Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration

Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydr...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 7771 - 14
Main Authors Yang, Yuxuan, Zhao, Xiaodan, Wang, Shuang, Zhang, Yanfeng, Yang, Aiming, Cheng, Yilong, Chen, Xuesi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration. Achieving successful in vivo cartilage regeneration remains challenging. Here they present a cell-free, multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin with ultra-durable mechanical properties and stage-dependent drug release behavior to promote cartilage regeneration.
AbstractList Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.
Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration. Achieving successful in vivo cartilage regeneration remains challenging. Here they present a cell-free, multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin with ultra-durable mechanical properties and stage-dependent drug release behavior to promote cartilage regeneration.
Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.
Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.Achieving successful in vivo cartilage regeneration remains challenging. Here they present a cell-free, multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin with ultra-durable mechanical properties and stage-dependent drug release behavior to promote cartilage regeneration.
Abstract Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.
ArticleNumber 7771
Author Yang, Aiming
Chen, Xuesi
Zhao, Xiaodan
Zhang, Yanfeng
Cheng, Yilong
Wang, Shuang
Yang, Yuxuan
Author_xml – sequence: 1
  givenname: Yuxuan
  orcidid: 0000-0001-5444-4908
  surname: Yang
  fullname: Yang, Yuxuan
  email: yangyuxuan@xjtu.edu.cn
  organization: Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University
– sequence: 2
  givenname: Xiaodan
  surname: Zhao
  fullname: Zhao, Xiaodan
  organization: Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University
– sequence: 3
  givenname: Shuang
  surname: Wang
  fullname: Wang, Shuang
  organization: Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University
– sequence: 4
  givenname: Yanfeng
  surname: Zhang
  fullname: Zhang, Yanfeng
  organization: School of Chemistry, Xi’an Jiaotong University
– sequence: 5
  givenname: Aiming
  surname: Yang
  fullname: Yang, Aiming
  organization: Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University
– sequence: 6
  givenname: Yilong
  orcidid: 0000-0002-4996-8456
  surname: Cheng
  fullname: Cheng, Yilong
  email: yilongcheng@mail.xjtu.edu.cn
  organization: School of Chemistry, Xi’an Jiaotong University, Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University
– sequence: 7
  givenname: Xuesi
  orcidid: 0000-0003-3542-9256
  surname: Chen
  fullname: Chen, Xuesi
  organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38012159$$D View this record in MEDLINE/PubMed
BookMark eNp9Urlu3DAQFQIH8RH_QIqAQJo0SnhJpKogMHIYMJAmrgkeI60WFLkhJRv79-bu2o7twmw4GL55fPNmTqujEANU1QeCvxDM5NfMCW9FjSmrOWOM1_JNdUIxJzURlB09iY-r85zXuBzWEcn5u-qYSUwoabqT6vbaz0nXbknaeEAWvK_7BIDMGLWdxxtAq61LcQCPbsd5hXqdZ5RXegNogimmLdLBoRhqB9MucmkZUAIPOgPqY0JWp3n0eoCSHSBA0vMYw_vqba99hvP7-6y6_vnj78Xv-urPr8uL71e1bTiZa-mYFo0FSyk1JeishYb2rRBdIwwI65wGQzqsOaFtaxz0nTOa9qCtpaJnZ9XlgddFvVabNE46bVXUo9onYhrUTp_1oJiF4hEQLDvBZWO0wC1waXppjTWNLFzfDlybxUzgLIRinX9G-vwljCs1xBtFcCspJm1h-HzPkOK_BfKspjHvPNcB4pIVlR0XtMWMFOinF9B1XFIoXu1RpOWYiIL6-FTSo5aHARcAPQBsijkn6B8hBKvdIqnDIqmySGq_SGrXqHxRZMd5P7bS1uhfL2WH0lz-CQOk_7JfqboDuw3fMA
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2024_133818
crossref_primary_10_1002_adma_202406434
crossref_primary_10_3390_pharmaceutics16111429
crossref_primary_10_1016_j_inoche_2024_113145
crossref_primary_10_1016_j_carbpol_2024_123138
crossref_primary_10_1002_adma_202407040
crossref_primary_10_1002_adfm_202418407
crossref_primary_10_1002_adhm_202403490
crossref_primary_10_1002_adhm_202404260
crossref_primary_10_1016_j_ijbiomac_2025_139835
crossref_primary_10_3390_lubricants12110377
crossref_primary_10_3390_ijms25189984
crossref_primary_10_1016_j_cej_2024_153930
crossref_primary_10_1016_j_carbpol_2024_122805
crossref_primary_10_1002_adma_202420626
crossref_primary_10_1073_pnas_2405454121
crossref_primary_10_1039_D4CS00450G
crossref_primary_10_1016_j_bioactmat_2024_03_033
crossref_primary_10_1093_jhps_hnae005
crossref_primary_10_1016_j_ijbiomac_2025_140186
crossref_primary_10_1021_acsbiomaterials_4c02050
crossref_primary_10_1016_j_ijbiomac_2025_141352
crossref_primary_10_3389_fphar_2024_1488036
crossref_primary_10_1016_j_compositesb_2024_111928
crossref_primary_10_3390_gels10040270
crossref_primary_10_1088_1748_605X_ad792c
crossref_primary_10_1016_j_bioactmat_2024_08_004
crossref_primary_10_1039_D4RA06558A
crossref_primary_10_1038_s41392_024_01852_x
crossref_primary_10_1007_s10853_024_09917_6
crossref_primary_10_1002_mba2_95
crossref_primary_10_1002_adfm_202400360
crossref_primary_10_3390_biomedicines12040923
crossref_primary_10_1016_j_compositesb_2025_112161
crossref_primary_10_1002_adma_202412083
crossref_primary_10_1016_j_carpta_2025_100771
crossref_primary_10_1016_j_bioactmat_2024_10_003
crossref_primary_10_1002_smll_202409781
crossref_primary_10_1016_j_colsurfb_2024_114160
crossref_primary_10_1016_j_cej_2024_153430
crossref_primary_10_3389_fimmu_2025_1535464
crossref_primary_10_1002_adhm_202303817
crossref_primary_10_3390_bioengineering12010038
crossref_primary_10_1088_1748_605X_adbcee
crossref_primary_10_1016_j_cej_2024_149810
crossref_primary_10_1002_advs_202407425
crossref_primary_10_1016_j_jconrel_2025_02_016
crossref_primary_10_3390_ijms25052675
crossref_primary_10_1002_adma_202410845
crossref_primary_10_1002_adfm_202401547
crossref_primary_10_1021_acs_jpcb_4c06942
crossref_primary_10_1002_adfm_202409594
crossref_primary_10_1016_j_ijbiomac_2025_139945
crossref_primary_10_1002_adfm_202408462
crossref_primary_10_1016_j_cej_2024_158715
crossref_primary_10_1021_acs_biomac_3c01424
crossref_primary_10_1021_acsami_3c17057
crossref_primary_10_1007_s44174_024_00247_4
crossref_primary_10_1016_j_bioactmat_2024_12_021
Cites_doi 10.1002/sctm.18-0053
10.1016/j.actbio.2020.01.015
10.1126/sciadv.abg0628
10.1126/science.1116995
10.1136/annrheumdis-2019-216515
10.1002/advs.201900867
10.1016/j.biomaterials.2021.121214
10.1016/j.cell.2006.06.044
10.1002/adfm.202105084
10.1002/adhm.202001122
10.2147/IJN.S154797
10.1038/s41591-020-1013-2
10.7150/thno.23674
10.1016/j.biomaterials.2019.119644
10.1021/acsami.5b12212
10.1016/j.actbio.2021.03.026
10.1016/j.rehab.2016.03.002
10.1016/S0140-6736(18)31064-X
10.1126/science.1222454
10.1016/j.actbio.2020.12.005
10.1016/j.biomaterials.2005.06.003
10.1016/j.biomaterials.2021.121216
10.1002/biot.202000095
10.1016/j.semarthrit.2017.10.016
10.1002/adma.201701089
10.1016/j.biomaterials.2021.121169
10.1016/j.joca.2014.12.011
10.1136/adc.2004.062760
10.1016/j.actbio.2019.11.015
10.1016/j.actbio.2010.08.021
10.1016/j.matbio.2019.11.005
10.1002/jbmr.4046
10.1021/acsami.0c07753
10.7150/thno.26981
10.1016/j.mcna.2019.10.007
10.1016/j.actbio.2021.02.046
10.1126/science.1215157
10.1039/D0TB00331J
10.1016/j.biomaterials.2020.120539
10.1002/adfm.201807356
10.2165/00007256-199520050-00005
10.1021/acsami.6b10491
10.1016/j.carbpol.2019.115147
10.1016/j.joca.2005.07.014
10.3390/biom10030439
10.1038/s41467-022-33081-7
10.1016/j.biopha.2020.110452
10.1016/j.biopha.2018.11.099
10.1021/acsnano.0c01658
10.1002/adfm.201705962
10.1016/S0140-6736(20)32230-3
10.1002/adma.202008451
10.1016/j.biomaterials.2019.05.001
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-43334-8
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 14
ExternalDocumentID oai_doaj_org_article_3ce000e10897485ba706e48bf8cbcb58
PMC10682016
38012159
10_1038_s41467_023_43334_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52322309; 52173139
  funderid: https://doi.org/10.13039/501100001809
– fundername: “Young Talent Support Plan” of Xi'an Jiaotong University; Fundamental Research Funds for the Central Universities (xzy022021040, xzy022021052, xzy012023098, and xzy012023105).
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52322309
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52173139
– fundername: ;
– fundername: ;
  grantid: 52322309; 52173139
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-8d3a75cec222b75c9cce52f677957be7cddaeb190a41266bdef9dba2feacc27f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:30 EDT 2025
Thu Aug 21 18:36:02 EDT 2025
Fri Jul 11 06:34:28 EDT 2025
Wed Aug 13 05:15:46 EDT 2025
Fri May 09 01:30:32 EDT 2025
Tue Jul 01 02:10:47 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-8d3a75cec222b75c9cce52f677957be7cddaeb190a41266bdef9dba2feacc27f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5444-4908
0000-0003-3542-9256
0000-0002-4996-8456
OpenAccessLink https://www.proquest.com/docview/2894164017?pq-origsite=%requestingapplication%
PMID 38012159
PQID 2894164017
PQPubID 546298
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_3ce000e10897485ba706e48bf8cbcb58
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10682016
proquest_miscellaneous_2894726031
proquest_journals_2894164017
pubmed_primary_38012159
crossref_primary_10_1038_s41467_023_43334_8
crossref_citationtrail_10_1038_s41467_023_43334_8
springer_journals_10_1038_s41467_023_43334_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-27
PublicationDateYYYYMMDD 2023-11-27
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ShiWStructurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivoAdv Mater201729170108910.1002/adma.201701089
WangYMultifunctional supramolecular hydrogel for prevention of epidural adhesion after LaminectomyACS Nano202014820282191:CAS:528:DC%2BB3cXhtFaiur%2FP3252051910.1021/acsnano.0c01658
AnsariMYAhmadNHaqqiTMOxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenolsBiomed. Pharmacother.20201291104521:CAS:528:DC%2BB3cXhtlGntL3L32768946840468610.1016/j.biopha.2020.110452
MatasJUmbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized Phase I/II trialStem Cells Transl. Med201982152241:CAS:528:DC%2BC1MXhsFKhs7zK3059239010.1002/sctm.18-0053
HunzikerEBLippunerKKeelMJBShintaniNAn educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospectsOsteoarthr. Cartil.2015233343501:STN:280:DC%2BC2Mzps1WltQ%3D%3D10.1016/j.joca.2014.12.011
SimonDBone mass, bone microstructure and biomechanics in patients with hand OsteoarthritisJ. Bone Min. Res2020351695170210.1002/jbmr.4046
YangYBioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatmentBioact. Mater.20216396239751:CAS:528:DC%2BB3MXhtFKjtL%2FN339375958079829
QiaoZA mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedingsBioact. Mater.20216282928401:CAS:528:DC%2BB3MXhtFKjsbjP337186657905459
NinanNForgetAShastriVPVoelckerNHBlencoweAAntibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated Agarose composite hydrogels for wound healingACS Appl Mater. Interfaces2016828511285211:CAS:528:DC%2BC28Xhs1WktbrL2770475710.1021/acsami.6b10491
AbramoffBCalderaFEOsteoarthritis: Pathology, diagnosis, and treatment optionsMed Clin. North Am.20201042933113203557010.1016/j.mcna.2019.10.007
XuXExosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regenerationBiomaterials20212691205391:CAS:528:DC%2BB3cXisVWis77J3324342410.1016/j.biomaterials.2020.120539
CaldersPVan GinckelAPresence of comorbidities and prognosis of clinical symptoms in knee and/or hip osteoarthritis: A systematic review and meta-analysisSemin Arthritis Rheum.2018478058132915767010.1016/j.semarthrit.2017.10.016
HuaYUltrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopySci Adv.2021711410.1126/sciadv.abg0628
HarrellCRMarkovicBSFellabaumCArsenijevicAVolarevicVMesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectivesBiomed. Pharmacother.2019109231823261:CAS:528:DC%2BC1cXitlKls7rF3055149010.1016/j.biopha.2018.11.099
LiuXMolecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repairBiomaterials20202321196442020hsm2.book.....L1:CAS:528:DC%2BC1MXisVyqtb3E3188401710.1016/j.biomaterials.2019.119644
YangYH-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion applicationACS Appl Mater. Interfaces20201234161341691:CAS:528:DC%2BB3cXhtlCmt7zF3263104410.1021/acsami.0c07753
ZhangF-XInjectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regenerationBiomaterials20212781211691:CAS:528:DC%2BB3MXitF2htbfJ3462693710.1016/j.biomaterials.2021.121169
EnglerAJSenSSweeneyHLDischerDEMatrix elasticity directs stem cell lineage specificationCell20061266776891:CAS:528:DC%2BD28Xpt1aktbg%3D1692338810.1016/j.cell.2006.06.044
Urbanczyk, M., Layland, S. L. & Schenke-Layland, K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 85–86, 1–14 (2020).
VainieriMLEvaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formationActa Biomater.20201012933031:CAS:528:DC%2BC1MXit1OisbzM3172624910.1016/j.actbio.2019.11.015
AhmadianZA hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing accelerationAdv. Health. Mater.202110e200112210.1002/adhm.202001122
LuZAn injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesisBiomaterials20192181191901:CAS:528:DC%2BC1MXhtl2qurzP3132665610.1016/j.biomaterials.2019.05.001
OosterhuisTRehabilitation after lumbar disc surgeryCochrane Database Syst Rev.20142014CD003007246273257138272
ZhangYRadiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteriesAdv. Funct. Mater.201828170596210.1002/adfm.201705962
LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583
LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583
GaoFOsteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffoldsAdv. Sci.20196190086710.1002/advs.201900867
WuXMarginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogelsBioact. Mater.20216397639861:CAS:528:DC%2BB3MXhtFKjtL%2FO339974878081879
GeWRapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogelsCarbohydr. Polym.20192241151471:CAS:528:DC%2BC1MXhsFWlsbrK3147282610.1016/j.carbpol.2019.115147
VinatierCGuicheuxJCartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatmentsAnn. Phys. Rehabil. Med2016591391441:STN:280:DC%2BC28bgtVOhsA%3D%3D2707958310.1016/j.rehab.2016.03.002
LiYTannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046
YaoMMicrogel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devicesNat. Commun.2022132022NatCo..13.5339Y1:CAS:528:DC%2BB38XitlKrsLrP36096894946815010.1038/s41467-022-33081-7
ZhaoYInfliximab-based self-healing hydrogel composite scaffold enhances stem cell survival, engraftment, and function in rheumatoid arthritis treatmentActa Biomater.20211216536641:CAS:528:DC%2BB3MXhtlOjs7k%3D3329091210.1016/j.actbio.2020.12.005
St-PierreDMRehabilitation following arthroscopic meniscectomySports Med1995203383471:STN:280:DyaK287lvVeksg%3D%3D857100710.2165/00007256-199520050-00005
BarnettROsteoarthritisLancet201839119852986401510.1016/S0140-6736(18)31064-X
LiXKartogenin-Incorporated Thermogel supports stem cells for significant cartilage regenerationACS Appl Mater. Interfaces20168514851592016aams.book.....L1:CAS:528:DC%2BC28XitVGqsr0%3D2684483710.1021/acsami.5b12212
DischerDEJanmeyPWangY-LTissue cells feel and respond to the stiffness of their substrateScience2005310113911432005Sci...310.1139D1:CAS:528:DC%2BD2MXht1WgtLbF1629375010.1126/science.1116995
JohnsonKA stem cell-based approach to cartilage repairScience20123367177212012Sci...336..717J1:CAS:528:DC%2BC38XmsFymtbc%3D2249109310.1126/science.1215157
JoshiAFunctional compressive mechanics of a PVA/PVP nucleus pulposus replacementBiomaterials2006271761841:CAS:528:DC%2BD2MXhtVShtb%2FF1611567810.1016/j.biomaterials.2005.06.003
AlechinskyLTannic acid improves renal function recovery after renal warm ischemia-reperfusion in a rat modelBiomolecules2020104391:CAS:528:DC%2BB3cXosFKmurc%3D32178273717517710.3390/biom10030439
LiuY3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat modelBiomaterials20212791212161:CAS:528:DC%2BB3MXitlyrsrzM3473998210.1016/j.biomaterials.2021.121216
Torio, C. M. & Moore, B. J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief. Healthcare Cost and Utilization Project Statistical Briefs. 204, 1–15 (2006).
LiYTannic acid/Sr-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046
LeiYStem cell-recruiting injectable microgels for repairing OsteoarthritisAdv. Funct. Mater.20213121050841:CAS:528:DC%2BB3MXhs1emtbrM10.1002/adfm.202105084
PritzkerKPHOsteoarthritis cartilage histopathology: grading and stagingOsteoarthr. Cartil.20061413291:STN:280:DC%2BD28%2FhsVWrsg%3D%3D10.1016/j.joca.2005.07.014
JaffrayBMinimally invasive surgeryArch. Dis. Child2005905375421:STN:280:DC%2BD2M3hs1Sltw%3D%3D15851444172037910.1136/adc.2004.062760
HueyDJHuJCAthanasiouKAUnlike bone, cartilage regeneration remains elusiveScience20123389179212012Sci...338..917H1:CAS:528:DC%2BC38Xhs1GntL%2FE23161992432798810.1126/science.1222454
NguyenTPTCell-laden injectable microgels: Current status and future prospects for cartilage regenerationBiomaterials20212791212141:CAS:528:DC%2BB3MXitlKlt7rN3473614710.1016/j.biomaterials.2021.121214
AbdollahiyanPOroojalianFMokhtarzadehAde la GuardiaMHydrogel-based 3D bioprinting for bone and cartilage tissue engineeringBiotechnol. J.202015e20000953286952910.1002/biot.202000095
MurphyMPArticular cartilage regeneration by activated skeletal stem cellsNat. Med202026158315921:CAS:528:DC%2BB3cXhs1Wru77M32807933770406110.1038/s41591-020-1013-2
MaihöferJHydrogel-guided, rAAV-mediated IGF-I overexpression enables long-term cartilage repair and protection a
K Johnson (43334_CR6) 2012; 336
Y Lei (43334_CR49) 2021; 31
TPT Nguyen (43334_CR15) 2021; 279
J Matas (43334_CR12) 2019; 8
Y Li (43334_CR42) 2022; 9
DJ Hunter (43334_CR3) 2020; 396
Q Li (43334_CR46) 2021; 6
F-X Zhang (43334_CR47) 2021; 278
Y Liu (43334_CR56) 2021; 279
Y Li (43334_CR43) 2021; 126
W Shi (43334_CR20) 2017; 29
Y Zhang (43334_CR36) 2018; 28
Z Qiao (43334_CR59) 2021; 6
A Joshi (43334_CR34) 2006; 27
DM St-Pierre (43334_CR37) 1995; 20
M Yao (43334_CR63) 2022; 13
S Safiri (43334_CR2) 2020; 79
DE Discher (43334_CR53) 2005; 310
P Orlowski (43334_CR25) 2018; 13
Y Yang (43334_CR28) 2020; 12
Z Ahmadian (43334_CR44) 2021; 10
J Chen (43334_CR58) 2021; 6
P Abdollahiyan (43334_CR14) 2020; 15
W Ge (43334_CR45) 2019; 224
43334_CR32
N Ninan (43334_CR24) 2016; 8
L Li (43334_CR22) 2019; 29
J Lu (43334_CR48) 2018; 8
L Alechinsky (43334_CR50) 2020; 10
X Li (43334_CR51) 2016; 8
S Yin (43334_CR16) 2021; 128
D Simon (43334_CR7) 2020; 35
Y Hua (43334_CR57) 2021; 7
Y Li (43334_CR40) 2022; 9
X Xu (43334_CR27) 2021; 269
B Abramoff (43334_CR5) 2020; 104
ML Vainieri (43334_CR19) 2020; 101
P Calders (43334_CR10) 2018; 47
Y Yang (43334_CR30) 2021; 6
GD Nicodemus (43334_CR31) 2011; 7
MY Ansari (43334_CR39) 2020; 129
X Wu (43334_CR35) 2021; 6
C Vinatier (43334_CR55) 2016; 59
C Deng (43334_CR21) 2018; 8
Y Wang (43334_CR41) 2020; 14
Y Zhao (43334_CR61) 2021; 121
T Oosterhuis (43334_CR38) 2014; 2014
X Liu (43334_CR9) 2020; 232
43334_CR1
R Barnett (43334_CR4) 2018; 391
AJ Engler (43334_CR33) 2006; 126
CR Harrell (43334_CR11) 2019; 109
MP Murphy (43334_CR13) 2020; 26
H Xuan (43334_CR17) 2020; 105
J Yu (43334_CR29) 2020; 8
KPH Pritzker (43334_CR52) 2006; 14
EB Hunziker (43334_CR54) 2015; 23
Z Lu (43334_CR62) 2019; 218
DJ Huey (43334_CR18) 2012; 338
F Gao (43334_CR23) 2019; 6
Y Li (43334_CR26) 2021; 126
B Jaffray (43334_CR60) 2005; 90
J Maihöfer (43334_CR8) 2021; 33
References_xml – reference: ZhangYRadiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteriesAdv. Funct. Mater.201828170596210.1002/adfm.201705962
– reference: HarrellCRMarkovicBSFellabaumCArsenijevicAVolarevicVMesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectivesBiomed. Pharmacother.2019109231823261:CAS:528:DC%2BC1cXitlKls7rF3055149010.1016/j.biopha.2018.11.099
– reference: St-PierreDMRehabilitation following arthroscopic meniscectomySports Med1995203383471:STN:280:DyaK287lvVeksg%3D%3D857100710.2165/00007256-199520050-00005
– reference: YangYH-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion applicationACS Appl Mater. Interfaces20201234161341691:CAS:528:DC%2BB3cXhtlCmt7zF3263104410.1021/acsami.0c07753
– reference: DengCBioactive scaffolds for regeneration of cartilage and subchondral bone interfaceTheranostics20188194019551:CAS:528:DC%2BC1cXit1Srtb7P29556366585851010.7150/thno.23674
– reference: MatasJUmbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized Phase I/II trialStem Cells Transl. Med201982152241:CAS:528:DC%2BC1MXhsFKhs7zK3059239010.1002/sctm.18-0053
– reference: QiaoZA mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedingsBioact. Mater.20216282928401:CAS:528:DC%2BB3MXhtFKjsbjP337186657905459
– reference: AbramoffBCalderaFEOsteoarthritis: Pathology, diagnosis, and treatment optionsMed Clin. North Am.20201042933113203557010.1016/j.mcna.2019.10.007
– reference: ShiWStructurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivoAdv Mater201729170108910.1002/adma.201701089
– reference: WangYMultifunctional supramolecular hydrogel for prevention of epidural adhesion after LaminectomyACS Nano202014820282191:CAS:528:DC%2BB3cXhtFaiur%2FP3252051910.1021/acsnano.0c01658
– reference: ZhaoYInfliximab-based self-healing hydrogel composite scaffold enhances stem cell survival, engraftment, and function in rheumatoid arthritis treatmentActa Biomater.20211216536641:CAS:528:DC%2BB3MXhtlOjs7k%3D3329091210.1016/j.actbio.2020.12.005
– reference: BarnettROsteoarthritisLancet201839119852986401510.1016/S0140-6736(18)31064-X
– reference: YinSCaoYHydrogels for large-scale expansion of stem cellsActa Biomater.20211281202017AcMat.128....1Y1:CAS:528:DC%2BB3MXhvVGhurfJ3374603210.1016/j.actbio.2021.03.026
– reference: XuXExosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regenerationBiomaterials20212691205391:CAS:528:DC%2BB3cXisVWis77J3324342410.1016/j.biomaterials.2020.120539
– reference: CaldersPVan GinckelAPresence of comorbidities and prognosis of clinical symptoms in knee and/or hip osteoarthritis: A systematic review and meta-analysisSemin Arthritis Rheum.2018478058132915767010.1016/j.semarthrit.2017.10.016
– reference: ChenJModified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regenerationBioact. Mater.20216168916981:CAS:528:DC%2BB3MXhtFKjt7%2FP33313448
– reference: JohnsonKA stem cell-based approach to cartilage repairScience20123367177212012Sci...336..717J1:CAS:528:DC%2BC38XmsFymtbc%3D2249109310.1126/science.1215157
– reference: YuJConstruction of supramolecular hydrogels using imidazolidinyl urea as hydrogen bonding reinforced factorJ. Mater. Chem. B20208305830631:CAS:528:DC%2BB3cXktl2ru7Y%3D3220187410.1039/D0TB00331J
– reference: LiQ3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regenerationBioact. Mater.20216339634101:CAS:528:DC%2BB3MXhtFKjt7jK338427368010633
– reference: OosterhuisTRehabilitation after lumbar disc surgeryCochrane Database Syst Rev.20142014CD003007246273257138272
– reference: XuanHBiofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regenerationActa Biomater.2020105971101:CAS:528:DC%2BB3cXhsFOmtbg%3D3195319510.1016/j.actbio.2020.01.015
– reference: LiL3D molecularly functionalized cell-free biomimetic scaffolds for osteochondral regenerationAdv. Funct. Mater.201929180735610.1002/adfm.201807356
– reference: OrlowskiPTannic acid-modified silver nanoparticles for wound healing: the importance of sizeInt J. Nanomed.20181399110071:CAS:528:DC%2BC1cXit1GltbnJ10.2147/IJN.S154797
– reference: MaihöferJHydrogel-guided, rAAV-mediated IGF-I overexpression enables long-term cartilage repair and protection against perifocal osteoarthritis in a large-animal full-thickness chondral defect model at one year in vivoAdv. Mater.202133e20084513373451410.1002/adma.202008451
– reference: GaoFOsteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffoldsAdv. Sci.20196190086710.1002/advs.201900867
– reference: LuJIncreased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regenerationTheranostics20188503950581:CAS:528:DC%2BC1MXpt1els7g%3D30429885621707010.7150/thno.26981
– reference: SafiriSGlobal, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017Ann. Rheum. Dis.2020798198283239828510.1136/annrheumdis-2019-216515
– reference: LiXKartogenin-Incorporated Thermogel supports stem cells for significant cartilage regenerationACS Appl Mater. Interfaces20168514851592016aams.book.....L1:CAS:528:DC%2BC28XitVGqsr0%3D2684483710.1021/acsami.5b12212
– reference: Urbanczyk, M., Layland, S. L. & Schenke-Layland, K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 85–86, 1–14 (2020).
– reference: GeWRapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogelsCarbohydr. Polym.20192241151471:CAS:528:DC%2BC1MXhsFWlsbrK3147282610.1016/j.carbpol.2019.115147
– reference: LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583
– reference: MurphyMPArticular cartilage regeneration by activated skeletal stem cellsNat. Med202026158315921:CAS:528:DC%2BB3cXhs1Wru77M32807933770406110.1038/s41591-020-1013-2
– reference: AlechinskyLTannic acid improves renal function recovery after renal warm ischemia-reperfusion in a rat modelBiomolecules2020104391:CAS:528:DC%2BB3cXosFKmurc%3D32178273717517710.3390/biom10030439
– reference: VinatierCGuicheuxJCartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatmentsAnn. Phys. Rehabil. Med2016591391441:STN:280:DC%2BC28bgtVOhsA%3D%3D2707958310.1016/j.rehab.2016.03.002
– reference: NguyenTPTCell-laden injectable microgels: Current status and future prospects for cartilage regenerationBiomaterials20212791212141:CAS:528:DC%2BB3MXitlKlt7rN3473614710.1016/j.biomaterials.2021.121214
– reference: LiuXMolecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repairBiomaterials20202321196442020hsm2.book.....L1:CAS:528:DC%2BC1MXisVyqtb3E3188401710.1016/j.biomaterials.2019.119644
– reference: Torio, C. M. & Moore, B. J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief. Healthcare Cost and Utilization Project Statistical Briefs. 204, 1–15 (2006).
– reference: YaoMMicrogel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devicesNat. Commun.2022132022NatCo..13.5339Y1:CAS:528:DC%2BB38XitlKrsLrP36096894946815010.1038/s41467-022-33081-7
– reference: NinanNForgetAShastriVPVoelckerNHBlencoweAAntibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated Agarose composite hydrogels for wound healingACS Appl Mater. Interfaces2016828511285211:CAS:528:DC%2BC28Xhs1WktbrL2770475710.1021/acsami.6b10491
– reference: HunzikerEBLippunerKKeelMJBShintaniNAn educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospectsOsteoarthr. Cartil.2015233343501:STN:280:DC%2BC2Mzps1WltQ%3D%3D10.1016/j.joca.2014.12.011
– reference: HunterDJMarchLChewMOsteoarthritis in 2020 and beyond: a Lancet CommissionLancet2020396171117123315985110.1016/S0140-6736(20)32230-3
– reference: DischerDEJanmeyPWangY-LTissue cells feel and respond to the stiffness of their substrateScience2005310113911432005Sci...310.1139D1:CAS:528:DC%2BD2MXht1WgtLbF1629375010.1126/science.1116995
– reference: AnsariMYAhmadNHaqqiTMOxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenolsBiomed. Pharmacother.20201291104521:CAS:528:DC%2BB3cXhtlGntL3L32768946840468610.1016/j.biopha.2020.110452
– reference: HueyDJHuJCAthanasiouKAUnlike bone, cartilage regeneration remains elusiveScience20123389179212012Sci...338..917H1:CAS:528:DC%2BC38Xhs1GntL%2FE23161992432798810.1126/science.1222454
– reference: LuZAn injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesisBiomaterials20192181191901:CAS:528:DC%2BC1MXhtl2qurzP3132665610.1016/j.biomaterials.2019.05.001
– reference: SimonDBone mass, bone microstructure and biomechanics in patients with hand OsteoarthritisJ. Bone Min. Res2020351695170210.1002/jbmr.4046
– reference: LiuY3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat modelBiomaterials20212791212161:CAS:528:DC%2BB3MXitlyrsrzM3473998210.1016/j.biomaterials.2021.121216
– reference: NicodemusGDSkaalureSCBryantSJGel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogelsActa Biomater.201174925041:CAS:528:DC%2BC3MXhsFyltw%3D%3D2080486810.1016/j.actbio.2010.08.021
– reference: EnglerAJSenSSweeneyHLDischerDEMatrix elasticity directs stem cell lineage specificationCell20061266776891:CAS:528:DC%2BD28Xpt1aktbg%3D1692338810.1016/j.cell.2006.06.044
– reference: YangYBioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatmentBioact. Mater.20216396239751:CAS:528:DC%2BB3MXhtFKjtL%2FN339375958079829
– reference: ZhangF-XInjectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regenerationBiomaterials20212781211691:CAS:528:DC%2BB3MXitF2htbfJ3462693710.1016/j.biomaterials.2021.121169
– reference: JaffrayBMinimally invasive surgeryArch. Dis. Child2005905375421:STN:280:DC%2BD2M3hs1Sltw%3D%3D15851444172037910.1136/adc.2004.062760
– reference: VainieriMLEvaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formationActa Biomater.20201012933031:CAS:528:DC%2BC1MXit1OisbzM3172624910.1016/j.actbio.2019.11.015
– reference: AbdollahiyanPOroojalianFMokhtarzadehAde la GuardiaMHydrogel-based 3D bioprinting for bone and cartilage tissue engineeringBiotechnol. J.202015e20000953286952910.1002/biot.202000095
– reference: WuXMarginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogelsBioact. Mater.20216397639861:CAS:528:DC%2BB3MXhtFKjtL%2FO339974878081879
– reference: LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583
– reference: PritzkerKPHOsteoarthritis cartilage histopathology: grading and stagingOsteoarthr. Cartil.20061413291:STN:280:DC%2BD28%2FhsVWrsg%3D%3D10.1016/j.joca.2005.07.014
– reference: LeiYStem cell-recruiting injectable microgels for repairing OsteoarthritisAdv. Funct. Mater.20213121050841:CAS:528:DC%2BB3MXhs1emtbrM10.1002/adfm.202105084
– reference: AhmadianZA hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing accelerationAdv. Health. Mater.202110e200112210.1002/adhm.202001122
– reference: HuaYUltrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopySci Adv.2021711410.1126/sciadv.abg0628
– reference: JoshiAFunctional compressive mechanics of a PVA/PVP nucleus pulposus replacementBiomaterials2006271761841:CAS:528:DC%2BD2MXhtVShtb%2FF1611567810.1016/j.biomaterials.2005.06.003
– reference: LiYTannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046
– reference: LiYTannic acid/Sr-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046
– volume: 8
  start-page: 215
  year: 2019
  ident: 43334_CR12
  publication-title: Stem Cells Transl. Med
  doi: 10.1002/sctm.18-0053
– volume: 105
  start-page: 97
  year: 2020
  ident: 43334_CR17
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.01.015
– volume: 7
  start-page: 1
  year: 2021
  ident: 43334_CR57
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.abg0628
– volume: 310
  start-page: 1139
  year: 2005
  ident: 43334_CR53
  publication-title: Science
  doi: 10.1126/science.1116995
– volume: 79
  start-page: 819
  year: 2020
  ident: 43334_CR2
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2019-216515
– volume: 6
  start-page: 1900867
  year: 2019
  ident: 43334_CR23
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900867
– volume: 9
  start-page: 461
  year: 2022
  ident: 43334_CR40
  publication-title: Bioact. Mater.
– volume: 279
  start-page: 121214
  year: 2021
  ident: 43334_CR15
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121214
– volume: 126
  start-page: 677
  year: 2006
  ident: 43334_CR33
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.044
– volume: 31
  start-page: 2105084
  year: 2021
  ident: 43334_CR49
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202105084
– volume: 10
  start-page: e2001122
  year: 2021
  ident: 43334_CR44
  publication-title: Adv. Health. Mater.
  doi: 10.1002/adhm.202001122
– ident: 43334_CR1
– volume: 13
  start-page: 991
  year: 2018
  ident: 43334_CR25
  publication-title: Int J. Nanomed.
  doi: 10.2147/IJN.S154797
– volume: 26
  start-page: 1583
  year: 2020
  ident: 43334_CR13
  publication-title: Nat. Med
  doi: 10.1038/s41591-020-1013-2
– volume: 8
  start-page: 1940
  year: 2018
  ident: 43334_CR21
  publication-title: Theranostics
  doi: 10.7150/thno.23674
– volume: 232
  start-page: 119644
  year: 2020
  ident: 43334_CR9
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119644
– volume: 8
  start-page: 5148
  year: 2016
  ident: 43334_CR51
  publication-title: ACS Appl Mater. Interfaces
  doi: 10.1021/acsami.5b12212
– volume: 128
  start-page: 1
  year: 2021
  ident: 43334_CR16
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.03.026
– volume: 59
  start-page: 139
  year: 2016
  ident: 43334_CR55
  publication-title: Ann. Phys. Rehabil. Med
  doi: 10.1016/j.rehab.2016.03.002
– volume: 391
  start-page: 1985
  year: 2018
  ident: 43334_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31064-X
– volume: 338
  start-page: 917
  year: 2012
  ident: 43334_CR18
  publication-title: Science
  doi: 10.1126/science.1222454
– volume: 121
  start-page: 653
  year: 2021
  ident: 43334_CR61
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.12.005
– volume: 27
  start-page: 176
  year: 2006
  ident: 43334_CR34
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.06.003
– volume: 6
  start-page: 1689
  year: 2021
  ident: 43334_CR58
  publication-title: Bioact. Mater.
– volume: 279
  start-page: 121216
  year: 2021
  ident: 43334_CR56
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121216
– volume: 15
  start-page: e2000095
  year: 2020
  ident: 43334_CR14
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.202000095
– volume: 47
  start-page: 805
  year: 2018
  ident: 43334_CR10
  publication-title: Semin Arthritis Rheum.
  doi: 10.1016/j.semarthrit.2017.10.016
– volume: 29
  start-page: 1701089
  year: 2017
  ident: 43334_CR20
  publication-title: Adv Mater
  doi: 10.1002/adma.201701089
– volume: 278
  start-page: 121169
  year: 2021
  ident: 43334_CR47
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2021.121169
– volume: 23
  start-page: 334
  year: 2015
  ident: 43334_CR54
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2014.12.011
– volume: 90
  start-page: 537
  year: 2005
  ident: 43334_CR60
  publication-title: Arch. Dis. Child
  doi: 10.1136/adc.2004.062760
– volume: 101
  start-page: 293
  year: 2020
  ident: 43334_CR19
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.11.015
– volume: 7
  start-page: 492
  year: 2011
  ident: 43334_CR31
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.08.021
– volume: 6
  start-page: 3962
  year: 2021
  ident: 43334_CR30
  publication-title: Bioact. Mater.
– ident: 43334_CR32
  doi: 10.1016/j.matbio.2019.11.005
– volume: 35
  start-page: 1695
  year: 2020
  ident: 43334_CR7
  publication-title: J. Bone Min. Res
  doi: 10.1002/jbmr.4046
– volume: 12
  start-page: 34161
  year: 2020
  ident: 43334_CR28
  publication-title: ACS Appl Mater. Interfaces
  doi: 10.1021/acsami.0c07753
– volume: 8
  start-page: 5039
  year: 2018
  ident: 43334_CR48
  publication-title: Theranostics
  doi: 10.7150/thno.26981
– volume: 6
  start-page: 3976
  year: 2021
  ident: 43334_CR35
  publication-title: Bioact. Mater.
– volume: 104
  start-page: 293
  year: 2020
  ident: 43334_CR5
  publication-title: Med Clin. North Am.
  doi: 10.1016/j.mcna.2019.10.007
– volume: 6
  start-page: 3396
  year: 2021
  ident: 43334_CR46
  publication-title: Bioact. Mater.
– volume: 126
  start-page: 119
  year: 2021
  ident: 43334_CR43
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.02.046
– volume: 336
  start-page: 717
  year: 2012
  ident: 43334_CR6
  publication-title: Science
  doi: 10.1126/science.1215157
– volume: 8
  start-page: 3058
  year: 2020
  ident: 43334_CR29
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00331J
– volume: 269
  start-page: 120539
  year: 2021
  ident: 43334_CR27
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120539
– volume: 29
  start-page: 1807356
  year: 2019
  ident: 43334_CR22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201807356
– volume: 20
  start-page: 338
  year: 1995
  ident: 43334_CR37
  publication-title: Sports Med
  doi: 10.2165/00007256-199520050-00005
– volume: 9
  start-page: 461
  year: 2022
  ident: 43334_CR42
  publication-title: Bioact. Mater.
– volume: 8
  start-page: 28511
  year: 2016
  ident: 43334_CR24
  publication-title: ACS Appl Mater. Interfaces
  doi: 10.1021/acsami.6b10491
– volume: 2014
  start-page: CD003007
  year: 2014
  ident: 43334_CR38
  publication-title: Cochrane Database Syst Rev.
– volume: 224
  start-page: 115147
  year: 2019
  ident: 43334_CR45
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2019.115147
– volume: 14
  start-page: 13
  year: 2006
  ident: 43334_CR52
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2005.07.014
– volume: 126
  start-page: 119
  year: 2021
  ident: 43334_CR26
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.02.046
– volume: 10
  start-page: 439
  year: 2020
  ident: 43334_CR50
  publication-title: Biomolecules
  doi: 10.3390/biom10030439
– volume: 13
  year: 2022
  ident: 43334_CR63
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33081-7
– volume: 129
  start-page: 110452
  year: 2020
  ident: 43334_CR39
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.110452
– volume: 109
  start-page: 2318
  year: 2019
  ident: 43334_CR11
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2018.11.099
– volume: 14
  start-page: 8202
  year: 2020
  ident: 43334_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c01658
– volume: 6
  start-page: 2829
  year: 2021
  ident: 43334_CR59
  publication-title: Bioact. Mater.
– volume: 28
  start-page: 1705962
  year: 2018
  ident: 43334_CR36
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705962
– volume: 396
  start-page: 1711
  year: 2020
  ident: 43334_CR3
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)32230-3
– volume: 33
  start-page: e2008451
  year: 2021
  ident: 43334_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008451
– volume: 218
  start-page: 119190
  year: 2019
  ident: 43334_CR62
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.05.001
SSID ssj0000391844
Score 2.644557
Snippet Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage...
Abstract Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7771
SubjectTerms 13/51
147/135
631/61/54/990
639/166/985
639/301/54/993
639/301/923/1027
64/86
96/100
Arthritis
Body temperature
Bone marrow
Cartilage
Cartilage - physiology
Cartilage diseases
Chondrocytes
Chondrogenesis
Crosslinking
Drug Liberation
Humanities and Social Sciences
Humans
Hydrogels
Hydrogels - chemistry
Hydrogen bonds
Inflammation
Mechanical properties
Mesenchymal stem cells
Microenvironments
Minimally invasive surgery
multidisciplinary
Osteoarthritis
Oxidative stress
Regeneration
Scaffolds
Science
Science (multidisciplinary)
Shape memory
Stem cells
Tannic acid
Unloading
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VUyL4puHaJG3Sx1M8DkGfXLi3kM_dg7326O4i-987k3bXWz9ffCttWsL8JjO_STMzhLxREViwLhWLlWiY9MExgJmzJHRQLkJAkDB3-POX5mImP13Wl7dafeGZsLE88Ci4U-EjrNpYlRqYr66dVWUD33dJe-ddndN8wefdCqayDRYthC5yypIphT5dyWwTwEVhkpCQTB94olyw_3cs89fDkj_9Mc2O6PwBuT8xSHo2zvyY3IndQ3J37Cm5fUS-zZbwARY2AyZFUdyYZ2mIkbqr3mbjRhfbMPTzuKS4CUuTXa3pamFvIr3GY7dbartA-46FeI1XYdjMKbZWAX9HgeJSj0Jbgh2Cu_NctRrBfUxm5x-_frhgU3cF5mtZrZkOwqraRw8MwcFF632seWqUamtASfkQLBjytrSyAi_uQkxtcJYnMNWeqySekKOu7-IzQlVoyhZcXYgAPRYUVG3i0ooQPLeNlwWpdpI2fio9jh0wlib_AhfajOgYQMdkdIwuyNv9Ozdj4Y2_jn6PAO5HYtHsfANUyUyqZP6lSgU52cFvppW8MhCQAmeFKFQV5PX-MaxBxM92sd-MYxTHft0FeTpqy34mAikAcMaC6AM9Opjq4ZPuapHrfEO0jvysKci7ncr9mNefZfH8f8jiBbnHca1UFePqhByth018CfRr7V7llfYdDS8s5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxNYid2TggQqxUSnKjUm-Vnu1I3KUkr1H_PjJN2VR57ixI3cvPN45uxPUPIWxmABatcslDwmgnnLQOYSxa58tIGCAginh3-9r2-mImv82o-JdyGaVvl3iYmQ-07hznyMwgMgDtANCA_rH8y7BqFq6tTC43b5A6WLsMtXXIuDzkWrH6uhJjOyuRcnQ0iWQZwVHhUiAumjvxRKtv_L67595bJP9ZNkzs6f0DuTzySfhyBf0huhfYRuTt2ltw9Jr9mK3gB89sej0ZRTM-z2IdA7WVnkomjy53vu0VYUUzF0miGDR2WZh3oFW6-3VHTetq1zIcrvPL9dkGxwQp4PQpElzqUuRVYI7i7SLWrEeInZHb-5cfnCzb1WGCuEsWGKc-NrFxwwBMsXDTOhaqMtZRNBVhJ570Bc97kRhTgy60PsfHWlBEMtitl5E_JSdu14Tmh0td5Aw7PBxAALCsom1gKw713pamdyEix_9LaTQXIsQ_GSqeFcK70iI4GdHRCR6uMvDv8Zj2W37hx9CcE8DASS2enG12_0JMmau4CSEYocgWhlKqskXkNAmujctbZCl5yuodfT_o86Gvpy8ibw2PQRMTPtKHbjmNkiV27M_JslJbDTDgSAWCOGVFHcnQ01eMn7eUyVfuGmB1ZWp2R93uRu57X_7_Fi5v_xktyr0QtKApWylNysum34RXQq419nXToN3MIJFI
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7riuCLeN-uq0TwTYNtkjbpow4ui6BPDuxbyXVmYbZdOjPI_Ps9J21HRlfBt9KmJeQ71zTnO4S8UwGiYJ0rFgpRMem8ZQAzZ1For2yAhCBi7fC379XFXH69LC-PCJ9qYdKh_URpmcz0dDrs41omlQYPgzU-QjJ9j9xH6naU6lk12--rIOO5lnKsj8mFvuPVAx-UqPrvii__PCb527_S5ILOH5NHY-xIPw2zfUKOQvuUPBi6Se6ekZ_zFXyA-W2P5VAUt-RZ7EOg9qozyazR5c733SKsKG6_0mjWG7pemptAr_HA7Y6a1tOuZT5c45XvtwuKTVXA01EIbqnDhVqBBYK7i8RXjbA-J_PzLz9mF2zsq8BcKYsN014YVbrgIDawcFE7F0oeK6XqEvBRznsDJrzOjSzAf1sfYu2t4RGMtOMqihfkuO3acEKo8lVeg5PzAUBHKkFVRy6N8N5xUzmZkWJa6caNpOPY-2LVpJ_fQjcDOg2g0yR0Gp2R9_t3bgbKjX-O_owA7kciXXa60fWLZhSfRrgAkhGKXEP6pEtrVF6BkNqonXW2hI-cTfA3ow6vG0hFIVqF_FNl5O3-MWgf4mfa0G2HMYpjp-6MvBykZT8Tgc4fosWM6AM5Opjq4ZP2apkYviFPx8isysiHSeR-zevva3H6f8NfkYcctaIoGFdn5HjTb8NrCLE29k3SqVu9oiIa
  priority: 102
  providerName: Springer Nature
Title Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration
URI https://link.springer.com/article/10.1038/s41467-023-43334-8
https://www.ncbi.nlm.nih.gov/pubmed/38012159
https://www.proquest.com/docview/2894164017
https://www.proquest.com/docview/2894726031
https://pubmed.ncbi.nlm.nih.gov/PMC10682016
https://doaj.org/article/3ce000e10897485ba706e48bf8cbcb58
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8EX8fuiZ1nBN11Nskl28yDSK1ePwh2iFvoW9ivtQS850xbtf-_MJq1Uq_iShM1mWXa-frObmSHklXCAgmUomIt4xhJjNQMyx6zk0grtwCEoMXb48iq7GCejSTo5IJtyR90CLva6dlhPatzM3_74tv4AAv--DRmX7xaJF3ewPhj_wxMmD8kxWCaBgnrZwX2vmXkODg0eNMdhEjGw3byLo9k_zI6t8in99-HQP3-n_O1M1Zuq4X1yr8OYtN8yxQNy4KqH5E5bdXL9iHwfz2EAZlcNhk1R3LpnZeMc1de18uqPzta2qaduTnGblpZqsaSLmbp19AZ_zF1TVVlaV8y6G3yyzWpKsfgKWEQKIJga5Mc5aCponfq81kj-x2Q8PP86uGBd_QVm0iRaMmm5EqlxBjCEhofcGJfGZSZEngIdhbFWgarPQ5VEYOe1dWVutYpLUOYmFiV_Qo6qunInhAqbhTkYQ-uAOTDloMjLOFHcWhOrzCQBiTYrXZguOTnWyJgX_pCcy6KlTgHUKTx1ChmQ19tvbtvUHP_sfYYE3PbEtNq-oW6mRSelBTcOuMRFoQQ3S6ZaiTADZtalNNroFAY53ZC_2LBqAS4roFrwU0VAXm5fg5Qi_VTl6lXbR8RY0TsgT1tu2c6EI0gAVBkQucNHO1PdfVNdz3wmcPDnEcFlAXmzYblf8_r7Wjz7j3k-J3djFIUoYrE4JUfLZuVeAP5a6h45FBMBVzn82CPH_f7oywjuZ-dXnz5D6yAb9PzORs8L30_JWzIc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYJLxU5KASPBCawmzmLngBBbNaXLqSPNLXjLTKVpMmRmVM2f4jfynpNMNSy99WYljuX4fW-z_d4j5I1wYAXLUDAXxRlLjNUMyMxZGUsrtAOHoMTY4ZPTbDBMvo_S0Rb51cfC4LXKXiZ6QW1rg3vk--AYgO0A3oD4OPvJsGoUnq72JTRaWBy51SW4bPMPh1-Bvm85P_h29mXAuqoCzKRJtGDSxkqkxhnQjBoauTEu5WUmRJ7C7ISxVoEAy0OVRKC9tHVlbrXiJYgow0UZw7i3yG1QvCFylBiJ9Z4OZluXSdLF5oSx3J8nXhKBYsTQpDhhckP_-TIB_7Jt_76i-cc5rVd_B_fJTme30k8t0B6QLVc9JHfaSparR-RyOIUBmF02GIpF8TiAlY1zVJ_XyotUOlnZph67KcWtX1qq-YLOJ2rm6AVe9l1RVVlaV8y6C2zZZjmmWNAFtCwFw5oaxPgUpB88Hftc2Qipx2R4I6v_hGxXdeWeESpsFuagYK0DwGEaQ5GXPFGxtYarzCQBifqVLkyX8BzrbkwLf_Aey6KlTgHUKTx1ChmQd-tvZm26j2t7f0YCrntiqm7_oG7GRcf5RWwcIMNFoQTXTaZaiTADBtGlNNroFAbZ68lfdPJjXlyhPSCv16-B85F-qnL1su0jOFYJD8jTFi3rmcRoeIClGhC5gaONqW6-qc4nPrs4wBqtwiwg73vIXc3r_2uxe_1vvCJ3B2cnx8Xx4enRc3KPI0dEEeNij2wvmqV7AabdQr_0_ETJj5tm4N_AnWRZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxLO4FFgkOMGqttf2rg8IASVqKVQciJTbst5HUim1UydRlb_Gr2PGj1Th0Vtvlr1ZbXa--Wb2MTOEvBIOvGAZCuYinrHE2IKBmGPmubSicLAg8Bg7_O0kOxwmX0bpaIv86mNh8Fplz4kNUdvK4B75PiwMwHdIMN2z765FfD8YvJ-dM6wghSetfTmNFiLHbnUBy7f5u6MDkPXrOB58_vHpkHUVBphJk2jBpOVapMYZsJIFPOTGuDT2mRB5CiMVxloNZJaHOonAkhXW-dwWOvZAVyYWnkO_N8hNwdMIdUyMxHp_BzOvyyTp4nRCLvfnScNKYCQxTIknTG7YwqZkwL_83L-va_5xZtuYwsE9crfzYemHFnT3yZYrH5BbbVXL1UNyMZxCB8wuawzLong0wHztHC1OK93QK52sbF2N3ZTiNjD1er6g84meOXqGF39XVJeWViWz7gyfbL0cUyzuAhaXgpNNDeJ9CkwIb8dN3myE1yMyvJbZf0y2y6p0TwgVNgtzMLbWAfgwpaHIfZxobq2JdWaSgET9TCvTJT_HGhxT1RzCc6la6SiQjmqko2RA3qx_M2tTf1zZ-iMKcN0S03Y3L6p6rDoWUNw4QIaLQgnLOJkWWoQZKEvhpSlMkUIne734Vcclc3WJ_IC8XH8GFkD56dJVy7aNiLFieEB2WrSsR8LRCQGvNSByA0cbQ938Up5OmkzjUZihh5gF5G0Puctx_X8udq_-Gy_IbVBd9fXo5PgpuROjQkQRi8Ue2V7US_cMvLxF8bxRJ0p-Xrf-_gY0TGiP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-durable+cell-free+bioactive+hydrogel+with+fast+shape+memory+and+on-demand+drug+release+for+cartilage+regeneration&rft.jtitle=Nature+communications&rft.au=Yang%2C+Yuxuan&rft.au=Zhao%2C+Xiaodan&rft.au=Wang%2C+Shuang&rft.au=Zhang%2C+Yanfeng&rft.date=2023-11-27&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7771&rft_id=info:doi/10.1038%2Fs41467-023-43334-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon