Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration
Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydr...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 7771 - 14 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.11.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.
Achieving successful in vivo cartilage regeneration remains challenging. Here they present a cell-free, multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin with ultra-durable mechanical properties and stage-dependent drug release behavior to promote cartilage regeneration. |
---|---|
AbstractList | Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration. Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration. Achieving successful in vivo cartilage regeneration remains challenging. Here they present a cell-free, multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin with ultra-durable mechanical properties and stage-dependent drug release behavior to promote cartilage regeneration. Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration. Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration.Achieving successful in vivo cartilage regeneration remains challenging. Here they present a cell-free, multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin with ultra-durable mechanical properties and stage-dependent drug release behavior to promote cartilage regeneration. Abstract Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage regeneration in patients with osteoarthritis remains challenging clinically. In this work, we construct a multiple hydrogen-bond crosslinked hydrogel loaded with tannic acid and Kartogenin by polyaddition reaction as a cell-free scaffold for in vivo cartilage regeneration, which features ultra-durable mechanical properties and stage-dependent drug release behavior. We demonstrate that the hydrogel can withstand 28000 loading-unloading mechanical cycles and exhibits fast shape memory at body temperature (30 s) with the potential for minimally invasive surgery. We find that the hydrogel can also alleviate the inflammatory reaction and regulate oxidative stress in situ to establish a microenvironment conducive to healing. We show that the sequential release of tannic acid and Kartogenin can promote the migration of bone marrow mesenchymal stem cells into the hydrogel scaffold, followed by the induction of chondrocyte differentiation, thus leading to full-thickness cartilage regeneration in vivo. This work may provide a promising solution to address the problem of cartilage regeneration. |
ArticleNumber | 7771 |
Author | Yang, Aiming Chen, Xuesi Zhao, Xiaodan Zhang, Yanfeng Cheng, Yilong Wang, Shuang Yang, Yuxuan |
Author_xml | – sequence: 1 givenname: Yuxuan orcidid: 0000-0001-5444-4908 surname: Yang fullname: Yang, Yuxuan email: yangyuxuan@xjtu.edu.cn organization: Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University – sequence: 2 givenname: Xiaodan surname: Zhao fullname: Zhao, Xiaodan organization: Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University – sequence: 3 givenname: Shuang surname: Wang fullname: Wang, Shuang organization: Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University – sequence: 4 givenname: Yanfeng surname: Zhang fullname: Zhang, Yanfeng organization: School of Chemistry, Xi’an Jiaotong University – sequence: 5 givenname: Aiming surname: Yang fullname: Yang, Aiming organization: Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University – sequence: 6 givenname: Yilong orcidid: 0000-0002-4996-8456 surname: Cheng fullname: Cheng, Yilong email: yilongcheng@mail.xjtu.edu.cn organization: School of Chemistry, Xi’an Jiaotong University, Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University – sequence: 7 givenname: Xuesi orcidid: 0000-0003-3542-9256 surname: Chen fullname: Chen, Xuesi organization: Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38012159$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Urlu3DAQFQIH8RH_QIqAQJo0SnhJpKogMHIYMJAmrgkeI60WFLkhJRv79-bu2o7twmw4GL55fPNmTqujEANU1QeCvxDM5NfMCW9FjSmrOWOM1_JNdUIxJzURlB09iY-r85zXuBzWEcn5u-qYSUwoabqT6vbaz0nXbknaeEAWvK_7BIDMGLWdxxtAq61LcQCPbsd5hXqdZ5RXegNogimmLdLBoRhqB9MucmkZUAIPOgPqY0JWp3n0eoCSHSBA0vMYw_vqba99hvP7-6y6_vnj78Xv-urPr8uL71e1bTiZa-mYFo0FSyk1JeishYb2rRBdIwwI65wGQzqsOaFtaxz0nTOa9qCtpaJnZ9XlgddFvVabNE46bVXUo9onYhrUTp_1oJiF4hEQLDvBZWO0wC1waXppjTWNLFzfDlybxUzgLIRinX9G-vwljCs1xBtFcCspJm1h-HzPkOK_BfKspjHvPNcB4pIVlR0XtMWMFOinF9B1XFIoXu1RpOWYiIL6-FTSo5aHARcAPQBsijkn6B8hBKvdIqnDIqmySGq_SGrXqHxRZMd5P7bS1uhfL2WH0lz-CQOk_7JfqboDuw3fMA |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_133818 crossref_primary_10_1002_adma_202406434 crossref_primary_10_3390_pharmaceutics16111429 crossref_primary_10_1016_j_inoche_2024_113145 crossref_primary_10_1016_j_carbpol_2024_123138 crossref_primary_10_1002_adma_202407040 crossref_primary_10_1002_adfm_202418407 crossref_primary_10_1002_adhm_202403490 crossref_primary_10_1002_adhm_202404260 crossref_primary_10_1016_j_ijbiomac_2025_139835 crossref_primary_10_3390_lubricants12110377 crossref_primary_10_3390_ijms25189984 crossref_primary_10_1016_j_cej_2024_153930 crossref_primary_10_1016_j_carbpol_2024_122805 crossref_primary_10_1002_adma_202420626 crossref_primary_10_1073_pnas_2405454121 crossref_primary_10_1039_D4CS00450G crossref_primary_10_1016_j_bioactmat_2024_03_033 crossref_primary_10_1093_jhps_hnae005 crossref_primary_10_1016_j_ijbiomac_2025_140186 crossref_primary_10_1021_acsbiomaterials_4c02050 crossref_primary_10_1016_j_ijbiomac_2025_141352 crossref_primary_10_3389_fphar_2024_1488036 crossref_primary_10_1016_j_compositesb_2024_111928 crossref_primary_10_3390_gels10040270 crossref_primary_10_1088_1748_605X_ad792c crossref_primary_10_1016_j_bioactmat_2024_08_004 crossref_primary_10_1039_D4RA06558A crossref_primary_10_1038_s41392_024_01852_x crossref_primary_10_1007_s10853_024_09917_6 crossref_primary_10_1002_mba2_95 crossref_primary_10_1002_adfm_202400360 crossref_primary_10_3390_biomedicines12040923 crossref_primary_10_1016_j_compositesb_2025_112161 crossref_primary_10_1002_adma_202412083 crossref_primary_10_1016_j_carpta_2025_100771 crossref_primary_10_1016_j_bioactmat_2024_10_003 crossref_primary_10_1002_smll_202409781 crossref_primary_10_1016_j_colsurfb_2024_114160 crossref_primary_10_1016_j_cej_2024_153430 crossref_primary_10_3389_fimmu_2025_1535464 crossref_primary_10_1002_adhm_202303817 crossref_primary_10_3390_bioengineering12010038 crossref_primary_10_1088_1748_605X_adbcee crossref_primary_10_1016_j_cej_2024_149810 crossref_primary_10_1002_advs_202407425 crossref_primary_10_1016_j_jconrel_2025_02_016 crossref_primary_10_3390_ijms25052675 crossref_primary_10_1002_adma_202410845 crossref_primary_10_1002_adfm_202401547 crossref_primary_10_1021_acs_jpcb_4c06942 crossref_primary_10_1002_adfm_202409594 crossref_primary_10_1016_j_ijbiomac_2025_139945 crossref_primary_10_1002_adfm_202408462 crossref_primary_10_1016_j_cej_2024_158715 crossref_primary_10_1021_acs_biomac_3c01424 crossref_primary_10_1021_acsami_3c17057 crossref_primary_10_1007_s44174_024_00247_4 crossref_primary_10_1016_j_bioactmat_2024_12_021 |
Cites_doi | 10.1002/sctm.18-0053 10.1016/j.actbio.2020.01.015 10.1126/sciadv.abg0628 10.1126/science.1116995 10.1136/annrheumdis-2019-216515 10.1002/advs.201900867 10.1016/j.biomaterials.2021.121214 10.1016/j.cell.2006.06.044 10.1002/adfm.202105084 10.1002/adhm.202001122 10.2147/IJN.S154797 10.1038/s41591-020-1013-2 10.7150/thno.23674 10.1016/j.biomaterials.2019.119644 10.1021/acsami.5b12212 10.1016/j.actbio.2021.03.026 10.1016/j.rehab.2016.03.002 10.1016/S0140-6736(18)31064-X 10.1126/science.1222454 10.1016/j.actbio.2020.12.005 10.1016/j.biomaterials.2005.06.003 10.1016/j.biomaterials.2021.121216 10.1002/biot.202000095 10.1016/j.semarthrit.2017.10.016 10.1002/adma.201701089 10.1016/j.biomaterials.2021.121169 10.1016/j.joca.2014.12.011 10.1136/adc.2004.062760 10.1016/j.actbio.2019.11.015 10.1016/j.actbio.2010.08.021 10.1016/j.matbio.2019.11.005 10.1002/jbmr.4046 10.1021/acsami.0c07753 10.7150/thno.26981 10.1016/j.mcna.2019.10.007 10.1016/j.actbio.2021.02.046 10.1126/science.1215157 10.1039/D0TB00331J 10.1016/j.biomaterials.2020.120539 10.1002/adfm.201807356 10.2165/00007256-199520050-00005 10.1021/acsami.6b10491 10.1016/j.carbpol.2019.115147 10.1016/j.joca.2005.07.014 10.3390/biom10030439 10.1038/s41467-022-33081-7 10.1016/j.biopha.2020.110452 10.1016/j.biopha.2018.11.099 10.1021/acsnano.0c01658 10.1002/adfm.201705962 10.1016/S0140-6736(20)32230-3 10.1002/adma.202008451 10.1016/j.biomaterials.2019.05.001 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-43334-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_3ce000e10897485ba706e48bf8cbcb58 PMC10682016 38012159 10_1038_s41467_023_43334_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52322309; 52173139 funderid: https://doi.org/10.13039/501100001809 – fundername: “Young Talent Support Plan” of Xi'an Jiaotong University; Fundamental Research Funds for the Central Universities (xzy022021040, xzy022021052, xzy012023098, and xzy012023105). – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52322309 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52173139 – fundername: ; – fundername: ; grantid: 52322309; 52173139 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-8d3a75cec222b75c9cce52f677957be7cddaeb190a41266bdef9dba2feacc27f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:30 EDT 2025 Thu Aug 21 18:36:02 EDT 2025 Fri Jul 11 06:34:28 EDT 2025 Wed Aug 13 05:15:46 EDT 2025 Fri May 09 01:30:32 EDT 2025 Tue Jul 01 02:10:47 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 21 02:39:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-8d3a75cec222b75c9cce52f677957be7cddaeb190a41266bdef9dba2feacc27f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5444-4908 0000-0003-3542-9256 0000-0002-4996-8456 |
OpenAccessLink | https://www.proquest.com/docview/2894164017?pq-origsite=%requestingapplication% |
PMID | 38012159 |
PQID | 2894164017 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ce000e10897485ba706e48bf8cbcb58 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10682016 proquest_miscellaneous_2894726031 proquest_journals_2894164017 pubmed_primary_38012159 crossref_primary_10_1038_s41467_023_43334_8 crossref_citationtrail_10_1038_s41467_023_43334_8 springer_journals_10_1038_s41467_023_43334_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-27 |
PublicationDateYYYYMMDD | 2023-11-27 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | ShiWStructurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivoAdv Mater201729170108910.1002/adma.201701089 WangYMultifunctional supramolecular hydrogel for prevention of epidural adhesion after LaminectomyACS Nano202014820282191:CAS:528:DC%2BB3cXhtFaiur%2FP3252051910.1021/acsnano.0c01658 AnsariMYAhmadNHaqqiTMOxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenolsBiomed. Pharmacother.20201291104521:CAS:528:DC%2BB3cXhtlGntL3L32768946840468610.1016/j.biopha.2020.110452 MatasJUmbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized Phase I/II trialStem Cells Transl. Med201982152241:CAS:528:DC%2BC1MXhsFKhs7zK3059239010.1002/sctm.18-0053 HunzikerEBLippunerKKeelMJBShintaniNAn educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospectsOsteoarthr. Cartil.2015233343501:STN:280:DC%2BC2Mzps1WltQ%3D%3D10.1016/j.joca.2014.12.011 SimonDBone mass, bone microstructure and biomechanics in patients with hand OsteoarthritisJ. Bone Min. Res2020351695170210.1002/jbmr.4046 YangYBioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatmentBioact. Mater.20216396239751:CAS:528:DC%2BB3MXhtFKjtL%2FN339375958079829 QiaoZA mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedingsBioact. Mater.20216282928401:CAS:528:DC%2BB3MXhtFKjsbjP337186657905459 NinanNForgetAShastriVPVoelckerNHBlencoweAAntibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated Agarose composite hydrogels for wound healingACS Appl Mater. Interfaces2016828511285211:CAS:528:DC%2BC28Xhs1WktbrL2770475710.1021/acsami.6b10491 AbramoffBCalderaFEOsteoarthritis: Pathology, diagnosis, and treatment optionsMed Clin. North Am.20201042933113203557010.1016/j.mcna.2019.10.007 XuXExosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regenerationBiomaterials20212691205391:CAS:528:DC%2BB3cXisVWis77J3324342410.1016/j.biomaterials.2020.120539 CaldersPVan GinckelAPresence of comorbidities and prognosis of clinical symptoms in knee and/or hip osteoarthritis: A systematic review and meta-analysisSemin Arthritis Rheum.2018478058132915767010.1016/j.semarthrit.2017.10.016 HuaYUltrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopySci Adv.2021711410.1126/sciadv.abg0628 HarrellCRMarkovicBSFellabaumCArsenijevicAVolarevicVMesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectivesBiomed. Pharmacother.2019109231823261:CAS:528:DC%2BC1cXitlKls7rF3055149010.1016/j.biopha.2018.11.099 LiuXMolecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repairBiomaterials20202321196442020hsm2.book.....L1:CAS:528:DC%2BC1MXisVyqtb3E3188401710.1016/j.biomaterials.2019.119644 YangYH-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion applicationACS Appl Mater. Interfaces20201234161341691:CAS:528:DC%2BB3cXhtlCmt7zF3263104410.1021/acsami.0c07753 ZhangF-XInjectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regenerationBiomaterials20212781211691:CAS:528:DC%2BB3MXitF2htbfJ3462693710.1016/j.biomaterials.2021.121169 EnglerAJSenSSweeneyHLDischerDEMatrix elasticity directs stem cell lineage specificationCell20061266776891:CAS:528:DC%2BD28Xpt1aktbg%3D1692338810.1016/j.cell.2006.06.044 Urbanczyk, M., Layland, S. L. & Schenke-Layland, K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 85–86, 1–14 (2020). VainieriMLEvaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formationActa Biomater.20201012933031:CAS:528:DC%2BC1MXit1OisbzM3172624910.1016/j.actbio.2019.11.015 AhmadianZA hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing accelerationAdv. Health. Mater.202110e200112210.1002/adhm.202001122 LuZAn injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesisBiomaterials20192181191901:CAS:528:DC%2BC1MXhtl2qurzP3132665610.1016/j.biomaterials.2019.05.001 OosterhuisTRehabilitation after lumbar disc surgeryCochrane Database Syst Rev.20142014CD003007246273257138272 ZhangYRadiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteriesAdv. Funct. Mater.201828170596210.1002/adfm.201705962 LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583 LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583 GaoFOsteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffoldsAdv. Sci.20196190086710.1002/advs.201900867 WuXMarginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogelsBioact. Mater.20216397639861:CAS:528:DC%2BB3MXhtFKjtL%2FO339974878081879 GeWRapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogelsCarbohydr. Polym.20192241151471:CAS:528:DC%2BC1MXhsFWlsbrK3147282610.1016/j.carbpol.2019.115147 VinatierCGuicheuxJCartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatmentsAnn. Phys. Rehabil. Med2016591391441:STN:280:DC%2BC28bgtVOhsA%3D%3D2707958310.1016/j.rehab.2016.03.002 LiYTannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046 YaoMMicrogel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devicesNat. Commun.2022132022NatCo..13.5339Y1:CAS:528:DC%2BB38XitlKrsLrP36096894946815010.1038/s41467-022-33081-7 ZhaoYInfliximab-based self-healing hydrogel composite scaffold enhances stem cell survival, engraftment, and function in rheumatoid arthritis treatmentActa Biomater.20211216536641:CAS:528:DC%2BB3MXhtlOjs7k%3D3329091210.1016/j.actbio.2020.12.005 St-PierreDMRehabilitation following arthroscopic meniscectomySports Med1995203383471:STN:280:DyaK287lvVeksg%3D%3D857100710.2165/00007256-199520050-00005 BarnettROsteoarthritisLancet201839119852986401510.1016/S0140-6736(18)31064-X LiXKartogenin-Incorporated Thermogel supports stem cells for significant cartilage regenerationACS Appl Mater. Interfaces20168514851592016aams.book.....L1:CAS:528:DC%2BC28XitVGqsr0%3D2684483710.1021/acsami.5b12212 DischerDEJanmeyPWangY-LTissue cells feel and respond to the stiffness of their substrateScience2005310113911432005Sci...310.1139D1:CAS:528:DC%2BD2MXht1WgtLbF1629375010.1126/science.1116995 JohnsonKA stem cell-based approach to cartilage repairScience20123367177212012Sci...336..717J1:CAS:528:DC%2BC38XmsFymtbc%3D2249109310.1126/science.1215157 JoshiAFunctional compressive mechanics of a PVA/PVP nucleus pulposus replacementBiomaterials2006271761841:CAS:528:DC%2BD2MXhtVShtb%2FF1611567810.1016/j.biomaterials.2005.06.003 AlechinskyLTannic acid improves renal function recovery after renal warm ischemia-reperfusion in a rat modelBiomolecules2020104391:CAS:528:DC%2BB3cXosFKmurc%3D32178273717517710.3390/biom10030439 LiuY3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat modelBiomaterials20212791212161:CAS:528:DC%2BB3MXitlyrsrzM3473998210.1016/j.biomaterials.2021.121216 Torio, C. M. & Moore, B. J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief. Healthcare Cost and Utilization Project Statistical Briefs. 204, 1–15 (2006). LiYTannic acid/Sr-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046 LeiYStem cell-recruiting injectable microgels for repairing OsteoarthritisAdv. Funct. Mater.20213121050841:CAS:528:DC%2BB3MXhs1emtbrM10.1002/adfm.202105084 PritzkerKPHOsteoarthritis cartilage histopathology: grading and stagingOsteoarthr. Cartil.20061413291:STN:280:DC%2BD28%2FhsVWrsg%3D%3D10.1016/j.joca.2005.07.014 JaffrayBMinimally invasive surgeryArch. Dis. Child2005905375421:STN:280:DC%2BD2M3hs1Sltw%3D%3D15851444172037910.1136/adc.2004.062760 HueyDJHuJCAthanasiouKAUnlike bone, cartilage regeneration remains elusiveScience20123389179212012Sci...338..917H1:CAS:528:DC%2BC38Xhs1GntL%2FE23161992432798810.1126/science.1222454 NguyenTPTCell-laden injectable microgels: Current status and future prospects for cartilage regenerationBiomaterials20212791212141:CAS:528:DC%2BB3MXitlKlt7rN3473614710.1016/j.biomaterials.2021.121214 AbdollahiyanPOroojalianFMokhtarzadehAde la GuardiaMHydrogel-based 3D bioprinting for bone and cartilage tissue engineeringBiotechnol. J.202015e20000953286952910.1002/biot.202000095 MurphyMPArticular cartilage regeneration by activated skeletal stem cellsNat. Med202026158315921:CAS:528:DC%2BB3cXhs1Wru77M32807933770406110.1038/s41591-020-1013-2 MaihöferJHydrogel-guided, rAAV-mediated IGF-I overexpression enables long-term cartilage repair and protection a K Johnson (43334_CR6) 2012; 336 Y Lei (43334_CR49) 2021; 31 TPT Nguyen (43334_CR15) 2021; 279 J Matas (43334_CR12) 2019; 8 Y Li (43334_CR42) 2022; 9 DJ Hunter (43334_CR3) 2020; 396 Q Li (43334_CR46) 2021; 6 F-X Zhang (43334_CR47) 2021; 278 Y Liu (43334_CR56) 2021; 279 Y Li (43334_CR43) 2021; 126 W Shi (43334_CR20) 2017; 29 Y Zhang (43334_CR36) 2018; 28 Z Qiao (43334_CR59) 2021; 6 A Joshi (43334_CR34) 2006; 27 DM St-Pierre (43334_CR37) 1995; 20 M Yao (43334_CR63) 2022; 13 S Safiri (43334_CR2) 2020; 79 DE Discher (43334_CR53) 2005; 310 P Orlowski (43334_CR25) 2018; 13 Y Yang (43334_CR28) 2020; 12 Z Ahmadian (43334_CR44) 2021; 10 J Chen (43334_CR58) 2021; 6 P Abdollahiyan (43334_CR14) 2020; 15 W Ge (43334_CR45) 2019; 224 43334_CR32 N Ninan (43334_CR24) 2016; 8 L Li (43334_CR22) 2019; 29 J Lu (43334_CR48) 2018; 8 L Alechinsky (43334_CR50) 2020; 10 X Li (43334_CR51) 2016; 8 S Yin (43334_CR16) 2021; 128 D Simon (43334_CR7) 2020; 35 Y Hua (43334_CR57) 2021; 7 Y Li (43334_CR40) 2022; 9 X Xu (43334_CR27) 2021; 269 B Abramoff (43334_CR5) 2020; 104 ML Vainieri (43334_CR19) 2020; 101 P Calders (43334_CR10) 2018; 47 Y Yang (43334_CR30) 2021; 6 GD Nicodemus (43334_CR31) 2011; 7 MY Ansari (43334_CR39) 2020; 129 X Wu (43334_CR35) 2021; 6 C Vinatier (43334_CR55) 2016; 59 C Deng (43334_CR21) 2018; 8 Y Wang (43334_CR41) 2020; 14 Y Zhao (43334_CR61) 2021; 121 T Oosterhuis (43334_CR38) 2014; 2014 X Liu (43334_CR9) 2020; 232 43334_CR1 R Barnett (43334_CR4) 2018; 391 AJ Engler (43334_CR33) 2006; 126 CR Harrell (43334_CR11) 2019; 109 MP Murphy (43334_CR13) 2020; 26 H Xuan (43334_CR17) 2020; 105 J Yu (43334_CR29) 2020; 8 KPH Pritzker (43334_CR52) 2006; 14 EB Hunziker (43334_CR54) 2015; 23 Z Lu (43334_CR62) 2019; 218 DJ Huey (43334_CR18) 2012; 338 F Gao (43334_CR23) 2019; 6 Y Li (43334_CR26) 2021; 126 B Jaffray (43334_CR60) 2005; 90 J Maihöfer (43334_CR8) 2021; 33 |
References_xml | – reference: ZhangYRadiopaque highly stiff and tough shape memory hydrogel microcoils for permanent embolization of arteriesAdv. Funct. Mater.201828170596210.1002/adfm.201705962 – reference: HarrellCRMarkovicBSFellabaumCArsenijevicAVolarevicVMesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and future perspectivesBiomed. Pharmacother.2019109231823261:CAS:528:DC%2BC1cXitlKls7rF3055149010.1016/j.biopha.2018.11.099 – reference: St-PierreDMRehabilitation following arthroscopic meniscectomySports Med1995203383471:STN:280:DyaK287lvVeksg%3D%3D857100710.2165/00007256-199520050-00005 – reference: YangYH-bonding supramolecular hydrogels with promising mechanical strength and shape memory properties for postoperative antiadhesion applicationACS Appl Mater. Interfaces20201234161341691:CAS:528:DC%2BB3cXhtlCmt7zF3263104410.1021/acsami.0c07753 – reference: DengCBioactive scaffolds for regeneration of cartilage and subchondral bone interfaceTheranostics20188194019551:CAS:528:DC%2BC1cXit1Srtb7P29556366585851010.7150/thno.23674 – reference: MatasJUmbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC dosing is superior to a single msc dose and to hyaluronic acid in a controlled randomized Phase I/II trialStem Cells Transl. Med201982152241:CAS:528:DC%2BC1MXhsFKhs7zK3059239010.1002/sctm.18-0053 – reference: QiaoZA mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedingsBioact. Mater.20216282928401:CAS:528:DC%2BB3MXhtFKjsbjP337186657905459 – reference: AbramoffBCalderaFEOsteoarthritis: Pathology, diagnosis, and treatment optionsMed Clin. North Am.20201042933113203557010.1016/j.mcna.2019.10.007 – reference: ShiWStructurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivoAdv Mater201729170108910.1002/adma.201701089 – reference: WangYMultifunctional supramolecular hydrogel for prevention of epidural adhesion after LaminectomyACS Nano202014820282191:CAS:528:DC%2BB3cXhtFaiur%2FP3252051910.1021/acsnano.0c01658 – reference: ZhaoYInfliximab-based self-healing hydrogel composite scaffold enhances stem cell survival, engraftment, and function in rheumatoid arthritis treatmentActa Biomater.20211216536641:CAS:528:DC%2BB3MXhtlOjs7k%3D3329091210.1016/j.actbio.2020.12.005 – reference: BarnettROsteoarthritisLancet201839119852986401510.1016/S0140-6736(18)31064-X – reference: YinSCaoYHydrogels for large-scale expansion of stem cellsActa Biomater.20211281202017AcMat.128....1Y1:CAS:528:DC%2BB3MXhvVGhurfJ3374603210.1016/j.actbio.2021.03.026 – reference: XuXExosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regenerationBiomaterials20212691205391:CAS:528:DC%2BB3cXisVWis77J3324342410.1016/j.biomaterials.2020.120539 – reference: CaldersPVan GinckelAPresence of comorbidities and prognosis of clinical symptoms in knee and/or hip osteoarthritis: A systematic review and meta-analysisSemin Arthritis Rheum.2018478058132915767010.1016/j.semarthrit.2017.10.016 – reference: ChenJModified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regenerationBioact. Mater.20216168916981:CAS:528:DC%2BB3MXhtFKjt7%2FP33313448 – reference: JohnsonKA stem cell-based approach to cartilage repairScience20123367177212012Sci...336..717J1:CAS:528:DC%2BC38XmsFymtbc%3D2249109310.1126/science.1215157 – reference: YuJConstruction of supramolecular hydrogels using imidazolidinyl urea as hydrogen bonding reinforced factorJ. Mater. Chem. B20208305830631:CAS:528:DC%2BB3cXktl2ru7Y%3D3220187410.1039/D0TB00331J – reference: LiQ3D printed silk-gelatin hydrogel scaffold with different porous structure and cell seeding strategy for cartilage regenerationBioact. Mater.20216339634101:CAS:528:DC%2BB3MXhtFKjt7jK338427368010633 – reference: OosterhuisTRehabilitation after lumbar disc surgeryCochrane Database Syst Rev.20142014CD003007246273257138272 – reference: XuanHBiofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regenerationActa Biomater.2020105971101:CAS:528:DC%2BB3cXhsFOmtbg%3D3195319510.1016/j.actbio.2020.01.015 – reference: LiL3D molecularly functionalized cell-free biomimetic scaffolds for osteochondral regenerationAdv. Funct. Mater.201929180735610.1002/adfm.201807356 – reference: OrlowskiPTannic acid-modified silver nanoparticles for wound healing: the importance of sizeInt J. Nanomed.20181399110071:CAS:528:DC%2BC1cXit1GltbnJ10.2147/IJN.S154797 – reference: MaihöferJHydrogel-guided, rAAV-mediated IGF-I overexpression enables long-term cartilage repair and protection against perifocal osteoarthritis in a large-animal full-thickness chondral defect model at one year in vivoAdv. Mater.202133e20084513373451410.1002/adma.202008451 – reference: GaoFOsteochondral regeneration with 3D-printed biodegradable high-strength supramolecular polymer reinforced-gelatin hydrogel scaffoldsAdv. Sci.20196190086710.1002/advs.201900867 – reference: LuJIncreased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regenerationTheranostics20188503950581:CAS:528:DC%2BC1MXpt1els7g%3D30429885621707010.7150/thno.26981 – reference: SafiriSGlobal, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017Ann. Rheum. Dis.2020798198283239828510.1136/annrheumdis-2019-216515 – reference: LiXKartogenin-Incorporated Thermogel supports stem cells for significant cartilage regenerationACS Appl Mater. Interfaces20168514851592016aams.book.....L1:CAS:528:DC%2BC28XitVGqsr0%3D2684483710.1021/acsami.5b12212 – reference: Urbanczyk, M., Layland, S. L. & Schenke-Layland, K. The role of extracellular matrix in biomechanics and its impact on bioengineering of cells and 3D tissues. Matrix Biol. 85–86, 1–14 (2020). – reference: GeWRapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogelsCarbohydr. Polym.20192241151471:CAS:528:DC%2BC1MXhsFWlsbrK3147282610.1016/j.carbpol.2019.115147 – reference: LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583 – reference: MurphyMPArticular cartilage regeneration by activated skeletal stem cellsNat. Med202026158315921:CAS:528:DC%2BB3cXhs1Wru77M32807933770406110.1038/s41591-020-1013-2 – reference: AlechinskyLTannic acid improves renal function recovery after renal warm ischemia-reperfusion in a rat modelBiomolecules2020104391:CAS:528:DC%2BB3cXosFKmurc%3D32178273717517710.3390/biom10030439 – reference: VinatierCGuicheuxJCartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatmentsAnn. Phys. Rehabil. Med2016591391441:STN:280:DC%2BC28bgtVOhsA%3D%3D2707958310.1016/j.rehab.2016.03.002 – reference: NguyenTPTCell-laden injectable microgels: Current status and future prospects for cartilage regenerationBiomaterials20212791212141:CAS:528:DC%2BB3MXitlKlt7rN3473614710.1016/j.biomaterials.2021.121214 – reference: LiuXMolecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repairBiomaterials20202321196442020hsm2.book.....L1:CAS:528:DC%2BC1MXisVyqtb3E3188401710.1016/j.biomaterials.2019.119644 – reference: Torio, C. M. & Moore, B. J. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2013: Statistical Brief. Healthcare Cost and Utilization Project Statistical Briefs. 204, 1–15 (2006). – reference: YaoMMicrogel reinforced zwitterionic hydrogel coating for blood-contacting biomedical devicesNat. Commun.2022132022NatCo..13.5339Y1:CAS:528:DC%2BB38XitlKrsLrP36096894946815010.1038/s41467-022-33081-7 – reference: NinanNForgetAShastriVPVoelckerNHBlencoweAAntibacterial and anti-inflammatory ph-responsive tannic acid-carboxylated Agarose composite hydrogels for wound healingACS Appl Mater. Interfaces2016828511285211:CAS:528:DC%2BC28Xhs1WktbrL2770475710.1021/acsami.6b10491 – reference: HunzikerEBLippunerKKeelMJBShintaniNAn educational review of cartilage repair: precepts & practice–myths & misconceptions–progress & prospectsOsteoarthr. Cartil.2015233343501:STN:280:DC%2BC2Mzps1WltQ%3D%3D10.1016/j.joca.2014.12.011 – reference: HunterDJMarchLChewMOsteoarthritis in 2020 and beyond: a Lancet CommissionLancet2020396171117123315985110.1016/S0140-6736(20)32230-3 – reference: DischerDEJanmeyPWangY-LTissue cells feel and respond to the stiffness of their substrateScience2005310113911432005Sci...310.1139D1:CAS:528:DC%2BD2MXht1WgtLbF1629375010.1126/science.1116995 – reference: AnsariMYAhmadNHaqqiTMOxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenolsBiomed. Pharmacother.20201291104521:CAS:528:DC%2BB3cXhtlGntL3L32768946840468610.1016/j.biopha.2020.110452 – reference: HueyDJHuJCAthanasiouKAUnlike bone, cartilage regeneration remains elusiveScience20123389179212012Sci...338..917H1:CAS:528:DC%2BC38Xhs1GntL%2FE23161992432798810.1126/science.1222454 – reference: LuZAn injectable collagen-genipin-carbon dot hydrogel combined with photodynamic therapy to enhance chondrogenesisBiomaterials20192181191901:CAS:528:DC%2BC1MXhtl2qurzP3132665610.1016/j.biomaterials.2019.05.001 – reference: SimonDBone mass, bone microstructure and biomechanics in patients with hand OsteoarthritisJ. Bone Min. Res2020351695170210.1002/jbmr.4046 – reference: LiuY3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat modelBiomaterials20212791212161:CAS:528:DC%2BB3MXitlyrsrzM3473998210.1016/j.biomaterials.2021.121216 – reference: NicodemusGDSkaalureSCBryantSJGel structure has an impact on pericellular and extracellular matrix deposition, which subsequently alters metabolic activities in chondrocyte-laden PEG hydrogelsActa Biomater.201174925041:CAS:528:DC%2BC3MXhsFyltw%3D%3D2080486810.1016/j.actbio.2010.08.021 – reference: EnglerAJSenSSweeneyHLDischerDEMatrix elasticity directs stem cell lineage specificationCell20061266776891:CAS:528:DC%2BD28Xpt1aktbg%3D1692338810.1016/j.cell.2006.06.044 – reference: YangYBioactive skin-mimicking hydrogel band-aids for diabetic wound healing and infectious skin incision treatmentBioact. Mater.20216396239751:CAS:528:DC%2BB3MXhtFKjtL%2FN339375958079829 – reference: ZhangF-XInjectable Mussel-Inspired highly adhesive hydrogel with exosomes for endogenous cell recruitment and cartilage defect regenerationBiomaterials20212781211691:CAS:528:DC%2BB3MXitF2htbfJ3462693710.1016/j.biomaterials.2021.121169 – reference: JaffrayBMinimally invasive surgeryArch. Dis. Child2005905375421:STN:280:DC%2BD2M3hs1Sltw%3D%3D15851444172037910.1136/adc.2004.062760 – reference: VainieriMLEvaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formationActa Biomater.20201012933031:CAS:528:DC%2BC1MXit1OisbzM3172624910.1016/j.actbio.2019.11.015 – reference: AbdollahiyanPOroojalianFMokhtarzadehAde la GuardiaMHydrogel-based 3D bioprinting for bone and cartilage tissue engineeringBiotechnol. J.202015e20000953286952910.1002/biot.202000095 – reference: WuXMarginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogelsBioact. Mater.20216397639861:CAS:528:DC%2BB3MXhtFKjtL%2FO339974878081879 – reference: LiYFuRDuanZZhuCFanDConstruction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healingBioact. Mater.202294614741:CAS:528:DC%2BB3MXitlGhsbfI34820583 – reference: PritzkerKPHOsteoarthritis cartilage histopathology: grading and stagingOsteoarthr. Cartil.20061413291:STN:280:DC%2BD28%2FhsVWrsg%3D%3D10.1016/j.joca.2005.07.014 – reference: LeiYStem cell-recruiting injectable microgels for repairing OsteoarthritisAdv. Funct. Mater.20213121050841:CAS:528:DC%2BB3MXhs1emtbrM10.1002/adfm.202105084 – reference: AhmadianZA hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for pH-responsive wound healing accelerationAdv. Health. Mater.202110e200112210.1002/adhm.202001122 – reference: HuaYUltrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopySci Adv.2021711410.1126/sciadv.abg0628 – reference: JoshiAFunctional compressive mechanics of a PVA/PVP nucleus pulposus replacementBiomaterials2006271761841:CAS:528:DC%2BD2MXhtVShtb%2FF1611567810.1016/j.biomaterials.2005.06.003 – reference: LiYTannic acid/Sr2+-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046 – reference: LiYTannic acid/Sr-coated silk/graphene oxide-based meniscus scaffold with anti-inflammatory and anti-ROS functions for cartilage protection and delaying osteoarthritisActa Biomater.20211261191311:CAS:528:DC%2BB3MXhs1ynsbnI3368453610.1016/j.actbio.2021.02.046 – volume: 8 start-page: 215 year: 2019 ident: 43334_CR12 publication-title: Stem Cells Transl. Med doi: 10.1002/sctm.18-0053 – volume: 105 start-page: 97 year: 2020 ident: 43334_CR17 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.01.015 – volume: 7 start-page: 1 year: 2021 ident: 43334_CR57 publication-title: Sci Adv. doi: 10.1126/sciadv.abg0628 – volume: 310 start-page: 1139 year: 2005 ident: 43334_CR53 publication-title: Science doi: 10.1126/science.1116995 – volume: 79 start-page: 819 year: 2020 ident: 43334_CR2 publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2019-216515 – volume: 6 start-page: 1900867 year: 2019 ident: 43334_CR23 publication-title: Adv. Sci. doi: 10.1002/advs.201900867 – volume: 9 start-page: 461 year: 2022 ident: 43334_CR40 publication-title: Bioact. Mater. – volume: 279 start-page: 121214 year: 2021 ident: 43334_CR15 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121214 – volume: 126 start-page: 677 year: 2006 ident: 43334_CR33 publication-title: Cell doi: 10.1016/j.cell.2006.06.044 – volume: 31 start-page: 2105084 year: 2021 ident: 43334_CR49 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202105084 – volume: 10 start-page: e2001122 year: 2021 ident: 43334_CR44 publication-title: Adv. Health. Mater. doi: 10.1002/adhm.202001122 – ident: 43334_CR1 – volume: 13 start-page: 991 year: 2018 ident: 43334_CR25 publication-title: Int J. Nanomed. doi: 10.2147/IJN.S154797 – volume: 26 start-page: 1583 year: 2020 ident: 43334_CR13 publication-title: Nat. Med doi: 10.1038/s41591-020-1013-2 – volume: 8 start-page: 1940 year: 2018 ident: 43334_CR21 publication-title: Theranostics doi: 10.7150/thno.23674 – volume: 232 start-page: 119644 year: 2020 ident: 43334_CR9 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119644 – volume: 8 start-page: 5148 year: 2016 ident: 43334_CR51 publication-title: ACS Appl Mater. Interfaces doi: 10.1021/acsami.5b12212 – volume: 128 start-page: 1 year: 2021 ident: 43334_CR16 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.03.026 – volume: 59 start-page: 139 year: 2016 ident: 43334_CR55 publication-title: Ann. Phys. Rehabil. Med doi: 10.1016/j.rehab.2016.03.002 – volume: 391 start-page: 1985 year: 2018 ident: 43334_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(18)31064-X – volume: 338 start-page: 917 year: 2012 ident: 43334_CR18 publication-title: Science doi: 10.1126/science.1222454 – volume: 121 start-page: 653 year: 2021 ident: 43334_CR61 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.12.005 – volume: 27 start-page: 176 year: 2006 ident: 43334_CR34 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.06.003 – volume: 6 start-page: 1689 year: 2021 ident: 43334_CR58 publication-title: Bioact. Mater. – volume: 279 start-page: 121216 year: 2021 ident: 43334_CR56 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121216 – volume: 15 start-page: e2000095 year: 2020 ident: 43334_CR14 publication-title: Biotechnol. J. doi: 10.1002/biot.202000095 – volume: 47 start-page: 805 year: 2018 ident: 43334_CR10 publication-title: Semin Arthritis Rheum. doi: 10.1016/j.semarthrit.2017.10.016 – volume: 29 start-page: 1701089 year: 2017 ident: 43334_CR20 publication-title: Adv Mater doi: 10.1002/adma.201701089 – volume: 278 start-page: 121169 year: 2021 ident: 43334_CR47 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.121169 – volume: 23 start-page: 334 year: 2015 ident: 43334_CR54 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2014.12.011 – volume: 90 start-page: 537 year: 2005 ident: 43334_CR60 publication-title: Arch. Dis. Child doi: 10.1136/adc.2004.062760 – volume: 101 start-page: 293 year: 2020 ident: 43334_CR19 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.11.015 – volume: 7 start-page: 492 year: 2011 ident: 43334_CR31 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.08.021 – volume: 6 start-page: 3962 year: 2021 ident: 43334_CR30 publication-title: Bioact. Mater. – ident: 43334_CR32 doi: 10.1016/j.matbio.2019.11.005 – volume: 35 start-page: 1695 year: 2020 ident: 43334_CR7 publication-title: J. Bone Min. Res doi: 10.1002/jbmr.4046 – volume: 12 start-page: 34161 year: 2020 ident: 43334_CR28 publication-title: ACS Appl Mater. Interfaces doi: 10.1021/acsami.0c07753 – volume: 8 start-page: 5039 year: 2018 ident: 43334_CR48 publication-title: Theranostics doi: 10.7150/thno.26981 – volume: 6 start-page: 3976 year: 2021 ident: 43334_CR35 publication-title: Bioact. Mater. – volume: 104 start-page: 293 year: 2020 ident: 43334_CR5 publication-title: Med Clin. North Am. doi: 10.1016/j.mcna.2019.10.007 – volume: 6 start-page: 3396 year: 2021 ident: 43334_CR46 publication-title: Bioact. Mater. – volume: 126 start-page: 119 year: 2021 ident: 43334_CR43 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.02.046 – volume: 336 start-page: 717 year: 2012 ident: 43334_CR6 publication-title: Science doi: 10.1126/science.1215157 – volume: 8 start-page: 3058 year: 2020 ident: 43334_CR29 publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00331J – volume: 269 start-page: 120539 year: 2021 ident: 43334_CR27 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120539 – volume: 29 start-page: 1807356 year: 2019 ident: 43334_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201807356 – volume: 20 start-page: 338 year: 1995 ident: 43334_CR37 publication-title: Sports Med doi: 10.2165/00007256-199520050-00005 – volume: 9 start-page: 461 year: 2022 ident: 43334_CR42 publication-title: Bioact. Mater. – volume: 8 start-page: 28511 year: 2016 ident: 43334_CR24 publication-title: ACS Appl Mater. Interfaces doi: 10.1021/acsami.6b10491 – volume: 2014 start-page: CD003007 year: 2014 ident: 43334_CR38 publication-title: Cochrane Database Syst Rev. – volume: 224 start-page: 115147 year: 2019 ident: 43334_CR45 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115147 – volume: 14 start-page: 13 year: 2006 ident: 43334_CR52 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2005.07.014 – volume: 126 start-page: 119 year: 2021 ident: 43334_CR26 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.02.046 – volume: 10 start-page: 439 year: 2020 ident: 43334_CR50 publication-title: Biomolecules doi: 10.3390/biom10030439 – volume: 13 year: 2022 ident: 43334_CR63 publication-title: Nat. Commun. doi: 10.1038/s41467-022-33081-7 – volume: 129 start-page: 110452 year: 2020 ident: 43334_CR39 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110452 – volume: 109 start-page: 2318 year: 2019 ident: 43334_CR11 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2018.11.099 – volume: 14 start-page: 8202 year: 2020 ident: 43334_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.0c01658 – volume: 6 start-page: 2829 year: 2021 ident: 43334_CR59 publication-title: Bioact. Mater. – volume: 28 start-page: 1705962 year: 2018 ident: 43334_CR36 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705962 – volume: 396 start-page: 1711 year: 2020 ident: 43334_CR3 publication-title: Lancet doi: 10.1016/S0140-6736(20)32230-3 – volume: 33 start-page: e2008451 year: 2021 ident: 43334_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.202008451 – volume: 218 start-page: 119190 year: 2019 ident: 43334_CR62 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.05.001 |
SSID | ssj0000391844 |
Score | 2.644557 |
Snippet | Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving cartilage... Abstract Osteoarthritis is a worldwide prevalent disease that imposes a significant socioeconomic burden on individuals and healthcare systems. Achieving... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7771 |
SubjectTerms | 13/51 147/135 631/61/54/990 639/166/985 639/301/54/993 639/301/923/1027 64/86 96/100 Arthritis Body temperature Bone marrow Cartilage Cartilage - physiology Cartilage diseases Chondrocytes Chondrogenesis Crosslinking Drug Liberation Humanities and Social Sciences Humans Hydrogels Hydrogels - chemistry Hydrogen bonds Inflammation Mechanical properties Mesenchymal stem cells Microenvironments Minimally invasive surgery multidisciplinary Osteoarthritis Oxidative stress Regeneration Scaffolds Science Science (multidisciplinary) Shape memory Stem cells Tannic acid Unloading |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yIPginp_VUyL4puHaJG3Sx1M8DkGfXLi3kM_dg7326O4i-987k3bXWz9ffCttWsL8JjO_STMzhLxREViwLhWLlWiY9MExgJmzJHRQLkJAkDB3-POX5mImP13Wl7dafeGZsLE88Ci4U-EjrNpYlRqYr66dVWUD33dJe-ddndN8wefdCqayDRYthC5yypIphT5dyWwTwEVhkpCQTB94olyw_3cs89fDkj_9Mc2O6PwBuT8xSHo2zvyY3IndQ3J37Cm5fUS-zZbwARY2AyZFUdyYZ2mIkbqr3mbjRhfbMPTzuKS4CUuTXa3pamFvIr3GY7dbartA-46FeI1XYdjMKbZWAX9HgeJSj0Jbgh2Cu_NctRrBfUxm5x-_frhgU3cF5mtZrZkOwqraRw8MwcFF632seWqUamtASfkQLBjytrSyAi_uQkxtcJYnMNWeqySekKOu7-IzQlVoyhZcXYgAPRYUVG3i0ooQPLeNlwWpdpI2fio9jh0wlib_AhfajOgYQMdkdIwuyNv9Ozdj4Y2_jn6PAO5HYtHsfANUyUyqZP6lSgU52cFvppW8MhCQAmeFKFQV5PX-MaxBxM92sd-MYxTHft0FeTpqy34mAikAcMaC6AM9Opjq4ZPuapHrfEO0jvysKci7ncr9mNefZfH8f8jiBbnHca1UFePqhByth018CfRr7V7llfYdDS8s5w priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaxNYid2TggQqxUSnKjUm-Vnu1I3KUkr1H_PjJN2VR57ixI3cvPN45uxPUPIWxmABatcslDwmgnnLQOYSxa58tIGCAginh3-9r2-mImv82o-JdyGaVvl3iYmQ-07hznyMwgMgDtANCA_rH8y7BqFq6tTC43b5A6WLsMtXXIuDzkWrH6uhJjOyuRcnQ0iWQZwVHhUiAumjvxRKtv_L67595bJP9ZNkzs6f0DuTzySfhyBf0huhfYRuTt2ltw9Jr9mK3gB89sej0ZRTM-z2IdA7WVnkomjy53vu0VYUUzF0miGDR2WZh3oFW6-3VHTetq1zIcrvPL9dkGxwQp4PQpElzqUuRVYI7i7SLWrEeInZHb-5cfnCzb1WGCuEsWGKc-NrFxwwBMsXDTOhaqMtZRNBVhJ570Bc97kRhTgy60PsfHWlBEMtitl5E_JSdu14Tmh0td5Aw7PBxAALCsom1gKw713pamdyEix_9LaTQXIsQ_GSqeFcK70iI4GdHRCR6uMvDv8Zj2W37hx9CcE8DASS2enG12_0JMmau4CSEYocgWhlKqskXkNAmujctbZCl5yuodfT_o86Gvpy8ibw2PQRMTPtKHbjmNkiV27M_JslJbDTDgSAWCOGVFHcnQ01eMn7eUyVfuGmB1ZWp2R93uRu57X_7_Fi5v_xktyr0QtKApWylNysum34RXQq419nXToN3MIJFI priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFA7riuCLeN-uq0TwTYNtkjbpow4ui6BPDuxbyXVmYbZdOjPI_Ps9J21HRlfBt9KmJeQ71zTnO4S8UwGiYJ0rFgpRMem8ZQAzZ1For2yAhCBi7fC379XFXH69LC-PCJ9qYdKh_URpmcz0dDrs41omlQYPgzU-QjJ9j9xH6naU6lk12--rIOO5lnKsj8mFvuPVAx-UqPrvii__PCb527_S5ILOH5NHY-xIPw2zfUKOQvuUPBi6Se6ekZ_zFXyA-W2P5VAUt-RZ7EOg9qozyazR5c733SKsKG6_0mjWG7pemptAr_HA7Y6a1tOuZT5c45XvtwuKTVXA01EIbqnDhVqBBYK7i8RXjbA-J_PzLz9mF2zsq8BcKYsN014YVbrgIDawcFE7F0oeK6XqEvBRznsDJrzOjSzAf1sfYu2t4RGMtOMqihfkuO3acEKo8lVeg5PzAUBHKkFVRy6N8N5xUzmZkWJa6caNpOPY-2LVpJ_fQjcDOg2g0yR0Gp2R9_t3bgbKjX-O_owA7kciXXa60fWLZhSfRrgAkhGKXEP6pEtrVF6BkNqonXW2hI-cTfA3ow6vG0hFIVqF_FNl5O3-MWgf4mfa0G2HMYpjp-6MvBykZT8Tgc4fosWM6AM5Opjq4ZP2apkYviFPx8isysiHSeR-zevva3H6f8NfkYcctaIoGFdn5HjTb8NrCLE29k3SqVu9oiIa priority: 102 providerName: Springer Nature |
Title | Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration |
URI | https://link.springer.com/article/10.1038/s41467-023-43334-8 https://www.ncbi.nlm.nih.gov/pubmed/38012159 https://www.proquest.com/docview/2894164017 https://www.proquest.com/docview/2894726031 https://pubmed.ncbi.nlm.nih.gov/PMC10682016 https://doaj.org/article/3ce000e10897485ba706e48bf8cbcb58 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9NAEF_uA8EX8fuiZ1nBN11Nskl28yDSK1ePwh2iFvoW9ivtQS850xbtf-_MJq1Uq_iShM1mWXa-frObmSHklXCAgmUomIt4xhJjNQMyx6zk0grtwCEoMXb48iq7GCejSTo5IJtyR90CLva6dlhPatzM3_74tv4AAv--DRmX7xaJF3ewPhj_wxMmD8kxWCaBgnrZwX2vmXkODg0eNMdhEjGw3byLo9k_zI6t8in99-HQP3-n_O1M1Zuq4X1yr8OYtN8yxQNy4KqH5E5bdXL9iHwfz2EAZlcNhk1R3LpnZeMc1de18uqPzta2qaduTnGblpZqsaSLmbp19AZ_zF1TVVlaV8y6G3yyzWpKsfgKWEQKIJga5Mc5aCponfq81kj-x2Q8PP86uGBd_QVm0iRaMmm5EqlxBjCEhofcGJfGZSZEngIdhbFWgarPQ5VEYOe1dWVutYpLUOYmFiV_Qo6qunInhAqbhTkYQ-uAOTDloMjLOFHcWhOrzCQBiTYrXZguOTnWyJgX_pCcy6KlTgHUKTx1ChmQ19tvbtvUHP_sfYYE3PbEtNq-oW6mRSelBTcOuMRFoQQ3S6ZaiTADZtalNNroFAY53ZC_2LBqAS4roFrwU0VAXm5fg5Qi_VTl6lXbR8RY0TsgT1tu2c6EI0gAVBkQucNHO1PdfVNdz3wmcPDnEcFlAXmzYblf8_r7Wjz7j3k-J3djFIUoYrE4JUfLZuVeAP5a6h45FBMBVzn82CPH_f7oywjuZ-dXnz5D6yAb9PzORs8L30_JWzIc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYJLxU5KASPBCawmzmLngBBbNaXLqSPNLXjLTKVpMmRmVM2f4jfynpNMNSy99WYljuX4fW-z_d4j5I1wYAXLUDAXxRlLjNUMyMxZGUsrtAOHoMTY4ZPTbDBMvo_S0Rb51cfC4LXKXiZ6QW1rg3vk--AYgO0A3oD4OPvJsGoUnq72JTRaWBy51SW4bPMPh1-Bvm85P_h29mXAuqoCzKRJtGDSxkqkxhnQjBoauTEu5WUmRJ7C7ISxVoEAy0OVRKC9tHVlbrXiJYgow0UZw7i3yG1QvCFylBiJ9Z4OZluXSdLF5oSx3J8nXhKBYsTQpDhhckP_-TIB_7Jt_76i-cc5rVd_B_fJTme30k8t0B6QLVc9JHfaSparR-RyOIUBmF02GIpF8TiAlY1zVJ_XyotUOlnZph67KcWtX1qq-YLOJ2rm6AVe9l1RVVlaV8y6C2zZZjmmWNAFtCwFw5oaxPgUpB88Hftc2Qipx2R4I6v_hGxXdeWeESpsFuagYK0DwGEaQ5GXPFGxtYarzCQBifqVLkyX8BzrbkwLf_Aey6KlTgHUKTx1ChmQd-tvZm26j2t7f0YCrntiqm7_oG7GRcf5RWwcIMNFoQTXTaZaiTADBtGlNNroFAbZ68lfdPJjXlyhPSCv16-B85F-qnL1su0jOFYJD8jTFi3rmcRoeIClGhC5gaONqW6-qc4nPrs4wBqtwiwg73vIXc3r_2uxe_1vvCJ3B2cnx8Xx4enRc3KPI0dEEeNij2wvmqV7AabdQr_0_ETJj5tm4N_AnWRZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxLO4FFgkOMGqttf2rg8IASVqKVQciJTbst5HUim1UydRlb_Gr2PGj1Th0Vtvlr1ZbXa--Wb2MTOEvBIOvGAZCuYinrHE2IKBmGPmubSicLAg8Bg7_O0kOxwmX0bpaIv86mNh8Fplz4kNUdvK4B75PiwMwHdIMN2z765FfD8YvJ-dM6wghSetfTmNFiLHbnUBy7f5u6MDkPXrOB58_vHpkHUVBphJk2jBpOVapMYZsJIFPOTGuDT2mRB5CiMVxloNZJaHOonAkhXW-dwWOvZAVyYWnkO_N8hNwdMIdUyMxHp_BzOvyyTp4nRCLvfnScNKYCQxTIknTG7YwqZkwL_83L-va_5xZtuYwsE9crfzYemHFnT3yZYrH5BbbVXL1UNyMZxCB8wuawzLong0wHztHC1OK93QK52sbF2N3ZTiNjD1er6g84meOXqGF39XVJeWViWz7gyfbL0cUyzuAhaXgpNNDeJ9CkwIb8dN3myE1yMyvJbZf0y2y6p0TwgVNgtzMLbWAfgwpaHIfZxobq2JdWaSgET9TCvTJT_HGhxT1RzCc6la6SiQjmqko2RA3qx_M2tTf1zZ-iMKcN0S03Y3L6p6rDoWUNw4QIaLQgnLOJkWWoQZKEvhpSlMkUIne734Vcclc3WJ_IC8XH8GFkD56dJVy7aNiLFieEB2WrSsR8LRCQGvNSByA0cbQ938Up5OmkzjUZihh5gF5G0Puctx_X8udq_-Gy_IbVBd9fXo5PgpuROjQkQRi8Ue2V7US_cMvLxF8bxRJ0p-Xrf-_gY0TGiP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-durable+cell-free+bioactive+hydrogel+with+fast+shape+memory+and+on-demand+drug+release+for+cartilage+regeneration&rft.jtitle=Nature+communications&rft.au=Yang%2C+Yuxuan&rft.au=Zhao%2C+Xiaodan&rft.au=Wang%2C+Shuang&rft.au=Zhang%2C+Yanfeng&rft.date=2023-11-27&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=7771&rft_id=info:doi/10.1038%2Fs41467-023-43334-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |