Sensitivity enhancement of nonlinear micromechanical sensors using parametric symmetry breaking
The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches i...
Saved in:
Published in | Microsystems & nanoengineering Vol. 10; no. 1; pp. 158 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.10.2024
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/
f
C is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity. |
---|---|
AbstractList | The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity. Abstract The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity. The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity.The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/fC is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity. The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in this paper, we show that by tracking the dramatic frequency shift of the saddle-node bifurcation on the nonlinear parametric isolated branches in response to external forces, we can dramatically boost the sensitivity of MEMS force sensors. Specifically, we first theoretically and experimentally investigate the double hysteresis phenomena of a parametrically driven micromechanical resonator under the interaction of intrinsic nonlinearities and direct external drive. We demonstrate that the double hysteresis is caused by symmetry breaking in the phase states. The frequency response undergoes an additional amplitude jump from the symmetry-breaking-induced parametric isolated branch to the main branch, resulting in double hysteresis in the frequency domain. We further demonstrate that significant force sensitivity enhancement can be achieved by monitoring the dramatic frequency shift of the saddle-node bifurcations on the parametric isolated branches before the bifurcations annihilate. Based on the sensitivity enhancement effect, we propose a new sensing scheme which employs the frequency of the top saddle-node bifurcation in the parametric isolated branches as an output metric to quantify external forces. The concept is verified on a resonant MEMS charge sensor. A sensitivity of up to 39.5 ppm/ f C is achieved, significantly surpassing the state-of-the-art resonant charge sensors. This work provides a new mechanism for developing force sensors of high sensitivity. |
ArticleNumber | 158 |
Author | Yang, Qiqi Song, Jiahao Wei, Xueyong Xu, Yutao |
Author_xml | – sequence: 1 givenname: Yutao surname: Xu fullname: Xu, Yutao organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University – sequence: 2 givenname: Qiqi surname: Yang fullname: Yang, Qiqi organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University – sequence: 3 givenname: Jiahao orcidid: 0009-0007-9251-2204 surname: Song fullname: Song, Jiahao organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University – sequence: 4 givenname: Xueyong orcidid: 0000-0002-6443-4727 surname: Wei fullname: Wei, Xueyong email: seanwei@mail.xjtu.edu.cn organization: State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39468033$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhS1URB_0D7BAkdiwCfgV21khVEGpVIkFsLYmjn3rS2Jf7KTS_fc4Ny20XXTlkec7x0fjOUVHIQaL0BuCPxDM1MfMCZOqxpTXGEvFa_4CnVDcNLXkjB89qI_Rec5bjDGRTLa4eYWOWcuFwoydIP3Dhuwnf-unfWXDDQRjRxumKrqqvDj4YCFVozcpjtaUtjcwVLmIYsrVnH3YVDtIMNopeVPl_bhU-6pLFn6X5mv00sGQ7fndeYZ-ff3y8-Jbff398uri83VtGk6mWkGHFWlV31PBTec604ieEwkgBGulY9IIVvI7KpmRxgnphOgKyQHarpfsDF2tvn2Erd4lP0La6wheHy5i2mhIkzeD1VQ2hPWYgFKYO2cVWCcYk6TFbU8pLV6fVq_d3I22N2UcCYZHpo87wd_oTbzVhDSkbfDi8P7OIcU_s82THn02dhgg2DhnzQglTUslVgV99wTdxjmFMqsDxUWJywv19mGkf1nuP7IAagXKR-WcrNPGTzD5uCT0gyZYL2uj17XRZW30YW304k2fSO_dnxWxVZQLHDY2_Y_9jOovxUrV9g |
CitedBy_id | crossref_primary_10_1016_j_jsv_2025_118961 |
Cites_doi | 10.1103/PhysRevE.94.022201 10.1016/j.ijmecsci.2020.105915 10.1109/jmems.2002.805207 10.1021/nl101844r 10.1063/1.1499745 10.1016/j.ymssp.2020.106981 10.1038/s42005-022-00861-y 10.1088/1361-6382/ac7b05 10.1038/ncomms3860 10.1016/j.ijmecsci.2020.105705 10.1103/PhysRevApplied.12.044053 10.1103/PhysRevLett.111.084101 10.1016/j.eng.2023.12.013 10.1016/S0924-4247(02)00299-6 10.1016/j.sna.2011.08.009 10.1038/s41378-020-00192-4 10.1126/science.aar6939 10.1038/micronano.2016.15 10.1038/s41378-020-0170-2 10.1103/PhysRevLett.129.104301 10.1038/ncomms1813 10.1103/PhysRevApplied.18.034006 10.1016/j.ymssp.2022.109164 10.1103/PhysRevApplied.12.044005 10.1103/PhysRevLett.117.214101 10.1021/nl2031162 10.1038/srep09036 10.1016/j.sna.2004.12.033 10.1109/jmems.2019.2936843 10.1016/j.sna.2022.113517 10.1038/s41467-019-12796-0 10.1038/s41378-023-00522-2 10.1038/nnano.2014.234 10.1038/nnano.2016.19 10.1063/1.1642738 10.1109/MEMSYS.2019.8870697 10.1063/1.5125286 10.1063/1.5031058 10.1126/science.aar5220 10.1063/5.0009848 10.1063/1.5115028 10.1063/5.0019296 10.1063/1.3429589 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM DOA |
DOI | 10.1038/s41378-024-00784-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences Health & Medical Collection (Alumni) Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7434 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_27513d01a8804ffe8aef63371909d222 PMC11519502 39468033 10_1038_s41378_024_00784_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52075432 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 52075432 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-8ab08198dd264cbfbc56d417aa66397f37c63173f273c7cf67f66b4cb4aa9bd73 |
IEDL.DBID | 7X7 |
ISSN | 2055-7434 2096-1030 |
IngestDate | Wed Aug 27 01:27:47 EDT 2025 Thu Aug 21 18:44:05 EDT 2025 Fri Jul 11 07:06:21 EDT 2025 Wed Aug 13 07:17:18 EDT 2025 Thu Apr 03 07:07:46 EDT 2025 Tue Jul 01 03:27:12 EDT 2025 Thu Apr 24 22:56:56 EDT 2025 Fri Feb 21 02:37:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-8ab08198dd264cbfbc56d417aa66397f37c63173f273c7cf67f66b4cb4aa9bd73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0009-0007-9251-2204 0000-0002-6443-4727 |
OpenAccessLink | https://www.proquest.com/docview/3121462754?pq-origsite=%requestingapplication% |
PMID | 39468033 |
PQID | 3121462754 |
PQPubID | 2041946 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_27513d01a8804ffe8aef63371909d222 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11519502 proquest_miscellaneous_3121592708 proquest_journals_3121462754 pubmed_primary_39468033 crossref_citationtrail_10_1038_s41378_024_00784_4 crossref_primary_10_1038_s41378_024_00784_4 springer_journals_10_1038_s41378_024_00784_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-29 |
PublicationDateYYYYMMDD | 2024-10-29 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Villanueva (CR31) 2011; 11 Seshia (CR2) 2002; 11 Nitzan (CR37) 2015; 5 CR39 CR16 Papariello, Zilberberg, Eichler, Chitra (CR41) 2016; 94 Zhou (CR24) 2019; 10 Ghadimi (CR10) 2018; 360 Suh, LaHaye, Echternach, Schwab, Roukes (CR29) 2010; 10 Defoort, Hentz, Shaw, Shoshani (CR21) 2022; 5 Shi (CR13) 2022; 177 CR30 Zhang, Baskaran, Turner (CR33) 2002; 102 Meesala, Hajj, Abdel-Rahman (CR34) 2020; 180 Wang, Huan, Zhu, Pu, Wei (CR27) 2021; 146 Lu (CR14) 2022; 18 Robbins, Afshordi, Jamison, Mann (CR35) 2022; 39 Leuch (CR40) 2016; 117 Serrano (CR12) 2016; 2 Sharma, Sarraf, Baskaran, Cretu (CR36) 2012; 177 Xu, Wang, Jiang, Wei (CR1) 2020; 6 Sansa (CR3) 2016; 11 CR4 Zhang, Turner (CR32) 2005; 122 Miller (CR5) 2019; 28 CR6 Agrawal, Woodhouse, Seshia (CR20) 2013; 111 Zhao (CR25) 2019; 12 Liang, Liang, Qian (CR38) 2020; 187 Gisler (CR9) 2022; 129 Miller, Shin, Kwon, Shaw, Kenny (CR43) 2019; 12 Cleland, Roukes (CR7) 2002; 92 CR26 CR23 CR42 Pu (CR19) 2022; 339 Qiao (CR18) 2023; 9 Ekinci, Yang, Roukes (CR8) 2004; 95 Moser, Eichler, Güttinger, Dykman, Bachtold (CR11) 2014; 9 Wei (CR22) 2024; 36 Gavartin, Verlot, Kippenberg (CR28) 2013; 4 Antonio, Zanette, López (CR15) 2012; 3 Wang, Wei, Pu, Huan (CR17) 2020; 6 JML Miller (784_CR5) 2019; 28 JML Miller (784_CR43) 2019; 12 Y Qiao (784_CR18) 2023; 9 X Wei (784_CR22) 2024; 36 C Zhao (784_CR25) 2019; 12 Z Shi (784_CR13) 2022; 177 A Leuch (784_CR40) 2016; 117 K Lu (784_CR14) 2022; 18 784_CR30 L Papariello (784_CR41) 2016; 94 X Wang (784_CR17) 2020; 6 M Defoort (784_CR21) 2022; 5 784_CR6 DK Agrawal (784_CR20) 2013; 111 784_CR4 T Gisler (784_CR9) 2022; 129 D Pu (784_CR19) 2022; 339 LG Villanueva (784_CR31) 2011; 11 X Zhou (784_CR24) 2019; 10 AH Ghadimi (784_CR10) 2018; 360 D Antonio (784_CR15) 2012; 3 X Wang (784_CR27) 2021; 146 AN Cleland (784_CR7) 2002; 92 W Zhang (784_CR32) 2005; 122 MPG Robbins (784_CR35) 2022; 39 784_CR23 F Liang (784_CR38) 2020; 187 784_CR26 J Moser (784_CR11) 2014; 9 W Zhang (784_CR33) 2002; 102 784_CR42 M Sansa (784_CR3) 2016; 11 J Suh (784_CR29) 2010; 10 SH Nitzan (784_CR37) 2015; 5 784_CR16 AA Seshia (784_CR2) 2002; 11 VC Meesala (784_CR34) 2020; 180 784_CR39 KL Ekinci (784_CR8) 2004; 95 E Gavartin (784_CR28) 2013; 4 M Sharma (784_CR36) 2012; 177 DE Serrano (784_CR12) 2016; 2 L Xu (784_CR1) 2020; 6 |
References_xml | – volume: 94 year: 2016 ident: CR41 article-title: Ultrasensitive hysteretic force sensing with parametric nonlinear oscillators publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.022201 – volume: 187 start-page: 105915 year: 2020 ident: CR38 article-title: Dynamical analysis of an improved MEMS ring gyroscope encircled by piezoelectric film publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105915 – volume: 11 start-page: 784 year: 2002 end-page: 793 ident: CR2 article-title: A vacuum packaged surface micromachined resonant accelerometer publication-title: J. Microelectromech. Syst. doi: 10.1109/jmems.2002.805207 – ident: CR4 – volume: 10 start-page: 3990 year: 2010 end-page: 3994 ident: CR29 article-title: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator publication-title: Nano Lett. doi: 10.1021/nl101844r – ident: CR39 – volume: 92 start-page: 2758 year: 2002 end-page: 2769 ident: CR7 article-title: Noise processes in nanomechanical resonators publication-title: J. Appl. Phys. doi: 10.1063/1.1499745 – ident: CR16 – ident: CR30 – volume: 146 start-page: 106981 year: 2021 ident: CR27 article-title: Frequency locking in the internal resonance of two electrostatically coupled micro-resonators with frequency ratio 1:3 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106981 – volume: 5 start-page: 93 year: 2022 ident: CR21 article-title: Amplitude stabilization in a synchronized nonlinear nanomechanical oscillator publication-title: Commun. Phys. doi: 10.1038/s42005-022-00861-y – volume: 39 start-page: 175009 year: 2022 ident: CR35 article-title: Detection of gravitational waves using parametric resonance in Bose–Einstein condensates publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/ac7b05 – volume: 4 year: 2013 ident: CR28 article-title: Stabilization of a linear nanomechanical oscillator to its thermodynamic limit publication-title: Nat. Commun. doi: 10.1038/ncomms3860 – volume: 180 start-page: 105705 year: 2020 ident: CR34 article-title: Bifurcation-based MEMS mass sensors publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105705 – ident: CR6 – volume: 12 start-page: 044053 year: 2019 ident: CR43 article-title: Phase Control of Self-Excited Parametric Resonators publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044053 – volume: 111 start-page: 084101 year: 2013 ident: CR20 article-title: Observation of Locked Phase Dynamics and Enhanced Frequency Stability in Synchronized Micromechanical Oscillators publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.084101 – volume: 36 start-page: 124 year: 2024 end-page: 131 ident: CR22 article-title: MEMS Huygens Clock Based on Synchronized Micromechanical Resonators publication-title: Engineering doi: 10.1016/j.eng.2023.12.013 – volume: 102 start-page: 139 year: 2002 end-page: 150 ident: CR33 article-title: Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor publication-title: Sens. Actuators A: Phys. doi: 10.1016/S0924-4247(02)00299-6 – volume: 177 start-page: 79 year: 2012 end-page: 86 ident: CR36 article-title: Parametric resonance: Amplification and damping in MEMS gyroscopes publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2011.08.009 – volume: 6 start-page: 78 year: 2020 ident: CR17 article-title: Single-electron detection utilizing coupled nonlinear microresonators publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00192-4 – ident: CR42 – ident: CR23 – volume: 360 start-page: 764 year: 2018 end-page: 768 ident: CR10 article-title: Elastic strain engineering for ultralow mechanical dissipation publication-title: Science doi: 10.1126/science.aar6939 – volume: 2 year: 2016 ident: CR12 article-title: Substrate-decoupled, bulk-acoustic wave gyroscopes: Design and evaluation of next-generation environmentally robust devices publication-title: Microsyst. Nanoeng. doi: 10.1038/micronano.2016.15 – volume: 6 start-page: 63 year: 2020 ident: CR1 article-title: Programmable synchronization enhanced MEMS resonant accelerometer publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0170-2 – volume: 129 year: 2022 ident: CR9 article-title: Soft-Clamped Silicon Nitride String Resonators at Millikelvin Temperatures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.104301 – volume: 3 year: 2012 ident: CR15 article-title: Frequency stabilization in nonlinear micromechanical oscillators publication-title: Nat. Commun. doi: 10.1038/ncomms1813 – volume: 18 start-page: 034006 year: 2022 ident: CR14 article-title: Dispersive Resonance Modulation Based on the Mode-Coupling Effect in a Capacitive Micromechanical Resonator publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.034006 – volume: 177 start-page: 109164 year: 2022 ident: CR13 article-title: Mode interaction induced response flattening in two mechanically coupled micro-resonators publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109164 – volume: 12 start-page: 044005 year: 2019 ident: CR25 article-title: Toward High-Resolution Inertial Sensors Employing Parametric Modulation in Coupled Micromechanical Resonators publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044005 – volume: 117 year: 2016 ident: CR40 article-title: Parametric Symmetry Breaking in a Nonlinear Resonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.214101 – volume: 11 start-page: 5054 year: 2011 end-page: 5059 ident: CR31 article-title: A nanoscale parametric feedback oscillator publication-title: Nano Lett. doi: 10.1021/nl2031162 – volume: 5 year: 2015 ident: CR37 article-title: Self-induced parametric amplification arising from nonlinear elastic coupling in a micromechanical resonating disk gyroscope publication-title: Sci. Rep. doi: 10.1038/srep09036 – volume: 122 start-page: 23 year: 2005 end-page: 30 ident: CR32 article-title: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2004.12.033 – volume: 28 start-page: 965 year: 2019 end-page: 976 ident: CR5 article-title: Thermomechanical-Noise-Limited Capacitive Transduction of Encapsulated MEM Resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/jmems.2019.2936843 – volume: 339 start-page: 113517 year: 2022 ident: CR19 article-title: Amplifying charge-sensing in micromechanical oscillators based on synchronization publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2022.113517 – volume: 10 year: 2019 ident: CR24 article-title: Dynamic modulation of modal coupling in microelectromechanical gyroscopic ring resonators publication-title: Nat. Commun. doi: 10.1038/s41467-019-12796-0 – ident: CR26 – volume: 9 start-page: 58 year: 2023 ident: CR18 article-title: Frequency unlocking-based MEMS bifurcation sensors publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-023-00522-2 – volume: 9 start-page: 1007 year: 2014 end-page: 1011 ident: CR11 article-title: Nanotube mechanical resonators with quality factors of up to 5 million publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.234 – volume: 11 start-page: 552 year: 2016 end-page: 558 ident: CR3 article-title: Frequency fluctuations in silicon nanoresonators publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.19 – volume: 95 start-page: 2682 year: 2004 end-page: 2689 ident: CR8 article-title: Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems publication-title: J. Appl. Phys. doi: 10.1063/1.1642738 – volume: 6 start-page: 63 year: 2020 ident: 784_CR1 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-0170-2 – ident: 784_CR23 doi: 10.1109/MEMSYS.2019.8870697 – volume: 5 year: 2015 ident: 784_CR37 publication-title: Sci. Rep. doi: 10.1038/srep09036 – volume: 129 year: 2022 ident: 784_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.129.104301 – volume: 117 year: 2016 ident: 784_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.214101 – volume: 11 start-page: 5054 year: 2011 ident: 784_CR31 publication-title: Nano Lett. doi: 10.1021/nl2031162 – volume: 2 year: 2016 ident: 784_CR12 publication-title: Microsyst. Nanoeng. doi: 10.1038/micronano.2016.15 – volume: 9 start-page: 1007 year: 2014 ident: 784_CR11 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.234 – volume: 122 start-page: 23 year: 2005 ident: 784_CR32 publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2004.12.033 – volume: 12 start-page: 044053 year: 2019 ident: 784_CR43 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044053 – ident: 784_CR6 doi: 10.1063/1.5125286 – ident: 784_CR42 doi: 10.1063/1.5031058 – volume: 11 start-page: 552 year: 2016 ident: 784_CR3 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.19 – ident: 784_CR4 doi: 10.1126/science.aar5220 – volume: 5 start-page: 93 year: 2022 ident: 784_CR21 publication-title: Commun. Phys. doi: 10.1038/s42005-022-00861-y – volume: 94 year: 2016 ident: 784_CR41 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.022201 – volume: 12 start-page: 044005 year: 2019 ident: 784_CR25 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044005 – volume: 177 start-page: 79 year: 2012 ident: 784_CR36 publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2011.08.009 – volume: 11 start-page: 784 year: 2002 ident: 784_CR2 publication-title: J. Microelectromech. Syst. doi: 10.1109/jmems.2002.805207 – volume: 187 start-page: 105915 year: 2020 ident: 784_CR38 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105915 – volume: 10 year: 2019 ident: 784_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12796-0 – volume: 177 start-page: 109164 year: 2022 ident: 784_CR13 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109164 – ident: 784_CR30 doi: 10.1063/5.0009848 – volume: 3 year: 2012 ident: 784_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms1813 – volume: 39 start-page: 175009 year: 2022 ident: 784_CR35 publication-title: Classical Quantum Gravity doi: 10.1088/1361-6382/ac7b05 – volume: 6 start-page: 78 year: 2020 ident: 784_CR17 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-020-00192-4 – volume: 146 start-page: 106981 year: 2021 ident: 784_CR27 publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2020.106981 – volume: 360 start-page: 764 year: 2018 ident: 784_CR10 publication-title: Science doi: 10.1126/science.aar6939 – volume: 180 start-page: 105705 year: 2020 ident: 784_CR34 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2020.105705 – volume: 9 start-page: 58 year: 2023 ident: 784_CR18 publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-023-00522-2 – volume: 4 year: 2013 ident: 784_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms3860 – ident: 784_CR16 doi: 10.1063/1.5115028 – volume: 10 start-page: 3990 year: 2010 ident: 784_CR29 publication-title: Nano Lett. doi: 10.1021/nl101844r – volume: 92 start-page: 2758 year: 2002 ident: 784_CR7 publication-title: J. Appl. Phys. doi: 10.1063/1.1499745 – volume: 28 start-page: 965 year: 2019 ident: 784_CR5 publication-title: J. Microelectromech. Syst. doi: 10.1109/jmems.2019.2936843 – ident: 784_CR26 doi: 10.1063/5.0019296 – volume: 339 start-page: 113517 year: 2022 ident: 784_CR19 publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2022.113517 – volume: 102 start-page: 139 year: 2002 ident: 784_CR33 publication-title: Sens. Actuators A: Phys. doi: 10.1016/S0924-4247(02)00299-6 – volume: 111 start-page: 084101 year: 2013 ident: 784_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.084101 – volume: 18 start-page: 034006 year: 2022 ident: 784_CR14 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.18.034006 – volume: 36 start-page: 124 year: 2024 ident: 784_CR22 publication-title: Engineering doi: 10.1016/j.eng.2023.12.013 – ident: 784_CR39 doi: 10.1063/1.3429589 – volume: 95 start-page: 2682 year: 2004 ident: 784_CR8 publication-title: J. Appl. Phys. doi: 10.1063/1.1642738 |
SSID | ssj0001737905 ssib048324881 |
Score | 2.286363 |
Snippet | The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional paradigm, in... Abstract The working mechanism of resonant sensors is based on tracking the frequency shift in the linear vibration range. Contrary to the conventional... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 158 |
SubjectTerms | 639/166/987 639/766 Bifurcations Broken symmetry Engineering Frequency dependence Frequency response Frequency shift Hysteresis Linear vibration Microelectromechanical systems Nodes Nonlinear response Nonlinearity Parameter sensitivity Sensitivity enhancement Sensors Symmetry Tracking |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT3BAlGegICNxA6tJ7PhxLIiqQoILVOrN8pMisVm02R7675mxs8suzwu3KLGViWecb-wZf0PICxMTALeKLAg5MNG3jnmTOgZLBZNDK7xxuDXw_oM8OxfvLoaLnVJfmBNW6YHrwB33auh4bDsHhiZyTtqlLDlXAGQmArjh3xcwb2cxVXZXFEfmqfmUTMv18QR_ayST7QVDWBRM7CFRIez_nZf5a7LkTxHTAkSnd8jt2YOkJ1XyQ3IjjXfJrR1ewXvEfsS09FoXgqbxEjWLu4B0melYuTHcii5KLl7Co7-oKTpBp-VqopgK_5kiJ_gCy20FOl0v8OqawvK5FK-6T85P3356c8bmSgosDKJbM-08Qr-OEfyf4LMPg4yiU85JDOxlroIER4JncGaCClmqLKWHlsI546PiD8gBiJceEeqUCAZXYW0bhI4Y5uudyH32nfemVw3pNqNqw0wzjtUuvtoS7ubaVk1Y0IQtmrCiIS-3fb5Vko2_tn6Nytq2RILscgPMxs5mY_9lNg052qjazrN2srzDMufQFd7xfPsY5hsGUdyYlle1zQDf2eqGPKyWsZWEGyF1y3lD9J7N7Im6_2T8clk4vcExx4K8INerjXn9kOvPY_H4f4zFE3Kzx3kBiNybI3KwXl2lp-Bqrf2zMqu-A8kmI7g priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKucAB8SZtQUbiBhGJ7fhxhBVVhQQXqNSb5WeLxGbRZnvov2fGSbYsFCRuq81YO5sZez57xt8Q8srEBIFbxToI2dWCNa72JrU1bBVMDo3wxuHRwKfP8uRUfDzrzvYIm-_ClKL9QmlZlum5OuztAIstcsEyUWNUE7W4RW4jdTt69UIurs9VFEfOqel-TMP1DUN3YlCh6r8JX_5ZJvlbrrSEoOP75N6EHem7UdsHZC_1D8ndXxgFHxH7BQvSx44QNPUXaFM8_6OrTPuRFcOt6bJU4SW89Is2ogMMWq0HikXw5xTZwJfYaCvQ4WqJn64obJxL26rH5PT4w9fFST31UKhDJ9pNrZ3HoK9jBOQTfPahk1G0yjmJKb3MVZAAIXgGGBNUyFJlKT1ICueMj4o_IfugXnpGqFMiGNx_NU0QOmKCjzmRWfat94apirTzW7VhIhjHPhffbUl0c21HS1iwhC2WsKIir7djfoz0Gv-Ufo_G2koiNXb5YrU-t5OrWKa6lsemdbAyiZyTdilLzhUgHxMBDVXkaDa1nebrYHmLDc5hKPzGy-1jmGmYPnF9Wl2OMh38z0ZX5OnoGVtNuBFSN5xXRO_4zI6qu0_6bxeFzRsgObbiBb3ezO51rdff38XB_4kfkjsMZwBEXWaOyP5mfZmeA5za-Bdl_vwEU4YaDQ priority: 102 providerName: Springer Nature |
Title | Sensitivity enhancement of nonlinear micromechanical sensors using parametric symmetry breaking |
URI | https://link.springer.com/article/10.1038/s41378-024-00784-4 https://www.ncbi.nlm.nih.gov/pubmed/39468033 https://www.proquest.com/docview/3121462754 https://www.proquest.com/docview/3121592708 https://pubmed.ncbi.nlm.nih.gov/PMC11519502 https://doaj.org/article/27513d01a8804ffe8aef63371909d222 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8SalrIzEDawmsWMnJ7RdulQrWiGWSnuzbCdukdik3WwP_ffMOMmW5dFLEsWO5GTGns8zk28IeVeUFRhuVTInZMZEGhtmiyphsFUovIuFLQy6Bk5O5fGZmC2yRe9wa_u0ymFNDAt12Tj0kR_wBEtQpyoTHy-vGFaNwuhqX0LjPtlF6jJM6VKLjTkVoK1iYEsPPhfFkY8K680BcmdYYav_jybm-UEL6znSzaaCoeEUTGzZqkDp_y8c-nc65R8x1WCqpo_Jox5j0nGnFE_Ivap-Sh7-xjz4jOg5Jq53lSNoVV-g7NFPSBtP6449w6zoMmTrVfhzMMqStvBQs2opJsufU2QNX2JBLkfbmyVe3VDYYIfyVs_J2fTo--SY9bUWmMtEsma5sQgO8rIEhOSsty6TpUiUMRJDf54rJwFqcA9wxynnpfJSWugpjClsqfgLsgPDq14RapRwBe7T4tiJvMRAYGqET71NrC1SFZFk-Kra9UTkWA_jpw4BcZ7rThIaJKGDJLSIyPvNM5cdDcedvQ9RWJueSKEdbjSrc93PSA2qlPAyTgysYML7KjeVl5wrQEhFCagpIvuDqHU_r1t9q4URebtphhmJYRZTV8111yeD94zziLzsNGMzEl4ImcecRyTf0pmtoW631D8uAus3QHcs2Qvj-jCo1-24_v8t9u5-jdfkQYoaD9Y4LfbJznp1Xb0BmLW2ozCX4JhPP4_I7ng8m8_w_OnkyxzOh0enX79B60RORsGR8QuwPykT |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxJtAASPBCawmsRPHB4R4LVv6uNBKvRnbsVskdlM2W6H9U_xGZpxky_LorbdV4qyczOd5eMbzEfJM1R4Mt6yZE2XBRJ4aZpXPGIQKKrhUWGVwa2B3rxwfiE-HxeEa-TmchcGyykEnRkVdNw73yDd5hhTUuSzE65PvDFmjMLs6UGh0sNj2ix8QsrWvtt6DfJ_n-ejD_rsx61kFmCtENmeVsWgGq7oGX8DZYF1R1iKTxpSY5ApcuhKMKg9g2J10oZShLC2MFMYoW0sO_3uJXBacK1xR1ejjgF8Bq0MM3dnjHo_k2P8K-e0gUmDI6NWf20l5tdmC_cD2trlgaKgFEyu2MVII_Mvv_bt8848cbjSNoxvkeu_T0jcdCG-SNT-9Ra791unwNtGfsVC-Y6qgfnqMWMN9SdoEOu26dZgZncTqQI-HkRE7tIWHmllLsTj_iGKX8gkSgDnaLib4a0EhoI90WnfIwYVI4S5Zh-n5-4QaKZzCuDBNnahqTDzmRoQ82MxalcuEZMNX1a5vfI78G990TMDzSneS0CAJHSWhRUJeLJ856dp-nDv6LQprORJbdscLzexI9xpAA3QzXqeZAY0pQvCV8aHkXIJHpmrw0hKyMYha93qk1WeoT8jT5W3QAJjWMVPfnHZjCnjPtErIvQ4Zy5lwJcoq5Twh1QpmVqa6emf69Th2GYdQASmCYV4vB3idzev_3-LB-a_xhFwZ7-_u6J2tve2H5GqO6AdPIFcbZH0-O_WPwMWb28dxXVHy5aIX8i_IT18p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBYwEJ7A2iZ04OSAElFVLoUKCSnsztmO3SGxSNluh_Wv8OmacR1kevfW2SpzVJPP2jOcj5ElZOXDcsmJW5BkTaayZKV3CIFUovY2FKTVuDXzYz3cOxLtZNtsgP4ezMNhWOdjEYKirxuIe-YQnCEGdykxMfN8W8XF7-vL4O0MEKay0DnAanYjsudUPSN_aF7vbwOunaTp9-_nNDusRBpjNRLJkhTboEouqgrjAGm9sllcikVrnWPDyXNocHCz34OSttD6XPs8NrBRal6aSHP73ArkoeZagjsnZ6MoFaIoYJrWH_R7JcRYWYt1B1sAQ3as_wxPzYtKCL8FRt6lg6LQFE2t-MsAJ_CsG_ruV8496bnCT02vkah_f0ledQF4nG66-Qa78NvXwJlGfsGm-Q62grj5CucM9Stp4WneTO_SCzkOnoMODyShHtIWHmkVLsVH_kOLE8jmCgVnarub4a0UhuQ_QWrfIwblw4TbZBPLcXUK1FLbEHDGOrSgqLEKmWvjUm8SYMpURSYavqmw_BB2xOL6pUIznheo4oYATKnBCiYg8G5857kaAnLn6NTJrXInju8OFZnGoemugQIwTXsWJBuspvHeFdj7nXEJ0VlYQsUVka2C16m1Kq041ICKPx9tgDbDEo2vXnHRrMnjPuIjInU4yRkp4KfIi5jwixZrMrJG6fqf-ehQmjkPagHDBQNfzQbxO6fr_t7h39ms8IpdAhdX73f29--RyisIPQUFabpHN5eLEPYBob2keBrWi5Mt56_EvPjZjVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+enhancement+of+nonlinear+micromechanical+sensors+using+parametric+symmetry+breaking&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Xu%2C+Yutao&rft.au=Yang%2C+Qiqi&rft.au=Song%2C+Jiahao&rft.au=Wei%2C+Xueyong&rft.date=2024-10-29&rft.pub=Nature+Publishing+Group+UK&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=10&rft_id=info:doi/10.1038%2Fs41378-024-00784-4&rft.externalDocID=PMC11519502 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |