Magnetized radiative flow of propylene glycol with carbon nanotubes and activation energy

Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C 3 H 8 O...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 21813 - 13
Main Authors Ali Ghazwani, Hassan, Saleem, Muzher, Haq, Fazal
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
AbstractList Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy-Forchheimer flow of Propylene glycol [Formula: see text] submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge-Kutta-Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy-Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy-Forchheimer flow of Propylene glycol [Formula: see text] submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge-Kutta-Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy-Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy-Forchheimer flow of Propylene glycol [Formula: see text] submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge-Kutta-Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy-Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
Abstract Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol $$\left( {C_{3} H_{8} O_{2} } \right)$$ C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C3H8O2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol $$\left( {C_{3} H_{8} O_{2} } \right)$$ C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {C_{3} H_{8} O_{2} } \right)$$\end{document} C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.
ArticleNumber 21813
Author Ali Ghazwani, Hassan
Haq, Fazal
Saleem, Muzher
Author_xml – sequence: 1
  givenname: Hassan
  surname: Ali Ghazwani
  fullname: Ali Ghazwani, Hassan
  organization: Department of Mechanical Engineering, Faculty of Engineering, Jazan University
– sequence: 2
  givenname: Muzher
  surname: Saleem
  fullname: Saleem, Muzher
  organization: Department of Mathematical Sciences, Karakoram International University Main Campus
– sequence: 3
  givenname: Fazal
  surname: Haq
  fullname: Haq, Fazal
  email: fazal.haq@kiu.edu.pk
  organization: Department of Mathematical Sciences, Karakoram International University Main Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38071275$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFAR_aB_gAOKxIVLwB9xbJ8QqkqpVMQFDpysF_sl9SprL3a2q-XX4-620PZQX2z5zYxG8-a4OggxYFW9oeQDJVx9zC0VWjWE8abVVJBm86I6YqQVDeOMHTx4H1anOS9IOYLplupX1SFXRFImxVH16xuMAWf_B12dwHmY_Q3WwxQ3dRzqVYqr7YQB63Ha2jjVGz9f1xZSH0MdIMR53WOuIbgabGEWdhkUfBq3r6uXA0wZT-_uk-rnl_MfZ1-bq-8Xl2efrxorWjo3ijrFQclOE6Ct7IBxTRnVgxKoLHE9UGJRgtCdJT0IaanraEt7yV3fOcdPqsu9rouwMKvkl5C2JoI3u4-YRgNp9nZC0zqJXCBX2GE7KKtYOwxWEc6JA4qkaH3aa63W_RKdxTAnmB6JPp4Ef23GeGNoybPkLYvC-zuFFH-vMc9m6bPFaYKAcZ0N04Tp4p-LAn33BLqI6xRKVoYprSWXnbhFvX1o6Z-X-xUWgNoDbIo5JxyM9fNuEcWhn4o1c1sYsy-MKYUxu8KYTaGyJ9R79WdJfE_KBRxGTP9tP8P6C1-n0_Y
CitedBy_id crossref_primary_10_1007_s10973_025_14020_2
crossref_primary_10_1016_j_csite_2024_105460
crossref_primary_10_1016_j_ijft_2025_101083
crossref_primary_10_1016_j_csite_2024_105052
crossref_primary_10_1016_j_asej_2024_103172
crossref_primary_10_1016_j_jrras_2025_101322
crossref_primary_10_1016_j_jrras_2024_101279
crossref_primary_10_1016_j_ijft_2025_101136
crossref_primary_10_1177_16878132251324359
crossref_primary_10_1155_er_9310834
crossref_primary_10_1007_s10973_024_13699_z
crossref_primary_10_1016_j_ces_2024_120646
crossref_primary_10_1080_19942060_2024_2380800
crossref_primary_10_1016_j_aej_2025_01_026
crossref_primary_10_1038_s41598_024_82569_3
crossref_primary_10_1016_j_tsep_2024_102717
Cites_doi 10.1016/j.ijheatmasstransfer.2019.01.141
10.1016/j.cjph.2022.08.008
10.1007/s12648-021-02132-y
10.1023/A:1016662114589
10.1016/j.asej.2023.102422
10.1166/jon.2023.1910
10.1016/j.jcis.2005.06.039
10.1038/s41598-023-30482-6
10.1007/s10973-023-12588-1
10.1016/j.jmmm.2023.170709
10.1016/j.physb.2005.07.024
10.1038/s41598-021-98490-y
10.1016/j.heliyon.2023.e16490
10.1016/j.cjph.2022.04.004
10.1371/journal.pone.0179576
10.1016/j.jics.2022.100741
10.1016/j.csite.2021.101168
10.1007/BF00853952
10.1038/nmat1293
10.3390/math11173687
10.1016/j.asej.2023.102282
10.1016/j.rinp.2023.106618
10.1016/j.aej.2015.03.013
10.1007/s40430-018-1494-9
10.1016/j.jppr.2023.07.001
10.1038/354056a0
10.1016/j.ijheatmasstransfer.2010.01.032
10.1016/j.asej.2016.04.019
10.1016/j.cjph.2021.07.016
10.1016/j.csite.2023.102830
10.1142/S0217979223500182
10.1016/j.csite.2023.103345
10.3389/fphy.2019.00219
10.1007/s13369-019-03828-4
10.3390/e22010018
10.1016/j.asoc.2015.10.015
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-49150-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_4d7e35e38e6e4f8c824ffc80330da1e0
PMC10710457
38071275
10_1038_s41598_023_49150_w
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-81d83a87690a1476a2391219f85e8c0dba10ce7a596c0ba57c1d6141b73db6dd3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 00:27:03 EDT 2025
Thu Aug 21 18:35:56 EDT 2025
Fri Jul 11 02:13:51 EDT 2025
Wed Aug 13 09:17:26 EDT 2025
Thu Jan 02 22:33:42 EST 2025
Thu Apr 24 23:08:07 EDT 2025
Tue Jul 01 03:58:01 EDT 2025
Fri Feb 21 02:37:10 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-81d83a87690a1476a2391219f85e8c0dba10ce7a596c0ba57c1d6141b73db6dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-49150-w
PMID 38071275
PQID 2899737655
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_4d7e35e38e6e4f8c824ffc80330da1e0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10710457
proquest_miscellaneous_2902961435
proquest_journals_2899737655
pubmed_primary_38071275
crossref_citationtrail_10_1038_s41598_023_49150_w
crossref_primary_10_1038_s41598_023_49150_w
springer_journals_10_1038_s41598_023_49150_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-09
PublicationDateYYYYMMDD 2023-12-09
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mahesh, Mahabaleshwar, Sofos (CR7) 2023; 13
Hayat, Haider, Muhammad, Alsaedi (CR6) 2017; 12
Ramesh, Madhukesh (CR5) 2021; 73
Upreti, Pandey, Kumar, Makinde (CR29) 2022; 37
Shafiq, Çolak, Sindhu (CR18) 2022; 80
Reddy Gorla, Sidawi (CR37) 1994; 52
Hayat, Shafiq, Alsaedi (CR17) 2015; 54
Raja, Khan, Zuhra, Chaudhary, Khan, He (CR27) 2021; 26
Xue (CR4) 2005; 368
Vishnu Ganesh, Abdul Hakeem, Ganga (CR23) 2018; 9
Raja, Farooq, Chaudhary, Wazwaz (CR10) 2016; 38
Rasool, Zhang, Chamkha, Shafiq, Tlili, Shahzadi (CR16) 2020; 22
Rasool, Wakif, Wang, Alshehri, Saeed (CR33) 2023; 12
Essam, Abedel-AaL (CR30) 2023; 12
Rahman, Haq, Darab, Sallah, Abdelmohsen, Fadhl (CR31) 2023; 9
Çolak, Shafiq, Sindhu (CR26) 2022; 77
Raja, Sabati, Parveen, Awais, Awan, Chaudhary (CR11) 2021; 11
Alzabut, Nadeem, Noor, Eldin (CR13) 2023; 51
Jawad, Hameed, Nisar, Majeed (CR24) 2023; 44
Sahu, Rout, Shaw, Dash, Thatoi, Nayak (CR32) 2022; 99
Khan, Pop (CR38) 2010; 53
Jakeer, Reddy, Easwaramoorthy, Basha, Cho (CR15) 2023; 11
Awais, Salahuddin, Muhammad (CR28) 2023; 15
Ijaz Khan, Hayat, Shah, Mujeeb Ur, Haq (CR34) 2019; 135
Forchheimer (CR20) 1901; 45
Ullah, Serra-Capizzano, Baleanu (CR25) 2020; 7
Shaiq, Maraj (CR35) 2019; 44
Prashar, Ojjela (CR36) 2022; 96
Alkuhayli (CR12) 2023; 575
Iijima (CR1) 1991; 354
Tu, Yang, Wang, Ma, Zhang (CR3) 2001; 10
Sudarsana Reddy, Jyothi, Suryanarayana (CR9) 2018; 40
CR21
Sadighi, Afshar, Jabbari, Ahmadi Danesh Ashtiani (CR14) 2023; 49
Suhr, Koratkar, Keblinski, Ajayan (CR2) 2005; 4
Seddeek (CR22) 2006; 293
Anusha, Mahabaleshwar, Bhattacharyya (CR8) 2023; 148
Awais, Salahuddin (CR19) 2023; 15
M Awais (49150_CR28) 2023; 15
G Rasool (49150_CR33) 2023; 12
G Rasool (49150_CR16) 2020; 22
NAM Alkuhayli (49150_CR12) 2023; 575
P Prashar (49150_CR36) 2022; 96
RS Reddy Gorla (49150_CR37) 1994; 52
R Mahesh (49150_CR7) 2023; 13
P Forchheimer (49150_CR20) 1901; 45
Q Xue (49150_CR4) 2005; 368
GK Ramesh (49150_CR5) 2021; 73
S Sadighi (49150_CR14) 2023; 49
J Suhr (49150_CR2) 2005; 4
P Sudarsana Reddy (49150_CR9) 2018; 40
H Upreti (49150_CR29) 2022; 37
WA Khan (49150_CR38) 2010; 53
T Hayat (49150_CR17) 2015; 54
MAZ Raja (49150_CR11) 2021; 11
MA Seddeek (49150_CR22) 2006; 293
S Shaiq (49150_CR35) 2019; 44
T Anusha (49150_CR8) 2023; 148
MZ Ullah (49150_CR25) 2020; 7
49150_CR21
S Iijima (49150_CR1) 1991; 354
A Shafiq (49150_CR18) 2022; 80
N Vishnu Ganesh (49150_CR23) 2018; 9
ME Essam (49150_CR30) 2023; 12
J Alzabut (49150_CR13) 2023; 51
M Awais (49150_CR19) 2023; 15
T Hayat (49150_CR6) 2017; 12
M Rahman (49150_CR31) 2023; 9
SK Sahu (49150_CR32) 2022; 99
JP Tu (49150_CR3) 2001; 10
S Jakeer (49150_CR15) 2023; 11
MAZ Raja (49150_CR10) 2016; 38
M Ijaz Khan (49150_CR34) 2019; 135
AB Çolak (49150_CR26) 2022; 77
MAZ Raja (49150_CR27) 2021; 26
M Jawad (49150_CR24) 2023; 44
References_xml – volume: 135
  start-page: 561
  year: 2019
  end-page: 568
  ident: CR34
  article-title: Physical aspects of CNTs and induced magnetic flux in stagnation point flow with quartic chemical reaction
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.141
– volume: 80
  start-page: 427
  year: 2022
  end-page: 444
  ident: CR18
  article-title: Significance of bioconvective flow of MHD thixotropic nanofluid passing through a vertical surface by machine learning algorithm
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.08.008
– volume: 96
  start-page: 2079
  issue: 7
  year: 2022
  end-page: 2092
  ident: CR36
  article-title: Numerical investigation of ZnO–MWCNTs/ethylene glycol hybrid nanofluid flow with activation energy
  publication-title: Indian J. Phy.
  doi: 10.1007/s12648-021-02132-y
– volume: 10
  start-page: 225
  issue: 4
  year: 2001
  end-page: 228
  ident: CR3
  article-title: Tribological properties of carbon-nanotube-reinforced copper composites
  publication-title: Tribol. Lett.
  doi: 10.1023/A:1016662114589
– volume: 15
  start-page: 102422
  year: 2023
  ident: CR28
  article-title: Effects of viscous dissipation and activation energy for the MHD Eyring-powell fluid flow with Darcy–Forchheimer and variable fluid properties
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102422
– volume: 12
  start-page: 55
  issue: 1
  year: 2023
  end-page: 64
  ident: CR30
  article-title: Darcy–Forchheimer flow of a nanofluid over a porous plate with thermal radiation and brownian motion
  publication-title: J. Nanofluids.
  doi: 10.1166/jon.2023.1910
– volume: 293
  start-page: 137
  issue: 1
  year: 2006
  end-page: 142
  ident: CR22
  article-title: Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media
  publication-title: J Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.06.039
– volume: 13
  start-page: 3369
  issue: 1
  year: 2023
  ident: CR7
  article-title: Influence of carbon nanotube suspensions on Casson fluid flow over a permeable shrinking membrane: an analytical approach
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30482-6
– volume: 148
  start-page: 12597
  year: 2023
  end-page: 12607
  ident: CR8
  article-title: An impact of MHD and radiation on flow of Jeffrey fluid with carbon nanotubes over a stretching/shrinking sheet with Navier’s slip
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12588-1
– volume: 575
  year: 2023
  ident: CR12
  article-title: Magnetohydrodynamic flow of copper-water nanofluid over a rotating rigid disk with Ohmic heating and hall effects
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2023.170709
– volume: 368
  start-page: 302
  year: 2005
  end-page: 307
  ident: CR4
  article-title: Model for thermal conductivity of carbon nanotube based composites
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2005.07.024
– volume: 11
  start-page: 22550
  issue: 1
  year: 2021
  ident: CR11
  article-title: Integrated intelligent computing application for effectiveness of Au nanoparticles coated over MWCNTs with velocity slip in curved channel peristaltic flow
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98490-y
– volume: 9
  start-page: e16490
  issue: 6
  year: 2023
  ident: CR31
  article-title: Mixed convection and activation energy impacts on MHD bioconvective flow of nanofluid with irreversibility assessment
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e16490
– volume: 77
  start-page: 2435
  year: 2022
  end-page: 2453
  ident: CR26
  article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.04.004
– volume: 12
  issue: 7
  year: 2017
  ident: CR6
  article-title: Three-dimensional rotating flow of carbon nanotubes with Darcy–Forchheimer porous medium
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0179576
– volume: 99
  issue: 11
  year: 2022
  ident: CR32
  article-title: Hydrothermal stagnation point flow of Carreau nanofluid over a moving thin needle with non-linear Navier's slip and cubic autocatalytic chemical reactions in Darcy–Forchheimer medium
  publication-title: J. Indian Chem. Soc.
  doi: 10.1016/j.jics.2022.100741
– volume: 26
  year: 2021
  ident: CR27
  article-title: Cattaneo-christov heat flux model of 3D hall current involving biconvection nanofluidic flow with Darcy–Forchheimer law effect: Backpropagation neural networks approach
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101168
– volume: 52
  start-page: 247
  issue: 3
  year: 1994
  end-page: 257
  ident: CR37
  article-title: Free convection on a vertical stretching surface with suction and blowing
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00853952
– volume: 4
  start-page: 134
  issue: 2
  year: 2005
  end-page: 137
  ident: CR2
  article-title: Viscoelasticity in carbon nanotube composites
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1293
– volume: 11
  start-page: 3687
  issue: 17
  year: 2023
  ident: CR15
  article-title: Exploring the influence of induced magnetic fields and double-diffusive convection on carreau nanofluid flow through diverse geometries: a comparative study using numerical and ANN approaches
  publication-title: Mathematics
  doi: 10.3390/math11173687
– volume: 15
  start-page: 102282
  year: 2023
  ident: CR19
  article-title: Radiative magnetodydrodynamic cross fluid thermophysical model passing on parabola surface with activation energy
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102282
– ident: CR21
– volume: 51
  year: 2023
  ident: CR13
  article-title: Numerical analysis of Magnetohydrodynamic convection heat flow in an enclosure
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106618
– volume: 54
  start-page: 205
  issue: 2
  year: 2015
  end-page: 212
  ident: CR17
  article-title: MHD axisymmetric flow of third grade fluid by a stretching cylinder
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2015.03.013
– volume: 45
  start-page: 1782
  year: 1901
  end-page: 1788
  ident: CR20
  article-title: Wasserbewegung durch boden
  publication-title: Z Ver Deutsch Ing.
– volume: 40
  start-page: 576
  issue: 12
  year: 2018
  ident: CR9
  article-title: Flow and heat transfer analysis of carbon nanotubes-based Maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1494-9
– volume: 12
  start-page: 428
  issue: 3
  year: 2023
  end-page: 442
  ident: CR33
  article-title: Falkner-Skan aspects of a radiating (50% ethylene glycol + 50% water)-based hybrid nanofluid when Joule heating as well as Darcy–Forchheimer and Lorentz forces affect significantly
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2023.07.001
– volume: 354
  start-page: 56
  issue: 6348
  year: 1991
  end-page: 58
  ident: CR1
  article-title: Helical microtubules of graphitic carbon
  publication-title: Nature
  doi: 10.1038/354056a0
– volume: 53
  start-page: 2477
  issue: 11
  year: 2010
  end-page: 2483
  ident: CR38
  article-title: Boundary-layer flow of a nanofluid past a stretching sheet
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.01.032
– volume: 9
  start-page: 939
  issue: 4
  year: 2018
  end-page: 951
  ident: CR23
  article-title: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.04.019
– volume: 73
  start-page: 375
  year: 2021
  end-page: 390
  ident: CR5
  article-title: Activation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sink
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.07.016
– volume: 44
  year: 2023
  ident: CR24
  article-title: Darcy–Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102830
– volume: 37
  start-page: 2350018
  issue: 02
  year: 2022
  ident: CR29
  article-title: Darcy–Forchheimer flow of CNTs-H O nanofluid over a porous stretchable surface with Xue model
  publication-title: Int. J. Mod. Phys. B.
  doi: 10.1142/S0217979223500182
– volume: 49
  start-page: 103345
  year: 2023
  ident: CR14
  article-title: Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103345
– volume: 7
  start-page: 219
  year: 2020
  ident: CR25
  article-title: A numerical simulation for Darcy–forchheimer flow of nanofluid by a rotating disk with partial slip effects
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00219
– volume: 44
  start-page: 7515
  issue: 9
  year: 2019
  end-page: 7528
  ident: CR35
  article-title: Role of the induced magnetic field on dispersed CNTs in propylene glycol transportation toward a curved surface
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03828-4
– volume: 22
  start-page: 18
  issue: 1
  year: 2020
  ident: CR16
  article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface
  publication-title: Entropy
  doi: 10.3390/e22010018
– volume: 38
  start-page: 561
  year: 2016
  end-page: 586
  ident: CR10
  article-title: Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.015
– volume: 575
  year: 2023
  ident: 49150_CR12
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2023.170709
– volume: 12
  start-page: 55
  issue: 1
  year: 2023
  ident: 49150_CR30
  publication-title: J. Nanofluids.
  doi: 10.1166/jon.2023.1910
– volume: 80
  start-page: 427
  year: 2022
  ident: 49150_CR18
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.08.008
– volume: 9
  start-page: 939
  issue: 4
  year: 2018
  ident: 49150_CR23
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2016.04.019
– volume: 49
  start-page: 103345
  year: 2023
  ident: 49150_CR14
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.103345
– volume: 45
  start-page: 1782
  year: 1901
  ident: 49150_CR20
  publication-title: Z Ver Deutsch Ing.
– volume: 10
  start-page: 225
  issue: 4
  year: 2001
  ident: 49150_CR3
  publication-title: Tribol. Lett.
  doi: 10.1023/A:1016662114589
– ident: 49150_CR21
– volume: 15
  start-page: 102282
  year: 2023
  ident: 49150_CR19
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102282
– volume: 148
  start-page: 12597
  year: 2023
  ident: 49150_CR8
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-023-12588-1
– volume: 51
  year: 2023
  ident: 49150_CR13
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2023.106618
– volume: 96
  start-page: 2079
  issue: 7
  year: 2022
  ident: 49150_CR36
  publication-title: Indian J. Phy.
  doi: 10.1007/s12648-021-02132-y
– volume: 99
  issue: 11
  year: 2022
  ident: 49150_CR32
  publication-title: J. Indian Chem. Soc.
  doi: 10.1016/j.jics.2022.100741
– volume: 22
  start-page: 18
  issue: 1
  year: 2020
  ident: 49150_CR16
  publication-title: Entropy
  doi: 10.3390/e22010018
– volume: 77
  start-page: 2435
  year: 2022
  ident: 49150_CR26
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2022.04.004
– volume: 354
  start-page: 56
  issue: 6348
  year: 1991
  ident: 49150_CR1
  publication-title: Nature
  doi: 10.1038/354056a0
– volume: 73
  start-page: 375
  year: 2021
  ident: 49150_CR5
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.07.016
– volume: 135
  start-page: 561
  year: 2019
  ident: 49150_CR34
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.01.141
– volume: 26
  year: 2021
  ident: 49150_CR27
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101168
– volume: 11
  start-page: 22550
  issue: 1
  year: 2021
  ident: 49150_CR11
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-98490-y
– volume: 52
  start-page: 247
  issue: 3
  year: 1994
  ident: 49150_CR37
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF00853952
– volume: 368
  start-page: 302
  year: 2005
  ident: 49150_CR4
  publication-title: Phys. B Condens. Matter.
  doi: 10.1016/j.physb.2005.07.024
– volume: 4
  start-page: 134
  issue: 2
  year: 2005
  ident: 49150_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1293
– volume: 7
  start-page: 219
  year: 2020
  ident: 49150_CR25
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2019.00219
– volume: 53
  start-page: 2477
  issue: 11
  year: 2010
  ident: 49150_CR38
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.01.032
– volume: 11
  start-page: 3687
  issue: 17
  year: 2023
  ident: 49150_CR15
  publication-title: Mathematics
  doi: 10.3390/math11173687
– volume: 15
  start-page: 102422
  year: 2023
  ident: 49150_CR28
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2023.102422
– volume: 44
  year: 2023
  ident: 49150_CR24
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2023.102830
– volume: 12
  start-page: 428
  issue: 3
  year: 2023
  ident: 49150_CR33
  publication-title: Propuls. Power Res.
  doi: 10.1016/j.jppr.2023.07.001
– volume: 13
  start-page: 3369
  issue: 1
  year: 2023
  ident: 49150_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30482-6
– volume: 38
  start-page: 561
  year: 2016
  ident: 49150_CR10
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.10.015
– volume: 40
  start-page: 576
  issue: 12
  year: 2018
  ident: 49150_CR9
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-018-1494-9
– volume: 54
  start-page: 205
  issue: 2
  year: 2015
  ident: 49150_CR17
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2015.03.013
– volume: 12
  issue: 7
  year: 2017
  ident: 49150_CR6
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0179576
– volume: 37
  start-page: 2350018
  issue: 02
  year: 2022
  ident: 49150_CR29
  publication-title: Int. J. Mod. Phys. B.
  doi: 10.1142/S0217979223500182
– volume: 9
  start-page: e16490
  issue: 6
  year: 2023
  ident: 49150_CR31
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e16490
– volume: 293
  start-page: 137
  issue: 1
  year: 2006
  ident: 49150_CR22
  publication-title: J Colloid Interface Sci.
  doi: 10.1016/j.jcis.2005.06.039
– volume: 44
  start-page: 7515
  issue: 9
  year: 2019
  ident: 49150_CR35
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-019-03828-4
SSID ssj0000529419
Score 2.4805136
Snippet Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to...
Abstract Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21813
SubjectTerms 639/705
639/925
Boundary layers
Carbon
Chemical reactions
Flow control
Fluid dynamics
Fluid flow
Friction
Heat transfer
Humanities and Social Sciences
Hydrodynamics
Mass transport
Mathematical models
multidisciplinary
Nanotechnology
Nanotubes
Porosity
Propylene glycol
Science
Science (multidisciplinary)
Thermal radiation
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SKHgRtX5MrRLBmw5NJskkOWqxFKGeLNRTyOSjFpZM2Z1lWf96XzKza9ePevE6ecM8Xt7n5L1fEHpjrYxOdqRWkdmaQ0FQa-ZUzXn0sgGN0aU35_xze3bBP12Ky1tXfeWesBEeeBTcMfcyMBGYCm3gUTnV8BidIlCHe0tDqdYh5t0qpkZU70ZzqqcpGcLU8QIiVZ4ma1jmSJB6tROJCmD_n7LM35slfzkxLYHo9CF6MGWQ-P3I-SN0L6THaH-8U3J9gL6e26sUhuvvweN5Bh7I_gzHWb_CfcTw4Zs1BJqAr2Zr0AGc_8NiZ-ddn3CyqR-WXVhgmzzOEw_j_1ocyoDgE3Rx-vHLyVk93Z9QO8HpUEMqqpgFd6eJpVy2tmGagoeKSgTliO8sJS5IK3TrSGeFdNRDtKadZL5rvWdP0V7qU3iOsOZQyvIoiVUQ9ry3AghCE7vglW8trRDdyNK4CVw833ExM-WQmykzyt-A_E2Rv1lV6O32nZsRWuNO6g95i7aUGRa7PABlMZOymH8pS4WONhtsJltdmFxySvCzQlTo9XYZrCwfndgU-iXQaNLoNueWFXo26sOWkwzZn2HyK6R2NGWH1d2VdP2tIHnTnOBxISv0bqNUP_n6uywO_4csXqD7TbaG3Jqjj9DeMF-Gl5BgDd2rYks_AH4CInM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_1lAi-abmkSZrkSVQ8DuF88mB9Cmk-1oOlXXe7LOtfbybt9lg_7rVJaTqZr8xMfoPQG2tldLIhpYrMljwdCErNnCo5j15WiWN0rs25-FqfX_IvMzEbA27rsaxyrxOzovadgxj5KRwMZJIGId4vf5bQNQqyq2MLjdvoDkCXQUmXnMkpxgJZLE71eFeGMHW6TvYK7pRVDNYlSLk9sEcZtv9fvubfJZN_5E2zOTp7gO6PfiT-MGz8Q3QrtI_Q3aGz5O4x-n5h523or34Fj1cAPwBaDcdFt8VdxOnDy10yNwHPF7vECRiisdjZVdO1uLVt12-asMa29RjuPQxRWxzyNcEn6PLs87dP5-XYRaF0gtO-TA6pYjYpPU0s5bK2FdM06amoRFCO-MZS4oK0QteONFZIR32y2bSRzDe19-wpOmq7NhwjrHk60PIoiVXJ-HlvRZoQqtgEr3xtaYHonpbGjRDj0OliYXKqmykz0N8k-ptMf7Mt0NvpneUAsHHj7I-wRdNMAMfOD7rV3IyyZriXgYnAVKgDj8qpisfoFGGMeEsDKdDJfoPNKLFrc81fBXo9DSdZgwSKbUO3SXM0qXQNHmaBng38MK0EgPsBLL9A6oBTDpZ6ONJe_ch43hTcPC5kgd7tmep6Xf-nxfObf-MFulcBn0PpjT5BR_1qE14mB6pvXmUp-Q1r2hma
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-G31lAi-aTFpkiZ51MXjEM4nD86nkOZjPVjaY7fLsv71ZtIPWT0FX9tJO0wmM5PMzC8IvbFWRicbUqrIbMnThqDUzKmS8-hllTRG59qc8y_12QX_fCkuj1A19cLkov0MaZnN9FQd9n6THA00g1UMPihIubuFbgN0O2j1ol7M5yqQueJUj_0xhKkbhh74oAzVf1N8-WeZ5G-50uyCTu-je2PsiD8M3D5AR6F9iO4Mt0nuH6Fv53bZhv7qR_B4DZADYMlwXHU73EWcfny9Ty4m4OVqn2YfwwksdnbddC1ubdv12yZssG09hl6H4aQWh9wa-BhdnH76ujgrx5sTSic47csUhCpmk6HTxFIua1sxTZNtikoE5YhvLCUuSCt07UhjhXTUJz9NG8l8U3vPnqDjtmvDM4Q1T5tYHiWxKjk8761IBKGKTfDK15YWiE6yNG6EFYfbLVYmp7eZMoP8TZK_yfI3uwK9ncdcD6Aa_6T-CFM0UwIgdn7QrZdmVBDDvQxMBKZCHXhUTlU8RqcIY8RbGkiBTqYJNuMq3RjYbMpkYYUo0Ov5dVpfkDSxbei2iUaTStcQVRbo6aAPMycA1g8A-QVSB5pywOrhm_bqe8bwphDacSEL9G5Sql98_V0Wz_-P_AW6W4HeQ_mNPkHH_XobXqYgqm9e5VXzE3gEF8g
  priority: 102
  providerName: Springer Nature
Title Magnetized radiative flow of propylene glycol with carbon nanotubes and activation energy
URI https://link.springer.com/article/10.1038/s41598-023-49150-w
https://www.ncbi.nlm.nih.gov/pubmed/38071275
https://www.proquest.com/docview/2899737655
https://www.proquest.com/docview/2902961435
https://pubmed.ncbi.nlm.nih.gov/PMC10710457
https://doaj.org/article/4d7e35e38e6e4f8c824ffc80330da1e0
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8dvquUTwTatpkzbpg8jecsexsIeoC-dTSfOxHiztuR-s61_vJO2urK6CT4Vk2obJTGYmyfwG4KVSwmlR0Vg6pmKOAUFcMC1jzp0RKUpMEe7mjC7zizEfXmVXB7Apd9QxcL43tPP1pMaz6Zvv39bvUeHftSnj8u0cjZBPFEuZ_1lG49UhHKNlEl5RR52732J9pwUPtT48CHuMzkTa5dHs_8yOrQqQ_vv80D-vU_52phpM1flduNP5mKTfCsU9OLD1fbjVVp1cP4AvIzWp7eL6hzVk5qEJ_IpH3LRZkcYR_PHNGk2RJZPpGqWE-J1aotWsampSq7pZLCs7J6o2xOdEtDu6xIYUwocwPj_7PLiIuwoLsc54sojRWZVM4YJYUJVwkauUFQmuYU5mVmpqKpVQbYXKilzTSmVCJwbteVIJZqrcGPYIjuqmtk-AFByDXe4EVRINozEqQwKbusoaaXKVRJBseFnqDn7cV8GYluEYnMmy5X-J_C8D_8tVBK-279y04Bv_pD71U7Sl9MDZoaGZTcpOD0tuhGWZZdLmljupZcqd05IyRo1KLI3gZDPB5UYYSx-UClyJsyyCF9tu1EN_uKJq2yyRpqBpkXvvM4LHrTxsR-JB_T2QfgRyR1J2hrrbU19_DVjfiXcBeSYieL0Rql_j-jsvnv4X557B7dSLvb-lU5zA0WK2tM_R11pUPTgUV6IHx_3-8NMQn6dnlx8-YusgH_TC_kUvqNhPkiYopw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYwETxDVjp3YeUCIQqst7a4QaqXyZBwfS6VVsuyh1fKj-I3YObZajr71NXESZ_zN5fHMALxUijvNCxwLR1XMvEMQ51SLmDFneOIRk9dncwbDrH_KPp2lZ1vwq8uFCccqO5lYC2pT6bBHvhscA-65IU3fTX7EoWtUiK52LTQaWBzZ1dK7bLO3hx_9-r5KkoP9kw_9uO0qEOuUkXnsDTRBlRcCOVaE8UwlNCeeb51IrdDYFIpgbblK80zjQqVcE-N1GCk4NUVmDPXvvQbbjHpXpgfbe_vDz1_WuzohbsZI3mbnYCp2Z15Dhiy2hAZKpDhebmjAulHAv6zbvw9p_hGprRXgwW241Vqu6H0DtTuwZcu7cL3pZbm6B18HalTa-flPa9A0FDwIchS5cbVElUP-w5OVV3AWjcYrjz0U9n-RVtOiKlGpymq-KOwMqdKgkGnR7BMjWycm3ofTK6HwA-iVVWkfAcqZd6GZ41gJr26NUakfYBNXWCNMpkgEpKOl1G1R89BbYyzr4DoVsqG_9PSXNf3lMoLX62cmTUmPS0fvhSVajwzluOsL1XQkW-6WzHBLU0uFzSxzQouEOacFphQbRSyOYKdbYNnKiJm8QHQEL9a3PXeHkI0qbbXwY3Kc5FmwaSN42OBhPZPQKiCU549AbCBlY6qbd8rz73UFcRIMS5byCN50oLqY1_9p8fjy33gON_ong2N5fDg8egI3k4D5cPAn34HefLqwT735Ni-etTyD4NtVs-lvQlFXJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYidQwEhwgmjs2I6dA0JAGbWUVhyoVE6u42WoNEqGWTQafhq_Dr8sUw1Lb70mTuI8f2-x34bQC2NksLIkqQrMpDxuCNKCWZVyHpzMImKKJjbn8CjfO-afTsTJFvrV58JAWGUvExtB7WoLZ-QD2BjIyA1CDEIXFvFld_h28iOFDlLgae3babQQOfCrZdy-zd7s78a1fpllw49fP-ylXYeB1ApO52k01hQzUSAUxFAuc5OxgkYeDkp4ZYkrDSXWSyOK3JLSCGmpi_qMlpK5MneOxfdeQVclExR4TJ7I9fkOeNA4Lbo8HcLUYBZ1JeSzZQxoIki63NCFTcuAf9m5f4dr_uGzbVTh8Ba62dmw-F0Luttoy1d30LW2q-XqLvp2aEaVn5_99A5PofQBSFQcxvUS1wHHD09WUdV5PBqvIgoxnARja6ZlXeHKVPV8UfoZNpXDkHPRnhhj36Qo3kPHl0Lf-2i7qiv_EOGCx800D5IYFRWvc0bEAT4LpXfK5YYmiPa01LYrbw5dNsa6cbMzpVv660h_3dBfLxP0av3MpC3uceHo97BE65FQmLu5UE9HuuNzzZ30THimfO55UFZlPASrCGPEGepJgnb6BdadtJjpc2wn6Pn6duRzcN6YyteLOKYgWZGDdZugBy0e1jOBpgFQqD9BagMpG1PdvFOdfW9qiVMwMbmQCXrdg-p8Xv-nxaOLf-MZuh6ZU3_ePzp4jG5kAHmIACp20PZ8uvBPoh03L582DIPR6WVz6G9tNln3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetized+radiative+flow+of+propylene+glycol+with+carbon+nanotubes+and+activation+energy&rft.jtitle=Scientific+reports&rft.au=Ali+Ghazwani%2C+Hassan&rft.au=Saleem%2C+Muzher&rft.au=Haq%2C+Fazal&rft.date=2023-12-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-49150-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_49150_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon