcRvadJe0vdf9LPPhakb0RCMtLoirzYKt2Pdf2ZF4f_gxePyI0arUUI8KRH5GBYrtNjCMAG_6TY2ndYuC3h priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6txPEnsEyqIpUKCE5V6i_xKWWmbLJusxN74D_xDfgke51Etj54ixRPJ8Tw89sx8Q8jLXDouyhSYKTJgoGtgWpqUGe8t1NYFu4m1w58-Fyen8PEsPxsv3LoxrXKyidFQu9biHfmR4NgRCzjkb9bfGHaNwujq2ELjOrnBw06DKV1y8WG-Y0H0cwkw1sqkQh51EC1D2JhYDgAZg739KML2_8vX_Dtl8o-4adyOFnfI7dGPpMcD4--Sa765R24OnSV398numCI-5a8fPzvM9KQ1JobQizYwdbvxzG3QyNGhB87S0vMIPh2O39THWipHzY52O6wLxCJHGhPP_ffw1Ha6xaW6CWTb5apny4au2x7zjvTqATldvP_y7oSNXRaYzYH3wdopaY2M2HyySLXLsXdNzYU3RmjINYhaF8plvBY2nPbq4BMorWVWW1l4UYiH5KBpG_-YUBuWNC2Dw2WtBCW0VAWghqcq02XpVEL4tNaVHSHIsRPGqoqhcCGrgT9V4E8V-VNBQl7N36wHAI4rqd8iC2dKBM-OL9rNeTXqYqUyo3lpUitcCtoJ5XhWG1_LzItUGp-Qw0kAqlGju-pS_hLyYh4OuogBFt34djvQ5BgiDzSPBnmZZyLCQTR4Z2VC5J4k7U11f6RZfo1434iHpISSCXk9Cd3lvP6_Fk-u_o2n5FaGesB5sJSH5KDfbP2z4GD15nnUot-iFyQn priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7rLoIv4t3qKhF802BzaZs8juKyDOiLLuxbyHUdmG2XmQ44b_4H_6G_xJO0HRldBZ8KzQlNcy45Sc75DkIvK-kpb0pBbM0EESYKYqQtiQ3Bieg82M2UO_zhY316Jubn1fkBYlMuTA7az5CW2UxP0WFv1iKrNKwopBJCMCJuoKME1Q6yfTSbzT_NdycrCfNcCjFmyJRcXtN5bxXKYP3XeZh_Bkr-dluaF6GTO-j26D3i2TDeu-ggtPfQzaGe5PY-2s5wQqX88e37OsV34pjCQfBlB6yEXyV-lUwbHirfLBy-yJDTsOnGIWdQeWy3eL1N2YAptRHncPPwFZ7GTWe32LRAtlkse7Jo8VXXp2gjs3yAzk7ef353SsbaCsRVgvZg45R0VmZEPlmXxlepYk2kPFjLjaiM4NHUyjMauYM9XgRPQBkjWXSyDrzmD9Fh27XhMcIOprRswM1yTgrFjVS1SHpdKmaaxqsC0WmutRuBx1P9i6XOF-Bc6oE_GvijM3-0KNCrXZ-rAXbjn9RvEwt3lAkyO7_oVhd6FCGtmDW0saXjvhTGc-UpizZEyQIvpQ0FOp4EQI96vNacpjps8MGqQC92zaCB6VrFtKHbDDRVuhgHmkeDvOxGwmH7CT5ZUyC5J0l7Q91vaRdfMsp3QkFSXMkCvZ6E7te4_j4XT_6P_Cm6xZJeUAr28hgd9qtNeAZuVm-fj3r1E-HPI24 priority: 102 providerName: Springer Nature |
Title | A core–shell fiber moisture-driven electric generator enabled by synergetic complex coacervation and built-in potential |
URI | https://link.springer.com/article/10.1038/s41467-024-54442-4 https://www.ncbi.nlm.nih.gov/pubmed/39567507 https://www.proquest.com/docview/3131034145 https://www.proquest.com/docview/3131500445 https://pubmed.ncbi.nlm.nih.gov/PMC11579398 https://doaj.org/article/92ba17b0c3d04ad39d12fbef82e308be |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3bbtMw9GgXgfaCuJMxKiPxBoE4dhL7AaGuWpkqbUJApb5FtuOMSiXZehHr33PsJEWFjpdYco4Vy-cenwvAm0QUlGURD3Ua85CrkodK6CjU1hpemgLlpssdvrhMz8d8NEkme9C1O2oPcLHTtXP9pMbz2fvbm_UnZPiPTcq4-LDgnt1R24QJ5zwO-T4combKXEeDi9bc95KZSXRoeJs7s3vpEdxn6DOgIs22VJWv6L_LDP03mvKvK1WvqYYP4UFrYpJ-QxOPYM9Wj-Fe03Ry_QR-9YkrXRkuXAgoKV3ECPlZI7ZXOFnMnfQjTXOcqSFXvio1-uXE-iSrgug1WaxdwqDLfiQ-It3e4qhM93uXqArBVtPZMpxW5LpeuoAkNXsK4-HZ98F52LZfCE3C6RLFoBRGC1-0T6SRKhLX1KakzGrNFE8UZ6VKZRHTkhl0A0s0FqRSIi6NSC1L2TM4qOrKvgBi8GyjDC0xYwSXTAmZcsf6kYxVlhUyANqddG7a2uSuRcYs93fkTOQNonJEVO4RlfMA3m7WXDeVOf4LfeoQuIF0VbX9RD2_ylsmzWWsFc10ZFgRcVUwWdC41LYUsWWR0DaAkw79eUepOaOuVRt-MAng9eY1Mqm7eVGVrVcNTOLuzhHmeUMtm5101BaA2KKjra1uv6mmP3whcFcoSTIpAnjXkdyffd19Fsd37uElHMWOFyhF6XkCB8v5yr5Co2upe7CfTTJ8iuHnHhz2-6NvIxxPzy6_fMXZQTro-d8ZPc9xvwHCWixY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4ia2JPEPiBUHktLH6dW6i34lbLSkiz7EOyN_8D_4EfxS_A4yVbLo7eeVtrMrhzP056Zbwh5mgmb8iKBWOcMYlAVxEroJNbOGaiM9XYTe4cPDvOdY_hwkp2skZ99LwyWVfY2MRhq2xi8I9_iKU7EghSyV-MvMU6NwuxqP0KjFYs9t_jqj2zTl7tvPX-fMTZ4d_RmJ-6mCsQmg3TmtVsKo0XAohN5omyGs1qqlDutuYJMAa9ULi1LK2786abyPlAqJVhlRO54zv3_XiKXgXtPjp3pg_fLOx1EWxcAXW9OwsXWFIIl8o4wzgCAxbDi_8KYgH_Ftn-XaP6Rpw3ub3CDXO_iVrrdCtpNsubqW-RKO8lycZsstiniYf76_mOKlaW0wkIU-rnxQjSfuNhO0KjSdubO0NDTAHbtj_vUhd4tS_WCThfYh4hNlTQUurtv_lOZ_taYqtqTzYejWTys6biZYZ2TGt0hxxey_3fJet3U7h6hxm9pUvgAzxgBkishc0CLkkimisLKiKT9XpemgzzHyRujMqTeuShb_pSeP2XgTwkReb78zbgF_DiX-jWycEmJYN3hi2ZyWna6X0qmVVroxHCbgLJc2pRV2lWCOZ4I7SKy2QtA2VmQaXkm7xF5snzsdR8TOqp2zbylyTAl72k2WnlZroT7g6-PBouIiBVJWlnq6pN6-CngiyP-kuRSRORFL3Rn6_r_Xtw__zUek6s7Rwf75f7u4d4Dco2hTqSpt9KbZH02mbuHPrib6UdBoyj5eNEq_Bs5j1-l |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2jp3EOSDU0q5aCqsKUam3YDtOWWlJln0I9sZ_4N_wc_gleJxkq-XRW08rbWZXjmfm84znBfA0lgXjaSioTiJBhSoFVVKHVFtrRGkKh5tYO_xumOwfizcn8ckG_OxqYTCtssNED9RFbfCOvM8ZTsQSTMT9sk2LONodvJp8oThBCiOt3TiNRkQO7fKrc99mLw92Ha-fRdFg78PrfdpOGKAmFmzuND2TRkvfl04moSpinNtSMm615krESvBSJVkRsZIb5-mU7jzMlJJRaWRiecLd_16CzRS9oh5s7uwNj96vbniw97oUoq3UCbnsz4THJXcs0lgIEVGxdhr6oQH_snT_Ttj8I2rrD8PBdbjWWrFkuxG7G7Bhq5twuZlrubwFy22C3TF_ff8xwzxTUmJaCvlcO5FaTC0tpgixpJnAMzLk1Le-ds4_sb6SqyB6SWZLrErEEkvi097tN_epTHeHTFTlyBaj8ZyOKjKp55j1pMa34fhCOHAHelVd2XtAjNvSMHXmnjFSZFzJLBGIL2EWqTQtsgBYt9e5aRug4xyOce4D8VzmDX9yx5_c8ycXATxf_WbStP84l3oHWbiixNbd_ot6epq3SJBnkVYs1aHhRShUwbOCRaW2pYwsD6W2AWx1ApC3eDLLz6Q_gCerxw4JMLyjKlsvGpoYA_SO5m4jL6uVcOcGO9swDUCuSdLaUtefVKNPvts4dmPKeCYDeNEJ3dm6_r8X989_jcdwxalv_vZgePgArkaoEow5yN6C3ny6sA-dpTfXj1qVIvDxorX4N5tTZTc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+core-shell+fiber+moisture-driven+electric+generator+enabled+by+synergetic+complex+coacervation+and+built-in+potential&rft.jtitle=Nature+communications&rft.au=Zan%2C+Guangtao&rft.au=Jiang%2C+Wei&rft.au=Kim%2C+HoYeon&rft.au=Zhao%2C+Kaiying&rft.date=2024-11-20&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft.spage=10056&rft_id=info:doi/10.1038%2Fs41467-024-54442-4&rft_id=info%3Apmid%2F39567507&rft.externalDocID=39567507 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |