Association rule mining of aircraft event causes based on the Apriori algorithm
To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF–IDF value calculation. Causative item sets of aircraft events are obtaine...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 13440 - 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.06.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF–IDF value calculation. Causative item sets of aircraft events are obtained based on the accident causation 2–4 model and are coded to establish code indicators. By avoiding the use of statistical methodologies to resolve not-a-number (NaN) values for altering the interrelations among causes, an enhancement in the Apriori algorithm is proposed by considering frequent items. By extracting frequent patterns, in this paper, all the association rules that satisfy three perspectives (support, confidence and lift) are determined by constantly generating and pruning candidate item sets. A network graph is used to visualize the association rules between different unsafe events and all types of causes. Finally, 9835 representative pieces of data, including general unsafe events, general incidents and serious incidents from the Southwest Air Traffic Management Bureau, are selected for analysis. The results show that improper energy allocation, poor conflict resolution ability, inadequate onsite management duties, adoption of a luck mentality, and occurrence of controller oversight are highly correlated with general unsafe events, and failure to rectify incorrect recitation is notably correlated with general incidents, while inadequate manual promotion, lack of conflict judgement and insufficient safety management are strongly correlated with serious incidents. This study quantitatively reveals the potential patterns and characteristics of mutual interactions among various types of historical aircraft events and highlights directions for controllable prevention and prediction of aircraft events. |
---|---|
AbstractList | To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF-IDF value calculation. Causative item sets of aircraft events are obtained based on the accident causation 2-4 model and are coded to establish code indicators. By avoiding the use of statistical methodologies to resolve not-a-number (NaN) values for altering the interrelations among causes, an enhancement in the Apriori algorithm is proposed by considering frequent items. By extracting frequent patterns, in this paper, all the association rules that satisfy three perspectives (support, confidence and lift) are determined by constantly generating and pruning candidate item sets. A network graph is used to visualize the association rules between different unsafe events and all types of causes. Finally, 9835 representative pieces of data, including general unsafe events, general incidents and serious incidents from the Southwest Air Traffic Management Bureau, are selected for analysis. The results show that improper energy allocation, poor conflict resolution ability, inadequate onsite management duties, adoption of a luck mentality, and occurrence of controller oversight are highly correlated with general unsafe events, and failure to rectify incorrect recitation is notably correlated with general incidents, while inadequate manual promotion, lack of conflict judgement and insufficient safety management are strongly correlated with serious incidents. This study quantitatively reveals the potential patterns and characteristics of mutual interactions among various types of historical aircraft events and highlights directions for controllable prevention and prediction of aircraft events.To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF-IDF value calculation. Causative item sets of aircraft events are obtained based on the accident causation 2-4 model and are coded to establish code indicators. By avoiding the use of statistical methodologies to resolve not-a-number (NaN) values for altering the interrelations among causes, an enhancement in the Apriori algorithm is proposed by considering frequent items. By extracting frequent patterns, in this paper, all the association rules that satisfy three perspectives (support, confidence and lift) are determined by constantly generating and pruning candidate item sets. A network graph is used to visualize the association rules between different unsafe events and all types of causes. Finally, 9835 representative pieces of data, including general unsafe events, general incidents and serious incidents from the Southwest Air Traffic Management Bureau, are selected for analysis. The results show that improper energy allocation, poor conflict resolution ability, inadequate onsite management duties, adoption of a luck mentality, and occurrence of controller oversight are highly correlated with general unsafe events, and failure to rectify incorrect recitation is notably correlated with general incidents, while inadequate manual promotion, lack of conflict judgement and insufficient safety management are strongly correlated with serious incidents. This study quantitatively reveals the potential patterns and characteristics of mutual interactions among various types of historical aircraft events and highlights directions for controllable prevention and prediction of aircraft events. To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF–IDF value calculation. Causative item sets of aircraft events are obtained based on the accident causation 2–4 model and are coded to establish code indicators. By avoiding the use of statistical methodologies to resolve not-a-number (NaN) values for altering the interrelations among causes, an enhancement in the Apriori algorithm is proposed by considering frequent items. By extracting frequent patterns, in this paper, all the association rules that satisfy three perspectives (support, confidence and lift) are determined by constantly generating and pruning candidate item sets. A network graph is used to visualize the association rules between different unsafe events and all types of causes. Finally, 9835 representative pieces of data, including general unsafe events, general incidents and serious incidents from the Southwest Air Traffic Management Bureau, are selected for analysis. The results show that improper energy allocation, poor conflict resolution ability, inadequate onsite management duties, adoption of a luck mentality, and occurrence of controller oversight are highly correlated with general unsafe events, and failure to rectify incorrect recitation is notably correlated with general incidents, while inadequate manual promotion, lack of conflict judgement and insufficient safety management are strongly correlated with serious incidents. This study quantitatively reveals the potential patterns and characteristics of mutual interactions among various types of historical aircraft events and highlights directions for controllable prevention and prediction of aircraft events. Abstract To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified Apriori algorithm. Clustering is adopted for data preprocessing and TF–IDF value calculation. Causative item sets of aircraft events are obtained based on the accident causation 2–4 model and are coded to establish code indicators. By avoiding the use of statistical methodologies to resolve not-a-number (NaN) values for altering the interrelations among causes, an enhancement in the Apriori algorithm is proposed by considering frequent items. By extracting frequent patterns, in this paper, all the association rules that satisfy three perspectives (support, confidence and lift) are determined by constantly generating and pruning candidate item sets. A network graph is used to visualize the association rules between different unsafe events and all types of causes. Finally, 9835 representative pieces of data, including general unsafe events, general incidents and serious incidents from the Southwest Air Traffic Management Bureau, are selected for analysis. The results show that improper energy allocation, poor conflict resolution ability, inadequate onsite management duties, adoption of a luck mentality, and occurrence of controller oversight are highly correlated with general unsafe events, and failure to rectify incorrect recitation is notably correlated with general incidents, while inadequate manual promotion, lack of conflict judgement and insufficient safety management are strongly correlated with serious incidents. This study quantitatively reveals the potential patterns and characteristics of mutual interactions among various types of historical aircraft events and highlights directions for controllable prevention and prediction of aircraft events. |
ArticleNumber | 13440 |
Author | Yang, Minghui Tang, Xie Chen, Huaqun |
Author_xml | – sequence: 1 givenname: Huaqun surname: Chen fullname: Chen, Huaqun email: chqtx@126.com organization: Air Traffic Management Department, Civil Aviation Flight University of China – sequence: 2 givenname: Minghui surname: Yang fullname: Yang, Minghui organization: Air Traffic Management Department, Civil Aviation Flight University of China – sequence: 3 givenname: Xie surname: Tang fullname: Tang, Xie organization: Sichuan Highway Planning Survey Design Institute Co., Ltd |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38862593$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUtFARfdAfYIEssWET8Dv2Cl1VUCpV6gbWluOc5PoqiYudVOrf43vTQttFvTl-zIzHPnOKjqY4AUIfKPlCCddfs6DS6IowUSnBFanUG3TCiJAV44wdPZkfo_Ocd6QMyYyg5h065lorJg0_QTebnKMPbg5xwmkZAI9hClOPY4ddSD65bsZwB9OMvVsyZNy4DC0u6HkLeHObQkwBu6EvZd6O79Hbzg0Zzh_qGfr94_uvi5_V9c3l1cXmuvJS0LnSuvaykTXwmikmWi7rmhjqKW8JEK2ZdE57TqgzDWXgOmFAd0zWShaik_wMXa26bXQ7W1yMLt3b6II9bMTUW5fm4Aew0rvGgFK1rxvBRavrsvKiUR44V91e69uqdbs0I7S-PDa54Zno85MpbG0f7yylVKniqCh8flBI8c8CebZjyB6GwU0Ql2w5UbWhVJv9ZZ9eQHdxSVP5qz1KKSK50QX18amlf14eG1cAegX4FHNO0Fkf5kMXi8MwWErsPiZ2jYktMbGHmFhVqOwF9VH9VRJfSbmApx7Sf9uvsP4CfkjN-w |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3482323 crossref_primary_10_3390_electronics13214243 crossref_primary_10_3390_jmse13010035 crossref_primary_10_2478_amns_2024_3034 crossref_primary_10_2478_amns_2024_2510 crossref_primary_10_2478_amns_2024_2979 |
Cites_doi | 10.13340/j.jsmu.2014.03.004 10.13272/j.issn.1671-251x.2019010049 10.3390/e20030178 10.13347/j.cnki.mkaq.2023.04.035 10.1016/j.aap.2007.07.011 10.3969/j.issn.1007-1784.2008.04.021 10.13637/j.issn.1009-6094.2022.2612 10.1016/j.aap.2016.06.007 10.3969/j.issn.1673-193X.2008.01.009 10.13578/j.cnki.issn.1671-1556.2020.06.019 10.13637/j.issn.1009-6094.2023.1305 10.3969/j.issn.1000-4653.2023.02.002 10.1108/AEAT-08-2015-0190 10.3969/j.issn.1001-3695.2014.06.003 10.1016/j.paerosci.2018.03.002 10.1016/j.psep.2022.04.054 10.13413/j.cnki.jdxblxb.2006.06.024 10.13225/j.cnki.jccs.2013.07.032 10.16668/j.cnki.issn.1003-1421.2020.11.13 10.16668/j.cnki.issn.1003-1421.2023.04.17 10.19737/j.cnki.issn1002-3631.2019.09.001 10.14004/j.cnki.ckt.2021.0616 10.3969/j.issn.1673-1549.2011.01.019 10.19721/j.cnki.1001-7372.2009.06.016 10.3969/j.issn.1000-386X.2006.02.018 10.16265/j.cnki.issn1003-3033.2009.10.010 10.1016/j.ssci.2021.105596 10.1080/10508410802346939 10.1016/S0167-739X(97)00015-0 10.1109/ICTIS.2017.8047867 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-64360-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_5cab9e667c7b434d879e6c4b6ce336f5 PMC11166657 38862593 10_1038_s41598_024_64360_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the General Program of Civil Aviation Flight University of China grantid: J2022-061 – fundername: the Key Research and Development Project of Sichuan Province grantid: No. 2023YFG0163 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD COVID K9. PKEHL PQEST PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-887c5b57e372624d3577091c13d0e08825aa8c301a9b12eaf49e8f257657c5a53 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:14 EDT 2025 Thu Aug 21 18:33:47 EDT 2025 Thu Jul 10 22:44:29 EDT 2025 Wed Aug 13 03:26:26 EDT 2025 Mon Jul 21 05:58:44 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Tue Jul 01 01:01:51 EDT 2025 Fri Feb 21 02:37:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aircraft event Modified Apriori algorithm Data mining Causes of unsafe events Association rule |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-887c5b57e372624d3577091c13d0e08825aa8c301a9b12eaf49e8f257657c5a53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-64360-6 |
PMID | 38862593 |
PQID | 3066605398 |
PQPubID | 2041939 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5cab9e667c7b434d879e6c4b6ce336f5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11166657 proquest_miscellaneous_3067911895 proquest_journals_3066605398 pubmed_primary_38862593 crossref_citationtrail_10_1038_s41598_024_64360_6 crossref_primary_10_1038_s41598_024_64360_6 springer_journals_10_1038_s41598_024_64360_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-11 |
PublicationDateYYYYMMDD | 2024-06-11 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Zhao, Cai, Li (CR30) 2011; 24 Chen, Wu (CR1) 2008; 1 Liu, He (CR34) 2023; 45 Fu, Guo (CR4) 2019; 40 Guo, Wang (CR23) 1998; 11 Tu, Liu, Lin (CR17) 2014; 31 Fayyad, Stolorz (CR22) 1997; 13 CR16 Xu, Bao, Jiang, Chen, Ji (CR24) 2008; 14 CR32 Li, Zhang, Chen, Hou, Li (CR35) 2023; 54 Ji, Yin, Ge (CR9) 2023; 46 Shang, Shang, Qin, Cui, Cui, Zhu (CR29) 2006; 2 Huang, Gao, Hu, Geng, Peng (CR31) 2014; 35 Zheng, Fan, Li (CR6) 2020; 27 Hu, Cao (CR27) 2009; 22 Haung (CR19) 2021; 17 Fu, Yin, Dong, Di, Zhu (CR2) 2013; 38 Chang, Yang, Hsiao (CR12) 2016; 94 Dong, Liu, Wan, Li, Wu (CR28) 2006; 6 Stojiljkovic, Bijelic, Grozdanovic, Djokic (CR14) 2017; 90 Lenné, Ashby, Fitzharris (CR10) 2008; 18 Liu (CR21) 2001 CR26 Li, Jiang (CR36) 2023 CR25 Jing, Qin, Jiang (CR37) 2023 CR20 Zhang, Sheng (CR5) 2019; 5 Chen, Huang (CR15) 2018; 20 Li, You, Li, Liu (CR33) 2022; 162 Zhang, Dong, Guo, Dai, Zhao (CR8) 2022; 152 Xu, He, Liu, Wang, Wang, Mao (CR7) 2020; 42 Chen (CR3) 2009; 19 Kharoufah, Murray, Baxter, Wild (CR13) 2018; 99 Li, Don, Yu (CR11) 2008; 40 Chen, Kai (CR18) 2019; 41 M Guo (64360_CR23) 1998; 11 J Li (64360_CR36) 2023 B Chen (64360_CR1) 2008; 1 W Chen (64360_CR15) 2018; 20 Y Chang (64360_CR12) 2016; 94 E Stojiljkovic (64360_CR14) 2017; 90 Y Li (64360_CR35) 2023; 54 J Hu (64360_CR27) 2009; 22 M Lenné (64360_CR10) 2008; 18 H Zhao (64360_CR30) 2011; 24 Y Zhang (64360_CR8) 2022; 152 W Xu (64360_CR7) 2020; 42 H Chen (64360_CR18) 2019; 41 T Liu (64360_CR21) 2001 S Li (64360_CR33) 2022; 162 64360_CR32 64360_CR26 Z Liu (64360_CR34) 2023; 45 64360_CR25 G Jing (64360_CR37) 2023 H Kharoufah (64360_CR13) 2018; 99 X Tu (64360_CR17) 2014; 31 Q Chen (64360_CR3) 2009; 19 W Li (64360_CR11) 2008; 40 Z Ji (64360_CR9) 2023; 46 S Zheng (64360_CR6) 2020; 27 G Fu (64360_CR4) 2019; 40 U Fayyad (64360_CR22) 1997; 13 R Xu (64360_CR24) 2008; 14 W Shang (64360_CR29) 2006; 2 G Fu (64360_CR2) 2013; 38 C Huang (64360_CR31) 2014; 35 N Zhang (64360_CR5) 2019; 5 64360_CR20 W Haung (64360_CR19) 2021; 17 64360_CR16 L Dong (64360_CR28) 2006; 6 |
References_xml | – volume: 35 start-page: 18 issue: 03 year: 2014 end-page: 22 ident: CR31 article-title: Association rule analysis of vessel traffic accidents based on Apriori algorithm publication-title: J. Shanghai Marit. Univ. doi: 10.13340/j.jsmu.2014.03.004 – volume: 5 start-page: 53 issue: 07 year: 2019 end-page: 58 ident: CR5 article-title: Causes analysis of coal mine gas explosion accidents based on Bayesian network publication-title: Ind. Mine Autom. doi: 10.13272/j.issn.1671-251x.2019010049 – ident: CR16 – start-page: 251 year: 2001 end-page: 253 ident: CR21 publication-title: Data Mining Techniques and Its Applications – volume: 20 start-page: 1 issue: 178 year: 2018 end-page: 14 ident: CR15 article-title: Evaluating flight crew performance by a Bayesian network model publication-title: Entropy doi: 10.3390/e20030178 – volume: 54 start-page: 251 issue: 04 year: 2023 end-page: 256 ident: CR35 article-title: Associative network analysis of inducements for unsafe behaviors based on text-mining method publication-title: Saf. Coal Mines doi: 10.13347/j.cnki.mkaq.2023.04.035 – volume: 40 start-page: 426 issue: 2 year: 2008 end-page: 434 ident: CR11 article-title: Routes to failure: Analysis of 41 civil aviation accidents from the Republic of China using the human factors analysis and classification system publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2007.07.011 – volume: 14 start-page: 69 issue: 4 year: 2008 end-page: 73 ident: CR24 article-title: Research on mining technology for road traffic accident data analysis publication-title: J. People's Public Secur. Univ. China Sci. Technol. doi: 10.3969/j.issn.1007-1784.2008.04.021 – year: 2023 ident: CR36 article-title: Application of spectral clustering and Apriori algorithm in combination analysis of construction collapse accident causes publication-title: J. Saf. Environ. doi: 10.13637/j.issn.1009-6094.2022.2612 – volume: 94 start-page: 227 year: 2016 end-page: 237 ident: CR12 article-title: Human risk factors associated with pilots in runway excursions publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.06.007 – volume: 1 start-page: 42 year: 2008 end-page: 46 ident: CR1 article-title: Etiologies of accident and safety concepts publication-title: J. Saf. Sci. Technol. doi: 10.3969/j.issn.1673-193X.2008.01.009 – volume: 27 start-page: 133 issue: 06 year: 2020 end-page: 139 ident: CR6 article-title: Causal factors of truck traffic accidents based on HFACS model publication-title: Saf. Environ. Eng. doi: 10.13578/j.cnki.issn.1671-1556.2020.06.019 – year: 2023 ident: CR37 article-title: Coal mine safety accident analysis based on Apriori algorithm publication-title: J. Saf. Environ. doi: 10.13637/j.issn.1009-6094.2023.1305 – volume: 46 start-page: 9 issue: 02 year: 2023 end-page: 16 ident: CR9 article-title: Application of grounded theory in causation analysis of shipnavigational accidents publication-title: Navig. China doi: 10.3969/j.issn.1000-4653.2023.02.002 – volume: 90 start-page: 158 issue: 1 year: 2017 end-page: 165 ident: CR14 article-title: Pilot error in process of helicopter starting publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-08-2015-0190 – volume: 31 start-page: 1612 issue: 6 year: 2014 end-page: 1616 ident: CR17 article-title: Survey of big data publication-title: Appl. Res. Comput. doi: 10.3969/j.issn.1001-3695.2014.06.003 – volume: 99 start-page: 1 issue: 5 year: 2018 end-page: 13 ident: CR13 article-title: A review of human factors causations in commercial air transport accidents and incidents: From to 2000–2016 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.03.002 – ident: CR25 – volume: 162 start-page: 1067 year: 2022 end-page: 1081 ident: CR33 article-title: Identifying coal mine safety production risk factors by employing text mining and Bayesian network techniques publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.054 – volume: 6 start-page: 951 year: 2006 end-page: 955 ident: CR28 article-title: Applicaition of data mining to traffic accidents analysis publication-title: J. Jilin Univ. (Sci. Edn.) doi: 10.13413/j.cnki.jdxblxb.2006.06.024 – volume: 38 start-page: 1123 issue: 7 year: 2013 end-page: 1129 ident: CR2 article-title: Behavior-based accident causation: The “2–4”model and its safety implications in coal mines publication-title: J. China Coal Soc. doi: 10.13225/j.cnki.jccs.2013.07.032 – volume: 41 start-page: 58 issue: 24 year: 2019 end-page: 60 ident: CR18 article-title: Application of big data analysis technology in visualization of historical navigation route publication-title: Ship Sci. Technol. – volume: 42 start-page: 72 issue: 11 year: 2020 end-page: 79 ident: CR7 article-title: Construction and analysis of railway accident causation network based on association rules publication-title: Railw. Transp. Econ. doi: 10.16668/j.cnki.issn.1003-1421.2020.11.13 – volume: 45 start-page: 120 issue: 4 year: 2023 end-page: 126 ident: CR34 article-title: Association rule mining for causes of railway traffic accidents based on improved Apriori algorithm publication-title: Railw. Transp. Econ. doi: 10.16668/j.cnki.issn.1003-1421.2023.04.17 – volume: 40 start-page: 1 issue: 09 year: 2019 end-page: 5 ident: CR4 article-title: A brief review on the study and application of accident causation theory publication-title: Saf. Secur. doi: 10.19737/j.cnki.issn1002-3631.2019.09.001 – volume: 17 start-page: 23 issue: 08 year: 2021 end-page: 24 ident: CR19 article-title: Exploration of big data mining and data processing methods publication-title: Comput. Knowl. Technol. doi: 10.14004/j.cnki.ckt.2021.0616 – volume: 11 start-page: 292 issue: 3 year: 1998 end-page: 299 ident: CR23 article-title: Data mining and knowledge discovery in databases: A survey publication-title: Pattern Recognit. Artif. Intell. – volume: 24 start-page: 66 issue: 1 year: 2011 end-page: 70 ident: CR30 article-title: Overview of association rules Apriori mining algorithm publication-title: J. Sichuan Univ. Sci. Eng. Natl. Sci. Edn. doi: 10.3969/j.issn.1673-1549.2011.01.019 – volume: 22 start-page: 106 issue: 06 year: 2009 end-page: 110 ident: CR27 article-title: Analysis of characteristic of driver involved in road traffic accident publication-title: China J. Highw. Transp. doi: 10.19721/j.cnki.1001-7372.2009.06.016 – volume: 2 start-page: 65 issue: 40–42 year: 2006 ident: CR29 article-title: The analysis of multidimensional association rule in traffic accidents publication-title: Comput. Appl. Softw. doi: 10.3969/j.issn.1000-386X.2006.02.018 – ident: CR32 – volume: 19 start-page: 67 issue: 10 year: 2009 end-page: 71 ident: CR3 article-title: Analysis on accident causation factors and hazard theory publication-title: China Saf. Sci. J. doi: 10.16265/j.cnki.issn1003-3033.2009.10.010 – ident: CR26 – volume: 152 issue: 8 year: 2022 ident: CR8 article-title: Systems theoretic accident model and process (STAMP): A literature review publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105596 – volume: 18 start-page: 340 issue: 4 year: 2008 end-page: 352 ident: CR10 article-title: Analysis of general aviation crashes in Australia using the human factors analysis and classification system publication-title: Int. J. Aviat. Psychol. doi: 10.1080/10508410802346939 – ident: CR20 – volume: 13 start-page: 99 issue: 2 year: 1997 end-page: 115 ident: CR22 article-title: Data mining and KDD: Promise and challenges publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/S0167-739X(97)00015-0 – volume: 46 start-page: 9 issue: 02 year: 2023 ident: 64360_CR9 publication-title: Navig. China doi: 10.3969/j.issn.1000-4653.2023.02.002 – volume: 14 start-page: 69 issue: 4 year: 2008 ident: 64360_CR24 publication-title: J. People's Public Secur. Univ. China Sci. Technol. doi: 10.3969/j.issn.1007-1784.2008.04.021 – year: 2023 ident: 64360_CR37 publication-title: J. Saf. Environ. doi: 10.13637/j.issn.1009-6094.2023.1305 – volume: 22 start-page: 106 issue: 06 year: 2009 ident: 64360_CR27 publication-title: China J. Highw. Transp. doi: 10.19721/j.cnki.1001-7372.2009.06.016 – volume: 6 start-page: 951 year: 2006 ident: 64360_CR28 publication-title: J. Jilin Univ. (Sci. Edn.) doi: 10.13413/j.cnki.jdxblxb.2006.06.024 – volume: 38 start-page: 1123 issue: 7 year: 2013 ident: 64360_CR2 publication-title: J. China Coal Soc. doi: 10.13225/j.cnki.jccs.2013.07.032 – volume: 27 start-page: 133 issue: 06 year: 2020 ident: 64360_CR6 publication-title: Saf. Environ. Eng. doi: 10.13578/j.cnki.issn.1671-1556.2020.06.019 – volume: 18 start-page: 340 issue: 4 year: 2008 ident: 64360_CR10 publication-title: Int. J. Aviat. Psychol. doi: 10.1080/10508410802346939 – volume: 162 start-page: 1067 year: 2022 ident: 64360_CR33 publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2022.04.054 – year: 2023 ident: 64360_CR36 publication-title: J. Saf. Environ. doi: 10.13637/j.issn.1009-6094.2022.2612 – volume: 19 start-page: 67 issue: 10 year: 2009 ident: 64360_CR3 publication-title: China Saf. Sci. J. doi: 10.16265/j.cnki.issn1003-3033.2009.10.010 – ident: 64360_CR32 – volume: 13 start-page: 99 issue: 2 year: 1997 ident: 64360_CR22 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/S0167-739X(97)00015-0 – volume: 2 start-page: 65 issue: 40–42 year: 2006 ident: 64360_CR29 publication-title: Comput. Appl. Softw. doi: 10.3969/j.issn.1000-386X.2006.02.018 – ident: 64360_CR16 doi: 10.1109/ICTIS.2017.8047867 – ident: 64360_CR26 – volume: 42 start-page: 72 issue: 11 year: 2020 ident: 64360_CR7 publication-title: Railw. Transp. Econ. doi: 10.16668/j.cnki.issn.1003-1421.2020.11.13 – volume: 152 issue: 8 year: 2022 ident: 64360_CR8 publication-title: Saf. Sci. doi: 10.1016/j.ssci.2021.105596 – ident: 64360_CR20 – volume: 24 start-page: 66 issue: 1 year: 2011 ident: 64360_CR30 publication-title: J. Sichuan Univ. Sci. Eng. Natl. Sci. Edn. doi: 10.3969/j.issn.1673-1549.2011.01.019 – volume: 40 start-page: 426 issue: 2 year: 2008 ident: 64360_CR11 publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2007.07.011 – volume: 45 start-page: 120 issue: 4 year: 2023 ident: 64360_CR34 publication-title: Railw. Transp. Econ. doi: 10.16668/j.cnki.issn.1003-1421.2023.04.17 – volume: 41 start-page: 58 issue: 24 year: 2019 ident: 64360_CR18 publication-title: Ship Sci. Technol. – volume: 94 start-page: 227 year: 2016 ident: 64360_CR12 publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.06.007 – start-page: 251 volume-title: Data Mining Techniques and Its Applications year: 2001 ident: 64360_CR21 – volume: 35 start-page: 18 issue: 03 year: 2014 ident: 64360_CR31 publication-title: J. Shanghai Marit. Univ. doi: 10.13340/j.jsmu.2014.03.004 – volume: 40 start-page: 1 issue: 09 year: 2019 ident: 64360_CR4 publication-title: Saf. Secur. doi: 10.19737/j.cnki.issn1002-3631.2019.09.001 – volume: 99 start-page: 1 issue: 5 year: 2018 ident: 64360_CR13 publication-title: Prog. Aerosp. Sci. doi: 10.1016/j.paerosci.2018.03.002 – volume: 17 start-page: 23 issue: 08 year: 2021 ident: 64360_CR19 publication-title: Comput. Knowl. Technol. doi: 10.14004/j.cnki.ckt.2021.0616 – volume: 11 start-page: 292 issue: 3 year: 1998 ident: 64360_CR23 publication-title: Pattern Recognit. Artif. Intell. – volume: 54 start-page: 251 issue: 04 year: 2023 ident: 64360_CR35 publication-title: Saf. Coal Mines doi: 10.13347/j.cnki.mkaq.2023.04.035 – volume: 31 start-page: 1612 issue: 6 year: 2014 ident: 64360_CR17 publication-title: Appl. Res. Comput. doi: 10.3969/j.issn.1001-3695.2014.06.003 – volume: 90 start-page: 158 issue: 1 year: 2017 ident: 64360_CR14 publication-title: Aircr. Eng. Aerosp. Technol. doi: 10.1108/AEAT-08-2015-0190 – volume: 20 start-page: 1 issue: 178 year: 2018 ident: 64360_CR15 publication-title: Entropy doi: 10.3390/e20030178 – volume: 1 start-page: 42 year: 2008 ident: 64360_CR1 publication-title: J. Saf. Sci. Technol. doi: 10.3969/j.issn.1673-193X.2008.01.009 – ident: 64360_CR25 – volume: 5 start-page: 53 issue: 07 year: 2019 ident: 64360_CR5 publication-title: Ind. Mine Autom. doi: 10.13272/j.issn.1671-251x.2019010049 |
SSID | ssj0000529419 |
Score | 2.4583619 |
Snippet | To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a modified... Abstract To reveal complex causes of aircraft events, this paper aims to mine association rules between the trigger probability and relative strength via a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13440 |
SubjectTerms | 639/166/984 639/705/117 Aircraft Aircraft event Algorithms Association rule Causes of unsafe events Data mining Humanities and Social Sciences Modified Apriori algorithm multidisciplinary Science Science (multidisciplinary) Statistical methods Traffic management |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQJCQuiDHGwgYyEjcWtf62jwUxVZOAC5V2sxzHXit1KUrTA_89z05aWj62C6cosZ1YP7_n915s_x5C72gQoH7Sl5rEmFKYRdA5XpdRKqUihYAs_8z5_EVOZ_z6RtzspfpKe8J6euAeuJHwrjJBSuVVxRmvtYI7zyvpA2MyZvZSsHl7wVTP6k0NJ2Y4JTNmerQGS5VOk1FeghGWEDMdWKJM2P83L_PPzZK_rZhmQ3T1DD0dPEg86Xt-jB6F5jl63OeU_HGCvu4BjtvNMuC7nAMCryJ2i9a3LnY40zZh7zbrsMbJkNUYaoMviCfw1VW7wG55C5dufvcCza4-ffs4LYesCaUXnHQlzBpeVEIFpqikvGZCKQDIE1aPQ3KohXPag147UxEaXOQm6JjiDgENnWCn6KhZNeEM4aCCoRUjUXvDKx20IxpG3NW-pgyGoEBki6D1A6V4ymyxtHlpm2nbo24BdZtRt9Dm_a7N955Q497aH9LA7GomMuz8AETEDiJiHxKRAl1sh9UOGrq2LAVuMAMZXaC3u2LQrbRg4pqw2uQ6CoyBNvCKl70U7HrCtE6hIyuQPpCPg64eljSLeebvBvMi04JXgS63ovSrX__G4tX_wOIcPaFJB1L2JXKBjrp2E16DW9VVb7IG_QTZ5Byh priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Nb9UwLIIhJC5o42vdBwoSN6i25runaSCmCQm4MOndojRNtklv7Wj7Dvx77LSv4_GxU9XGaR3Hjh07tQl5y4IE8VM-N0WMWMIsgsyJOo9Kax0ZbMiSM-fLV3V-IT4v5GJyuPXTscr1mpgW6rr16CM_4mhoA8eU5uT2R45VozC6OpXQeEgeYeoy5Gq90LOPBaNYoiinf2WOuTnqQV_hP2VM5KCKFeycNvRRStv_L1vz7yOTf8RNkzo62yZPJzuSno4Tv0MehOYZeTxWlvz5nHz7jey0Wy0DvUmVIGgbqbvufOfiQFPyJurdqg89RXVWU4AGi5Cewldh8NQtL-EyXN28IBdnn75_PM-n2gm5l6IYclg7vKykDlwzxUTNpdZgGviC18cBzWrpnPEg3a6sChZcFGUwEXcfEjo6yV-SraZtwi6hQYeSVbyIxpeiMsG4wsC8u9rXjItKZaRYU9D6KbE41rdY2hTg5saOVLdAdZuobqHPu7nP7ZhW417oDzgxMySmxE4P2u7SThJmpXdVGZTSXleCi9pouPOAnw-cqygzcrCeVjvJaW_vuCojb-ZmkDAMm7gmtKsEo0ElmBJe8WrkghkTbgxuIHlGzAZ_bKC62dJcX6Us3qBkFIa9MvJ-zUp3eP2fFnv3D2OfPGHI3VhdqTggW0O3CodgNg3V6yQbvwAMdBOJ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9UwzBqbkLggvlcYKEjcoGLNd48PxDQ9CTjApN2iNE22J721qK_vsH8_J_2ABwOJU9XGbi3Hju06sQHeUC9Q_aTLdRFCbGEWUOd4nQeplAoUA7L0M-fzF3l6xpfn4nwP6HQWJm3aTyUt0zI97Q57v0FDEw-DUZ6jDZUY8tyBg1iqHWX7YLFYflvOf1Zi7ooX5XhC5pjpW5B3rFAq1n-bh_nnRsnfsqXJCJ08gPuj90gWA70PYc83j-Du0E_y-jF8_YXZpNuuPblK_R9IG4hdda6zoSepZBNxdrvxGxKNWE0QGv1AssCvtt2K2PUFXvrLqydwdvLp-8fTfOyYkDvBiz7HFcOJSijPFJWU10wohQ6BK1h97KMzLazVDnXallVBvQ289DrEmEMgohXsKew3beMPgXjlS1qxImhX8kp7bQuNs21rV1PGK5lBMXHQuLGceOxqsTYprc20GbhukOsmcd0gztsZ58dQTOOf0B_ixMyQsRB2etB2F2YUDCOcrUovpXKq4ozXWuGdQ_qcZ0wGkcHRNK1m1M6NYTFow9Wn1Bm8nodRr2KyxDa-3SYYhYZAl_iKZ4MUzJQwrWPYyDLQO_KxQ-ruSLO6TLW70bTImOzK4N0kSj_p-jsvnv8f-Au4R6O0xx5LxRHs993Wv0Tnqa9ejdpyA9uKErA priority: 102 providerName: Springer Nature |
Title | Association rule mining of aircraft event causes based on the Apriori algorithm |
URI | https://link.springer.com/article/10.1038/s41598-024-64360-6 https://www.ncbi.nlm.nih.gov/pubmed/38862593 https://www.proquest.com/docview/3066605398 https://www.proquest.com/docview/3067911895 https://pubmed.ncbi.nlm.nih.gov/PMC11166657 https://doaj.org/article/5cab9e667c7b434d879e6c4b6ce336f5 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_tQ6C9IL4JjMpIvEFgiT_zgFBXbZoqbSCgUt8ix7G3Sl0CaSux_56zkxQKhQeeovgjPvnufHd2fD-Al6nlqH7CxCpxzkOYOdQ5VsZOSCldigFZ2Mw5vxBnEzae8ukO9HBH3QQutoZ2Hk9q0szffP928x4V_l17ZVy9XaAR8hfFUhajfRUYDu3CPlom6RENzjt3v831nWYsybq7M9u7HsBtqpSPCuiGqQoZ_be5oX_-TfnbkWqwVKd34U7nYpJhKxP3YMdW9-FWCzp58wA-_MIR0qzmllwHkAhSO6JnjWm0W5KQ14kYvVrYBfGWriTYGp1FMsRR62ZG9PwSH8ur64cwOT35MjqLO1iF2HCWLGNcVgwvuLRUpiJlJeVSotdgEloeWe9xc62VQcXXWZGkVjuWWeV8YMKxo-b0EexVdWWfALHSZmlBE6dMxgpllU4UioQuTZlSVogIkn4Gc9PlHPfQF_M8nH1TlbcMyJEBeWBAjn1erft8bTNu_LP1sWfMuqXPlh0K6uYy75Qv50YXmRVCGlkwykol8c0gfcZSKhyP4LBna95LYE59ZIdLVKYieLGuRuXzJyq6svUqtJFoLVSGn3jcSsGakl6KIlAb8rFB6mZNNbsKCb7R_gh_IhbB616UftL197l4-v8jPYOD1CuBB2VKDmFv2azsc_S2lsUAduVUDmB_OBx_HuPz-OTi4ycsHYnRIOxgDIKS_QB9Diog |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuhBYwEJ4i6sZ3YOSBUHtWWPri00t6M49htpW22zWaF-qf4jcw4j7I8eutplY2d9Y6_8cx44vkIec1cCuqX2Vgl3iOFmQedE2XsMymlZxCQhc2c_YNsfCS-TtLJCvnZn4XB1yr7NTEs1OXM4h75JkdHGxCTqw_nFzGyRmF2tafQaGGx6y5_QMg2f7_zGeb3DWPbXw4_jeOOVSC2qUiaGLTKpkUqHZcsY6LkqZRgNG3Cy5FDhzM1RlnAvcmLhDnjRe6UR788hY4GWSJgyb8FhneEwZ6cyGFPB7NmIsm7szkjrjbnYB_xDBsTMZj-DCK1JfsXaAL-5dv-_YrmH3naYP6275N7nd9Kt1qgPSArrnpIbrdMlpePyLffppnWi6mjZ4F5gs48Nae1rY1vaCgWRa1ZzN2covksKbQGD5Ruwa-CsKmZHsNHc3L2mBzdiFSfkNVqVrk1Qp10OSt44pXNRaGcMokCnJnSloyLIotI0ktQ266QOfJpTHVIqHOlW6lrkLoOUtfQ5-3Q57wt43Ft6484MUNLLMEdvpjVx7rTaJ1aU-Quy6SVheCiVBKuLIzPOs4zn0Zko59W3a0Lc32F4oi8Gm6DRmOaxlRutghtJJgglcMjnrYoGEbClcKAlUdELeFjaajLd6rTk1A1HIxahmm2iLzroXQ1rv_L4tn1f-MluTM-3N_TezsHu-vkLkOkI7NTskFWm3rhnoPL1hQvgp5Q8v2mFfMXi2VOWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVCAuiDcLBYwEJ1il68fae0CopY1aCqFCVOrN9XrttlKaLXkI9a_x65jx7qaER289RcnaiTP-xjPjsecj5BXzEtQvd6nOQkAKswA6J6o05EqpwCAgi5s5n4f5zoH4eCgPV8jP7i4MHqvs1sS4UFe1wz3yPkdHGxBT6H5oj0Xsbw3en39PkUEKM60dnUYDkT1_8QPCt-m73S2Y69eMDba_fdhJW4aB1EmRzVLQMCdLqTxXLGei4lIpMKAu49W6R-dTWqsd6IAtyox5G0ThdUAfXUJHi4wRsPyvKoyKemR1c3u4_3Wxw4M5NJEV7U2dda77U7CWeKONiRQcgRzitiVrGEkD_uXp_n1g84-sbTSGgzvkduvF0o0GdnfJih_fIzcaXsuL--TLb5NOJ_ORp2eRh4LWgdrTiZvYMKOxdBR1dj71U4rGtKLQGvxRugG_CuKmdnQML7OTswfk4Frk-pD0xvXYPybUK1-wkmdBu0KU2mubaUCdrVzFuCjzhGSdBI1ry5oju8bIxPQ616aRugGpmyh1A33eLPqcN0U9rmy9iROzaIkFueMH9eTYtPptpLNl4fNcOVUKLiqt4J2D8TnPeR5kQta6aTXtKjE1l5hOyMvFY9BvTNrYsa_nsY0Cg6QL-IpHDQoWI-FaY_jKE6KX8LE01OUn49OTWEMcTFyOSbeEvO2gdDmu_8viydV_4wW5CUppPu0O956SWwyBjjRP2RrpzSZz_wz8t1n5vFUUSo6uWzd_ARhnU_M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Association+rule+mining+of+aircraft+event+causes+based+on+the+Apriori+algorithm&rft.jtitle=Scientific+reports&rft.au=Chen%2C+Huaqun&rft.au=Yang%2C+Minghui&rft.au=Tang%2C+Xie&rft.date=2024-06-11&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft_id=info:doi/10.1038%2Fs41598-024-64360-6&rft_id=info%3Apmid%2F38862593&rft.externalDocID=PMC11166657 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |