Increased mutation and gene conversion within human segmental duplications
Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data 1 , 2 . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the patt...
Saved in:
Published in | Nature (London) Vol. 617; no. 7960; pp. 325 - 334 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.05.2023
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data
1
,
2
. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions
3
,
4
. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences
5
,
6
.
A study comparing the pattern of single-nucleotide variation between unique and duplicated regions of the human genome shows that mutation rate and interlocus gene conversion are elevated in duplicated regions. |
---|---|
AbstractList | Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data
1
,
2
. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions
3
,
4
. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences
5
,
6
.
A study comparing the pattern of single-nucleotide variation between unique and duplicated regions of the human genome shows that mutation rate and interlocus gene conversion are elevated in duplicated regions. Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6.Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6. Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data 1,2 . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions 3,4 . We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences 5,6 . Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions . We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences . Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences. |
Author | Hoekzema, Kendra Munson, Katherine M. Paten, Benedict Asri, Mobin Lewis, Alexandra P. Harris, Kelley Lucas, Julian Eichler, Evan E. Porubsky, David DeWitt, William S. Vollger, Mitchell R. Rozanski, Allison N. Goldberg, Michael E. Logsdon, Glennis A. Harvey, William T. Hsieh, PingHsun Guitart, Xavi Dishuck, Philip C. |
Author_xml | – sequence: 1 givenname: Mitchell R. orcidid: 0000-0002-8651-1615 surname: Vollger fullname: Vollger, Mitchell R. organization: Department of Genome Sciences, University of Washington School of Medicine, Division of Medical Genetics, University of Washington School of Medicine – sequence: 2 givenname: Philip C. orcidid: 0000-0003-2223-9787 surname: Dishuck fullname: Dishuck, Philip C. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 3 givenname: William T. surname: Harvey fullname: Harvey, William T. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 4 givenname: William S. surname: DeWitt fullname: DeWitt, William S. organization: Department of Genome Sciences, University of Washington School of Medicine, Computational Biology Program, Fred Hutchinson Cancer Research Center, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley – sequence: 5 givenname: Xavi surname: Guitart fullname: Guitart, Xavi organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 6 givenname: Michael E. surname: Goldberg fullname: Goldberg, Michael E. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 7 givenname: Allison N. surname: Rozanski fullname: Rozanski, Allison N. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 8 givenname: Julian surname: Lucas fullname: Lucas, Julian organization: UC Santa Cruz Genomics Institute, University of California, Santa Cruz – sequence: 9 givenname: Mobin surname: Asri fullname: Asri, Mobin organization: UC Santa Cruz Genomics Institute, University of California, Santa Cruz – sequence: 11 givenname: Katherine M. orcidid: 0000-0001-8413-6498 surname: Munson fullname: Munson, Katherine M. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 12 givenname: Alexandra P. surname: Lewis fullname: Lewis, Alexandra P. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 13 givenname: Kendra surname: Hoekzema fullname: Hoekzema, Kendra organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 14 givenname: Glennis A. orcidid: 0000-0003-2396-0656 surname: Logsdon fullname: Logsdon, Glennis A. organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 15 givenname: David orcidid: 0000-0001-8414-8966 surname: Porubsky fullname: Porubsky, David organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 16 givenname: Benedict orcidid: 0000-0001-8863-3539 surname: Paten fullname: Paten, Benedict organization: UC Santa Cruz Genomics Institute, University of California, Santa Cruz – sequence: 17 givenname: Kelley orcidid: 0000-0003-0302-2523 surname: Harris fullname: Harris, Kelley organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 18 givenname: PingHsun orcidid: 0000-0001-8294-6227 surname: Hsieh fullname: Hsieh, PingHsun organization: Department of Genome Sciences, University of Washington School of Medicine – sequence: 19 givenname: Evan E. orcidid: 0000-0002-8246-4014 surname: Eichler fullname: Eichler, Evan E. email: eee@gs.washington.edu organization: Department of Genome Sciences, University of Washington School of Medicine, Howard Hughes Medical Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37165237$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1URKeFP8ACRWLTTeDajh9ZIVQVKKrEpl1bHudmxlViD3ZSNP8eT9Py6KKrK_l-5-j4nhNyFGJAQt5S-ECB64-5oULLGhivQehW1PsXZEUbJetGanVEVgBM16C5PCYnOd8CgKCqeUWOuaJSMK5W5PtlcAltxq4a58lOPobKhq7aYMDKxXCHKR_efvlp60O1nUcbqoybEcNkh6qbd4N397L8mrzs7ZDxzcM8JTdfLq7Pv9VXP75enn--qp1o6FRribbrJVcg2tYxzpXqqepAWq0tBWxaui6AcEw66JyAtu944WCNivdA-Sn5tPju5vWInStJkh3MLvnRpr2J1pv_N8FvzSbeGQpUMUqb4nD24JDizxnzZEafHQ6DDRjnbJimTIAQrSzo-yfobZxTKP87UA1IxjUU6t2_kf5kebxzAfQCuBRzTtgb55drl4R-KNHMoVKzVGpKpea-UrMvUvZE-uj-rIgvolzgsMH0N_Yzqt8z2bUu |
CitedBy_id | crossref_primary_10_1093_molbev_msad213 crossref_primary_10_1126_science_adn0609 crossref_primary_10_1038_s41576_024_00718_w crossref_primary_10_1042_ETLS20230074 crossref_primary_10_1093_hmg_ddaf035 crossref_primary_10_1038_s41586_023_05896_x crossref_primary_10_1038_s41576_023_00634_5 crossref_primary_10_1016_j_xfnr_2024_100082 crossref_primary_10_1038_s41588_024_01684_z crossref_primary_10_1093_bioinformatics_btae456 crossref_primary_10_1016_j_gde_2024_102240 crossref_primary_10_1038_s41467_025_57505_2 crossref_primary_10_1038_d41586_023_01490_3 crossref_primary_10_1038_s41591_025_03558_1 crossref_primary_10_1016_j_cell_2024_01_002 crossref_primary_10_1093_gbe_evaf011 crossref_primary_10_1101_gr_278232_123 crossref_primary_10_1016_j_xgen_2024_100610 crossref_primary_10_1016_j_ajhg_2023_09_011 crossref_primary_10_1080_07366205_2024_2387993 crossref_primary_10_1016_j_gpb_2023_08_001 crossref_primary_10_1038_s41588_024_02051_8 crossref_primary_10_1093_gpbjnl_qzae070 crossref_primary_10_1101_gr_277334_122 crossref_primary_10_4049_jimmunol_2400131 crossref_primary_10_1038_s41467_024_44980_2 crossref_primary_10_1186_s13059_023_03061_1 crossref_primary_10_1038_s41525_025_00474_8 crossref_primary_10_1016_j_scib_2023_06_014 crossref_primary_10_1016_j_gde_2024_102233 crossref_primary_10_1038_s41467_024_49992_6 crossref_primary_10_1093_nar_gkae1202 crossref_primary_10_1038_s41435_024_00279_2 crossref_primary_10_1101_gr_279299_124 crossref_primary_10_1186_s13100_024_00315_y crossref_primary_10_1038_s41588_024_01715_9 crossref_primary_10_1038_s41592_024_02430_3 |
Cites_doi | 10.1038/nature11632 10.1101/gr.237610.118 10.1016/j.ajhg.2022.02.014 10.1038/nature19057 10.1186/1471-2164-10-43 10.1093/gigascience/giab008 10.1093/bioinformatics/btac714 10.1038/nm.3302 10.1093/bioinformatics/btp352 10.1093/bioinformatics/bty191 10.1186/s13059-020-02134-9 10.1073/pnas.1708151114 10.1086/378594 10.1038/nature19075 10.1038/s41598-019-45839-z 10.1186/s12915-018-0535-2 10.1038/ng1401 10.12688/f1000research.29032.2 10.1126/science.1072047 10.1002/0471250953.bi1112s47 10.1073/pnas.1418652112 10.1038/s41586-022-05325-5 10.1073/pnas.1807334115 10.1073/pnas.1901259116 10.1101/gr.923303 10.1146/annurev-genom-082908-150001 10.1126/science.abj6987 10.7554/eLife.04637 10.1186/s13100-021-00232-4 10.1016/j.gde.2020.05.024 10.1534/genetics.111.135343 10.1038/nature16549 10.1038/s41587-020-0719-5 10.1086/431652 10.1186/s12864-015-1681-3 10.1093/genetics/163.2.803 10.1128/MCB.18.1.93 10.1093/gigascience/giab007 10.1038/35057062 10.1038/s41588-018-0071-6 10.1126/science.1058040 10.1093/nar/27.2.573 10.1038/s41587-019-0074-6 10.1038/s41592-018-0054-7 10.1038/s41380-018-0025-5 10.1101/gr.1252603 10.1016/j.cell.2018.03.051 10.1038/ng.2007.9 10.3390/genes2020313 10.1038/s41586-021-03420-7 10.1038/s41467-017-00323-y 10.1126/science.abl4178 10.1101/gr.187101 10.1038/s41592-020-01056-5 10.1126/science.abj6965 10.1093/genetics/151.4.1531 10.1038/nature02168 10.7554/eLife.18197 10.1126/science.abf7117 10.1534/g3.114.012435 10.1038/s41586-023-05896-x 10.5281/zenodo.7651064 10.5281/ZENODO.7653472 10.5281/ZENODO.6342176 10.5281/ZENODO.7653446 10.1038/s41587-023-01662-6 10.5281/ZENODO.7653486 10.1101/2020.07.01.183392 10.1101/gr.2177404 10.1038/287560a0 10.1101/gr.277334.122 10.5281/ZENODO.7653464 10.1111/j.2517-6161.1982.tb01195.x |
ContentType | Journal Article |
Contributor | Ebler, Jana Prins, Pjotr Green, Richard E Martin, Fergal J Billis, Konstantinos Mountcastle, Jacquelyn Fairley, Susan Frankish, Adam Lu, Tsung-Yu Markello, Charles Mwaniki, Moses Njagi Guarracino, Andrea Baker, Carl A Jarvis, Erich D Monlong, Jean Giron, Carlos Garcia Pesout, Trevor Cornejo, Omar E Gao, Yan Paten, Benedict Colonna, Vincenza Rautiainen, Mikko Flicek, Paul Rhie, Arang Nurk, Sergey Chaisson, Mark J P Ji, Hanlee P Doerr, Daniel Kolesnikov, Alexey Olsen, Hugh E Chang, Pi-Chuan Belyaeva, Anastasiya Garg, Shilpa Magalhães, Hugo Cook, Daniel E Groza, Cristian Marco-Sola, Santiago Chu, Justin Smith, Michael W Sirén, Jouni Lu, Shuangjia Schneider, Valerie A Cheng, Haoyu Korbel, Jan O Lee, HoJoon Cody, Sarah Chang, Xian H Ebert, Peter Haussler, David Schultz, Baergen I Olson, Nathan D Marijon, Pierre Garrison, Nanibaa' A McDaniel, Jennifer Fedrigo, Olivier Hall, Ira M Fischer, Christian Fulton, Robert S Haukness, Marina Kordosky, Jennifer Bourque, Guillaume Carroll, Andrew Regier, Allison A Koren, Sergey Garrison, Erik Mitchell, Matthew W Natte |
Contributor_xml | – sequence: 1 givenname: Haley J surname: Abel fullname: Abel, Haley J – sequence: 2 givenname: Lucinda L surname: Antonacci-Fulton fullname: Antonacci-Fulton, Lucinda L – sequence: 3 givenname: Gunjan surname: Baid fullname: Baid, Gunjan – sequence: 4 givenname: Carl A surname: Baker fullname: Baker, Carl A – sequence: 5 givenname: Anastasiya surname: Belyaeva fullname: Belyaeva, Anastasiya – sequence: 6 givenname: Konstantinos surname: Billis fullname: Billis, Konstantinos – sequence: 7 givenname: Guillaume surname: Bourque fullname: Bourque, Guillaume – sequence: 8 givenname: Silvia surname: Buonaiuto fullname: Buonaiuto, Silvia – sequence: 9 givenname: Andrew surname: Carroll fullname: Carroll, Andrew – sequence: 10 givenname: Mark J P surname: Chaisson fullname: Chaisson, Mark J P – sequence: 11 givenname: Pi-Chuan surname: Chang fullname: Chang, Pi-Chuan – sequence: 12 givenname: Xian H surname: Chang fullname: Chang, Xian H – sequence: 13 givenname: Haoyu surname: Cheng fullname: Cheng, Haoyu – sequence: 14 givenname: Justin surname: Chu fullname: Chu, Justin – sequence: 15 givenname: Sarah surname: Cody fullname: Cody, Sarah – sequence: 16 givenname: Vincenza surname: Colonna fullname: Colonna, Vincenza – sequence: 17 givenname: Daniel E surname: Cook fullname: Cook, Daniel E – sequence: 18 givenname: Robert M surname: Cook-Deegan fullname: Cook-Deegan, Robert M – sequence: 19 givenname: Omar E surname: Cornejo fullname: Cornejo, Omar E – sequence: 20 givenname: Mark surname: Diekhans fullname: Diekhans, Mark – sequence: 21 givenname: Daniel surname: Doerr fullname: Doerr, Daniel – sequence: 22 givenname: Peter surname: Ebert fullname: Ebert, Peter – sequence: 23 givenname: Jana surname: Ebler fullname: Ebler, Jana – sequence: 24 givenname: Jordan M surname: Eizenga fullname: Eizenga, Jordan M – sequence: 25 givenname: Susan surname: Fairley fullname: Fairley, Susan – sequence: 26 givenname: Olivier surname: Fedrigo fullname: Fedrigo, Olivier – sequence: 27 givenname: Adam L surname: Felsenfeld fullname: Felsenfeld, Adam L – sequence: 28 givenname: Xiaowen surname: Feng fullname: Feng, Xiaowen – sequence: 29 givenname: Christian surname: Fischer fullname: Fischer, Christian – sequence: 30 givenname: Paul surname: Flicek fullname: Flicek, Paul – sequence: 31 givenname: Giulio surname: Formenti fullname: Formenti, Giulio – sequence: 32 givenname: Adam surname: Frankish fullname: Frankish, Adam – sequence: 33 givenname: Robert S surname: Fulton fullname: Fulton, Robert S – sequence: 34 givenname: Yan surname: Gao fullname: Gao, Yan – sequence: 35 givenname: Shilpa surname: Garg fullname: Garg, Shilpa – sequence: 36 givenname: Erik surname: Garrison fullname: Garrison, Erik – sequence: 37 givenname: Nanibaa' A surname: Garrison fullname: Garrison, Nanibaa' A – sequence: 38 givenname: Carlos Garcia surname: Giron fullname: Giron, Carlos Garcia – sequence: 39 givenname: Richard E surname: Green fullname: Green, Richard E – sequence: 40 givenname: Cristian surname: Groza fullname: Groza, Cristian – sequence: 41 givenname: Andrea surname: Guarracino fullname: Guarracino, Andrea – sequence: 42 givenname: Leanne surname: Haggerty fullname: Haggerty, Leanne – sequence: 43 givenname: Ira M surname: Hall fullname: Hall, Ira M – sequence: 44 givenname: Marina surname: Haukness fullname: Haukness, Marina – sequence: 45 givenname: David surname: Haussler fullname: Haussler, David – sequence: 46 givenname: Simon surname: Heumos fullname: Heumos, Simon – sequence: 47 givenname: Glenn surname: Hickey fullname: Hickey, Glenn – sequence: 48 givenname: Thibaut surname: Hourlier fullname: Hourlier, Thibaut – sequence: 49 givenname: Kerstin surname: Howe fullname: Howe, Kerstin – sequence: 50 givenname: Miten surname: Jain fullname: Jain, Miten – sequence: 51 givenname: Erich D surname: Jarvis fullname: Jarvis, Erich D – sequence: 52 givenname: Hanlee P surname: Ji fullname: Ji, Hanlee P – sequence: 53 givenname: Eimear E surname: Kenny fullname: Kenny, Eimear E – sequence: 54 givenname: Barbara A surname: Koenig fullname: Koenig, Barbara A – sequence: 55 givenname: Alexey surname: Kolesnikov fullname: Kolesnikov, Alexey – sequence: 56 givenname: Jan O surname: Korbel fullname: Korbel, Jan O – sequence: 57 givenname: Jennifer surname: Kordosky fullname: Kordosky, Jennifer – sequence: 58 givenname: Sergey surname: Koren fullname: Koren, Sergey – sequence: 59 givenname: HoJoon surname: Lee fullname: Lee, HoJoon – sequence: 60 givenname: Heng surname: Li fullname: Li, Heng – sequence: 61 givenname: Wen-Wei surname: Liao fullname: Liao, Wen-Wei – sequence: 62 givenname: Shuangjia surname: Lu fullname: Lu, Shuangjia – sequence: 63 givenname: Tsung-Yu surname: Lu fullname: Lu, Tsung-Yu – sequence: 64 givenname: Julian K surname: Lucas fullname: Lucas, Julian K – sequence: 65 givenname: Hugo surname: Magalhães fullname: Magalhães, Hugo – sequence: 66 givenname: Santiago surname: Marco-Sola fullname: Marco-Sola, Santiago – sequence: 67 givenname: Pierre surname: Marijon fullname: Marijon, Pierre – sequence: 68 givenname: Charles surname: Markello fullname: Markello, Charles – sequence: 69 givenname: Tobias surname: Marschall fullname: Marschall, Tobias – sequence: 70 givenname: Fergal J surname: Martin fullname: Martin, Fergal J – sequence: 71 givenname: Ann surname: McCartney fullname: McCartney, Ann – sequence: 72 givenname: Jennifer surname: McDaniel fullname: McDaniel, Jennifer – sequence: 73 givenname: Karen H surname: Miga fullname: Miga, Karen H – sequence: 74 givenname: Matthew W surname: Mitchell fullname: Mitchell, Matthew W – sequence: 75 givenname: Jean surname: Monlong fullname: Monlong, Jean – sequence: 76 givenname: Jacquelyn surname: Mountcastle fullname: Mountcastle, Jacquelyn – sequence: 77 givenname: Moses Njagi surname: Mwaniki fullname: Mwaniki, Moses Njagi – sequence: 78 givenname: Maria surname: Nattestad fullname: Nattestad, Maria – sequence: 79 givenname: Adam M surname: Novak fullname: Novak, Adam M – sequence: 80 givenname: Sergey surname: Nurk fullname: Nurk, Sergey – sequence: 81 givenname: Hugh E surname: Olsen fullname: Olsen, Hugh E – sequence: 82 givenname: Nathan D surname: Olson fullname: Olson, Nathan D – sequence: 83 givenname: Benedict surname: Paten fullname: Paten, Benedict – sequence: 84 givenname: Trevor surname: Pesout fullname: Pesout, Trevor – sequence: 85 givenname: Adam M surname: Phillippy fullname: Phillippy, Adam M – sequence: 86 givenname: Alice B surname: Popejoy fullname: Popejoy, Alice B – sequence: 87 givenname: Pjotr surname: Prins fullname: Prins, Pjotr – sequence: 88 givenname: Daniela surname: Puiu fullname: Puiu, Daniela – sequence: 89 givenname: Mikko surname: Rautiainen fullname: Rautiainen, Mikko – sequence: 90 givenname: Allison A surname: Regier fullname: Regier, Allison A – sequence: 91 givenname: Arang surname: Rhie fullname: Rhie, Arang – sequence: 92 givenname: Samuel surname: Sacco fullname: Sacco, Samuel – sequence: 93 givenname: Ashley D surname: Sanders fullname: Sanders, Ashley D – sequence: 94 givenname: Valerie A surname: Schneider fullname: Schneider, Valerie A – sequence: 95 givenname: Baergen I surname: Schultz fullname: Schultz, Baergen I – sequence: 96 givenname: Kishwar surname: Shafin fullname: Shafin, Kishwar – sequence: 97 givenname: Jonas A surname: Sibbesen fullname: Sibbesen, Jonas A – sequence: 98 givenname: Jouni surname: Sirén fullname: Sirén, Jouni – sequence: 99 givenname: Michael W surname: Smith fullname: Smith, Michael W – sequence: 100 givenname: Heidi J surname: Sofia fullname: Sofia, Heidi J |
Copyright | The Author(s) 2023 2023. The Author(s). Copyright Nature Publishing Group May 11, 2023 |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: Copyright Nature Publishing Group May 11, 2023 |
CorporateAuthor | Human Pangenome Reference Consortium |
CorporateAuthor_xml | – name: Human Pangenome Reference Consortium |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 5PM |
DOI | 10.1038/s41586-023-05895-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25. Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest eLibrary ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agriculture Science Database ProQuest Health & Medical Collection PML(ProQuest Medical Library) Psychology Collection Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) University of Michigan Technology Collection Technology Research Database ProQuest One Academic Middle East (New) SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 334 |
ExternalDocumentID | PMC10172114 37165237 10_1038_s41586_023_05895_y |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM133428 – fundername: NIGMS NIH HHS grantid: T32 GM007454 – fundername: NHGRI NIH HHS grantid: U24 HG010262 – fundername: NIAID NIH HHS grantid: F31 AI150163 – fundername: NHGRI NIH HHS grantid: R01 HG002385 – fundername: NHGRI NIH HHS grantid: R00 HG011041 – fundername: NHGRI NIH HHS grantid: U01 HG010973 – fundername: NHGRI NIH HHS grantid: U01 HG010971 – fundername: NHGRI NIH HHS grantid: R01 HG010485 – fundername: NHGRI NIH HHS grantid: K99 HG011041 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH AAZLF ABDQB ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AEUYN AFBBN AFFNX AFKRA AFLOW AFRAH AFSHS AGAYW AGHSJ AGHTU AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI C6C CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FAC FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PKN PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YIF YIN YJ6 YNT YOC YQT YR2 YR5 YXB YZZ Z5M ZCA ~02 ~7V ~88 ~KM AARCD AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION NFIDA PHGZM PHGZT .-4 .GJ .HR 00M 08P 1CY 1VW 354 3EH 3O- 4.4 41~ 42X 4R4 663 79B 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABNNU ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AFFDN AFHKK AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT B0M BCR BDKGC BES BKOMP BLC CGR CUY CVF DB5 DO4 EAD EAS EAZ EBC EBD EBO ECC ECM EIF EJD EMB EMF EMK EMOBN EPL ESE ESN ESX FA8 I-F ITC J5H L-9 LGEZI LOTEE MVM N4W NADUK NEJ NPM NXXTH ODYON OHT P-O PEA PJZUB PM3 PPXIY PQGLB PV9 QS- R4F RHI SKT SV3 TH9 TUD TUS UBY UHB USG VOH X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~8M ~G0 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 88A 8FD 8FK C1K FR3 H94 K9. KL. M7N MBDVC P64 PKEHL PQEST PQUKI Q9U RC3 SOI 7X8 5PM AFKWF |
ID | FETCH-LOGICAL-c541t-86eadf6370599c23377f17d06a88a10e491badf5c26c0dc509fd3c230be73f013 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:36:46 EDT 2025 Mon Jul 21 10:49:04 EDT 2025 Fri Jul 25 08:57:23 EDT 2025 Sun Jul 20 01:30:20 EDT 2025 Thu Apr 24 23:11:27 EDT 2025 Tue Jul 01 02:58:39 EDT 2025 Fri Feb 21 02:37:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7960 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-86eadf6370599c23377f17d06a88a10e491badf5c26c0dc509fd3c230be73f013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2396-0656 0000-0003-2223-9787 0000-0003-0302-2523 0000-0001-8414-8966 0000-0002-8651-1615 0000-0001-8413-6498 0000-0002-8246-4014 0000-0001-8863-3539 0000-0001-8294-6227 |
OpenAccessLink | https://www.nature.com/articles/s41586-023-05895-y |
PMID | 37165237 |
PQID | 2814062380 |
PQPubID | 40569 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10172114 proquest_miscellaneous_2812505596 proquest_journals_2814062380 pubmed_primary_37165237 crossref_citationtrail_10_1038_s41586_023_05895_y crossref_primary_10_1038_s41586_023_05895_y springer_journals_10_1038_s41586_023_05895_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-11 |
PublicationDateYYYYMMDD | 2023-05-11 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hartasánchez, Vallès-Codina, Brasó-Vives, Navarro (CR26) 2014; 4 Vollger (CR10) 2022; 376 Li (CR66) 2018; 15 Harpak, Lan, Gao, Pritchard (CR27) 2017; 114 Dumont (CR15) 2015; 16 Li (CR60) 2009; 25 CR33 CR77 CR32 CR76 CR31 Benson (CR52) 1999; 27 Dishuck, Rozanski, Logsdon, Porubsky, Eichler (CR57) 2022; 39 CR72 Dougherty (CR19) 2018; 28 CR71 Noyes (CR48) 2022; 109 Kiktev, Sheng, Lobachev, Petes (CR41) 2018; 115 Nuttle (CR18) 2016; 536 Rhie, Walenz, Koren, Phillippy (CR56) 2020; 21 Ebert (CR4) 2021; 372 Force (CR38) 1999; 151 Carey, Patterson, Wheeler (CR69) 2021; 12 Jiang (CR17) 2007; 39 Quinlan (CR65) 2014; 47 Aitchison (CR75) 1982; 44 CR3 CR6 Innan (CR25) 2003; 163 Narasimhan (CR50) 2017; 8 Sudmant (CR9) 2010; 11184 Goldmann (CR42) 2018; 50 CR49 (CR8) 2012; 491 Nakken, Rødland, Rognes, Hovig (CR40) 2009; 10 Sekar (CR36) 2016; 530 Williams (CR45) 2015; 4 Lek (CR34) 2016; 536 Harris (CR74) 2015; 112 Fiddes (CR20) 2018; 173 Liu (CR46) 2003; 13 Jarvis (CR30) 2022; 611 Mansai, Kado, Innan (CR28) 2011; 2 Venter (CR13) 2001; 291 Fredman (CR2) 2004; 36 Elliott, Richardson, Winderbaum, Nickoloff, Jasin (CR44) 1998; 18 CR59 (CR12) 2001; 409 Pendleton (CR55) 2018; 16 Li (CR58) 2018; 34 Porubsky (CR70) 2021; 39 Nurk (CR29) 2022; 376 CR53 Duret, Galtier (CR5) 2009; 10 Ju (CR21) 2016; 5 Logsdon (CR47) 2021; 593 Carlson, DeWitt, Harris (CR73) 2020; 62 Richter (CR35) 2019; 24 Bailey, Yavor, Massa, Trask, Eichler (CR1) 2001; 11 Danecek (CR61) 2021; 10 (CR7) 2003; 426 Teshima, Innan (CR24) 2012; 190 Zook (CR23) 2019; 37 CR68 Bailey (CR11) 2002; 297 CR67 CR64 Sharp (CR14) 2005; 77 Gao (CR43) 2019; 116 Bonfield (CR62) 2021; 10 Bailey, Liu, Eichler (CR16) 2003; 73 Pietri (CR37) 2013; 19 Conant, Wagner (CR39) 2003; 13 Cheng, Concepcion, Feng, Zhang, Li (CR54) 2021; 18 Amemiya, Kundaje, Boyle (CR22) 2019; 9 Altemose (CR51) 2022; 376 Mölder (CR63) 2021; 10 M Richter (5895_CR35) 2019; 24 H Cheng (5895_CR54) 2021; 18 GA Logsdon (5895_CR47) 2021; 593 DA Kiktev (5895_CR41) 2018; 115 B Elliott (5895_CR44) 1998; 18 P Danecek (5895_CR61) 2021; 10 JM Zook (5895_CR23) 2019; 37 Z Gao (5895_CR43) 2019; 116 PH Sudmant (5895_CR9) 2010; 11184 G Liu (5895_CR46) 2003; 13 5895_CR49 AJ Sharp (5895_CR14) 2005; 77 A Sekar (5895_CR36) 2016; 530 M Pietri (5895_CR37) 2013; 19 N Altemose (5895_CR51) 2022; 376 IHGSC. (5895_CR12) 2001; 409 A Rhie (5895_CR56) 2020; 21 D Porubsky (5895_CR70) 2021; 39 ED Jarvis (5895_CR30) 2022; 611 J Carlson (5895_CR73) 2020; 62 HM Amemiya (5895_CR22) 2019; 9 M Lek (5895_CR34) 2016; 536 DA Hartasánchez (5895_CR26) 2014; 4 F Mölder (5895_CR63) 2021; 10 5895_CR6 5895_CR72 5895_CR3 5895_CR71 S Nurk (5895_CR29) 2022; 376 ML Dougherty (5895_CR19) 2018; 28 5895_CR33 5895_CR77 JA Bailey (5895_CR1) 2001; 11 5895_CR32 5895_CR76 KM Teshima (5895_CR24) 2012; 190 5895_CR31 MD Noyes (5895_CR48) 2022; 109 X Nuttle (5895_CR18) 2016; 536 A Harpak (5895_CR27) 2017; 114 IT Fiddes (5895_CR20) 2018; 173 JM Goldmann (5895_CR42) 2018; 50 JA Bailey (5895_CR16) 2003; 73 PC Dishuck (5895_CR57) 2022; 39 AL Williams (5895_CR45) 2015; 4 5895_CR68 5895_CR67 H Innan (5895_CR25) 2003; 163 X-C Ju (5895_CR21) 2016; 5 H Li (5895_CR60) 2009; 25 JC Venter (5895_CR13) 2001; 291 H Li (5895_CR66) 2018; 15 AL Pendleton (5895_CR55) 2018; 16 5895_CR64 K Harris (5895_CR74) 2015; 112 J Aitchison (5895_CR75) 1982; 44 KM Carey (5895_CR69) 2021; 12 JK Bonfield (5895_CR62) 2021; 10 GC Conant (5895_CR39) 2003; 13 G Benson (5895_CR52) 1999; 27 D Fredman (5895_CR2) 2004; 36 S Nakken (5895_CR40) 2009; 10 5895_CR59 AR Quinlan (5895_CR65) 2014; 47 H Li (5895_CR58) 2018; 34 L Duret (5895_CR5) 2009; 10 SP Mansai (5895_CR28) 2011; 2 A Force (5895_CR38) 1999; 151 P Ebert (5895_CR4) 2021; 372 VM Narasimhan (5895_CR50) 2017; 8 International HapMap Consortium. (5895_CR7) 2003; 426 5895_CR53 1000 Genomes Project Consortium (5895_CR8) 2012; 491 MR Vollger (5895_CR10) 2022; 376 Z Jiang (5895_CR17) 2007; 39 JA Bailey (5895_CR11) 2002; 297 BL Dumont (5895_CR15) 2015; 16 37165235 - Nature. 2023 May;617(7960):256-258. doi: 10.1038/d41586-023-01490-3. |
References_xml | – volume: 491 start-page: 56 year: 2012 end-page: 65 ident: CR8 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 28 start-page: 1566 year: 2018 end-page: 1576 ident: CR19 article-title: Transcriptional fates of human-specific segmental duplications in brain publication-title: Genome Res. doi: 10.1101/gr.237610.118 – ident: CR49 – ident: CR68 – volume: 109 start-page: 631 year: 2022 end-page: 646 ident: CR48 article-title: Familial long-read sequencing increases yield of de novo mutations publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2022.02.014 – volume: 536 start-page: 285 year: 2016 end-page: 291 ident: CR34 article-title: Analysis of protein-coding genetic variation in 60,706 humans publication-title: Nature doi: 10.1038/nature19057 – volume: 10 year: 2009 ident: CR40 article-title: Large-scale inference of the point mutational spectrum in human segmental duplications publication-title: BMC Genomics doi: 10.1186/1471-2164-10-43 – volume: 10 year: 2021 ident: CR61 article-title: Twelve years of SAMtools and BCFtools publication-title: Gigascience doi: 10.1093/gigascience/giab008 – ident: CR77 – volume: 39 start-page: btac714 year: 2022 ident: CR57 article-title: GAVISUNK: genome assembly validation via inter-SUNK distances in Oxford Nanopore reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac714 – volume: 19 start-page: 1124 year: 2013 end-page: 1131 ident: CR37 article-title: PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in prion and Alzheimer’s diseases publication-title: Nat. Med. doi: 10.1038/nm.3302 – volume: 25 start-page: 2078 year: 2009 end-page: 2079 ident: CR60 article-title: The Sequence Alignment/Map format and SAMtools publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – volume: 34 start-page: 3094 year: 2018 end-page: 3100 ident: CR58 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 21 year: 2020 ident: CR56 article-title: Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies publication-title: Genome Biol. doi: 10.1186/s13059-020-02134-9 – volume: 114 start-page: 201708151 year: 2017 ident: CR27 article-title: Frequent nonallelic gene conversion on the human lineage and its effect on the divergence of gene duplicates publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708151114 – volume: 73 start-page: 823 year: 2003 end-page: 834 ident: CR16 article-title: An Alu transposition model for the origin and expansion of human segmental duplications publication-title: Am. J. Hum. Genet. doi: 10.1086/378594 – volume: 536 start-page: 205 year: 2016 end-page: 209 ident: CR18 article-title: Emergence of a -specific gene family and chromosome 16p11. 2 CNV susceptibility publication-title: Nature doi: 10.1038/nature19075 – volume: 9 year: 2019 ident: CR22 article-title: The ENCODE blacklist: identification of problematic regions of the genome publication-title: Sci. Rep. doi: 10.1038/s41598-019-45839-z – volume: 16 year: 2018 ident: CR55 article-title: Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication publication-title: BMC Biol. doi: 10.1186/s12915-018-0535-2 – ident: CR71 – volume: 36 start-page: 861 year: 2004 end-page: 866 ident: CR2 article-title: Complex SNP-related sequence variation in segmental genome duplications publication-title: Nat. Genet. doi: 10.1038/ng1401 – volume: 10 start-page: 33 year: 2021 ident: CR63 article-title: Sustainable data analysis with Snakemake publication-title: F1000Res. doi: 10.12688/f1000research.29032.2 – volume: 297 start-page: 1003 year: 2002 end-page: 1007 ident: CR11 article-title: Recent segmental duplications in the human genome publication-title: Science doi: 10.1126/science.1072047 – ident: CR67 – volume: 47 start-page: 11.12.1-34 year: 2014 ident: CR65 article-title: BEDTools: the Swiss-army tool for genome feature analysis publication-title: Curr. Protoc. Bioinformatics doi: 10.1002/0471250953.bi1112s47 – volume: 112 start-page: 3439 year: 2015 end-page: 3444 ident: CR74 article-title: Evidence for recent, population-specific evolution of the human mutation rate publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1418652112 – volume: 611 start-page: 519 year: 2022 end-page: 531 ident: CR30 article-title: Semi-automated assembly of high-quality diploid human reference genomes publication-title: Nature doi: 10.1038/s41586-022-05325-5 – volume: 115 start-page: E7109 year: 2018 end-page: E7118 ident: CR41 article-title: GC content elevates mutation and recombination rates in the yeast publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807334115 – volume: 116 start-page: 9491 year: 2019 end-page: 9500 ident: CR43 article-title: Overlooked roles of DNA damage and maternal age in generating human germline mutations publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1901259116 – volume: 13 start-page: 358 year: 2003 end-page: 368 ident: CR46 article-title: Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome publication-title: Genome Res. doi: 10.1101/gr.923303 – volume: 10 start-page: 285 year: 2009 end-page: 311 ident: CR5 article-title: Biased gene conversion and the evolution of mammalian genomic landscapes publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev-genom-082908-150001 – ident: CR32 – volume: 376 start-page: 44 year: 2022 end-page: 53 ident: CR29 article-title: The complete sequence of a human genome publication-title: Science doi: 10.1126/science.abj6987 – volume: 4 start-page: e04637 year: 2015 ident: CR45 article-title: Non-crossover gene conversions show strong GC bias and unexpected clustering in humans publication-title: eLife doi: 10.7554/eLife.04637 – ident: CR64 – volume: 12 year: 2021 ident: CR69 article-title: Transposable element subfamily annotation has a reproducibility problem publication-title: Mob. DNA doi: 10.1186/s13100-021-00232-4 – volume: 62 start-page: 50 year: 2020 end-page: 57 ident: CR73 article-title: Inferring evolutionary dynamics of mutation rates through the lens of mutation spectrum variation publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2020.05.024 – volume: 11184 start-page: 2 year: 2010 end-page: 7 ident: CR9 article-title: Diversity of human copy number publication-title: Science – volume: 190 start-page: 1077 year: 2012 end-page: 1086 ident: CR24 article-title: The coalescent with selection on copy number variants publication-title: Genetics doi: 10.1534/genetics.111.135343 – volume: 530 start-page: 177 year: 2016 end-page: 183 ident: CR36 article-title: Schizophrenia risk from complex variation of complement component 4 publication-title: Nature doi: 10.1038/nature16549 – ident: CR72 – volume: 39 start-page: 302 year: 2021 end-page: 308 ident: CR70 article-title: Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0719-5 – volume: 44 start-page: 139 year: 1982 end-page: 160 ident: CR75 article-title: The statistical analysis of compositional data publication-title: J. R. Stat. Soc. – ident: CR53 – volume: 77 start-page: 78 year: 2005 end-page: 88 ident: CR14 article-title: Segmental duplications and copy-number variation in the human genome publication-title: Am. J. Hum. Genet. doi: 10.1086/431652 – volume: 16 year: 2015 ident: CR15 article-title: Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications publication-title: BMC Genomics doi: 10.1186/s12864-015-1681-3 – volume: 163 start-page: 803 year: 2003 end-page: 810 ident: CR25 article-title: The coalescent and infinite-site model of a small multigene family publication-title: Genetics doi: 10.1093/genetics/163.2.803 – ident: CR33 – volume: 18 start-page: 93 year: 1998 end-page: 101 ident: CR44 article-title: Gene conversion tracts from double-strand break repair in mammalian cells publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.1.93 – volume: 10 year: 2021 ident: CR62 article-title: HTSlib: C library for reading/writing high-throughput sequencing data publication-title: Gigascience doi: 10.1093/gigascience/giab007 – volume: 409 start-page: 860 year: 2001 end-page: 921 ident: CR12 article-title: Initial sequencing and analysis of the human genome publication-title: Nature doi: 10.1038/35057062 – volume: 50 start-page: 487 year: 2018 end-page: 492 ident: CR42 article-title: Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence publication-title: Nat. Genet. doi: 10.1038/s41588-018-0071-6 – ident: CR6 – volume: 291 start-page: 1304 year: 2001 end-page: 1351 ident: CR13 article-title: The sequence of the human genome publication-title: Science doi: 10.1126/science.1058040 – volume: 27 start-page: 573 year: 1999 end-page: 580 ident: CR52 article-title: Tandem repeats finder: a program to analyze DNA sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.2.573 – volume: 37 start-page: 561 year: 2019 end-page: 566 ident: CR23 article-title: An open resource for accurately benchmarking small variant and reference calls publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0074-6 – volume: 15 start-page: 595 year: 2018 end-page: 597 ident: CR66 article-title: A synthetic-diploid benchmark for accurate variant-calling evaluation publication-title: Nat. Methods doi: 10.1038/s41592-018-0054-7 – volume: 24 start-page: 1329 year: 2019 end-page: 1350 ident: CR35 article-title: Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling publication-title: Mol. Psychiatry doi: 10.1038/s41380-018-0025-5 – volume: 13 start-page: 2052 year: 2003 end-page: 2058 ident: CR39 article-title: Asymmetric sequence divergence of duplicate genes publication-title: Genome Res. doi: 10.1101/gr.1252603 – volume: 173 start-page: 1356 year: 2018 end-page: 1369 ident: CR20 article-title: Human-specific genes affect notch signaling and cortical neurogenesis publication-title: Cell doi: 10.1016/j.cell.2018.03.051 – volume: 39 start-page: 1361 year: 2007 end-page: 1368 ident: CR17 article-title: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution publication-title: Nat. Genet. doi: 10.1038/ng.2007.9 – volume: 2 start-page: 313 year: 2011 end-page: 331 ident: CR28 article-title: The rate and tract length of gene conversion between duplicated genes publication-title: Genes doi: 10.3390/genes2020313 – volume: 593 start-page: 101 year: 2021 end-page: 107 ident: CR47 article-title: The structure, function and evolution of a complete human chromosome 8 publication-title: Nature doi: 10.1038/s41586-021-03420-7 – volume: 8 year: 2017 ident: CR50 article-title: Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes publication-title: Nat. Commun. doi: 10.1038/s41467-017-00323-y – volume: 376 start-page: eabl4178 year: 2022 ident: CR51 article-title: Complete genomic and epigenetic maps of human centromeres publication-title: Science doi: 10.1126/science.abl4178 – volume: 11 start-page: 1005 year: 2001 end-page: 1017 ident: CR1 article-title: Segmental duplications: organization and impact within the current human genome project assembly publication-title: Genome Res. doi: 10.1101/gr.187101 – ident: CR3 – volume: 18 start-page: 170 year: 2021 end-page: 175 ident: CR54 article-title: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm publication-title: Nat. Methods doi: 10.1038/s41592-020-01056-5 – volume: 376 start-page: eabj6965 year: 2022 ident: CR10 article-title: Segmental duplications and their variation in a complete human genome publication-title: Science doi: 10.1126/science.abj6965 – volume: 151 start-page: 1531 year: 1999 end-page: 1545 ident: CR38 article-title: Preservation of duplicate genes by complementary, degenerative mutations publication-title: Genetics doi: 10.1093/genetics/151.4.1531 – volume: 426 start-page: 789 year: 2003 end-page: 796 ident: CR7 article-title: The International HapMap Project publication-title: Nature doi: 10.1038/nature02168 – ident: CR31 – volume: 5 start-page: e18197 year: 2016 ident: CR21 article-title: The hominoid-specific gene promotes generation of basal neural progenitors and induces cortical folding in mice publication-title: eLife doi: 10.7554/eLife.18197 – volume: 372 start-page: eabf7117 year: 2021 ident: CR4 article-title: Haplotype-resolved diverse human genomes and integrated analysis of structural variation publication-title: Science doi: 10.1126/science.abf7117 – ident: CR59 – ident: CR76 – volume: 4 start-page: 1479 year: 2014 end-page: 1489 ident: CR26 article-title: Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario publication-title: G3 Genes Genomes Genet. doi: 10.1534/g3.114.012435 – volume: 16 year: 2018 ident: 5895_CR55 publication-title: BMC Biol. doi: 10.1186/s12915-018-0535-2 – ident: 5895_CR64 – volume: 4 start-page: e04637 year: 2015 ident: 5895_CR45 publication-title: eLife doi: 10.7554/eLife.04637 – volume: 10 year: 2021 ident: 5895_CR61 publication-title: Gigascience doi: 10.1093/gigascience/giab008 – volume: 62 start-page: 50 year: 2020 ident: 5895_CR73 publication-title: Curr. Opin. Genet. Dev. doi: 10.1016/j.gde.2020.05.024 – volume: 11184 start-page: 2 year: 2010 ident: 5895_CR9 publication-title: Science – volume: 10 start-page: 285 year: 2009 ident: 5895_CR5 publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev-genom-082908-150001 – volume: 112 start-page: 3439 year: 2015 ident: 5895_CR74 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1418652112 – ident: 5895_CR3 doi: 10.1038/s41586-023-05896-x – volume: 77 start-page: 78 year: 2005 ident: 5895_CR14 publication-title: Am. J. Hum. Genet. doi: 10.1086/431652 – volume: 12 year: 2021 ident: 5895_CR69 publication-title: Mob. DNA doi: 10.1186/s13100-021-00232-4 – ident: 5895_CR49 – ident: 5895_CR71 doi: 10.5281/zenodo.7651064 – volume: 491 start-page: 56 year: 2012 ident: 5895_CR8 publication-title: Nature doi: 10.1038/nature11632 – volume: 39 start-page: 1361 year: 2007 ident: 5895_CR17 publication-title: Nat. Genet. doi: 10.1038/ng.2007.9 – volume: 27 start-page: 573 year: 1999 ident: 5895_CR52 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.2.573 – volume: 530 start-page: 177 year: 2016 ident: 5895_CR36 publication-title: Nature doi: 10.1038/nature16549 – volume: 151 start-page: 1531 year: 1999 ident: 5895_CR38 publication-title: Genetics doi: 10.1093/genetics/151.4.1531 – volume: 115 start-page: E7109 year: 2018 ident: 5895_CR41 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1807334115 – volume: 50 start-page: 487 year: 2018 ident: 5895_CR42 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0071-6 – ident: 5895_CR76 doi: 10.5281/ZENODO.7653472 – volume: 19 start-page: 1124 year: 2013 ident: 5895_CR37 publication-title: Nat. Med. doi: 10.1038/nm.3302 – volume: 39 start-page: btac714 year: 2022 ident: 5895_CR57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac714 – volume: 376 start-page: eabj6965 year: 2022 ident: 5895_CR10 publication-title: Science doi: 10.1126/science.abj6965 – volume: 16 year: 2015 ident: 5895_CR15 publication-title: BMC Genomics doi: 10.1186/s12864-015-1681-3 – volume: 536 start-page: 285 year: 2016 ident: 5895_CR34 publication-title: Nature doi: 10.1038/nature19057 – volume: 39 start-page: 302 year: 2021 ident: 5895_CR70 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0719-5 – volume: 536 start-page: 205 year: 2016 ident: 5895_CR18 publication-title: Nature doi: 10.1038/nature19075 – volume: 4 start-page: 1479 year: 2014 ident: 5895_CR26 publication-title: G3 Genes Genomes Genet. doi: 10.1534/g3.114.012435 – volume: 21 year: 2020 ident: 5895_CR56 publication-title: Genome Biol. doi: 10.1186/s13059-020-02134-9 – ident: 5895_CR59 doi: 10.5281/ZENODO.6342176 – volume: 37 start-page: 561 year: 2019 ident: 5895_CR23 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0074-6 – volume: 73 start-page: 823 year: 2003 ident: 5895_CR16 publication-title: Am. J. Hum. Genet. doi: 10.1086/378594 – volume: 10 year: 2009 ident: 5895_CR40 publication-title: BMC Genomics doi: 10.1186/1471-2164-10-43 – volume: 409 start-page: 860 year: 2001 ident: 5895_CR12 publication-title: Nature doi: 10.1038/35057062 – volume: 173 start-page: 1356 year: 2018 ident: 5895_CR20 publication-title: Cell doi: 10.1016/j.cell.2018.03.051 – volume: 109 start-page: 631 year: 2022 ident: 5895_CR48 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2022.02.014 – ident: 5895_CR67 doi: 10.5281/ZENODO.7653446 – ident: 5895_CR32 doi: 10.1038/s41587-023-01662-6 – volume: 34 start-page: 3094 year: 2018 ident: 5895_CR58 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 15 start-page: 595 year: 2018 ident: 5895_CR66 publication-title: Nat. Methods doi: 10.1038/s41592-018-0054-7 – volume: 297 start-page: 1003 year: 2002 ident: 5895_CR11 publication-title: Science doi: 10.1126/science.1072047 – volume: 190 start-page: 1077 year: 2012 ident: 5895_CR24 publication-title: Genetics doi: 10.1534/genetics.111.135343 – ident: 5895_CR77 doi: 10.5281/ZENODO.7653486 – volume: 291 start-page: 1304 year: 2001 ident: 5895_CR13 publication-title: Science doi: 10.1126/science.1058040 – volume: 25 start-page: 2078 year: 2009 ident: 5895_CR60 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 – ident: 5895_CR72 doi: 10.1101/2020.07.01.183392 – volume: 18 start-page: 170 year: 2021 ident: 5895_CR54 publication-title: Nat. Methods doi: 10.1038/s41592-020-01056-5 – volume: 9 year: 2019 ident: 5895_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-019-45839-z – ident: 5895_CR33 doi: 10.1101/gr.2177404 – volume: 24 start-page: 1329 year: 2019 ident: 5895_CR35 publication-title: Mol. Psychiatry doi: 10.1038/s41380-018-0025-5 – volume: 593 start-page: 101 year: 2021 ident: 5895_CR47 publication-title: Nature doi: 10.1038/s41586-021-03420-7 – ident: 5895_CR6 doi: 10.1038/287560a0 – volume: 376 start-page: 44 year: 2022 ident: 5895_CR29 publication-title: Science doi: 10.1126/science.abj6987 – ident: 5895_CR53 – volume: 163 start-page: 803 year: 2003 ident: 5895_CR25 publication-title: Genetics doi: 10.1093/genetics/163.2.803 – volume: 13 start-page: 2052 year: 2003 ident: 5895_CR39 publication-title: Genome Res. doi: 10.1101/gr.1252603 – volume: 47 start-page: 11.12.1-34 year: 2014 ident: 5895_CR65 publication-title: Curr. Protoc. Bioinformatics doi: 10.1002/0471250953.bi1112s47 – volume: 376 start-page: eabl4178 year: 2022 ident: 5895_CR51 publication-title: Science doi: 10.1126/science.abl4178 – volume: 8 year: 2017 ident: 5895_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00323-y – volume: 28 start-page: 1566 year: 2018 ident: 5895_CR19 publication-title: Genome Res. doi: 10.1101/gr.237610.118 – volume: 114 start-page: 201708151 year: 2017 ident: 5895_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708151114 – volume: 36 start-page: 861 year: 2004 ident: 5895_CR2 publication-title: Nat. Genet. doi: 10.1038/ng1401 – volume: 10 year: 2021 ident: 5895_CR62 publication-title: Gigascience doi: 10.1093/gigascience/giab007 – ident: 5895_CR31 doi: 10.1101/gr.277334.122 – volume: 5 start-page: e18197 year: 2016 ident: 5895_CR21 publication-title: eLife doi: 10.7554/eLife.18197 – volume: 116 start-page: 9491 year: 2019 ident: 5895_CR43 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1901259116 – volume: 611 start-page: 519 year: 2022 ident: 5895_CR30 publication-title: Nature doi: 10.1038/s41586-022-05325-5 – volume: 13 start-page: 358 year: 2003 ident: 5895_CR46 publication-title: Genome Res. doi: 10.1101/gr.923303 – volume: 11 start-page: 1005 year: 2001 ident: 5895_CR1 publication-title: Genome Res. doi: 10.1101/gr.187101 – volume: 426 start-page: 789 year: 2003 ident: 5895_CR7 publication-title: Nature doi: 10.1038/nature02168 – volume: 372 start-page: eabf7117 year: 2021 ident: 5895_CR4 publication-title: Science doi: 10.1126/science.abf7117 – ident: 5895_CR68 doi: 10.5281/ZENODO.7653464 – volume: 2 start-page: 313 year: 2011 ident: 5895_CR28 publication-title: Genes doi: 10.3390/genes2020313 – volume: 10 start-page: 33 year: 2021 ident: 5895_CR63 publication-title: F1000Res. doi: 10.12688/f1000research.29032.2 – volume: 44 start-page: 139 year: 1982 ident: 5895_CR75 publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1982.tb01195.x – volume: 18 start-page: 93 year: 1998 ident: 5895_CR44 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.18.1.93 – reference: 37165235 - Nature. 2023 May;617(7960):256-258. doi: 10.1038/d41586-023-01490-3. |
SSID | ssj0005174 |
Score | 2.609621 |
Snippet | Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 325 |
SubjectTerms | 45 45/23 631/181/2474 631/208/212/2304 631/208/457/649/2157 631/208/726/649 631/208/737 Conversion CpG islands CpG Islands - genetics Cytosine Cytosine - chemistry Deoxyribonucleic acid DNA Estimates Exons Exons - genetics Gene conversion Gene Conversion - genetics Gene mapping Genes Genome, Human - genetics Genomes Guanine - chemistry Haplotypes Haplotypes - genetics Humanities and Social Sciences Humans multidisciplinary Mutation Nucleotide sequence Nucleotides Polymorphism, Single Nucleotide - genetics Reproduction (copying) Science Science (multidisciplinary) Segmental Duplications, Genomic |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq2uEsGDosGmadPsSURcxYMnBW-leVQF7ardPfjvnaTZXVbRc6a0mZlkXl9nAA65MnkpeEXTPFMYoBhNFSoGVU49RCXQYnqA7J24eUhvH7PHkHBrAqxyfCf6i9oMtMuRnyWuNRPaahmfv39QNzXKVVfDCI15WGBoaRykS_avpxCPH12Yw08zMZdnDRou6eC3Dr0mexn9mjVMv7zN36DJH5VTb5D6K7AcPEly0Yp-FeZsvQaLHtGpmzVYDae2IUehtfTxOtzideBQ6NaQt1FbhCdlbQhqkSUegO6zZ8RlZ19q4gf4kcY-tRMAiBlNq90b8NC_ur-8oWGaAtVZyoZUClSaSvDcdWTRCed5XrHcxKKUsmSxTXtMIUGmE6FRZOhIVIYjXaxsziv0FDehUw9quw0kVkb1MAovE16mxlUOpY5TG9vKCBRxGgEbs7LQodW4m3jxWviSN5dFy_4C2V949hdfEZxMnnlvG238S90dS6gIh64ppioSwcFkGY-Lq4GUtR2MPI1z-rKeiGCrFejkdRxjR4zL8wjkjKgnBK4V9-xK_fLsW3KzNpTGnZ-OtWL6XX9vY-f_bezCUtJqKGWsC53h58juoQ80VPte0b8BwOUCtA priority: 102 providerName: ProQuest |
Title | Increased mutation and gene conversion within human segmental duplications |
URI | https://link.springer.com/article/10.1038/s41586-023-05895-y https://www.ncbi.nlm.nih.gov/pubmed/37165237 https://www.proquest.com/docview/2814062380 https://www.proquest.com/docview/2812505596 https://pubmed.ncbi.nlm.nih.gov/PMC10172114 |
Volume | 617 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RfAivq2uSwQPihabpk2yR11cxYOIKOytNE2qC1rF7h78907Sdpf1BV56ybRNMpNkJvPlC8ABU1qknOV-JGKFAYrOfIWG4StrHjznuGI6gOwNv3qIrgfxYA7C5iyMA-07Sks3TTfosNMSFxpp4bIWbSa7sf8xDwuWut0GXD3em8I6vjAv1wdlAiZ_-MbsYvTNw_wOlPySLXWLUH8FlmvvkZxV9V2FOVOswaJDcWblGqzWI7UkhzWd9NE6XOMUYJHnRpOXcZV4J2mhCVqOIQ507nbMiN2RHRbEXdpHSvNYsf4TPZ5muDfgoX9x37vy6xsU_CyO6MiXHA0l50xYFpYsZEyInAod8FTKlAYm6lKFAnEW8gzVhM5DrhnKBcoIlqN3uAmt4rUw20ACpVUXI-80ZGmkbbZQZkFkApNrjmqNPKBNVyZZTS9ub7l4Tlyam8mk6v4Euz9x3Z98eHA8eeetItf4U7rdaCipB1qZhJaxC104GXiwPynGIWLzHmlhXsdOxjp6cZd7sFUpdPI7hvEixuLCAzmj6omApd-eLSmGT46Gm1bhM7b8pLGKab1-b8bO_8R3YSmsLNantA2t0fvY7KEfNFIdmBcDgU_Zo_bZv-zAwvnFze1dxw2JT6VXBV4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxOiLEVQsIK6JJhrZ0Hbb7d6DMQQ9jw95goS3pftRJdEe2LuQ-6f4G5ndbe9yEHnjuXO97uxvd2Z2fjsD8J4pU5ScVTQrcoUBitFUITCocvDgFUeL6QmyR3xwku2f5qcLcN3dhXG0ym5P9Bu1GWp3Rr6dutJMaKtF_PXikrquUS672rXQCLA4sJMrDNmaL3vfcH4_pGn_-_HugLZdBajOs2REBUflVZwVrjKJThkriiopTMxLIcoktlkvUSiQ65Rr_HQ0qJVhKBcrW7AKPSZ87yNYyhhacnczvf9jRim5VfW5vaQTM7HdoKEUju7r2HKil9PJvCG8493eJWneytR6A9h_Ds9az5XsBKgtw4KtV-CxZ5DqZgWW212iIR_bUtafXsA-bj-O9W4N-TsOSX9S1oYgai3xhHd_WkfcafB5TXzDQNLYX6HjADHjWXb9JZw8iJ5fwWI9rO1rILEyqodRf5myMjMuUyl0nNnYVoYjpLIIkk6VUrelzV2HjT_Sp9iZkEH9EtUvvfrlJILP099chMIe90pvdDMk20XeyBkkI3g3fYzL0-VcytoOx17GOZl5j0ewGiZ0-ncMY9U8ZUUEYm6qpwKu9Pf8k_r8ty8BnoTQHUe-1aFi9l3_H8ba_cN4C08Gxz8P5eHe0cE6PE0DWmmSbMDi6N_YvkH_a6Q2PegJnD30KrsBSiA_Tg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXRMsrbQEjgQSi1iZxYnsPCKGWVR-o4kCl3kz8CFSCbGl2hfav9dcxtpNdthW99ZzJw-NvPGPPlxmAV0xbUXFW00KUGjco1lCNwKDaw4PXHD1mIMge8b3j4uCkPFmBi_5fGE-r7NfEsFDbsfFn5IPcl2ZCXy3TQd3RIr7sjj6c_aa-g5TPtPbtNCJEDt3sD27f2vf7uzjXr_N89Onrzh7tOgxQUxbZhEqOiqw5E75KickZE6LOhE15JWWVpa4YZhoFSpNzg8NA51pbhnKpdoLVGD3hc2_BbcGE9DYmd_6hl1yqAN39sJMyOWjRaUpP_fXMOTks6WzZKV6JdK8SNi9lbYMzHD2A-10USz5G2K3BimvW4U5gk5p2Hda6FaMlb7qy1m8fwgEuRZ4B7yz5NY0EAFI1liCCHQnk93ByR_zJ8GlDQvNA0rrvsfsAsdNFpv0RHN-Inh_DajNu3FMgqbZ66DSrclYV1mctpUkLl7racoRXkUDWq1KZrsy577bxU4V0O5Mqql-h-lVQv5ol8G5-z1ks8nGt9FY_Q6oz-FYt4JnAy_llNFWff6kaN54GGR9wlkOewJM4ofPXMdy3ljkTCcilqZ4L-DLgy1ea0x-hHHgWt_E48u0eFYvv-v8wNq4fxgu4i_alPu8fHW7CvTyClWbZFqxOzqfuGYZiE_08YJ7At5s2sr_Wn0NP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+mutation+and+gene+conversion+within+human+segmental+duplications&rft.jtitle=Nature+%28London%29&rft.au=Vollger%2C+Mitchell+R.&rft.au=Dishuck%2C+Philip+C.&rft.au=Harvey%2C+William+T.&rft.au=DeWitt%2C+William+S.&rft.date=2023-05-11&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=617&rft.issue=7960&rft.spage=325&rft.epage=334&rft_id=info:doi/10.1038%2Fs41586-023-05895-y&rft.externalDocID=10_1038_s41586_023_05895_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |