Sensitivity enhancement of nonlinear micromechanical sensors using parametric symmetry breaking

The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches i...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 10; no. 1; pp. 158 - 14
Main Authors Xu, Yutao, Yang, Qiqi, Song, Jiahao, Wei, Xueyong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.10.2024
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/ f C is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.
AbstractList The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.
Abstract The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.
The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.
The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/ f C is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.
ArticleNumber 158
Author Yang, Qiqi
Song, Jiahao
Wei, Xueyong
Xu, Yutao
Author_xml – sequence: 1
  givenname: Yutao
  surname: Xu
  fullname: Xu, Yutao
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
– sequence: 2
  givenname: Qiqi
  surname: Yang
  fullname: Yang, Qiqi
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
– sequence: 3
  givenname: Jiahao
  orcidid: 0009-0007-9251-2204
  surname: Song
  fullname: Song, Jiahao
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
– sequence: 4
  givenname: Xueyong
  orcidid: 0000-0002-6443-4727
  surname: Wei
  fullname: Wei, Xueyong
  email: seanwei@mail.xjtu.edu.cn
  organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39468033$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS1URB_0D7BAkdiwCfgV21khVEGpVIkFsLYmjn3rS2Jf7KTS_fc4Ny20XXTlkec7x0fjOUVHIQaL0BuCPxDM1MfMCZOqxpTXGEvFa_4CnVDcNLXkjB89qI_Rec5bjDGRTLa4eYWOWcuFwoydIP3Dhuwnf-unfWXDDQRjRxumKrqqvDj4YCFVozcpjtaUtjcwVLmIYsrVnH3YVDtIMNopeVPl_bhU-6pLFn6X5mv00sGQ7fndeYZ-ff3y8-Jbff398uri83VtGk6mWkGHFWlV31PBTec604ieEwkgBGulY9IIVvI7KpmRxgnphOgKyQHarpfsDF2tvn2Erd4lP0La6wheHy5i2mhIkzeD1VQ2hPWYgFKYO2cVWCcYk6TFbU8pLV6fVq_d3I22N2UcCYZHpo87wd_oTbzVhDSkbfDi8P7OIcU_s82THn02dhgg2DhnzQglTUslVgV99wTdxjmFMqsDxUWJywv19mGkf1nuP7IAagXKR-WcrNPGTzD5uCT0gyZYL2uj17XRZW30YW304k2fSO_dnxWxVZQLHDY2_Y_9jOovxUrV9g
CitedBy_id crossref_primary_10_1016_j_jsv_2025_118961
Cites_doi 10.1103/PhysRevE.94.022201
10.1016/j.ijmecsci.2020.105915
10.1109/jmems.2002.805207
10.1021/nl101844r
10.1063/1.1499745
10.1016/j.ymssp.2020.106981
10.1038/s42005-022-00861-y
10.1088/1361-6382/ac7b05
10.1038/ncomms3860
10.1016/j.ijmecsci.2020.105705
10.1103/PhysRevApplied.12.044053
10.1103/PhysRevLett.111.084101
10.1016/j.eng.2023.12.013
10.1016/S0924-4247(02)00299-6
10.1016/j.sna.2011.08.009
10.1038/s41378-020-00192-4
10.1126/science.aar6939
10.1038/micronano.2016.15
10.1038/s41378-020-0170-2
10.1103/PhysRevLett.129.104301
10.1038/ncomms1813
10.1103/PhysRevApplied.18.034006
10.1016/j.ymssp.2022.109164
10.1103/PhysRevApplied.12.044005
10.1103/PhysRevLett.117.214101
10.1021/nl2031162
10.1038/srep09036
10.1016/j.sna.2004.12.033
10.1109/jmems.2019.2936843
10.1016/j.sna.2022.113517
10.1038/s41467-019-12796-0
10.1038/s41378-023-00522-2
10.1038/nnano.2014.234
10.1038/nnano.2016.19
10.1063/1.1642738
10.1109/MEMSYS.2019.8870697
10.1063/1.5125286
10.1063/1.5031058
10.1126/science.aar5220
10.1063/5.0009848
10.1063/1.5115028
10.1063/5.0019296
10.1063/1.3429589
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOA
DOI 10.1038/s41378-024-00784-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

MEDLINE - Academic
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
EndPage 14
ExternalDocumentID oai_doaj_org_article_27513d01a8804ffe8aef63371909d222
PMC11519502
39468033
10_1038_s41378_024_00784_4
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52075432
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 52075432
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-8ab08198dd264cbfbc56d417aa66397f37c63173f273c7cf67f66b4cb4aa9bd73
IEDL.DBID 7X7
ISSN 2055-7434
2096-1030
IngestDate Wed Aug 27 01:27:47 EDT 2025
Thu Aug 21 18:44:05 EDT 2025
Fri Jul 11 07:06:21 EDT 2025
Wed Aug 13 07:17:18 EDT 2025
Thu Apr 03 07:07:46 EDT 2025
Tue Jul 01 03:27:12 EDT 2025
Thu Apr 24 22:56:56 EDT 2025
Fri Feb 21 02:37:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-8ab08198dd264cbfbc56d417aa66397f37c63173f273c7cf67f66b4cb4aa9bd73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-9251-2204
0000-0002-6443-4727
OpenAccessLink https://www.proquest.com/docview/3121462754?pq-origsite=%requestingapplication%
PMID 39468033
PQID 3121462754
PQPubID 2041946
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_27513d01a8804ffe8aef63371909d222
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11519502
proquest_miscellaneous_3121592708
proquest_journals_3121462754
pubmed_primary_39468033
crossref_citationtrail_10_1038_s41378_024_00784_4
crossref_primary_10_1038_s41378_024_00784_4
springer_journals_10_1038_s41378_024_00784_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-10-29
PublicationDateYYYYMMDD 2024-10-29
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Villanueva (CR31) 2011; 11
Seshia (CR2) 2002; 11
Nitzan (CR37) 2015; 5
CR39
CR16
Papariello, Zilberberg, Eichler, Chitra (CR41) 2016; 94
Zhou (CR24) 2019; 10
Ghadimi (CR10) 2018; 360
Suh, LaHaye, Echternach, Schwab, Roukes (CR29) 2010; 10
Defoort, Hentz, Shaw, Shoshani (CR21) 2022; 5
Shi (CR13) 2022; 177
CR30
Zhang, Baskaran, Turner (CR33) 2002; 102
Meesala, Hajj, Abdel-Rahman (CR34) 2020; 180
Wang, Huan, Zhu, Pu, Wei (CR27) 2021; 146
Lu (CR14) 2022; 18
Robbins, Afshordi, Jamison, Mann (CR35) 2022; 39
Leuch (CR40) 2016; 117
Serrano (CR12) 2016; 2
Sharma, Sarraf, Baskaran, Cretu (CR36) 2012; 177
Xu, Wang, Jiang, Wei (CR1) 2020; 6
Sansa (CR3) 2016; 11
CR4
Zhang, Turner (CR32) 2005; 122
Miller (CR5) 2019; 28
CR6
Agrawal, Woodhouse, Seshia (CR20) 2013; 111
Zhao (CR25) 2019; 12
Liang, Liang, Qian (CR38) 2020; 187
Gisler (CR9) 2022; 129
Miller, Shin, Kwon, Shaw, Kenny (CR43) 2019; 12
Cleland, Roukes (CR7) 2002; 92
CR26
CR23
CR42
Pu (CR19) 2022; 339
Qiao (CR18) 2023; 9
Ekinci, Yang, Roukes (CR8) 2004; 95
Moser, Eichler, Güttinger, Dykman, Bachtold (CR11) 2014; 9
Wei (CR22) 2024; 36
Gavartin, Verlot, Kippenberg (CR28) 2013; 4
Antonio, Zanette, López (CR15) 2012; 3
Wang, Wei, Pu, Huan (CR17) 2020; 6
JML Miller (784_CR5) 2019; 28
JML Miller (784_CR43) 2019; 12
Y Qiao (784_CR18) 2023; 9
X Wei (784_CR22) 2024; 36
C Zhao (784_CR25) 2019; 12
Z Shi (784_CR13) 2022; 177
A Leuch (784_CR40) 2016; 117
K Lu (784_CR14) 2022; 18
784_CR30
L Papariello (784_CR41) 2016; 94
X Wang (784_CR17) 2020; 6
M Defoort (784_CR21) 2022; 5
784_CR6
DK Agrawal (784_CR20) 2013; 111
784_CR4
T Gisler (784_CR9) 2022; 129
D Pu (784_CR19) 2022; 339
LG Villanueva (784_CR31) 2011; 11
X Zhou (784_CR24) 2019; 10
AH Ghadimi (784_CR10) 2018; 360
D Antonio (784_CR15) 2012; 3
X Wang (784_CR27) 2021; 146
AN Cleland (784_CR7) 2002; 92
W Zhang (784_CR32) 2005; 122
MPG Robbins (784_CR35) 2022; 39
784_CR23
F Liang (784_CR38) 2020; 187
784_CR26
J Moser (784_CR11) 2014; 9
W Zhang (784_CR33) 2002; 102
784_CR42
M Sansa (784_CR3) 2016; 11
J Suh (784_CR29) 2010; 10
SH Nitzan (784_CR37) 2015; 5
784_CR16
AA Seshia (784_CR2) 2002; 11
VC Meesala (784_CR34) 2020; 180
784_CR39
KL Ekinci (784_CR8) 2004; 95
E Gavartin (784_CR28) 2013; 4
M Sharma (784_CR36) 2012; 177
DE Serrano (784_CR12) 2016; 2
L Xu (784_CR1) 2020; 6
References_xml – volume: 94
  year: 2016
  ident: CR41
  article-title: Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.022201
– volume: 187
  start-page: 105915
  year: 2020
  ident: CR38
  article-title: Dynamical analysis of an improved MEMS ring gyroscope encircled by piezoelectric film
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105915
– volume: 11
  start-page: 784
  year: 2002
  end-page: 793
  ident: CR2
  article-title: A vacuum packaged surface micromachined resonant accelerometer
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/jmems.2002.805207
– ident: CR4
– volume: 10
  start-page: 3990
  year: 2010
  end-page: 3994
  ident: CR29
  article-title: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator
  publication-title: Nano Lett.
  doi: 10.1021/nl101844r
– ident: CR39
– volume: 92
  start-page: 2758
  year: 2002
  end-page: 2769
  ident: CR7
  article-title: Noise processes in nanomechanical resonators
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1499745
– ident: CR16
– ident: CR30
– volume: 146
  start-page: 106981
  year: 2021
  ident: CR27
  article-title: Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1:3
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106981
– volume: 5
  start-page: 93
  year: 2022
  ident: CR21
  article-title: Amplitude stabilization in a synchronized nonlinear nanomechanical oscillator
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-00861-y
– volume: 39
  start-page: 175009
  year: 2022
  ident: CR35
  article-title: Detection of gravitational waves using parametric resonance in Bose–Einstein condensates
  publication-title: Classical Quantum Gravity
  doi: 10.1088/1361-6382/ac7b05
– volume: 4
  year: 2013
  ident: CR28
  article-title: Stabilization of a linear nanomechanical oscillator to its thermodynamic limit
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3860
– volume: 180
  start-page: 105705
  year: 2020
  ident: CR34
  article-title: Bifurcation-based MEMS mass sensors
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105705
– ident: CR6
– volume: 12
  start-page: 044053
  year: 2019
  ident: CR43
  article-title: Phase Control of Self-Excited Parametric Resonators
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044053
– volume: 111
  start-page: 084101
  year: 2013
  ident: CR20
  article-title: Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.084101
– volume: 36
  start-page: 124
  year: 2024
  end-page: 131
  ident: CR22
  article-title: MEMS Huygens Clock Based on Synchronized Micromechanical Resonators
  publication-title: Engineering
  doi: 10.1016/j.eng.2023.12.013
– volume: 102
  start-page: 139
  year: 2002
  end-page: 150
  ident: CR33
  article-title: Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/S0924-4247(02)00299-6
– volume: 177
  start-page: 79
  year: 2012
  end-page: 86
  ident: CR36
  article-title: Parametric resonance: Amplification and damping in MEMS gyroscopes
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2011.08.009
– volume: 6
  start-page: 78
  year: 2020
  ident: CR17
  article-title: Single-electron detection utilizing coupled nonlinear microresonators
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00192-4
– ident: CR42
– ident: CR23
– volume: 360
  start-page: 764
  year: 2018
  end-page: 768
  ident: CR10
  article-title: Elastic strain engineering for ultralow mechanical dissipation
  publication-title: Science
  doi: 10.1126/science.aar6939
– volume: 2
  year: 2016
  ident: CR12
  article-title: Substrate-decoupled, bulk-acoustic wave gyroscopes: Design and evaluation of next-generation environmentally robust devices
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2016.15
– volume: 6
  start-page: 63
  year: 2020
  ident: CR1
  article-title: Programmable synchronization enhanced MEMS resonant accelerometer
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0170-2
– volume: 129
  year: 2022
  ident: CR9
  article-title: Soft-Clamped Silicon Nitride String Resonators at Millikelvin Temperatures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.104301
– volume: 3
  year: 2012
  ident: CR15
  article-title: Frequency stabilization in nonlinear micromechanical oscillators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1813
– volume: 18
  start-page: 034006
  year: 2022
  ident: CR14
  article-title: Dispersive Resonance Modulation Based on the Mode-Coupling Effect in a Capacitive Micromechanical Resonator
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.034006
– volume: 177
  start-page: 109164
  year: 2022
  ident: CR13
  article-title: Mode interaction induced response flattening in two mechanically coupled micro-resonators
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109164
– volume: 12
  start-page: 044005
  year: 2019
  ident: CR25
  article-title: Toward High-Resolution Inertial Sensors Employing Parametric Modulation in Coupled Micromechanical Resonators
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044005
– volume: 117
  year: 2016
  ident: CR40
  article-title: Parametric Symmetry Breaking in a Nonlinear Resonator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.214101
– volume: 11
  start-page: 5054
  year: 2011
  end-page: 5059
  ident: CR31
  article-title: A nanoscale parametric feedback oscillator
  publication-title: Nano Lett.
  doi: 10.1021/nl2031162
– volume: 5
  year: 2015
  ident: CR37
  article-title: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope
  publication-title: Sci. Rep.
  doi: 10.1038/srep09036
– volume: 122
  start-page: 23
  year: 2005
  end-page: 30
  ident: CR32
  article-title: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2004.12.033
– volume: 28
  start-page: 965
  year: 2019
  end-page: 976
  ident: CR5
  article-title: Thermomechanical-Noise-Limited Capacitive Transduction of Encapsulated MEM Resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/jmems.2019.2936843
– volume: 339
  start-page: 113517
  year: 2022
  ident: CR19
  article-title: Amplifying charge-sensing in micromechanical oscillators based on synchronization
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2022.113517
– volume: 10
  year: 2019
  ident: CR24
  article-title: Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12796-0
– ident: CR26
– volume: 9
  start-page: 58
  year: 2023
  ident: CR18
  article-title: Frequency unlocking-based MEMS bifurcation sensors
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-023-00522-2
– volume: 9
  start-page: 1007
  year: 2014
  end-page: 1011
  ident: CR11
  article-title: Nanotube mechanical resonators with quality factors of up to 5 million
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.234
– volume: 11
  start-page: 552
  year: 2016
  end-page: 558
  ident: CR3
  article-title: Frequency fluctuations in silicon nanoresonators
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.19
– volume: 95
  start-page: 2682
  year: 2004
  end-page: 2689
  ident: CR8
  article-title: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1642738
– volume: 6
  start-page: 63
  year: 2020
  ident: 784_CR1
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-0170-2
– ident: 784_CR23
  doi: 10.1109/MEMSYS.2019.8870697
– volume: 5
  year: 2015
  ident: 784_CR37
  publication-title: Sci. Rep.
  doi: 10.1038/srep09036
– volume: 129
  year: 2022
  ident: 784_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.129.104301
– volume: 117
  year: 2016
  ident: 784_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.214101
– volume: 11
  start-page: 5054
  year: 2011
  ident: 784_CR31
  publication-title: Nano Lett.
  doi: 10.1021/nl2031162
– volume: 2
  year: 2016
  ident: 784_CR12
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/micronano.2016.15
– volume: 9
  start-page: 1007
  year: 2014
  ident: 784_CR11
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.234
– volume: 122
  start-page: 23
  year: 2005
  ident: 784_CR32
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2004.12.033
– volume: 12
  start-page: 044053
  year: 2019
  ident: 784_CR43
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044053
– ident: 784_CR6
  doi: 10.1063/1.5125286
– ident: 784_CR42
  doi: 10.1063/1.5031058
– volume: 11
  start-page: 552
  year: 2016
  ident: 784_CR3
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.19
– ident: 784_CR4
  doi: 10.1126/science.aar5220
– volume: 5
  start-page: 93
  year: 2022
  ident: 784_CR21
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-022-00861-y
– volume: 94
  year: 2016
  ident: 784_CR41
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.022201
– volume: 12
  start-page: 044005
  year: 2019
  ident: 784_CR25
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.044005
– volume: 177
  start-page: 79
  year: 2012
  ident: 784_CR36
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2011.08.009
– volume: 11
  start-page: 784
  year: 2002
  ident: 784_CR2
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/jmems.2002.805207
– volume: 187
  start-page: 105915
  year: 2020
  ident: 784_CR38
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105915
– volume: 10
  year: 2019
  ident: 784_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12796-0
– volume: 177
  start-page: 109164
  year: 2022
  ident: 784_CR13
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109164
– ident: 784_CR30
  doi: 10.1063/5.0009848
– volume: 3
  year: 2012
  ident: 784_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1813
– volume: 39
  start-page: 175009
  year: 2022
  ident: 784_CR35
  publication-title: Classical Quantum Gravity
  doi: 10.1088/1361-6382/ac7b05
– volume: 6
  start-page: 78
  year: 2020
  ident: 784_CR17
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-020-00192-4
– volume: 146
  start-page: 106981
  year: 2021
  ident: 784_CR27
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.106981
– volume: 360
  start-page: 764
  year: 2018
  ident: 784_CR10
  publication-title: Science
  doi: 10.1126/science.aar6939
– volume: 180
  start-page: 105705
  year: 2020
  ident: 784_CR34
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105705
– volume: 9
  start-page: 58
  year: 2023
  ident: 784_CR18
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-023-00522-2
– volume: 4
  year: 2013
  ident: 784_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3860
– ident: 784_CR16
  doi: 10.1063/1.5115028
– volume: 10
  start-page: 3990
  year: 2010
  ident: 784_CR29
  publication-title: Nano Lett.
  doi: 10.1021/nl101844r
– volume: 92
  start-page: 2758
  year: 2002
  ident: 784_CR7
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1499745
– volume: 28
  start-page: 965
  year: 2019
  ident: 784_CR5
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/jmems.2019.2936843
– ident: 784_CR26
  doi: 10.1063/5.0019296
– volume: 339
  start-page: 113517
  year: 2022
  ident: 784_CR19
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2022.113517
– volume: 102
  start-page: 139
  year: 2002
  ident: 784_CR33
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/S0924-4247(02)00299-6
– volume: 111
  start-page: 084101
  year: 2013
  ident: 784_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.084101
– volume: 18
  start-page: 034006
  year: 2022
  ident: 784_CR14
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.18.034006
– volume: 36
  start-page: 124
  year: 2024
  ident: 784_CR22
  publication-title: Engineering
  doi: 10.1016/j.eng.2023.12.013
– ident: 784_CR39
  doi: 10.1063/1.3429589
– volume: 95
  start-page: 2682
  year: 2004
  ident: 784_CR8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1642738
SSID ssj0001737905
ssib048324881
Score 2.286363
Snippet The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in...
Abstract The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms 639/166/987
639/766
Bifurcations
Broken symmetry
Engineering
Frequency dependence
Frequency response
Frequency shift
Hysteresis
Linear vibration
Microelectromechanical systems
Nodes
Nonlinear response
Nonlinearity
Parameter sensitivity
Sensitivity enhancement
Sensors
Symmetry
Tracking
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGegICNxA6tJ7PhxLIiqQoILVOrN8pMisVm02R7675mxs8suzwu3KLGViWecb-wZf0PICxMTALeKLAg5MNG3jnmTOgZLBZNDK7xxuDXw_oM8OxfvLoaLnVJfmBNW6YHrwB33auh4bDsHhiZyTtqlLDlXAGQmArjh3xcwb2cxVXZXFEfmqfmUTMv18QR_ayST7QVDWBRM7CFRIez_nZf5a7LkTxHTAkSnd8jt2YOkJ1XyQ3IjjXfJrR1ewXvEfsS09FoXgqbxEjWLu4B0melYuTHcii5KLl7Co7-oKTpBp-VqopgK_5kiJ_gCy20FOl0v8OqawvK5FK-6T85P3356c8bmSgosDKJbM-08Qr-OEfyf4LMPg4yiU85JDOxlroIER4JncGaCClmqLKWHlsI546PiD8gBiJceEeqUCAZXYW0bhI4Y5uudyH32nfemVw3pNqNqw0wzjtUuvtoS7ubaVk1Y0IQtmrCiIS-3fb5Vko2_tn6Nytq2RILscgPMxs5mY_9lNg052qjazrN2srzDMufQFd7xfPsY5hsGUdyYlle1zQDf2eqGPKyWsZWEGyF1y3lD9J7N7Im6_2T8clk4vcExx4K8INerjXn9kOvPY_H4f4zFE3Kzx3kBiNybI3KwXl2lp-Bqrf2zMqu-A8kmI7g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKucAB8SZtQUbiBhGJ7fhxhBVVhQQXqNSb5WeLxGbRZnvov2fGSbYsFCRuq81YO5sZez57xt8Q8srEBIFbxToI2dWCNa72JrU1bBVMDo3wxuHRwKfP8uRUfDzrzvYIm-_ClKL9QmlZlum5OuztAIstcsEyUWNUE7W4RW4jdTt69UIurs9VFEfOqel-TMP1DUN3YlCh6r8JX_5ZJvlbrrSEoOP75N6EHem7UdsHZC_1D8ndXxgFHxH7BQvSx44QNPUXaFM8_6OrTPuRFcOt6bJU4SW89Is2ogMMWq0HikXw5xTZwJfYaCvQ4WqJn64obJxL26rH5PT4w9fFST31UKhDJ9pNrZ3HoK9jBOQTfPahk1G0yjmJKb3MVZAAIXgGGBNUyFJlKT1ICueMj4o_IfugXnpGqFMiGNx_NU0QOmKCjzmRWfat94apirTzW7VhIhjHPhffbUl0c21HS1iwhC2WsKIir7djfoz0Gv-Ufo_G2koiNXb5YrU-t5OrWKa6lsemdbAyiZyTdilLzhUgHxMBDVXkaDa1nebrYHmLDc5hKPzGy-1jmGmYPnF9Wl2OMh38z0ZX5OnoGVtNuBFSN5xXRO_4zI6qu0_6bxeFzRsgObbiBb3ezO51rdff38XB_4kfkjsMZwBEXWaOyP5mfZmeA5za-Bdl_vwEU4YaDQ
  priority: 102
  providerName: Springer Nature
Title Sensitivity enhancement of nonlinear micromechanical sensors using parametric symmetry breaking
URI https://link.springer.com/article/10.1038/s41378-024-00784-4
https://www.ncbi.nlm.nih.gov/pubmed/39468033
https://www.proquest.com/docview/3121462754
https://www.proquest.com/docview/3121592708
https://pubmed.ncbi.nlm.nih.gov/PMC11519502
https://doaj.org/article/27513d01a8804ffe8aef63371909d222
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SalrIzEDawmsWMnJ7RdulQrWiGWSnuzbCdukdik3WwP_ffMOMmW5dFLEsWO5GTGns8zk28IeVeUFRhuVTInZMZEGhtmiyphsFUovIuFLQy6Bk5O5fGZmC2yRe9wa_u0ymFNDAt12Tj0kR_wBEtQpyoTHy-vGFaNwuhqX0LjPtlF6jJM6VKLjTkVoK1iYEsPPhfFkY8K680BcmdYYav_jybm-UEL6znSzaaCoeEUTGzZqkDp_y8c-nc65R8x1WCqpo_Jox5j0nGnFE_Ivap-Sh7-xjz4jOg5Jq53lSNoVV-g7NFPSBtP6449w6zoMmTrVfhzMMqStvBQs2opJsufU2QNX2JBLkfbmyVe3VDYYIfyVs_J2fTo--SY9bUWmMtEsma5sQgO8rIEhOSsty6TpUiUMRJDf54rJwFqcA9wxynnpfJSWugpjClsqfgLsgPDq14RapRwBe7T4tiJvMRAYGqET71NrC1SFZFk-Kra9UTkWA_jpw4BcZ7rThIaJKGDJLSIyPvNM5cdDcedvQ9RWJueSKEdbjSrc93PSA2qlPAyTgysYML7KjeVl5wrQEhFCagpIvuDqHU_r1t9q4URebtphhmJYRZTV8111yeD94zziLzsNGMzEl4ImcecRyTf0pmtoW631D8uAus3QHcs2Qvj-jCo1-24_v8t9u5-jdfkQYoaD9Y4LfbJznp1Xb0BmLW2ozCX4JhPP4_I7ng8m8_w_OnkyxzOh0enX79B60RORsGR8QuwPykT
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCawmsRPHB4R4LVv6uNBKvRnbsVskdlM2W6H9U_xGZpxky_LorbdV4qyczOd5eMbzEfJM1R4Mt6yZE2XBRJ4aZpXPGIQKKrhUWGVwa2B3rxwfiE-HxeEa-TmchcGyykEnRkVdNw73yDd5hhTUuSzE65PvDFmjMLs6UGh0sNj2ix8QsrWvtt6DfJ_n-ejD_rsx61kFmCtENmeVsWgGq7oGX8DZYF1R1iKTxpSY5ApcuhKMKg9g2J10oZShLC2MFMYoW0sO_3uJXBacK1xR1ejjgF8Bq0MM3dnjHo_k2P8K-e0gUmDI6NWf20l5tdmC_cD2trlgaKgFEyu2MVII_Mvv_bt8848cbjSNoxvkeu_T0jcdCG-SNT-9Ra791unwNtGfsVC-Y6qgfnqMWMN9SdoEOu26dZgZncTqQI-HkRE7tIWHmllLsTj_iGKX8gkSgDnaLib4a0EhoI90WnfIwYVI4S5Zh-n5-4QaKZzCuDBNnahqTDzmRoQ82MxalcuEZMNX1a5vfI78G990TMDzSneS0CAJHSWhRUJeLJ856dp-nDv6LQprORJbdscLzexI9xpAA3QzXqeZAY0pQvCV8aHkXIJHpmrw0hKyMYha93qk1WeoT8jT5W3QAJjWMVPfnHZjCnjPtErIvQ4Zy5lwJcoq5Twh1QpmVqa6emf69Th2GYdQASmCYV4vB3idzev_3-LB-a_xhFwZ7-_u6J2tve2H5GqO6AdPIFcbZH0-O_WPwMWb28dxXVHy5aIX8i_IT18p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYwEJ7A2iZ04OSAElFVLoUKCSnsztmO3SGxSNluh_Wv8OmacR1kevfW2SpzVJPP2jOcj5ElZOXDcsmJW5BkTaayZKV3CIFUovY2FKTVuDXzYz3cOxLtZNtsgP4ezMNhWOdjEYKirxuIe-YQnCEGdykxMfN8W8XF7-vL4O0MEKay0DnAanYjsudUPSN_aF7vbwOunaTp9-_nNDusRBpjNRLJkhTboEouqgrjAGm9sllcikVrnWPDyXNocHCz34OSttD6XPs8NrBRal6aSHP73ArkoeZagjsnZ6MoFaIoYJrWH_R7JcRYWYt1B1sAQ3as_wxPzYtKCL8FRt6lg6LQFE2t-MsAJ_CsG_ruV8496bnCT02vkah_f0ledQF4nG66-Qa78NvXwJlGfsGm-Q62grj5CucM9Stp4WneTO_SCzkOnoMODyShHtIWHmkVLsVH_kOLE8jmCgVnarub4a0UhuQ_QWrfIwblw4TbZBPLcXUK1FLbEHDGOrSgqLEKmWvjUm8SYMpURSYavqmw_BB2xOL6pUIznheo4oYATKnBCiYg8G5857kaAnLn6NTJrXInju8OFZnGoemugQIwTXsWJBuspvHeFdj7nXEJ0VlYQsUVka2C16m1Kq041ICKPx9tgDbDEo2vXnHRrMnjPuIjInU4yRkp4KfIi5jwixZrMrJG6fqf-ehQmjkPagHDBQNfzQbxO6fr_t7h39ms8IpdAhdX73f29--RyisIPQUFabpHN5eLEPYBob2keBrWi5Mt56_EvPjZjVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+enhancement+of+nonlinear+micromechanical+sensors+using+parametric+symmetry+breaking&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Xu%2C+Yutao&rft.au=Yang%2C+Qiqi&rft.au=Song%2C+Jiahao&rft.au=Wei%2C+Xueyong&rft.date=2024-10-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=10&rft_id=info:doi/10.1038%2Fs41378-024-00784-4&rft.externalDocID=PMC11519502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon