Magnetized radiative flow of propylene glycol with carbon nanotubes and activation energy
Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C 3 H 8 O...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 21813 - 13 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol
C
3
H
8
O
2
submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. |
---|---|
AbstractList | Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy-Forchheimer flow of Propylene glycol [Formula: see text] submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge-Kutta-Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy-Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy-Forchheimer flow of Propylene glycol [Formula: see text] submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge-Kutta-Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy-Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT.Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy-Forchheimer flow of Propylene glycol [Formula: see text] submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge-Kutta-Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy-Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. Abstract Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol $$\left( {C_{3} H_{8} O_{2} } \right)$$ C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C3H8O2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol $$\left( {C_{3} H_{8} O_{2} } \right)$$ C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to enhance various aspects of fluid transport features. This article explores the behavior of Darcy–Forchheimer flow of Propylene glycol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {C_{3} H_{8} O_{2} } \right)$$\end{document} C 3 H 8 O 2 submerged single wall carbon nanotubes (SWCNT) and multi-wall carbon nanotubes (MWCNT). The flow features are examined over stretched preamble surface of sheet. Energy relation is acquired in manifestation of thermal radiation and Joule heating. Aspects of Arrhenius kinetics and chemical reaction are assimilated in mass transport relation. Furthermore, effects of intermolecular fluid friction is accounted. Flow prevailing mathematical model is acquired by implementing boundary layer assumptions. Transformations procedure is adapted to alter the dimensional model into non-dimensional one and then tackled through Runge–Kutta–Fehlberg method (RKF-45) in Mathematica. Effective consequences of influential flow controlling parameters on fluid velocity, thermal transport and concentration are inspected by plotting. Numerical computations for interesting engineering quantities like skin friction coefficient, mass and heat transfer rates are tabulated and investigated. It is noticed that thermal field boosts versus curvature variable, Eckert and Hartmann numbers. Retardation in mass concentration is noticed via Schmidt number and activation energy variable. Velocity field shows decreasing trend through porosity parameter, Hartmann number and Darcy–Forchheimer variable. Furthermore, it is noticed that magnitude of skin friction coefficient is higher for SWCNT as compared to MWCNT. |
ArticleNumber | 21813 |
Author | Ali Ghazwani, Hassan Haq, Fazal Saleem, Muzher |
Author_xml | – sequence: 1 givenname: Hassan surname: Ali Ghazwani fullname: Ali Ghazwani, Hassan organization: Department of Mechanical Engineering, Faculty of Engineering, Jazan University – sequence: 2 givenname: Muzher surname: Saleem fullname: Saleem, Muzher organization: Department of Mathematical Sciences, Karakoram International University Main Campus – sequence: 3 givenname: Fazal surname: Haq fullname: Haq, Fazal email: fazal.haq@kiu.edu.pk organization: Department of Mathematical Sciences, Karakoram International University Main Campus |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38071275$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFAR_aB_gAOKxIVLwB9xbJ8QqkqpVMQFDpysF_sl9SprL3a2q-XX4-620PZQX2z5zYxG8-a4OggxYFW9oeQDJVx9zC0VWjWE8abVVJBm86I6YqQVDeOMHTx4H1anOS9IOYLplupX1SFXRFImxVH16xuMAWf_B12dwHmY_Q3WwxQ3dRzqVYqr7YQB63Ha2jjVGz9f1xZSH0MdIMR53WOuIbgabGEWdhkUfBq3r6uXA0wZT-_uk-rnl_MfZ1-bq-8Xl2efrxorWjo3ijrFQclOE6Ct7IBxTRnVgxKoLHE9UGJRgtCdJT0IaanraEt7yV3fOcdPqsu9rouwMKvkl5C2JoI3u4-YRgNp9nZC0zqJXCBX2GE7KKtYOwxWEc6JA4qkaH3aa63W_RKdxTAnmB6JPp4Ef23GeGNoybPkLYvC-zuFFH-vMc9m6bPFaYKAcZ0N04Tp4p-LAn33BLqI6xRKVoYprSWXnbhFvX1o6Z-X-xUWgNoDbIo5JxyM9fNuEcWhn4o1c1sYsy-MKYUxu8KYTaGyJ9R79WdJfE_KBRxGTP9tP8P6C1-n0_Y |
CitedBy_id | crossref_primary_10_1007_s10973_025_14020_2 crossref_primary_10_1016_j_csite_2024_105460 crossref_primary_10_1016_j_ijft_2025_101083 crossref_primary_10_1016_j_csite_2024_105052 crossref_primary_10_1016_j_asej_2024_103172 crossref_primary_10_1016_j_jrras_2025_101322 crossref_primary_10_1016_j_jrras_2024_101279 crossref_primary_10_1016_j_ijft_2025_101136 crossref_primary_10_1177_16878132251324359 crossref_primary_10_1155_er_9310834 crossref_primary_10_1007_s10973_024_13699_z crossref_primary_10_1016_j_ces_2024_120646 crossref_primary_10_1080_19942060_2024_2380800 crossref_primary_10_1016_j_aej_2025_01_026 crossref_primary_10_1038_s41598_024_82569_3 crossref_primary_10_1016_j_tsep_2024_102717 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2019.01.141 10.1016/j.cjph.2022.08.008 10.1007/s12648-021-02132-y 10.1023/A:1016662114589 10.1016/j.asej.2023.102422 10.1166/jon.2023.1910 10.1016/j.jcis.2005.06.039 10.1038/s41598-023-30482-6 10.1007/s10973-023-12588-1 10.1016/j.jmmm.2023.170709 10.1016/j.physb.2005.07.024 10.1038/s41598-021-98490-y 10.1016/j.heliyon.2023.e16490 10.1016/j.cjph.2022.04.004 10.1371/journal.pone.0179576 10.1016/j.jics.2022.100741 10.1016/j.csite.2021.101168 10.1007/BF00853952 10.1038/nmat1293 10.3390/math11173687 10.1016/j.asej.2023.102282 10.1016/j.rinp.2023.106618 10.1016/j.aej.2015.03.013 10.1007/s40430-018-1494-9 10.1016/j.jppr.2023.07.001 10.1038/354056a0 10.1016/j.ijheatmasstransfer.2010.01.032 10.1016/j.asej.2016.04.019 10.1016/j.cjph.2021.07.016 10.1016/j.csite.2023.102830 10.1142/S0217979223500182 10.1016/j.csite.2023.103345 10.3389/fphy.2019.00219 10.1007/s13369-019-03828-4 10.3390/e22010018 10.1016/j.asoc.2015.10.015 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-49150-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_4d7e35e38e6e4f8c824ffc80330da1e0 PMC10710457 38071275 10_1038_s41598_023_49150_w |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-81d83a87690a1476a2391219f85e8c0dba10ce7a596c0ba57c1d6141b73db6dd3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 00:27:03 EDT 2025 Thu Aug 21 18:35:56 EDT 2025 Fri Jul 11 02:13:51 EDT 2025 Wed Aug 13 09:17:26 EDT 2025 Thu Jan 02 22:33:42 EST 2025 Thu Apr 24 23:08:07 EDT 2025 Tue Jul 01 03:58:01 EDT 2025 Fri Feb 21 02:37:10 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-81d83a87690a1476a2391219f85e8c0dba10ce7a596c0ba57c1d6141b73db6dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-49150-w |
PMID | 38071275 |
PQID | 2899737655 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4d7e35e38e6e4f8c824ffc80330da1e0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10710457 proquest_miscellaneous_2902961435 proquest_journals_2899737655 pubmed_primary_38071275 crossref_citationtrail_10_1038_s41598_023_49150_w crossref_primary_10_1038_s41598_023_49150_w springer_journals_10_1038_s41598_023_49150_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-09 |
PublicationDateYYYYMMDD | 2023-12-09 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Mahesh, Mahabaleshwar, Sofos (CR7) 2023; 13 Hayat, Haider, Muhammad, Alsaedi (CR6) 2017; 12 Ramesh, Madhukesh (CR5) 2021; 73 Upreti, Pandey, Kumar, Makinde (CR29) 2022; 37 Shafiq, Çolak, Sindhu (CR18) 2022; 80 Reddy Gorla, Sidawi (CR37) 1994; 52 Hayat, Shafiq, Alsaedi (CR17) 2015; 54 Raja, Khan, Zuhra, Chaudhary, Khan, He (CR27) 2021; 26 Xue (CR4) 2005; 368 Vishnu Ganesh, Abdul Hakeem, Ganga (CR23) 2018; 9 Raja, Farooq, Chaudhary, Wazwaz (CR10) 2016; 38 Rasool, Zhang, Chamkha, Shafiq, Tlili, Shahzadi (CR16) 2020; 22 Rasool, Wakif, Wang, Alshehri, Saeed (CR33) 2023; 12 Essam, Abedel-AaL (CR30) 2023; 12 Rahman, Haq, Darab, Sallah, Abdelmohsen, Fadhl (CR31) 2023; 9 Çolak, Shafiq, Sindhu (CR26) 2022; 77 Raja, Sabati, Parveen, Awais, Awan, Chaudhary (CR11) 2021; 11 Alzabut, Nadeem, Noor, Eldin (CR13) 2023; 51 Jawad, Hameed, Nisar, Majeed (CR24) 2023; 44 Sahu, Rout, Shaw, Dash, Thatoi, Nayak (CR32) 2022; 99 Khan, Pop (CR38) 2010; 53 Jakeer, Reddy, Easwaramoorthy, Basha, Cho (CR15) 2023; 11 Awais, Salahuddin, Muhammad (CR28) 2023; 15 Ijaz Khan, Hayat, Shah, Mujeeb Ur, Haq (CR34) 2019; 135 Forchheimer (CR20) 1901; 45 Ullah, Serra-Capizzano, Baleanu (CR25) 2020; 7 Shaiq, Maraj (CR35) 2019; 44 Prashar, Ojjela (CR36) 2022; 96 Alkuhayli (CR12) 2023; 575 Iijima (CR1) 1991; 354 Tu, Yang, Wang, Ma, Zhang (CR3) 2001; 10 Sudarsana Reddy, Jyothi, Suryanarayana (CR9) 2018; 40 CR21 Sadighi, Afshar, Jabbari, Ahmadi Danesh Ashtiani (CR14) 2023; 49 Suhr, Koratkar, Keblinski, Ajayan (CR2) 2005; 4 Seddeek (CR22) 2006; 293 Anusha, Mahabaleshwar, Bhattacharyya (CR8) 2023; 148 Awais, Salahuddin (CR19) 2023; 15 M Awais (49150_CR28) 2023; 15 G Rasool (49150_CR33) 2023; 12 G Rasool (49150_CR16) 2020; 22 NAM Alkuhayli (49150_CR12) 2023; 575 P Prashar (49150_CR36) 2022; 96 RS Reddy Gorla (49150_CR37) 1994; 52 R Mahesh (49150_CR7) 2023; 13 P Forchheimer (49150_CR20) 1901; 45 Q Xue (49150_CR4) 2005; 368 GK Ramesh (49150_CR5) 2021; 73 S Sadighi (49150_CR14) 2023; 49 J Suhr (49150_CR2) 2005; 4 P Sudarsana Reddy (49150_CR9) 2018; 40 H Upreti (49150_CR29) 2022; 37 WA Khan (49150_CR38) 2010; 53 T Hayat (49150_CR17) 2015; 54 MAZ Raja (49150_CR11) 2021; 11 MA Seddeek (49150_CR22) 2006; 293 S Shaiq (49150_CR35) 2019; 44 T Anusha (49150_CR8) 2023; 148 MZ Ullah (49150_CR25) 2020; 7 49150_CR21 S Iijima (49150_CR1) 1991; 354 A Shafiq (49150_CR18) 2022; 80 N Vishnu Ganesh (49150_CR23) 2018; 9 ME Essam (49150_CR30) 2023; 12 J Alzabut (49150_CR13) 2023; 51 M Awais (49150_CR19) 2023; 15 T Hayat (49150_CR6) 2017; 12 M Rahman (49150_CR31) 2023; 9 SK Sahu (49150_CR32) 2022; 99 JP Tu (49150_CR3) 2001; 10 S Jakeer (49150_CR15) 2023; 11 MAZ Raja (49150_CR10) 2016; 38 M Ijaz Khan (49150_CR34) 2019; 135 AB Çolak (49150_CR26) 2022; 77 MAZ Raja (49150_CR27) 2021; 26 M Jawad (49150_CR24) 2023; 44 |
References_xml | – volume: 135 start-page: 561 year: 2019 end-page: 568 ident: CR34 article-title: Physical aspects of CNTs and induced magnetic flux in stagnation point flow with quartic chemical reaction publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.01.141 – volume: 80 start-page: 427 year: 2022 end-page: 444 ident: CR18 article-title: Significance of bioconvective flow of MHD thixotropic nanofluid passing through a vertical surface by machine learning algorithm publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2022.08.008 – volume: 96 start-page: 2079 issue: 7 year: 2022 end-page: 2092 ident: CR36 article-title: Numerical investigation of ZnO–MWCNTs/ethylene glycol hybrid nanofluid flow with activation energy publication-title: Indian J. Phy. doi: 10.1007/s12648-021-02132-y – volume: 10 start-page: 225 issue: 4 year: 2001 end-page: 228 ident: CR3 article-title: Tribological properties of carbon-nanotube-reinforced copper composites publication-title: Tribol. Lett. doi: 10.1023/A:1016662114589 – volume: 15 start-page: 102422 year: 2023 ident: CR28 article-title: Effects of viscous dissipation and activation energy for the MHD Eyring-powell fluid flow with Darcy–Forchheimer and variable fluid properties publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2023.102422 – volume: 12 start-page: 55 issue: 1 year: 2023 end-page: 64 ident: CR30 article-title: Darcy–Forchheimer flow of a nanofluid over a porous plate with thermal radiation and brownian motion publication-title: J. Nanofluids. doi: 10.1166/jon.2023.1910 – volume: 293 start-page: 137 issue: 1 year: 2006 end-page: 142 ident: CR22 article-title: Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media publication-title: J Colloid Interface Sci. doi: 10.1016/j.jcis.2005.06.039 – volume: 13 start-page: 3369 issue: 1 year: 2023 ident: CR7 article-title: Influence of carbon nanotube suspensions on Casson fluid flow over a permeable shrinking membrane: an analytical approach publication-title: Sci. Rep. doi: 10.1038/s41598-023-30482-6 – volume: 148 start-page: 12597 year: 2023 end-page: 12607 ident: CR8 article-title: An impact of MHD and radiation on flow of Jeffrey fluid with carbon nanotubes over a stretching/shrinking sheet with Navier’s slip publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12588-1 – volume: 575 year: 2023 ident: CR12 article-title: Magnetohydrodynamic flow of copper-water nanofluid over a rotating rigid disk with Ohmic heating and hall effects publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.170709 – volume: 368 start-page: 302 year: 2005 end-page: 307 ident: CR4 article-title: Model for thermal conductivity of carbon nanotube based composites publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2005.07.024 – volume: 11 start-page: 22550 issue: 1 year: 2021 ident: CR11 article-title: Integrated intelligent computing application for effectiveness of Au nanoparticles coated over MWCNTs with velocity slip in curved channel peristaltic flow publication-title: Sci. Rep. doi: 10.1038/s41598-021-98490-y – volume: 9 start-page: e16490 issue: 6 year: 2023 ident: CR31 article-title: Mixed convection and activation energy impacts on MHD bioconvective flow of nanofluid with irreversibility assessment publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e16490 – volume: 77 start-page: 2435 year: 2022 end-page: 2453 ident: CR26 article-title: Modeling of Darcy–Forchheimer bioconvective Powell Eyring nanofluid with artificial neural network publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2022.04.004 – volume: 12 issue: 7 year: 2017 ident: CR6 article-title: Three-dimensional rotating flow of carbon nanotubes with Darcy–Forchheimer porous medium publication-title: PLoS ONE. doi: 10.1371/journal.pone.0179576 – volume: 99 issue: 11 year: 2022 ident: CR32 article-title: Hydrothermal stagnation point flow of Carreau nanofluid over a moving thin needle with non-linear Navier's slip and cubic autocatalytic chemical reactions in Darcy–Forchheimer medium publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2022.100741 – volume: 26 year: 2021 ident: CR27 article-title: Cattaneo-christov heat flux model of 3D hall current involving biconvection nanofluidic flow with Darcy–Forchheimer law effect: Backpropagation neural networks approach publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101168 – volume: 52 start-page: 247 issue: 3 year: 1994 end-page: 257 ident: CR37 article-title: Free convection on a vertical stretching surface with suction and blowing publication-title: Appl. Sci. Res. doi: 10.1007/BF00853952 – volume: 4 start-page: 134 issue: 2 year: 2005 end-page: 137 ident: CR2 article-title: Viscoelasticity in carbon nanotube composites publication-title: Nat. Mater. doi: 10.1038/nmat1293 – volume: 11 start-page: 3687 issue: 17 year: 2023 ident: CR15 article-title: Exploring the influence of induced magnetic fields and double-diffusive convection on carreau nanofluid flow through diverse geometries: a comparative study using numerical and ANN approaches publication-title: Mathematics doi: 10.3390/math11173687 – volume: 15 start-page: 102282 year: 2023 ident: CR19 article-title: Radiative magnetodydrodynamic cross fluid thermophysical model passing on parabola surface with activation energy publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2023.102282 – ident: CR21 – volume: 51 year: 2023 ident: CR13 article-title: Numerical analysis of Magnetohydrodynamic convection heat flow in an enclosure publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106618 – volume: 54 start-page: 205 issue: 2 year: 2015 end-page: 212 ident: CR17 article-title: MHD axisymmetric flow of third grade fluid by a stretching cylinder publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2015.03.013 – volume: 45 start-page: 1782 year: 1901 end-page: 1788 ident: CR20 article-title: Wasserbewegung durch boden publication-title: Z Ver Deutsch Ing. – volume: 40 start-page: 576 issue: 12 year: 2018 ident: CR9 article-title: Flow and heat transfer analysis of carbon nanotubes-based Maxwell nanofluid flow driven by rotating stretchable disks with thermal radiation publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1494-9 – volume: 12 start-page: 428 issue: 3 year: 2023 end-page: 442 ident: CR33 article-title: Falkner-Skan aspects of a radiating (50% ethylene glycol + 50% water)-based hybrid nanofluid when Joule heating as well as Darcy–Forchheimer and Lorentz forces affect significantly publication-title: Propuls. Power Res. doi: 10.1016/j.jppr.2023.07.001 – volume: 354 start-page: 56 issue: 6348 year: 1991 end-page: 58 ident: CR1 article-title: Helical microtubules of graphitic carbon publication-title: Nature doi: 10.1038/354056a0 – volume: 53 start-page: 2477 issue: 11 year: 2010 end-page: 2483 ident: CR38 article-title: Boundary-layer flow of a nanofluid past a stretching sheet publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.032 – volume: 9 start-page: 939 issue: 4 year: 2018 end-page: 951 ident: CR23 article-title: Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.04.019 – volume: 73 start-page: 375 year: 2021 end-page: 390 ident: CR5 article-title: Activation energy process in hybrid CNTs and induced magnetic slip flow with heat source/sink publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.07.016 – volume: 44 year: 2023 ident: CR24 article-title: Darcy–Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102830 – volume: 37 start-page: 2350018 issue: 02 year: 2022 ident: CR29 article-title: Darcy–Forchheimer flow of CNTs-H O nanofluid over a porous stretchable surface with Xue model publication-title: Int. J. Mod. Phys. B. doi: 10.1142/S0217979223500182 – volume: 49 start-page: 103345 year: 2023 ident: CR14 article-title: Heat and mass transfer for MHD nanofluid flow on a porous stretching sheet with prescribed boundary conditions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103345 – volume: 7 start-page: 219 year: 2020 ident: CR25 article-title: A numerical simulation for Darcy–forchheimer flow of nanofluid by a rotating disk with partial slip effects publication-title: Front. Phys. doi: 10.3389/fphy.2019.00219 – volume: 44 start-page: 7515 issue: 9 year: 2019 end-page: 7528 ident: CR35 article-title: Role of the induced magnetic field on dispersed CNTs in propylene glycol transportation toward a curved surface publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03828-4 – volume: 22 start-page: 18 issue: 1 year: 2020 ident: CR16 article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface publication-title: Entropy doi: 10.3390/e22010018 – volume: 38 start-page: 561 year: 2016 end-page: 586 ident: CR10 article-title: Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.015 – volume: 575 year: 2023 ident: 49150_CR12 publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2023.170709 – volume: 12 start-page: 55 issue: 1 year: 2023 ident: 49150_CR30 publication-title: J. Nanofluids. doi: 10.1166/jon.2023.1910 – volume: 80 start-page: 427 year: 2022 ident: 49150_CR18 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2022.08.008 – volume: 9 start-page: 939 issue: 4 year: 2018 ident: 49150_CR23 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2016.04.019 – volume: 49 start-page: 103345 year: 2023 ident: 49150_CR14 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.103345 – volume: 45 start-page: 1782 year: 1901 ident: 49150_CR20 publication-title: Z Ver Deutsch Ing. – volume: 10 start-page: 225 issue: 4 year: 2001 ident: 49150_CR3 publication-title: Tribol. Lett. doi: 10.1023/A:1016662114589 – ident: 49150_CR21 – volume: 15 start-page: 102282 year: 2023 ident: 49150_CR19 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2023.102282 – volume: 148 start-page: 12597 year: 2023 ident: 49150_CR8 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-023-12588-1 – volume: 51 year: 2023 ident: 49150_CR13 publication-title: Results Phys. doi: 10.1016/j.rinp.2023.106618 – volume: 96 start-page: 2079 issue: 7 year: 2022 ident: 49150_CR36 publication-title: Indian J. Phy. doi: 10.1007/s12648-021-02132-y – volume: 99 issue: 11 year: 2022 ident: 49150_CR32 publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2022.100741 – volume: 22 start-page: 18 issue: 1 year: 2020 ident: 49150_CR16 publication-title: Entropy doi: 10.3390/e22010018 – volume: 77 start-page: 2435 year: 2022 ident: 49150_CR26 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2022.04.004 – volume: 354 start-page: 56 issue: 6348 year: 1991 ident: 49150_CR1 publication-title: Nature doi: 10.1038/354056a0 – volume: 73 start-page: 375 year: 2021 ident: 49150_CR5 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.07.016 – volume: 135 start-page: 561 year: 2019 ident: 49150_CR34 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.01.141 – volume: 26 year: 2021 ident: 49150_CR27 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101168 – volume: 11 start-page: 22550 issue: 1 year: 2021 ident: 49150_CR11 publication-title: Sci. Rep. doi: 10.1038/s41598-021-98490-y – volume: 52 start-page: 247 issue: 3 year: 1994 ident: 49150_CR37 publication-title: Appl. Sci. Res. doi: 10.1007/BF00853952 – volume: 368 start-page: 302 year: 2005 ident: 49150_CR4 publication-title: Phys. B Condens. Matter. doi: 10.1016/j.physb.2005.07.024 – volume: 4 start-page: 134 issue: 2 year: 2005 ident: 49150_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat1293 – volume: 7 start-page: 219 year: 2020 ident: 49150_CR25 publication-title: Front. Phys. doi: 10.3389/fphy.2019.00219 – volume: 53 start-page: 2477 issue: 11 year: 2010 ident: 49150_CR38 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.01.032 – volume: 11 start-page: 3687 issue: 17 year: 2023 ident: 49150_CR15 publication-title: Mathematics doi: 10.3390/math11173687 – volume: 15 start-page: 102422 year: 2023 ident: 49150_CR28 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2023.102422 – volume: 44 year: 2023 ident: 49150_CR24 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2023.102830 – volume: 12 start-page: 428 issue: 3 year: 2023 ident: 49150_CR33 publication-title: Propuls. Power Res. doi: 10.1016/j.jppr.2023.07.001 – volume: 13 start-page: 3369 issue: 1 year: 2023 ident: 49150_CR7 publication-title: Sci. Rep. doi: 10.1038/s41598-023-30482-6 – volume: 38 start-page: 561 year: 2016 ident: 49150_CR10 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.10.015 – volume: 40 start-page: 576 issue: 12 year: 2018 ident: 49150_CR9 publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-018-1494-9 – volume: 54 start-page: 205 issue: 2 year: 2015 ident: 49150_CR17 publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2015.03.013 – volume: 12 issue: 7 year: 2017 ident: 49150_CR6 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0179576 – volume: 37 start-page: 2350018 issue: 02 year: 2022 ident: 49150_CR29 publication-title: Int. J. Mod. Phys. B. doi: 10.1142/S0217979223500182 – volume: 9 start-page: e16490 issue: 6 year: 2023 ident: 49150_CR31 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e16490 – volume: 293 start-page: 137 issue: 1 year: 2006 ident: 49150_CR22 publication-title: J Colloid Interface Sci. doi: 10.1016/j.jcis.2005.06.039 – volume: 44 start-page: 7515 issue: 9 year: 2019 ident: 49150_CR35 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-019-03828-4 |
SSID | ssj0000529419 |
Score | 2.4805136 |
Snippet | Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the potential to... Abstract Carbon nanotubes (CNTs) have gained significant attention in the field of fluid dynamics and fluid flows due to their unique properties and the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21813 |
SubjectTerms | 639/705 639/925 Boundary layers Carbon Chemical reactions Flow control Fluid dynamics Fluid flow Friction Heat transfer Humanities and Social Sciences Hydrodynamics Mass transport Mathematical models multidisciplinary Nanotechnology Nanotubes Porosity Propylene glycol Science Science (multidisciplinary) Thermal radiation Velocity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxQxFA9SKHgRtX5MrRLBmw5NJskkOWqxFKGeLNRTyOSjFpZM2Z1lWf96XzKza9ePevE6ecM8Xt7n5L1fEHpjrYxOdqRWkdmaQ0FQa-ZUzXn0sgGN0aU35_xze3bBP12Ky1tXfeWesBEeeBTcMfcyMBGYCm3gUTnV8BidIlCHe0tDqdYh5t0qpkZU70ZzqqcpGcLU8QIiVZ4ma1jmSJB6tROJCmD_n7LM35slfzkxLYHo9CF6MGWQ-P3I-SN0L6THaH-8U3J9gL6e26sUhuvvweN5Bh7I_gzHWb_CfcTw4Zs1BJqAr2Zr0AGc_8NiZ-ddn3CyqR-WXVhgmzzOEw_j_1ocyoDgE3Rx-vHLyVk93Z9QO8HpUEMqqpgFd6eJpVy2tmGagoeKSgTliO8sJS5IK3TrSGeFdNRDtKadZL5rvWdP0V7qU3iOsOZQyvIoiVUQ9ry3AghCE7vglW8trRDdyNK4CVw833ExM-WQmykzyt-A_E2Rv1lV6O32nZsRWuNO6g95i7aUGRa7PABlMZOymH8pS4WONhtsJltdmFxySvCzQlTo9XYZrCwfndgU-iXQaNLoNueWFXo26sOWkwzZn2HyK6R2NGWH1d2VdP2tIHnTnOBxISv0bqNUP_n6uywO_4csXqD7TbaG3Jqjj9DeMF-Gl5BgDd2rYks_AH4CInM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifl_1lAi-abmkSZrkSVQ8DuF88mB9Cmk-1oOlXXe7LOtfbybt9lg_7rVJaTqZr8xMfoPQG2tldLIhpYrMljwdCErNnCo5j15WiWN0rs25-FqfX_IvMzEbA27rsaxyrxOzovadgxj5KRwMZJIGId4vf5bQNQqyq2MLjdvoDkCXQUmXnMkpxgJZLE71eFeGMHW6TvYK7pRVDNYlSLk9sEcZtv9fvubfJZN_5E2zOTp7gO6PfiT-MGz8Q3QrtI_Q3aGz5O4x-n5h523or34Fj1cAPwBaDcdFt8VdxOnDy10yNwHPF7vECRiisdjZVdO1uLVt12-asMa29RjuPQxRWxzyNcEn6PLs87dP5-XYRaF0gtO-TA6pYjYpPU0s5bK2FdM06amoRFCO-MZS4oK0QteONFZIR32y2bSRzDe19-wpOmq7NhwjrHk60PIoiVXJ-HlvRZoQqtgEr3xtaYHonpbGjRDj0OliYXKqmykz0N8k-ptMf7Mt0NvpneUAsHHj7I-wRdNMAMfOD7rV3IyyZriXgYnAVKgDj8qpisfoFGGMeEsDKdDJfoPNKLFrc81fBXo9DSdZgwSKbUO3SXM0qXQNHmaBng38MK0EgPsBLL9A6oBTDpZ6ONJe_ch43hTcPC5kgd7tmep6Xf-nxfObf-MFulcBn0PpjT5BR_1qE14mB6pvXmUp-Q1r2hma priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-G31lAi-aTFpkiZ51MXjEM4nD86nkOZjPVjaY7fLsv71ZtIPWT0FX9tJO0wmM5PMzC8IvbFWRicbUqrIbMnThqDUzKmS8-hllTRG59qc8y_12QX_fCkuj1A19cLkov0MaZnN9FQd9n6THA00g1UMPihIubuFbgN0O2j1ol7M5yqQueJUj_0xhKkbhh74oAzVf1N8-WeZ5G-50uyCTu-je2PsiD8M3D5AR6F9iO4Mt0nuH6Fv53bZhv7qR_B4DZADYMlwXHU73EWcfny9Ty4m4OVqn2YfwwksdnbddC1ubdv12yZssG09hl6H4aQWh9wa-BhdnH76ujgrx5sTSic47csUhCpmk6HTxFIua1sxTZNtikoE5YhvLCUuSCt07UhjhXTUJz9NG8l8U3vPnqDjtmvDM4Q1T5tYHiWxKjk8761IBKGKTfDK15YWiE6yNG6EFYfbLVYmp7eZMoP8TZK_yfI3uwK9ncdcD6Aa_6T-CFM0UwIgdn7QrZdmVBDDvQxMBKZCHXhUTlU8RqcIY8RbGkiBTqYJNuMq3RjYbMpkYYUo0Ov5dVpfkDSxbei2iUaTStcQVRbo6aAPMycA1g8A-QVSB5pywOrhm_bqe8bwphDacSEL9G5Sql98_V0Wz_-P_AW6W4HeQ_mNPkHH_XobXqYgqm9e5VXzE3gEF8g priority: 102 providerName: Springer Nature |
Title | Magnetized radiative flow of propylene glycol with carbon nanotubes and activation energy |
URI | https://link.springer.com/article/10.1038/s41598-023-49150-w https://www.ncbi.nlm.nih.gov/pubmed/38071275 https://www.proquest.com/docview/2899737655 https://www.proquest.com/docview/2902961435 https://pubmed.ncbi.nlm.nih.gov/PMC10710457 https://doaj.org/article/4d7e35e38e6e4f8c824ffc80330da1e0 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8dvquUTwTatpkzbpg8jecsexsIeoC-dTSfOxHiztuR-s61_vJO2urK6CT4Vk2obJTGYmyfwG4KVSwmlR0Vg6pmKOAUFcMC1jzp0RKUpMEe7mjC7zizEfXmVXB7Apd9QxcL43tPP1pMaz6Zvv39bvUeHftSnj8u0cjZBPFEuZ_1lG49UhHKNlEl5RR52732J9pwUPtT48CHuMzkTa5dHs_8yOrQqQ_vv80D-vU_52phpM1flduNP5mKTfCsU9OLD1fbjVVp1cP4AvIzWp7eL6hzVk5qEJ_IpH3LRZkcYR_PHNGk2RJZPpGqWE-J1aotWsampSq7pZLCs7J6o2xOdEtDu6xIYUwocwPj_7PLiIuwoLsc54sojRWZVM4YJYUJVwkauUFQmuYU5mVmpqKpVQbYXKilzTSmVCJwbteVIJZqrcGPYIjuqmtk-AFByDXe4EVRINozEqQwKbusoaaXKVRJBseFnqDn7cV8GYluEYnMmy5X-J_C8D_8tVBK-279y04Bv_pD71U7Sl9MDZoaGZTcpOD0tuhGWZZdLmljupZcqd05IyRo1KLI3gZDPB5UYYSx-UClyJsyyCF9tu1EN_uKJq2yyRpqBpkXvvM4LHrTxsR-JB_T2QfgRyR1J2hrrbU19_DVjfiXcBeSYieL0Rql_j-jsvnv4X557B7dSLvb-lU5zA0WK2tM_R11pUPTgUV6IHx_3-8NMQn6dnlx8-YusgH_TC_kUvqNhPkiYopw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYwETxDVjp3YeUCIQqst7a4QaqXyZBwfS6VVsuyh1fKj-I3YObZajr71NXESZ_zN5fHMALxUijvNCxwLR1XMvEMQ51SLmDFneOIRk9dncwbDrH_KPp2lZ1vwq8uFCccqO5lYC2pT6bBHvhscA-65IU3fTX7EoWtUiK52LTQaWBzZ1dK7bLO3hx_9-r5KkoP9kw_9uO0qEOuUkXnsDTRBlRcCOVaE8UwlNCeeb51IrdDYFIpgbblK80zjQqVcE-N1GCk4NUVmDPXvvQbbjHpXpgfbe_vDz1_WuzohbsZI3mbnYCp2Z15Dhiy2hAZKpDhebmjAulHAv6zbvw9p_hGprRXgwW241Vqu6H0DtTuwZcu7cL3pZbm6B18HalTa-flPa9A0FDwIchS5cbVElUP-w5OVV3AWjcYrjz0U9n-RVtOiKlGpymq-KOwMqdKgkGnR7BMjWycm3ofTK6HwA-iVVWkfAcqZd6GZ41gJr26NUakfYBNXWCNMpkgEpKOl1G1R89BbYyzr4DoVsqG_9PSXNf3lMoLX62cmTUmPS0fvhSVajwzluOsL1XQkW-6WzHBLU0uFzSxzQouEOacFphQbRSyOYKdbYNnKiJm8QHQEL9a3PXeHkI0qbbXwY3Kc5FmwaSN42OBhPZPQKiCU549AbCBlY6qbd8rz73UFcRIMS5byCN50oLqY1_9p8fjy33gON_ong2N5fDg8egI3k4D5cPAn34HefLqwT735Ni-etTyD4NtVs-lvQlFXJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYidQwEhwgmjs2I6dA0JAGbWUVhyoVE6u42WoNEqGWTQafhq_Dr8sUw1Lb70mTuI8f2-x34bQC2NksLIkqQrMpDxuCNKCWZVyHpzMImKKJjbn8CjfO-afTsTJFvrV58JAWGUvExtB7WoLZ-QD2BjIyA1CDEIXFvFld_h28iOFDlLgae3babQQOfCrZdy-zd7s78a1fpllw49fP-ylXYeB1ApO52k01hQzUSAUxFAuc5OxgkYeDkp4ZYkrDSXWSyOK3JLSCGmpi_qMlpK5MneOxfdeQVclExR4TJ7I9fkOeNA4Lbo8HcLUYBZ1JeSzZQxoIki63NCFTcuAf9m5f4dr_uGzbVTh8Ba62dmw-F0Luttoy1d30LW2q-XqLvp2aEaVn5_99A5PofQBSFQcxvUS1wHHD09WUdV5PBqvIgoxnARja6ZlXeHKVPV8UfoZNpXDkHPRnhhj36Qo3kPHl0Lf-2i7qiv_EOGCx800D5IYFRWvc0bEAT4LpXfK5YYmiPa01LYrbw5dNsa6cbMzpVv660h_3dBfLxP0av3MpC3uceHo97BE65FQmLu5UE9HuuNzzZ30THimfO55UFZlPASrCGPEGepJgnb6BdadtJjpc2wn6Pn6duRzcN6YyteLOKYgWZGDdZugBy0e1jOBpgFQqD9BagMpG1PdvFOdfW9qiVMwMbmQCXrdg-p8Xv-nxaOLf-MZuh6ZU3_ePzp4jG5kAHmIACp20PZ8uvBPoh03L582DIPR6WVz6G9tNln3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetized+radiative+flow+of+propylene+glycol+with+carbon+nanotubes+and+activation+energy&rft.jtitle=Scientific+reports&rft.au=Ali+Ghazwani%2C+Hassan&rft.au=Saleem%2C+Muzher&rft.au=Haq%2C+Fazal&rft.date=2023-12-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-49150-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_49150_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |