Increased mutation and gene conversion within human segmental duplications

Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data 1 , 2 . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the patt...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 617; no. 7960; pp. 325 - 334
Main Authors Vollger, Mitchell R., Dishuck, Philip C., Harvey, William T., DeWitt, William S., Guitart, Xavi, Goldberg, Michael E., Rozanski, Allison N., Lucas, Julian, Asri, Mobin, Munson, Katherine M., Lewis, Alexandra P., Hoekzema, Kendra, Logsdon, Glennis A., Porubsky, David, Paten, Benedict, Harris, Kelley, Hsieh, PingHsun, Eichler, Evan E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.05.2023
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data 1 , 2 . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions 3 , 4 . We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences 5 , 6 . A study comparing the pattern of single-nucleotide variation between unique and duplicated regions of the human genome shows that mutation rate and interlocus gene conversion are elevated in duplicated regions.
AbstractList Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data 1 , 2 . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions 3 , 4 . We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences 5 , 6 . A study comparing the pattern of single-nucleotide variation between unique and duplicated regions of the human genome shows that mutation rate and interlocus gene conversion are elevated in duplicated regions.
Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6.Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data1,2. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions3,4. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences5,6.
Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data 1,2 . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions 3,4 . We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have ‘relocated’ on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences 5,6 .
Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data . Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions . We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences .
Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read sequencing data. Here we constructed 1:1 unambiguous alignments spanning high-identity SDs across 102 human haplotypes and compared the pattern of SNVs between unique and duplicated regions. We find that human SNVs are elevated 60% in SDs compared to unique regions and estimate that at least 23% of this increase is due to interlocus gene conversion (IGC) with up to 4.3 megabase pairs of SD sequence converted on average per human haplotype. We develop a genome-wide map of IGC donors and acceptors, including 498 acceptor and 454 donor hotspots affecting the exons of about 800 protein-coding genes. These include 171 genes that have 'relocated' on average 1.61 megabase pairs in a subset of human haplotypes. Using a coalescent framework, we show that SD regions are slightly evolutionarily older when compared to unique sequences, probably owing to IGC. SNVs in SDs, however, show a distinct mutational spectrum: a 27.1% increase in transversions that convert cytosine to guanine or the reverse across all triplet contexts and a 7.6% reduction in the frequency of CpG-associated mutations when compared to unique DNA. We reason that these distinct mutational properties help to maintain an overall higher GC content of SD DNA compared to that of unique DNA, probably driven by GC-biased conversion between paralogous sequences.
Author Hoekzema, Kendra
Munson, Katherine M.
Paten, Benedict
Asri, Mobin
Lewis, Alexandra P.
Harris, Kelley
Lucas, Julian
Eichler, Evan E.
Porubsky, David
DeWitt, William S.
Vollger, Mitchell R.
Rozanski, Allison N.
Goldberg, Michael E.
Logsdon, Glennis A.
Harvey, William T.
Hsieh, PingHsun
Guitart, Xavi
Dishuck, Philip C.
Author_xml – sequence: 1
  givenname: Mitchell R.
  orcidid: 0000-0002-8651-1615
  surname: Vollger
  fullname: Vollger, Mitchell R.
  organization: Department of Genome Sciences, University of Washington School of Medicine, Division of Medical Genetics, University of Washington School of Medicine
– sequence: 2
  givenname: Philip C.
  orcidid: 0000-0003-2223-9787
  surname: Dishuck
  fullname: Dishuck, Philip C.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 3
  givenname: William T.
  surname: Harvey
  fullname: Harvey, William T.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 4
  givenname: William S.
  surname: DeWitt
  fullname: DeWitt, William S.
  organization: Department of Genome Sciences, University of Washington School of Medicine, Computational Biology Program, Fred Hutchinson Cancer Research Center, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
– sequence: 5
  givenname: Xavi
  surname: Guitart
  fullname: Guitart, Xavi
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 6
  givenname: Michael E.
  surname: Goldberg
  fullname: Goldberg, Michael E.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 7
  givenname: Allison N.
  surname: Rozanski
  fullname: Rozanski, Allison N.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 8
  givenname: Julian
  surname: Lucas
  fullname: Lucas, Julian
  organization: UC Santa Cruz Genomics Institute, University of California, Santa Cruz
– sequence: 9
  givenname: Mobin
  surname: Asri
  fullname: Asri, Mobin
  organization: UC Santa Cruz Genomics Institute, University of California, Santa Cruz
– sequence: 11
  givenname: Katherine M.
  orcidid: 0000-0001-8413-6498
  surname: Munson
  fullname: Munson, Katherine M.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 12
  givenname: Alexandra P.
  surname: Lewis
  fullname: Lewis, Alexandra P.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 13
  givenname: Kendra
  surname: Hoekzema
  fullname: Hoekzema, Kendra
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 14
  givenname: Glennis A.
  orcidid: 0000-0003-2396-0656
  surname: Logsdon
  fullname: Logsdon, Glennis A.
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 15
  givenname: David
  orcidid: 0000-0001-8414-8966
  surname: Porubsky
  fullname: Porubsky, David
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 16
  givenname: Benedict
  orcidid: 0000-0001-8863-3539
  surname: Paten
  fullname: Paten, Benedict
  organization: UC Santa Cruz Genomics Institute, University of California, Santa Cruz
– sequence: 17
  givenname: Kelley
  orcidid: 0000-0003-0302-2523
  surname: Harris
  fullname: Harris, Kelley
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 18
  givenname: PingHsun
  orcidid: 0000-0001-8294-6227
  surname: Hsieh
  fullname: Hsieh, PingHsun
  organization: Department of Genome Sciences, University of Washington School of Medicine
– sequence: 19
  givenname: Evan E.
  orcidid: 0000-0002-8246-4014
  surname: Eichler
  fullname: Eichler, Evan E.
  email: eee@gs.washington.edu
  organization: Department of Genome Sciences, University of Washington School of Medicine, Howard Hughes Medical Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37165237$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URKeFP8ACRWLTTeDajh9ZIVQVKKrEpl1bHudmxlViD3ZSNP8eT9Py6KKrK_l-5-j4nhNyFGJAQt5S-ECB64-5oULLGhivQehW1PsXZEUbJetGanVEVgBM16C5PCYnOd8CgKCqeUWOuaJSMK5W5PtlcAltxq4a58lOPobKhq7aYMDKxXCHKR_efvlp60O1nUcbqoybEcNkh6qbd4N397L8mrzs7ZDxzcM8JTdfLq7Pv9VXP75enn--qp1o6FRribbrJVcg2tYxzpXqqepAWq0tBWxaui6AcEw66JyAtu944WCNivdA-Sn5tPju5vWInStJkh3MLvnRpr2J1pv_N8FvzSbeGQpUMUqb4nD24JDizxnzZEafHQ6DDRjnbJimTIAQrSzo-yfobZxTKP87UA1IxjUU6t2_kf5kebxzAfQCuBRzTtgb55drl4R-KNHMoVKzVGpKpea-UrMvUvZE-uj-rIgvolzgsMH0N_Yzqt8z2bUu
CitedBy_id crossref_primary_10_1093_molbev_msad213
crossref_primary_10_1126_science_adn0609
crossref_primary_10_1038_s41576_024_00718_w
crossref_primary_10_1042_ETLS20230074
crossref_primary_10_1093_hmg_ddaf035
crossref_primary_10_1038_s41586_023_05896_x
crossref_primary_10_1038_s41576_023_00634_5
crossref_primary_10_1016_j_xfnr_2024_100082
crossref_primary_10_1038_s41588_024_01684_z
crossref_primary_10_1093_bioinformatics_btae456
crossref_primary_10_1016_j_gde_2024_102240
crossref_primary_10_1038_s41467_025_57505_2
crossref_primary_10_1038_d41586_023_01490_3
crossref_primary_10_1038_s41591_025_03558_1
crossref_primary_10_1016_j_cell_2024_01_002
crossref_primary_10_1093_gbe_evaf011
crossref_primary_10_1101_gr_278232_123
crossref_primary_10_1016_j_xgen_2024_100610
crossref_primary_10_1016_j_ajhg_2023_09_011
crossref_primary_10_1080_07366205_2024_2387993
crossref_primary_10_1016_j_gpb_2023_08_001
crossref_primary_10_1038_s41588_024_02051_8
crossref_primary_10_1093_gpbjnl_qzae070
crossref_primary_10_1101_gr_277334_122
crossref_primary_10_4049_jimmunol_2400131
crossref_primary_10_1038_s41467_024_44980_2
crossref_primary_10_1186_s13059_023_03061_1
crossref_primary_10_1038_s41525_025_00474_8
crossref_primary_10_1016_j_scib_2023_06_014
crossref_primary_10_1016_j_gde_2024_102233
crossref_primary_10_1038_s41467_024_49992_6
crossref_primary_10_1093_nar_gkae1202
crossref_primary_10_1038_s41435_024_00279_2
crossref_primary_10_1101_gr_279299_124
crossref_primary_10_1186_s13100_024_00315_y
crossref_primary_10_1038_s41588_024_01715_9
crossref_primary_10_1038_s41592_024_02430_3
Cites_doi 10.1038/nature11632
10.1101/gr.237610.118
10.1016/j.ajhg.2022.02.014
10.1038/nature19057
10.1186/1471-2164-10-43
10.1093/gigascience/giab008
10.1093/bioinformatics/btac714
10.1038/nm.3302
10.1093/bioinformatics/btp352
10.1093/bioinformatics/bty191
10.1186/s13059-020-02134-9
10.1073/pnas.1708151114
10.1086/378594
10.1038/nature19075
10.1038/s41598-019-45839-z
10.1186/s12915-018-0535-2
10.1038/ng1401
10.12688/f1000research.29032.2
10.1126/science.1072047
10.1002/0471250953.bi1112s47
10.1073/pnas.1418652112
10.1038/s41586-022-05325-5
10.1073/pnas.1807334115
10.1073/pnas.1901259116
10.1101/gr.923303
10.1146/annurev-genom-082908-150001
10.1126/science.abj6987
10.7554/eLife.04637
10.1186/s13100-021-00232-4
10.1016/j.gde.2020.05.024
10.1534/genetics.111.135343
10.1038/nature16549
10.1038/s41587-020-0719-5
10.1086/431652
10.1186/s12864-015-1681-3
10.1093/genetics/163.2.803
10.1128/MCB.18.1.93
10.1093/gigascience/giab007
10.1038/35057062
10.1038/s41588-018-0071-6
10.1126/science.1058040
10.1093/nar/27.2.573
10.1038/s41587-019-0074-6
10.1038/s41592-018-0054-7
10.1038/s41380-018-0025-5
10.1101/gr.1252603
10.1016/j.cell.2018.03.051
10.1038/ng.2007.9
10.3390/genes2020313
10.1038/s41586-021-03420-7
10.1038/s41467-017-00323-y
10.1126/science.abl4178
10.1101/gr.187101
10.1038/s41592-020-01056-5
10.1126/science.abj6965
10.1093/genetics/151.4.1531
10.1038/nature02168
10.7554/eLife.18197
10.1126/science.abf7117
10.1534/g3.114.012435
10.1038/s41586-023-05896-x
10.5281/zenodo.7651064
10.5281/ZENODO.7653472
10.5281/ZENODO.6342176
10.5281/ZENODO.7653446
10.1038/s41587-023-01662-6
10.5281/ZENODO.7653486
10.1101/2020.07.01.183392
10.1101/gr.2177404
10.1038/287560a0
10.1101/gr.277334.122
10.5281/ZENODO.7653464
10.1111/j.2517-6161.1982.tb01195.x
ContentType Journal Article
Contributor Ebler, Jana
Prins, Pjotr
Green, Richard E
Martin, Fergal J
Billis, Konstantinos
Mountcastle, Jacquelyn
Fairley, Susan
Frankish, Adam
Lu, Tsung-Yu
Markello, Charles
Mwaniki, Moses Njagi
Guarracino, Andrea
Baker, Carl A
Jarvis, Erich D
Monlong, Jean
Giron, Carlos Garcia
Pesout, Trevor
Cornejo, Omar E
Gao, Yan
Paten, Benedict
Colonna, Vincenza
Rautiainen, Mikko
Flicek, Paul
Rhie, Arang
Nurk, Sergey
Chaisson, Mark J P
Ji, Hanlee P
Doerr, Daniel
Kolesnikov, Alexey
Olsen, Hugh E
Chang, Pi-Chuan
Belyaeva, Anastasiya
Garg, Shilpa
Magalhães, Hugo
Cook, Daniel E
Groza, Cristian
Marco-Sola, Santiago
Chu, Justin
Smith, Michael W
Sirén, Jouni
Lu, Shuangjia
Schneider, Valerie A
Cheng, Haoyu
Korbel, Jan O
Lee, HoJoon
Cody, Sarah
Chang, Xian H
Ebert, Peter
Haussler, David
Schultz, Baergen I
Olson, Nathan D
Marijon, Pierre
Garrison, Nanibaa' A
McDaniel, Jennifer
Fedrigo, Olivier
Hall, Ira M
Fischer, Christian
Fulton, Robert S
Haukness, Marina
Kordosky, Jennifer
Bourque, Guillaume
Carroll, Andrew
Regier, Allison A
Koren, Sergey
Garrison, Erik
Mitchell, Matthew W
Natte
Contributor_xml – sequence: 1
  givenname: Haley J
  surname: Abel
  fullname: Abel, Haley J
– sequence: 2
  givenname: Lucinda L
  surname: Antonacci-Fulton
  fullname: Antonacci-Fulton, Lucinda L
– sequence: 3
  givenname: Gunjan
  surname: Baid
  fullname: Baid, Gunjan
– sequence: 4
  givenname: Carl A
  surname: Baker
  fullname: Baker, Carl A
– sequence: 5
  givenname: Anastasiya
  surname: Belyaeva
  fullname: Belyaeva, Anastasiya
– sequence: 6
  givenname: Konstantinos
  surname: Billis
  fullname: Billis, Konstantinos
– sequence: 7
  givenname: Guillaume
  surname: Bourque
  fullname: Bourque, Guillaume
– sequence: 8
  givenname: Silvia
  surname: Buonaiuto
  fullname: Buonaiuto, Silvia
– sequence: 9
  givenname: Andrew
  surname: Carroll
  fullname: Carroll, Andrew
– sequence: 10
  givenname: Mark J P
  surname: Chaisson
  fullname: Chaisson, Mark J P
– sequence: 11
  givenname: Pi-Chuan
  surname: Chang
  fullname: Chang, Pi-Chuan
– sequence: 12
  givenname: Xian H
  surname: Chang
  fullname: Chang, Xian H
– sequence: 13
  givenname: Haoyu
  surname: Cheng
  fullname: Cheng, Haoyu
– sequence: 14
  givenname: Justin
  surname: Chu
  fullname: Chu, Justin
– sequence: 15
  givenname: Sarah
  surname: Cody
  fullname: Cody, Sarah
– sequence: 16
  givenname: Vincenza
  surname: Colonna
  fullname: Colonna, Vincenza
– sequence: 17
  givenname: Daniel E
  surname: Cook
  fullname: Cook, Daniel E
– sequence: 18
  givenname: Robert M
  surname: Cook-Deegan
  fullname: Cook-Deegan, Robert M
– sequence: 19
  givenname: Omar E
  surname: Cornejo
  fullname: Cornejo, Omar E
– sequence: 20
  givenname: Mark
  surname: Diekhans
  fullname: Diekhans, Mark
– sequence: 21
  givenname: Daniel
  surname: Doerr
  fullname: Doerr, Daniel
– sequence: 22
  givenname: Peter
  surname: Ebert
  fullname: Ebert, Peter
– sequence: 23
  givenname: Jana
  surname: Ebler
  fullname: Ebler, Jana
– sequence: 24
  givenname: Jordan M
  surname: Eizenga
  fullname: Eizenga, Jordan M
– sequence: 25
  givenname: Susan
  surname: Fairley
  fullname: Fairley, Susan
– sequence: 26
  givenname: Olivier
  surname: Fedrigo
  fullname: Fedrigo, Olivier
– sequence: 27
  givenname: Adam L
  surname: Felsenfeld
  fullname: Felsenfeld, Adam L
– sequence: 28
  givenname: Xiaowen
  surname: Feng
  fullname: Feng, Xiaowen
– sequence: 29
  givenname: Christian
  surname: Fischer
  fullname: Fischer, Christian
– sequence: 30
  givenname: Paul
  surname: Flicek
  fullname: Flicek, Paul
– sequence: 31
  givenname: Giulio
  surname: Formenti
  fullname: Formenti, Giulio
– sequence: 32
  givenname: Adam
  surname: Frankish
  fullname: Frankish, Adam
– sequence: 33
  givenname: Robert S
  surname: Fulton
  fullname: Fulton, Robert S
– sequence: 34
  givenname: Yan
  surname: Gao
  fullname: Gao, Yan
– sequence: 35
  givenname: Shilpa
  surname: Garg
  fullname: Garg, Shilpa
– sequence: 36
  givenname: Erik
  surname: Garrison
  fullname: Garrison, Erik
– sequence: 37
  givenname: Nanibaa' A
  surname: Garrison
  fullname: Garrison, Nanibaa' A
– sequence: 38
  givenname: Carlos Garcia
  surname: Giron
  fullname: Giron, Carlos Garcia
– sequence: 39
  givenname: Richard E
  surname: Green
  fullname: Green, Richard E
– sequence: 40
  givenname: Cristian
  surname: Groza
  fullname: Groza, Cristian
– sequence: 41
  givenname: Andrea
  surname: Guarracino
  fullname: Guarracino, Andrea
– sequence: 42
  givenname: Leanne
  surname: Haggerty
  fullname: Haggerty, Leanne
– sequence: 43
  givenname: Ira M
  surname: Hall
  fullname: Hall, Ira M
– sequence: 44
  givenname: Marina
  surname: Haukness
  fullname: Haukness, Marina
– sequence: 45
  givenname: David
  surname: Haussler
  fullname: Haussler, David
– sequence: 46
  givenname: Simon
  surname: Heumos
  fullname: Heumos, Simon
– sequence: 47
  givenname: Glenn
  surname: Hickey
  fullname: Hickey, Glenn
– sequence: 48
  givenname: Thibaut
  surname: Hourlier
  fullname: Hourlier, Thibaut
– sequence: 49
  givenname: Kerstin
  surname: Howe
  fullname: Howe, Kerstin
– sequence: 50
  givenname: Miten
  surname: Jain
  fullname: Jain, Miten
– sequence: 51
  givenname: Erich D
  surname: Jarvis
  fullname: Jarvis, Erich D
– sequence: 52
  givenname: Hanlee P
  surname: Ji
  fullname: Ji, Hanlee P
– sequence: 53
  givenname: Eimear E
  surname: Kenny
  fullname: Kenny, Eimear E
– sequence: 54
  givenname: Barbara A
  surname: Koenig
  fullname: Koenig, Barbara A
– sequence: 55
  givenname: Alexey
  surname: Kolesnikov
  fullname: Kolesnikov, Alexey
– sequence: 56
  givenname: Jan O
  surname: Korbel
  fullname: Korbel, Jan O
– sequence: 57
  givenname: Jennifer
  surname: Kordosky
  fullname: Kordosky, Jennifer
– sequence: 58
  givenname: Sergey
  surname: Koren
  fullname: Koren, Sergey
– sequence: 59
  givenname: HoJoon
  surname: Lee
  fullname: Lee, HoJoon
– sequence: 60
  givenname: Heng
  surname: Li
  fullname: Li, Heng
– sequence: 61
  givenname: Wen-Wei
  surname: Liao
  fullname: Liao, Wen-Wei
– sequence: 62
  givenname: Shuangjia
  surname: Lu
  fullname: Lu, Shuangjia
– sequence: 63
  givenname: Tsung-Yu
  surname: Lu
  fullname: Lu, Tsung-Yu
– sequence: 64
  givenname: Julian K
  surname: Lucas
  fullname: Lucas, Julian K
– sequence: 65
  givenname: Hugo
  surname: Magalhães
  fullname: Magalhães, Hugo
– sequence: 66
  givenname: Santiago
  surname: Marco-Sola
  fullname: Marco-Sola, Santiago
– sequence: 67
  givenname: Pierre
  surname: Marijon
  fullname: Marijon, Pierre
– sequence: 68
  givenname: Charles
  surname: Markello
  fullname: Markello, Charles
– sequence: 69
  givenname: Tobias
  surname: Marschall
  fullname: Marschall, Tobias
– sequence: 70
  givenname: Fergal J
  surname: Martin
  fullname: Martin, Fergal J
– sequence: 71
  givenname: Ann
  surname: McCartney
  fullname: McCartney, Ann
– sequence: 72
  givenname: Jennifer
  surname: McDaniel
  fullname: McDaniel, Jennifer
– sequence: 73
  givenname: Karen H
  surname: Miga
  fullname: Miga, Karen H
– sequence: 74
  givenname: Matthew W
  surname: Mitchell
  fullname: Mitchell, Matthew W
– sequence: 75
  givenname: Jean
  surname: Monlong
  fullname: Monlong, Jean
– sequence: 76
  givenname: Jacquelyn
  surname: Mountcastle
  fullname: Mountcastle, Jacquelyn
– sequence: 77
  givenname: Moses Njagi
  surname: Mwaniki
  fullname: Mwaniki, Moses Njagi
– sequence: 78
  givenname: Maria
  surname: Nattestad
  fullname: Nattestad, Maria
– sequence: 79
  givenname: Adam M
  surname: Novak
  fullname: Novak, Adam M
– sequence: 80
  givenname: Sergey
  surname: Nurk
  fullname: Nurk, Sergey
– sequence: 81
  givenname: Hugh E
  surname: Olsen
  fullname: Olsen, Hugh E
– sequence: 82
  givenname: Nathan D
  surname: Olson
  fullname: Olson, Nathan D
– sequence: 83
  givenname: Benedict
  surname: Paten
  fullname: Paten, Benedict
– sequence: 84
  givenname: Trevor
  surname: Pesout
  fullname: Pesout, Trevor
– sequence: 85
  givenname: Adam M
  surname: Phillippy
  fullname: Phillippy, Adam M
– sequence: 86
  givenname: Alice B
  surname: Popejoy
  fullname: Popejoy, Alice B
– sequence: 87
  givenname: Pjotr
  surname: Prins
  fullname: Prins, Pjotr
– sequence: 88
  givenname: Daniela
  surname: Puiu
  fullname: Puiu, Daniela
– sequence: 89
  givenname: Mikko
  surname: Rautiainen
  fullname: Rautiainen, Mikko
– sequence: 90
  givenname: Allison A
  surname: Regier
  fullname: Regier, Allison A
– sequence: 91
  givenname: Arang
  surname: Rhie
  fullname: Rhie, Arang
– sequence: 92
  givenname: Samuel
  surname: Sacco
  fullname: Sacco, Samuel
– sequence: 93
  givenname: Ashley D
  surname: Sanders
  fullname: Sanders, Ashley D
– sequence: 94
  givenname: Valerie A
  surname: Schneider
  fullname: Schneider, Valerie A
– sequence: 95
  givenname: Baergen I
  surname: Schultz
  fullname: Schultz, Baergen I
– sequence: 96
  givenname: Kishwar
  surname: Shafin
  fullname: Shafin, Kishwar
– sequence: 97
  givenname: Jonas A
  surname: Sibbesen
  fullname: Sibbesen, Jonas A
– sequence: 98
  givenname: Jouni
  surname: Sirén
  fullname: Sirén, Jouni
– sequence: 99
  givenname: Michael W
  surname: Smith
  fullname: Smith, Michael W
– sequence: 100
  givenname: Heidi J
  surname: Sofia
  fullname: Sofia, Heidi J
Copyright The Author(s) 2023
2023. The Author(s).
Copyright Nature Publishing Group May 11, 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: Copyright Nature Publishing Group May 11, 2023
CorporateAuthor Human Pangenome Reference Consortium
CorporateAuthor_xml – name: Human Pangenome Reference Consortium
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-023-05895-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
ProQuest Nursing and Allied Health Journals - PSU access expires 11/30/25.
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Psychology Collection
Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
MEDLINE
Agricultural Science Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 334
ExternalDocumentID PMC10172114
37165237
10_1038_s41586_023_05895_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM133428
– fundername: NIGMS NIH HHS
  grantid: T32 GM007454
– fundername: NHGRI NIH HHS
  grantid: U24 HG010262
– fundername: NIAID NIH HHS
  grantid: F31 AI150163
– fundername: NHGRI NIH HHS
  grantid: R01 HG002385
– fundername: NHGRI NIH HHS
  grantid: R00 HG011041
– fundername: NHGRI NIH HHS
  grantid: U01 HG010973
– fundername: NHGRI NIH HHS
  grantid: U01 HG010971
– fundername: NHGRI NIH HHS
  grantid: R01 HG010485
– fundername: NHGRI NIH HHS
  grantid: K99 HG011041
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABNNU
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
CGR
CUY
CVF
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PJZUB
PM3
PPXIY
PQGLB
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
RC3
SOI
7X8
5PM
AFKWF
ID FETCH-LOGICAL-c541t-86eadf6370599c23377f17d06a88a10e491badf5c26c0dc509fd3c230be73f013
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:36:46 EDT 2025
Mon Jul 21 10:49:04 EDT 2025
Fri Jul 25 08:57:23 EDT 2025
Sun Jul 20 01:30:20 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Tue Jul 01 02:58:39 EDT 2025
Fri Feb 21 02:37:48 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7960
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-86eadf6370599c23377f17d06a88a10e491badf5c26c0dc509fd3c230be73f013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2396-0656
0000-0003-2223-9787
0000-0003-0302-2523
0000-0001-8414-8966
0000-0002-8651-1615
0000-0001-8413-6498
0000-0002-8246-4014
0000-0001-8863-3539
0000-0001-8294-6227
OpenAccessLink https://www.nature.com/articles/s41586-023-05895-y
PMID 37165237
PQID 2814062380
PQPubID 40569
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10172114
proquest_miscellaneous_2812505596
proquest_journals_2814062380
pubmed_primary_37165237
crossref_citationtrail_10_1038_s41586_023_05895_y
crossref_primary_10_1038_s41586_023_05895_y
springer_journals_10_1038_s41586_023_05895_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-11
PublicationDateYYYYMMDD 2023-05-11
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hartasánchez, Vallès-Codina, Brasó-Vives, Navarro (CR26) 2014; 4
Vollger (CR10) 2022; 376
Li (CR66) 2018; 15
Harpak, Lan, Gao, Pritchard (CR27) 2017; 114
Dumont (CR15) 2015; 16
Li (CR60) 2009; 25
CR33
CR77
CR32
CR76
CR31
Benson (CR52) 1999; 27
Dishuck, Rozanski, Logsdon, Porubsky, Eichler (CR57) 2022; 39
CR72
Dougherty (CR19) 2018; 28
CR71
Noyes (CR48) 2022; 109
Kiktev, Sheng, Lobachev, Petes (CR41) 2018; 115
Nuttle (CR18) 2016; 536
Rhie, Walenz, Koren, Phillippy (CR56) 2020; 21
Ebert (CR4) 2021; 372
Force (CR38) 1999; 151
Carey, Patterson, Wheeler (CR69) 2021; 12
Jiang (CR17) 2007; 39
Quinlan (CR65) 2014; 47
Aitchison (CR75) 1982; 44
CR3
CR6
Innan (CR25) 2003; 163
Narasimhan (CR50) 2017; 8
Sudmant (CR9) 2010; 11184
Goldmann (CR42) 2018; 50
CR49
(CR8) 2012; 491
Nakken, Rødland, Rognes, Hovig (CR40) 2009; 10
Sekar (CR36) 2016; 530
Williams (CR45) 2015; 4
Lek (CR34) 2016; 536
Harris (CR74) 2015; 112
Fiddes (CR20) 2018; 173
Liu (CR46) 2003; 13
Jarvis (CR30) 2022; 611
Mansai, Kado, Innan (CR28) 2011; 2
Venter (CR13) 2001; 291
Fredman (CR2) 2004; 36
Elliott, Richardson, Winderbaum, Nickoloff, Jasin (CR44) 1998; 18
CR59
(CR12) 2001; 409
Pendleton (CR55) 2018; 16
Li (CR58) 2018; 34
Porubsky (CR70) 2021; 39
Nurk (CR29) 2022; 376
CR53
Duret, Galtier (CR5) 2009; 10
Ju (CR21) 2016; 5
Logsdon (CR47) 2021; 593
Carlson, DeWitt, Harris (CR73) 2020; 62
Richter (CR35) 2019; 24
Bailey, Yavor, Massa, Trask, Eichler (CR1) 2001; 11
Danecek (CR61) 2021; 10
(CR7) 2003; 426
Teshima, Innan (CR24) 2012; 190
Zook (CR23) 2019; 37
CR68
Bailey (CR11) 2002; 297
CR67
CR64
Sharp (CR14) 2005; 77
Gao (CR43) 2019; 116
Bonfield (CR62) 2021; 10
Bailey, Liu, Eichler (CR16) 2003; 73
Pietri (CR37) 2013; 19
Conant, Wagner (CR39) 2003; 13
Cheng, Concepcion, Feng, Zhang, Li (CR54) 2021; 18
Amemiya, Kundaje, Boyle (CR22) 2019; 9
Altemose (CR51) 2022; 376
Mölder (CR63) 2021; 10
M Richter (5895_CR35) 2019; 24
H Cheng (5895_CR54) 2021; 18
GA Logsdon (5895_CR47) 2021; 593
DA Kiktev (5895_CR41) 2018; 115
B Elliott (5895_CR44) 1998; 18
P Danecek (5895_CR61) 2021; 10
JM Zook (5895_CR23) 2019; 37
Z Gao (5895_CR43) 2019; 116
PH Sudmant (5895_CR9) 2010; 11184
G Liu (5895_CR46) 2003; 13
5895_CR49
AJ Sharp (5895_CR14) 2005; 77
A Sekar (5895_CR36) 2016; 530
M Pietri (5895_CR37) 2013; 19
N Altemose (5895_CR51) 2022; 376
IHGSC. (5895_CR12) 2001; 409
A Rhie (5895_CR56) 2020; 21
D Porubsky (5895_CR70) 2021; 39
ED Jarvis (5895_CR30) 2022; 611
J Carlson (5895_CR73) 2020; 62
HM Amemiya (5895_CR22) 2019; 9
M Lek (5895_CR34) 2016; 536
DA Hartasánchez (5895_CR26) 2014; 4
F Mölder (5895_CR63) 2021; 10
5895_CR6
5895_CR72
5895_CR3
5895_CR71
S Nurk (5895_CR29) 2022; 376
ML Dougherty (5895_CR19) 2018; 28
5895_CR33
5895_CR77
JA Bailey (5895_CR1) 2001; 11
5895_CR32
5895_CR76
KM Teshima (5895_CR24) 2012; 190
5895_CR31
MD Noyes (5895_CR48) 2022; 109
X Nuttle (5895_CR18) 2016; 536
A Harpak (5895_CR27) 2017; 114
IT Fiddes (5895_CR20) 2018; 173
JM Goldmann (5895_CR42) 2018; 50
JA Bailey (5895_CR16) 2003; 73
PC Dishuck (5895_CR57) 2022; 39
AL Williams (5895_CR45) 2015; 4
5895_CR68
5895_CR67
H Innan (5895_CR25) 2003; 163
X-C Ju (5895_CR21) 2016; 5
H Li (5895_CR60) 2009; 25
JC Venter (5895_CR13) 2001; 291
H Li (5895_CR66) 2018; 15
AL Pendleton (5895_CR55) 2018; 16
5895_CR64
K Harris (5895_CR74) 2015; 112
J Aitchison (5895_CR75) 1982; 44
KM Carey (5895_CR69) 2021; 12
JK Bonfield (5895_CR62) 2021; 10
GC Conant (5895_CR39) 2003; 13
G Benson (5895_CR52) 1999; 27
D Fredman (5895_CR2) 2004; 36
S Nakken (5895_CR40) 2009; 10
5895_CR59
AR Quinlan (5895_CR65) 2014; 47
H Li (5895_CR58) 2018; 34
L Duret (5895_CR5) 2009; 10
SP Mansai (5895_CR28) 2011; 2
A Force (5895_CR38) 1999; 151
P Ebert (5895_CR4) 2021; 372
VM Narasimhan (5895_CR50) 2017; 8
International HapMap Consortium. (5895_CR7) 2003; 426
5895_CR53
1000 Genomes Project Consortium (5895_CR8) 2012; 491
MR Vollger (5895_CR10) 2022; 376
Z Jiang (5895_CR17) 2007; 39
JA Bailey (5895_CR11) 2002; 297
BL Dumont (5895_CR15) 2015; 16
37165235 - Nature. 2023 May;617(7960):256-258. doi: 10.1038/d41586-023-01490-3.
References_xml – volume: 491
  start-page: 56
  year: 2012
  end-page: 65
  ident: CR8
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 28
  start-page: 1566
  year: 2018
  end-page: 1576
  ident: CR19
  article-title: Transcriptional fates of human-specific segmental duplications in brain
  publication-title: Genome Res.
  doi: 10.1101/gr.237610.118
– ident: CR49
– ident: CR68
– volume: 109
  start-page: 631
  year: 2022
  end-page: 646
  ident: CR48
  article-title: Familial long-read sequencing increases yield of de novo mutations
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2022.02.014
– volume: 536
  start-page: 285
  year: 2016
  end-page: 291
  ident: CR34
  article-title: Analysis of protein-coding genetic variation in 60,706 humans
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 10
  year: 2009
  ident: CR40
  article-title: Large-scale inference of the point mutational spectrum in human segmental duplications
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-43
– volume: 10
  year: 2021
  ident: CR61
  article-title: Twelve years of SAMtools and BCFtools
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– ident: CR77
– volume: 39
  start-page: btac714
  year: 2022
  ident: CR57
  article-title: GAVISUNK: genome assembly validation via inter-SUNK distances in Oxford Nanopore reads
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac714
– volume: 19
  start-page: 1124
  year: 2013
  end-page: 1131
  ident: CR37
  article-title: PDK1 decreases TACE-mediated α-secretase activity and promotes disease progression in prion and Alzheimer’s diseases
  publication-title: Nat. Med.
  doi: 10.1038/nm.3302
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: CR60
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 34
  start-page: 3094
  year: 2018
  end-page: 3100
  ident: CR58
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 21
  year: 2020
  ident: CR56
  article-title: Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02134-9
– volume: 114
  start-page: 201708151
  year: 2017
  ident: CR27
  article-title: Frequent nonallelic gene conversion on the human lineage and its effect on the divergence of gene duplicates
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708151114
– volume: 73
  start-page: 823
  year: 2003
  end-page: 834
  ident: CR16
  article-title: An Alu transposition model for the origin and expansion of human segmental duplications
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/378594
– volume: 536
  start-page: 205
  year: 2016
  end-page: 209
  ident: CR18
  article-title: Emergence of a -specific gene family and chromosome 16p11. 2 CNV susceptibility
  publication-title: Nature
  doi: 10.1038/nature19075
– volume: 9
  year: 2019
  ident: CR22
  article-title: The ENCODE blacklist: identification of problematic regions of the genome
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45839-z
– volume: 16
  year: 2018
  ident: CR55
  article-title: Comparison of village dog and wolf genomes highlights the role of the neural crest in dog domestication
  publication-title: BMC Biol.
  doi: 10.1186/s12915-018-0535-2
– ident: CR71
– volume: 36
  start-page: 861
  year: 2004
  end-page: 866
  ident: CR2
  article-title: Complex SNP-related sequence variation in segmental genome duplications
  publication-title: Nat. Genet.
  doi: 10.1038/ng1401
– volume: 10
  start-page: 33
  year: 2021
  ident: CR63
  article-title: Sustainable data analysis with Snakemake
  publication-title: F1000Res.
  doi: 10.12688/f1000research.29032.2
– volume: 297
  start-page: 1003
  year: 2002
  end-page: 1007
  ident: CR11
  article-title: Recent segmental duplications in the human genome
  publication-title: Science
  doi: 10.1126/science.1072047
– ident: CR67
– volume: 47
  start-page: 11.12.1-34
  year: 2014
  ident: CR65
  article-title: BEDTools: the Swiss-army tool for genome feature analysis
  publication-title: Curr. Protoc. Bioinformatics
  doi: 10.1002/0471250953.bi1112s47
– volume: 112
  start-page: 3439
  year: 2015
  end-page: 3444
  ident: CR74
  article-title: Evidence for recent, population-specific evolution of the human mutation rate
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1418652112
– volume: 611
  start-page: 519
  year: 2022
  end-page: 531
  ident: CR30
  article-title: Semi-automated assembly of high-quality diploid human reference genomes
  publication-title: Nature
  doi: 10.1038/s41586-022-05325-5
– volume: 115
  start-page: E7109
  year: 2018
  end-page: E7118
  ident: CR41
  article-title: GC content elevates mutation and recombination rates in the yeast
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1807334115
– volume: 116
  start-page: 9491
  year: 2019
  end-page: 9500
  ident: CR43
  article-title: Overlooked roles of DNA damage and maternal age in generating human germline mutations
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1901259116
– volume: 13
  start-page: 358
  year: 2003
  end-page: 368
  ident: CR46
  article-title: Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome
  publication-title: Genome Res.
  doi: 10.1101/gr.923303
– volume: 10
  start-page: 285
  year: 2009
  end-page: 311
  ident: CR5
  article-title: Biased gene conversion and the evolution of mammalian genomic landscapes
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev-genom-082908-150001
– ident: CR32
– volume: 376
  start-page: 44
  year: 2022
  end-page: 53
  ident: CR29
  article-title: The complete sequence of a human genome
  publication-title: Science
  doi: 10.1126/science.abj6987
– volume: 4
  start-page: e04637
  year: 2015
  ident: CR45
  article-title: Non-crossover gene conversions show strong GC bias and unexpected clustering in humans
  publication-title: eLife
  doi: 10.7554/eLife.04637
– ident: CR64
– volume: 12
  year: 2021
  ident: CR69
  article-title: Transposable element subfamily annotation has a reproducibility problem
  publication-title: Mob. DNA
  doi: 10.1186/s13100-021-00232-4
– volume: 62
  start-page: 50
  year: 2020
  end-page: 57
  ident: CR73
  article-title: Inferring evolutionary dynamics of mutation rates through the lens of mutation spectrum variation
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2020.05.024
– volume: 11184
  start-page: 2
  year: 2010
  end-page: 7
  ident: CR9
  article-title: Diversity of human copy number
  publication-title: Science
– volume: 190
  start-page: 1077
  year: 2012
  end-page: 1086
  ident: CR24
  article-title: The coalescent with selection on copy number variants
  publication-title: Genetics
  doi: 10.1534/genetics.111.135343
– volume: 530
  start-page: 177
  year: 2016
  end-page: 183
  ident: CR36
  article-title: Schizophrenia risk from complex variation of complement component 4
  publication-title: Nature
  doi: 10.1038/nature16549
– ident: CR72
– volume: 39
  start-page: 302
  year: 2021
  end-page: 308
  ident: CR70
  article-title: Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0719-5
– volume: 44
  start-page: 139
  year: 1982
  end-page: 160
  ident: CR75
  article-title: The statistical analysis of compositional data
  publication-title: J. R. Stat. Soc.
– ident: CR53
– volume: 77
  start-page: 78
  year: 2005
  end-page: 88
  ident: CR14
  article-title: Segmental duplications and copy-number variation in the human genome
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/431652
– volume: 16
  year: 2015
  ident: CR15
  article-title: Interlocus gene conversion explains at least 2.7% of single nucleotide variants in human segmental duplications
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1681-3
– volume: 163
  start-page: 803
  year: 2003
  end-page: 810
  ident: CR25
  article-title: The coalescent and infinite-site model of a small multigene family
  publication-title: Genetics
  doi: 10.1093/genetics/163.2.803
– ident: CR33
– volume: 18
  start-page: 93
  year: 1998
  end-page: 101
  ident: CR44
  article-title: Gene conversion tracts from double-strand break repair in mammalian cells
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.1.93
– volume: 10
  year: 2021
  ident: CR62
  article-title: HTSlib: C library for reading/writing high-throughput sequencing data
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab007
– volume: 409
  start-page: 860
  year: 2001
  end-page: 921
  ident: CR12
  article-title: Initial sequencing and analysis of the human genome
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 50
  start-page: 487
  year: 2018
  end-page: 492
  ident: CR42
  article-title: Germline de novo mutation clusters arise during oocyte aging in genomic regions with high double-strand-break incidence
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0071-6
– ident: CR6
– volume: 291
  start-page: 1304
  year: 2001
  end-page: 1351
  ident: CR13
  article-title: The sequence of the human genome
  publication-title: Science
  doi: 10.1126/science.1058040
– volume: 27
  start-page: 573
  year: 1999
  end-page: 580
  ident: CR52
  article-title: Tandem repeats finder: a program to analyze DNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.2.573
– volume: 37
  start-page: 561
  year: 2019
  end-page: 566
  ident: CR23
  article-title: An open resource for accurately benchmarking small variant and reference calls
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0074-6
– volume: 15
  start-page: 595
  year: 2018
  end-page: 597
  ident: CR66
  article-title: A synthetic-diploid benchmark for accurate variant-calling evaluation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0054-7
– volume: 24
  start-page: 1329
  year: 2019
  end-page: 1350
  ident: CR35
  article-title: Altered TAOK2 activity causes autism-related neurodevelopmental and cognitive abnormalities through RhoA signaling
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-018-0025-5
– volume: 13
  start-page: 2052
  year: 2003
  end-page: 2058
  ident: CR39
  article-title: Asymmetric sequence divergence of duplicate genes
  publication-title: Genome Res.
  doi: 10.1101/gr.1252603
– volume: 173
  start-page: 1356
  year: 2018
  end-page: 1369
  ident: CR20
  article-title: Human-specific genes affect notch signaling and cortical neurogenesis
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.051
– volume: 39
  start-page: 1361
  year: 2007
  end-page: 1368
  ident: CR17
  article-title: Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2007.9
– volume: 2
  start-page: 313
  year: 2011
  end-page: 331
  ident: CR28
  article-title: The rate and tract length of gene conversion between duplicated genes
  publication-title: Genes
  doi: 10.3390/genes2020313
– volume: 593
  start-page: 101
  year: 2021
  end-page: 107
  ident: CR47
  article-title: The structure, function and evolution of a complete human chromosome 8
  publication-title: Nature
  doi: 10.1038/s41586-021-03420-7
– volume: 8
  year: 2017
  ident: CR50
  article-title: Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00323-y
– volume: 376
  start-page: eabl4178
  year: 2022
  ident: CR51
  article-title: Complete genomic and epigenetic maps of human centromeres
  publication-title: Science
  doi: 10.1126/science.abl4178
– volume: 11
  start-page: 1005
  year: 2001
  end-page: 1017
  ident: CR1
  article-title: Segmental duplications: organization and impact within the current human genome project assembly
  publication-title: Genome Res.
  doi: 10.1101/gr.187101
– ident: CR3
– volume: 18
  start-page: 170
  year: 2021
  end-page: 175
  ident: CR54
  article-title: Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01056-5
– volume: 376
  start-page: eabj6965
  year: 2022
  ident: CR10
  article-title: Segmental duplications and their variation in a complete human genome
  publication-title: Science
  doi: 10.1126/science.abj6965
– volume: 151
  start-page: 1531
  year: 1999
  end-page: 1545
  ident: CR38
  article-title: Preservation of duplicate genes by complementary, degenerative mutations
  publication-title: Genetics
  doi: 10.1093/genetics/151.4.1531
– volume: 426
  start-page: 789
  year: 2003
  end-page: 796
  ident: CR7
  article-title: The International HapMap Project
  publication-title: Nature
  doi: 10.1038/nature02168
– ident: CR31
– volume: 5
  start-page: e18197
  year: 2016
  ident: CR21
  article-title: The hominoid-specific gene promotes generation of basal neural progenitors and induces cortical folding in mice
  publication-title: eLife
  doi: 10.7554/eLife.18197
– volume: 372
  start-page: eabf7117
  year: 2021
  ident: CR4
  article-title: Haplotype-resolved diverse human genomes and integrated analysis of structural variation
  publication-title: Science
  doi: 10.1126/science.abf7117
– ident: CR59
– ident: CR76
– volume: 4
  start-page: 1479
  year: 2014
  end-page: 1489
  ident: CR26
  article-title: Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario
  publication-title: G3 Genes Genomes Genet.
  doi: 10.1534/g3.114.012435
– volume: 16
  year: 2018
  ident: 5895_CR55
  publication-title: BMC Biol.
  doi: 10.1186/s12915-018-0535-2
– ident: 5895_CR64
– volume: 4
  start-page: e04637
  year: 2015
  ident: 5895_CR45
  publication-title: eLife
  doi: 10.7554/eLife.04637
– volume: 10
  year: 2021
  ident: 5895_CR61
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab008
– volume: 62
  start-page: 50
  year: 2020
  ident: 5895_CR73
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2020.05.024
– volume: 11184
  start-page: 2
  year: 2010
  ident: 5895_CR9
  publication-title: Science
– volume: 10
  start-page: 285
  year: 2009
  ident: 5895_CR5
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev-genom-082908-150001
– volume: 112
  start-page: 3439
  year: 2015
  ident: 5895_CR74
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1418652112
– ident: 5895_CR3
  doi: 10.1038/s41586-023-05896-x
– volume: 77
  start-page: 78
  year: 2005
  ident: 5895_CR14
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/431652
– volume: 12
  year: 2021
  ident: 5895_CR69
  publication-title: Mob. DNA
  doi: 10.1186/s13100-021-00232-4
– ident: 5895_CR49
– ident: 5895_CR71
  doi: 10.5281/zenodo.7651064
– volume: 491
  start-page: 56
  year: 2012
  ident: 5895_CR8
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 39
  start-page: 1361
  year: 2007
  ident: 5895_CR17
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2007.9
– volume: 27
  start-page: 573
  year: 1999
  ident: 5895_CR52
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/27.2.573
– volume: 530
  start-page: 177
  year: 2016
  ident: 5895_CR36
  publication-title: Nature
  doi: 10.1038/nature16549
– volume: 151
  start-page: 1531
  year: 1999
  ident: 5895_CR38
  publication-title: Genetics
  doi: 10.1093/genetics/151.4.1531
– volume: 115
  start-page: E7109
  year: 2018
  ident: 5895_CR41
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1807334115
– volume: 50
  start-page: 487
  year: 2018
  ident: 5895_CR42
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0071-6
– ident: 5895_CR76
  doi: 10.5281/ZENODO.7653472
– volume: 19
  start-page: 1124
  year: 2013
  ident: 5895_CR37
  publication-title: Nat. Med.
  doi: 10.1038/nm.3302
– volume: 39
  start-page: btac714
  year: 2022
  ident: 5895_CR57
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac714
– volume: 376
  start-page: eabj6965
  year: 2022
  ident: 5895_CR10
  publication-title: Science
  doi: 10.1126/science.abj6965
– volume: 16
  year: 2015
  ident: 5895_CR15
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-1681-3
– volume: 536
  start-page: 285
  year: 2016
  ident: 5895_CR34
  publication-title: Nature
  doi: 10.1038/nature19057
– volume: 39
  start-page: 302
  year: 2021
  ident: 5895_CR70
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0719-5
– volume: 536
  start-page: 205
  year: 2016
  ident: 5895_CR18
  publication-title: Nature
  doi: 10.1038/nature19075
– volume: 4
  start-page: 1479
  year: 2014
  ident: 5895_CR26
  publication-title: G3 Genes Genomes Genet.
  doi: 10.1534/g3.114.012435
– volume: 21
  year: 2020
  ident: 5895_CR56
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02134-9
– ident: 5895_CR59
  doi: 10.5281/ZENODO.6342176
– volume: 37
  start-page: 561
  year: 2019
  ident: 5895_CR23
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0074-6
– volume: 73
  start-page: 823
  year: 2003
  ident: 5895_CR16
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/378594
– volume: 10
  year: 2009
  ident: 5895_CR40
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-10-43
– volume: 409
  start-page: 860
  year: 2001
  ident: 5895_CR12
  publication-title: Nature
  doi: 10.1038/35057062
– volume: 173
  start-page: 1356
  year: 2018
  ident: 5895_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.051
– volume: 109
  start-page: 631
  year: 2022
  ident: 5895_CR48
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2022.02.014
– ident: 5895_CR67
  doi: 10.5281/ZENODO.7653446
– ident: 5895_CR32
  doi: 10.1038/s41587-023-01662-6
– volume: 34
  start-page: 3094
  year: 2018
  ident: 5895_CR58
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 15
  start-page: 595
  year: 2018
  ident: 5895_CR66
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0054-7
– volume: 297
  start-page: 1003
  year: 2002
  ident: 5895_CR11
  publication-title: Science
  doi: 10.1126/science.1072047
– volume: 190
  start-page: 1077
  year: 2012
  ident: 5895_CR24
  publication-title: Genetics
  doi: 10.1534/genetics.111.135343
– ident: 5895_CR77
  doi: 10.5281/ZENODO.7653486
– volume: 291
  start-page: 1304
  year: 2001
  ident: 5895_CR13
  publication-title: Science
  doi: 10.1126/science.1058040
– volume: 25
  start-page: 2078
  year: 2009
  ident: 5895_CR60
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– ident: 5895_CR72
  doi: 10.1101/2020.07.01.183392
– volume: 18
  start-page: 170
  year: 2021
  ident: 5895_CR54
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01056-5
– volume: 9
  year: 2019
  ident: 5895_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45839-z
– ident: 5895_CR33
  doi: 10.1101/gr.2177404
– volume: 24
  start-page: 1329
  year: 2019
  ident: 5895_CR35
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-018-0025-5
– volume: 593
  start-page: 101
  year: 2021
  ident: 5895_CR47
  publication-title: Nature
  doi: 10.1038/s41586-021-03420-7
– ident: 5895_CR6
  doi: 10.1038/287560a0
– volume: 376
  start-page: 44
  year: 2022
  ident: 5895_CR29
  publication-title: Science
  doi: 10.1126/science.abj6987
– ident: 5895_CR53
– volume: 163
  start-page: 803
  year: 2003
  ident: 5895_CR25
  publication-title: Genetics
  doi: 10.1093/genetics/163.2.803
– volume: 13
  start-page: 2052
  year: 2003
  ident: 5895_CR39
  publication-title: Genome Res.
  doi: 10.1101/gr.1252603
– volume: 47
  start-page: 11.12.1-34
  year: 2014
  ident: 5895_CR65
  publication-title: Curr. Protoc. Bioinformatics
  doi: 10.1002/0471250953.bi1112s47
– volume: 376
  start-page: eabl4178
  year: 2022
  ident: 5895_CR51
  publication-title: Science
  doi: 10.1126/science.abl4178
– volume: 8
  year: 2017
  ident: 5895_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00323-y
– volume: 28
  start-page: 1566
  year: 2018
  ident: 5895_CR19
  publication-title: Genome Res.
  doi: 10.1101/gr.237610.118
– volume: 114
  start-page: 201708151
  year: 2017
  ident: 5895_CR27
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708151114
– volume: 36
  start-page: 861
  year: 2004
  ident: 5895_CR2
  publication-title: Nat. Genet.
  doi: 10.1038/ng1401
– volume: 10
  year: 2021
  ident: 5895_CR62
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab007
– ident: 5895_CR31
  doi: 10.1101/gr.277334.122
– volume: 5
  start-page: e18197
  year: 2016
  ident: 5895_CR21
  publication-title: eLife
  doi: 10.7554/eLife.18197
– volume: 116
  start-page: 9491
  year: 2019
  ident: 5895_CR43
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1901259116
– volume: 611
  start-page: 519
  year: 2022
  ident: 5895_CR30
  publication-title: Nature
  doi: 10.1038/s41586-022-05325-5
– volume: 13
  start-page: 358
  year: 2003
  ident: 5895_CR46
  publication-title: Genome Res.
  doi: 10.1101/gr.923303
– volume: 11
  start-page: 1005
  year: 2001
  ident: 5895_CR1
  publication-title: Genome Res.
  doi: 10.1101/gr.187101
– volume: 426
  start-page: 789
  year: 2003
  ident: 5895_CR7
  publication-title: Nature
  doi: 10.1038/nature02168
– volume: 372
  start-page: eabf7117
  year: 2021
  ident: 5895_CR4
  publication-title: Science
  doi: 10.1126/science.abf7117
– ident: 5895_CR68
  doi: 10.5281/ZENODO.7653464
– volume: 2
  start-page: 313
  year: 2011
  ident: 5895_CR28
  publication-title: Genes
  doi: 10.3390/genes2020313
– volume: 10
  start-page: 33
  year: 2021
  ident: 5895_CR63
  publication-title: F1000Res.
  doi: 10.12688/f1000research.29032.2
– volume: 44
  start-page: 139
  year: 1982
  ident: 5895_CR75
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1982.tb01195.x
– volume: 18
  start-page: 93
  year: 1998
  ident: 5895_CR44
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.18.1.93
– reference: 37165235 - Nature. 2023 May;617(7960):256-258. doi: 10.1038/d41586-023-01490-3.
SSID ssj0005174
Score 2.609621
Snippet Single-nucleotide variants (SNVs) in segmental duplications (SDs) have not been systematically assessed because of the limitations of mapping short-read...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 325
SubjectTerms 45
45/23
631/181/2474
631/208/212/2304
631/208/457/649/2157
631/208/726/649
631/208/737
Conversion
CpG islands
CpG Islands - genetics
Cytosine
Cytosine - chemistry
Deoxyribonucleic acid
DNA
Estimates
Exons
Exons - genetics
Gene conversion
Gene Conversion - genetics
Gene mapping
Genes
Genome, Human - genetics
Genomes
Guanine - chemistry
Haplotypes
Haplotypes - genetics
Humanities and Social Sciences
Humans
multidisciplinary
Mutation
Nucleotide sequence
Nucleotides
Polymorphism, Single Nucleotide - genetics
Reproduction (copying)
Science
Science (multidisciplinary)
Segmental Duplications, Genomic
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB50RfAivq2uEsGDosGmadPsSURcxYMnBW-leVQF7ardPfjvnaTZXVbRc6a0mZlkXl9nAA65MnkpeEXTPFMYoBhNFSoGVU49RCXQYnqA7J24eUhvH7PHkHBrAqxyfCf6i9oMtMuRnyWuNRPaahmfv39QNzXKVVfDCI15WGBoaRykS_avpxCPH12Yw08zMZdnDRou6eC3Dr0mexn9mjVMv7zN36DJH5VTb5D6K7AcPEly0Yp-FeZsvQaLHtGpmzVYDae2IUehtfTxOtzideBQ6NaQt1FbhCdlbQhqkSUegO6zZ8RlZ19q4gf4kcY-tRMAiBlNq90b8NC_ur-8oWGaAtVZyoZUClSaSvDcdWTRCed5XrHcxKKUsmSxTXtMIUGmE6FRZOhIVIYjXaxsziv0FDehUw9quw0kVkb1MAovE16mxlUOpY5TG9vKCBRxGgEbs7LQodW4m3jxWviSN5dFy_4C2V949hdfEZxMnnlvG238S90dS6gIh64ppioSwcFkGY-Lq4GUtR2MPI1z-rKeiGCrFejkdRxjR4zL8wjkjKgnBK4V9-xK_fLsW3KzNpTGnZ-OtWL6XX9vY-f_bezCUtJqKGWsC53h58juoQ80VPte0b8BwOUCtA
  priority: 102
  providerName: ProQuest
Title Increased mutation and gene conversion within human segmental duplications
URI https://link.springer.com/article/10.1038/s41586-023-05895-y
https://www.ncbi.nlm.nih.gov/pubmed/37165237
https://www.proquest.com/docview/2814062380
https://www.proquest.com/docview/2812505596
https://pubmed.ncbi.nlm.nih.gov/PMC10172114
Volume 617
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB50RfAivq2uSwQPihabpk2yR11cxYOIKOytNE2qC1rF7h78907Sdpf1BV56ybRNMpNkJvPlC8ABU1qknOV-JGKFAYrOfIWG4StrHjznuGI6gOwNv3qIrgfxYA7C5iyMA-07Sks3TTfosNMSFxpp4bIWbSa7sf8xDwuWut0GXD3em8I6vjAv1wdlAiZ_-MbsYvTNw_wOlPySLXWLUH8FlmvvkZxV9V2FOVOswaJDcWblGqzWI7UkhzWd9NE6XOMUYJHnRpOXcZV4J2mhCVqOIQ507nbMiN2RHRbEXdpHSvNYsf4TPZ5muDfgoX9x37vy6xsU_CyO6MiXHA0l50xYFpYsZEyInAod8FTKlAYm6lKFAnEW8gzVhM5DrhnKBcoIlqN3uAmt4rUw20ACpVUXI-80ZGmkbbZQZkFkApNrjmqNPKBNVyZZTS9ub7l4Tlyam8mk6v4Euz9x3Z98eHA8eeetItf4U7rdaCipB1qZhJaxC104GXiwPynGIWLzHmlhXsdOxjp6cZd7sFUpdPI7hvEixuLCAzmj6omApd-eLSmGT46Gm1bhM7b8pLGKab1-b8bO_8R3YSmsLNantA2t0fvY7KEfNFIdmBcDgU_Zo_bZv-zAwvnFze1dxw2JT6VXBV4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gxOiLEVQsIK6JJhrZ0Hbb7d6DMQQ9jw95goS3pftRJdEe2LuQ-6f4G5ndbe9yEHnjuXO97uxvd2Z2fjsD8J4pU5ScVTQrcoUBitFUITCocvDgFUeL6QmyR3xwku2f5qcLcN3dhXG0ym5P9Bu1GWp3Rr6dutJMaKtF_PXikrquUS672rXQCLA4sJMrDNmaL3vfcH4_pGn_-_HugLZdBajOs2REBUflVZwVrjKJThkriiopTMxLIcoktlkvUSiQ65Rr_HQ0qJVhKBcrW7AKPSZ87yNYyhhacnczvf9jRim5VfW5vaQTM7HdoKEUju7r2HKil9PJvCG8493eJWneytR6A9h_Ds9az5XsBKgtw4KtV-CxZ5DqZgWW212iIR_bUtafXsA-bj-O9W4N-TsOSX9S1oYgai3xhHd_WkfcafB5TXzDQNLYX6HjADHjWXb9JZw8iJ5fwWI9rO1rILEyqodRf5myMjMuUyl0nNnYVoYjpLIIkk6VUrelzV2HjT_Sp9iZkEH9EtUvvfrlJILP099chMIe90pvdDMk20XeyBkkI3g3fYzL0-VcytoOx17GOZl5j0ewGiZ0-ncMY9U8ZUUEYm6qpwKu9Pf8k_r8ty8BnoTQHUe-1aFi9l3_H8ba_cN4C08Gxz8P5eHe0cE6PE0DWmmSbMDi6N_YvkH_a6Q2PegJnD30KrsBSiA_Tg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXRMsrbQEjgQSi1iZxYnsPCKGWVR-o4kCl3kz8CFSCbGl2hfav9dcxtpNdthW99ZzJw-NvPGPPlxmAV0xbUXFW00KUGjco1lCNwKDaw4PXHD1mIMge8b3j4uCkPFmBi_5fGE-r7NfEsFDbsfFn5IPcl2ZCXy3TQd3RIr7sjj6c_aa-g5TPtPbtNCJEDt3sD27f2vf7uzjXr_N89Onrzh7tOgxQUxbZhEqOiqw5E75KickZE6LOhE15JWWVpa4YZhoFSpNzg8NA51pbhnKpdoLVGD3hc2_BbcGE9DYmd_6hl1yqAN39sJMyOWjRaUpP_fXMOTks6WzZKV6JdK8SNi9lbYMzHD2A-10USz5G2K3BimvW4U5gk5p2Hda6FaMlb7qy1m8fwgEuRZ4B7yz5NY0EAFI1liCCHQnk93ByR_zJ8GlDQvNA0rrvsfsAsdNFpv0RHN-Inh_DajNu3FMgqbZ66DSrclYV1mctpUkLl7racoRXkUDWq1KZrsy577bxU4V0O5Mqql-h-lVQv5ol8G5-z1ks8nGt9FY_Q6oz-FYt4JnAy_llNFWff6kaN54GGR9wlkOewJM4ofPXMdy3ljkTCcilqZ4L-DLgy1ea0x-hHHgWt_E48u0eFYvv-v8wNq4fxgu4i_alPu8fHW7CvTyClWbZFqxOzqfuGYZiE_08YJ7At5s2sr_Wn0NP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+mutation+and+gene+conversion+within+human+segmental+duplications&rft.jtitle=Nature+%28London%29&rft.au=Vollger%2C+Mitchell+R.&rft.au=Dishuck%2C+Philip+C.&rft.au=Harvey%2C+William+T.&rft.au=DeWitt%2C+William+S.&rft.date=2023-05-11&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=617&rft.issue=7960&rft.spage=325&rft.epage=334&rft_id=info:doi/10.1038%2Fs41586-023-05895-y&rft.externalDocID=10_1038_s41586_023_05895_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon