A real-world data validation of the value of early-stage SIR modelling to public health

Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease progress, and knowledge about the virus and transmission is limited early in the epidemic, resul...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 9164 - 8
Main Authors Liu, Taoran, Huang, Jian, He, Zonglin, Zhang, Yin, Yan, Ni, Zhang, Casper J. P., Ming, Wai-Kit
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease progress, and knowledge about the virus and transmission is limited early in the epidemic, resulting in a greater uncertainty of such modelling. We aimed to investigate the impact of model inputs on the early-stage SIR projection using COVID-19 as an illustration to evaluate the application of early infection models. We constructed a modified SIR model using discrete-time Markov chain to simulate daily epidemic dynamics and estimate the number of beds needed in Wuhan in the early stage of COVID-19 epidemic. We compared eight scenarios of SIR projection to the real-world data (RWD) and used root mean square error (RMSE) to assess model performance. According to the National Health Commission, the number of beds occupied in isolation wards and ICUs due to COVID-19 in Wuhan peaked at 37,746. In our model, as the epidemic developed, we observed an increasing daily new case rate, and decreasing daily removal rate and ICU rate. This change in rates contributed to the growth in the needs of bed in both isolation wards and ICUs. Assuming a 50% diagnosis rate and 70% public health efficacy, the model based on parameters estimated using data from the day reaching 3200 to the day reaching 6400 cases returned a lowest RMSE. This model predicted 22,613 beds needed in isolation ward and ICU as on the day of RWD peak. Very early SIR model predictions based on early cumulative case data initially underestimated the number of beds needed, but the RMSEs tended to decline as more updated data were used. Very-early-stage SIR model, although simple but convenient and relatively accurate, is a useful tool to provide decisive information for the public health system and predict the trend of an epidemic of novel infectious disease in the very early stage, thus, avoiding the issue of delay-decision and extra deaths.
AbstractList Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease progress, and knowledge about the virus and transmission is limited early in the epidemic, resulting in a greater uncertainty of such modelling. We aimed to investigate the impact of model inputs on the early-stage SIR projection using COVID-19 as an illustration to evaluate the application of early infection models. We constructed a modified SIR model using discrete-time Markov chain to simulate daily epidemic dynamics and estimate the number of beds needed in Wuhan in the early stage of COVID-19 epidemic. We compared eight scenarios of SIR projection to the real-world data (RWD) and used root mean square error (RMSE) to assess model performance. According to the National Health Commission, the number of beds occupied in isolation wards and ICUs due to COVID-19 in Wuhan peaked at 37,746. In our model, as the epidemic developed, we observed an increasing daily new case rate, and decreasing daily removal rate and ICU rate. This change in rates contributed to the growth in the needs of bed in both isolation wards and ICUs. Assuming a 50% diagnosis rate and 70% public health efficacy, the model based on parameters estimated using data from the day reaching 3200 to the day reaching 6400 cases returned a lowest RMSE. This model predicted 22,613 beds needed in isolation ward and ICU as on the day of RWD peak. Very early SIR model predictions based on early cumulative case data initially underestimated the number of beds needed, but the RMSEs tended to decline as more updated data were used. Very-early-stage SIR model, although simple but convenient and relatively accurate, is a useful tool to provide decisive information for the public health system and predict the trend of an epidemic of novel infectious disease in the very early stage, thus, avoiding the issue of delay-decision and extra deaths.
Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease progress, and knowledge about the virus and transmission is limited early in the epidemic, resulting in a greater uncertainty of such modelling. We aimed to investigate the impact of model inputs on the early-stage SIR projection using COVID-19 as an illustration to evaluate the application of early infection models. We constructed a modified SIR model using discrete-time Markov chain to simulate daily epidemic dynamics and estimate the number of beds needed in Wuhan in the early stage of COVID-19 epidemic. We compared eight scenarios of SIR projection to the real-world data (RWD) and used root mean square error (RMSE) to assess model performance. According to the National Health Commission, the number of beds occupied in isolation wards and ICUs due to COVID-19 in Wuhan peaked at 37,746. In our model, as the epidemic developed, we observed an increasing daily new case rate, and decreasing daily removal rate and ICU rate. This change in rates contributed to the growth in the needs of bed in both isolation wards and ICUs. Assuming a 50% diagnosis rate and 70% public health efficacy, the model based on parameters estimated using data from the day reaching 3200 to the day reaching 6400 cases returned a lowest RMSE. This model predicted 22,613 beds needed in isolation ward and ICU as on the day of RWD peak. Very early SIR model predictions based on early cumulative case data initially underestimated the number of beds needed, but the RMSEs tended to decline as more updated data were used. Very-early-stage SIR model, although simple but convenient and relatively accurate, is a useful tool to provide decisive information for the public health system and predict the trend of an epidemic of novel infectious disease in the very early stage, thus, avoiding the issue of delay-decision and extra deaths.Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease progress, and knowledge about the virus and transmission is limited early in the epidemic, resulting in a greater uncertainty of such modelling. We aimed to investigate the impact of model inputs on the early-stage SIR projection using COVID-19 as an illustration to evaluate the application of early infection models. We constructed a modified SIR model using discrete-time Markov chain to simulate daily epidemic dynamics and estimate the number of beds needed in Wuhan in the early stage of COVID-19 epidemic. We compared eight scenarios of SIR projection to the real-world data (RWD) and used root mean square error (RMSE) to assess model performance. According to the National Health Commission, the number of beds occupied in isolation wards and ICUs due to COVID-19 in Wuhan peaked at 37,746. In our model, as the epidemic developed, we observed an increasing daily new case rate, and decreasing daily removal rate and ICU rate. This change in rates contributed to the growth in the needs of bed in both isolation wards and ICUs. Assuming a 50% diagnosis rate and 70% public health efficacy, the model based on parameters estimated using data from the day reaching 3200 to the day reaching 6400 cases returned a lowest RMSE. This model predicted 22,613 beds needed in isolation ward and ICU as on the day of RWD peak. Very early SIR model predictions based on early cumulative case data initially underestimated the number of beds needed, but the RMSEs tended to decline as more updated data were used. Very-early-stage SIR model, although simple but convenient and relatively accurate, is a useful tool to provide decisive information for the public health system and predict the trend of an epidemic of novel infectious disease in the very early stage, thus, avoiding the issue of delay-decision and extra deaths.
Abstract Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the traditional SIR model may oversimplify the disease progress, and knowledge about the virus and transmission is limited early in the epidemic, resulting in a greater uncertainty of such modelling. We aimed to investigate the impact of model inputs on the early-stage SIR projection using COVID-19 as an illustration to evaluate the application of early infection models. We constructed a modified SIR model using discrete-time Markov chain to simulate daily epidemic dynamics and estimate the number of beds needed in Wuhan in the early stage of COVID-19 epidemic. We compared eight scenarios of SIR projection to the real-world data (RWD) and used root mean square error (RMSE) to assess model performance. According to the National Health Commission, the number of beds occupied in isolation wards and ICUs due to COVID-19 in Wuhan peaked at 37,746. In our model, as the epidemic developed, we observed an increasing daily new case rate, and decreasing daily removal rate and ICU rate. This change in rates contributed to the growth in the needs of bed in both isolation wards and ICUs. Assuming a 50% diagnosis rate and 70% public health efficacy, the model based on parameters estimated using data from the day reaching 3200 to the day reaching 6400 cases returned a lowest RMSE. This model predicted 22,613 beds needed in isolation ward and ICU as on the day of RWD peak. Very early SIR model predictions based on early cumulative case data initially underestimated the number of beds needed, but the RMSEs tended to decline as more updated data were used. Very-early-stage SIR model, although simple but convenient and relatively accurate, is a useful tool to provide decisive information for the public health system and predict the trend of an epidemic of novel infectious disease in the very early stage, thus, avoiding the issue of delay-decision and extra deaths.
ArticleNumber 9164
Author Liu, Taoran
Huang, Jian
Zhang, Casper J. P.
Zhang, Yin
Yan, Ni
Ming, Wai-Kit
He, Zonglin
Author_xml – sequence: 1
  givenname: Taoran
  surname: Liu
  fullname: Liu, Taoran
  organization: Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Science, City University of Hong Kong
– sequence: 2
  givenname: Jian
  surname: Huang
  fullname: Huang, Jian
  organization: Department of Epidemiology and Biostatistics, School of Public Health, St Mary’s Campus, Imperial College London, Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (ASTAR)
– sequence: 3
  givenname: Zonglin
  surname: He
  fullname: He, Zonglin
  organization: Division of Life Science, The Hong Kong University of Science and Technology
– sequence: 4
  givenname: Yin
  surname: Zhang
  fullname: Zhang, Yin
  organization: Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong
– sequence: 5
  givenname: Ni
  surname: Yan
  fullname: Yan, Ni
  organization: Department of Public Health and Preventive Medicine, School of Medicine, Jinan University
– sequence: 6
  givenname: Casper J. P.
  surname: Zhang
  fullname: Zhang, Casper J. P.
  organization: School of Public Health, LKS Faculty of Medicine, The University of Hong Kong
– sequence: 7
  givenname: Wai-Kit
  surname: Ming
  fullname: Ming, Wai-Kit
  email: wkming2@cityu.edu.hk
  organization: Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Science, City University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37280428$$D View this record in MEDLINE/PubMed
BookMark eNp9UsluFDEQbaEgEkJ-gANqiQuXBru8tH1CUcQyUiQkFnG0qm3PjEeedrB7EuXvcWdCSHKILy5Xvfdc28vmYEyjb5rXlLynhKkPhVOhVUeAdUwyJTv9rDkCwkUHDODgnn3YnJSyIfUI0JzqF80h60ERDuqo-X3aZo-xu0o5utbhhO0lxlCNkMY2Ldtp7WfPzs8Pjzled2XClW9_LL632-R8jGFctVNqL3ZDDLZdV7lp_ap5vsRY_Mntfdz8-vzp59nX7vzbl8XZ6XlnBadTp4hkvEc9eN6Dg17KXnEuUHtKUPQDFTWCxHuhrVRL6ryj0jIJgwILwNhxs9jruoQbc5HDFvO1SRjMjSPllcE8BRu9Qc0cSjVoAZZbkFq4pcaBoWDcEa6q1se9Vq1k653145QxPhB9GBnD2qzSpaEEOADoqvDuViGnPztfJrMNxdYW4ejTrhhQwLjmQsoKffsIukm7PNZezShQ86RoRb25n9JdLv8GWAGwB9icSsl-eQehxMyLYvaLYuqimJtFMXOa6hHJhulm4rWsEJ-msj211H_Glc__036C9RfaVdAP
CitedBy_id crossref_primary_10_1016_j_physa_2023_129437
crossref_primary_10_3390_covid3120123
crossref_primary_10_1186_s13040_024_00396_8
crossref_primary_10_1039_D4SM00864B
Cites_doi 10.2807/1560-7917.ES.2020.25.3.2000044
10.1371/journal.pone.0243408
10.1086/503444
10.1016/S2213-2600(20)30396-9
10.1016/S0140-6736(20)30183-5
10.1016/S0140-6736(20)30845-X
10.1001/jama.2020.8420
10.1056/NEJMoa2001316
10.1136/bmj.m236
10.1038/s41598-020-72611-5
10.1016/S1473-3099(20)30144-4
10.1002/phar.2439
10.1186/1471-2334-3-19
10.1001/jama.2020.6585
10.1155/2020/8857346
10.1038/s41577-020-0311-8
10.1016/S2468-2667(20)30089-X
10.1016/j.autcon.2020.103345
10.1016/j.immuni.2020.07.005
10.1101/2020.07.01.20144394
10.3201/eid1006.031023
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-36386-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Publicly Available Content Database
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Public Health
EISSN 2045-2322
EndPage 8
ExternalDocumentID oai_doaj_org_article_a93da68b952c4c2695df9ab3a534d048
PMC10242229
37280428
10_1038_s41598_023_36386_9
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-806347a9be472d276678445a9e10a57b15be4a0ee59c68f1ded16c362b82c2233
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:26:39 EDT 2025
Thu Aug 21 18:38:07 EDT 2025
Fri Jul 11 09:08:30 EDT 2025
Wed Aug 13 04:32:57 EDT 2025
Thu Apr 03 07:07:27 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Tue Jul 01 04:24:49 EDT 2025
Fri Feb 21 02:37:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-806347a9be472d276678445a9e10a57b15be4a0ee59c68f1ded16c362b82c2233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-36386-9
PMID 37280428
PQID 2822894191
PQPubID 2041939
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_a93da68b952c4c2695df9ab3a534d048
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10242229
proquest_miscellaneous_2823494566
proquest_journals_2822894191
pubmed_primary_37280428
crossref_primary_10_1038_s41598_023_36386_9
crossref_citationtrail_10_1038_s41598_023_36386_9
springer_journals_10_1038_s41598_023_36386_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-06
PublicationDateYYYYMMDD 2023-06-06
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wu, Hao, Lau (CR27) 2020; 25
Tsang, Wu, Lin, Lau, Leung, Cowling (CR33) 2020; 5
Tay, Poh, Renia, MacAry, Ng (CR20) 2020; 20
Chau, Strope, Figg (CR12) 2020; 40
CR15
CR14
Huang, Wang, Li (CR1) 2020; 395
CR10
Ng, Turinici, Danchin (CR9) 2003; 3
CR30
Luo, Liu, Li, Chen, Zhang (CR31) 2020; 119
Cacciapaglia, Cot, Sannino (CR7) 2020; 10
Lewer, Braithwaite, Bullock (CR22) 2020; 8
(CR19) 2020; 27
McBryde, Meehan, Adegboye (CR8) 2020; 35
Tolles, Luong (CR32) 2020; 323
CR2
Fudolig, Howard (CR17) 2020; 15
CR4
Jewell, Lewnard, Jewell (CR13) 2020; 323
CR5
Sariol, Perlman (CR21) 2020; 53
Kucharski, Russell, Diamond (CR23) 2020; 20
CR29
CR28
Xu, Li (CR6) 2020; 395
CR26
Kolokolnikov, Iron (CR18) 2020; 6
Pagel, Meade (CR24) 2006; 167
Alanazi, Kamruzzaman, Alruwaili, Alshammari, Alqahtani, Karime (CR16) 2020; 2020
Li, Guan, Wu (CR25) 2020; 382
Parry (CR3) 2020; 368
Omer, Malani, Del Rio (CR11) 2020; 323
Q Li (36386_CR25) 2020; 382
D Lewer (36386_CR22) 2020; 8
Team IC-F (36386_CR19) 2020; 27
S Xu (36386_CR6) 2020; 395
36386_CR14
36386_CR15
J Tolles (36386_CR32) 2020; 323
MZ Tay (36386_CR20) 2020; 20
M Pagel (36386_CR24) 2006; 167
J Parry (36386_CR3) 2020; 368
C Huang (36386_CR1) 2020; 395
TK Tsang (36386_CR33) 2020; 5
G Cacciapaglia (36386_CR7) 2020; 10
SB Omer (36386_CR11) 2020; 323
36386_CR2
A Sariol (36386_CR21) 2020; 53
36386_CR5
ES McBryde (36386_CR8) 2020; 35
36386_CR4
P Wu (36386_CR27) 2020; 25
36386_CR26
36386_CR29
AJ Kucharski (36386_CR23) 2020; 20
36386_CR28
H Luo (36386_CR31) 2020; 119
CH Chau (36386_CR12) 2020; 40
36386_CR30
36386_CR10
M Fudolig (36386_CR17) 2020; 15
SA Alanazi (36386_CR16) 2020; 2020
NP Jewell (36386_CR13) 2020; 323
TW Ng (36386_CR9) 2003; 3
T Kolokolnikov (36386_CR18) 2020; 6
References_xml – volume: 25
  start-page: 2000044
  issue: 3
  year: 2020
  ident: CR27
  article-title: Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.3.2000044
– volume: 15
  start-page: e0243408
  issue: 12
  year: 2020
  ident: CR17
  article-title: The local stability of a modified multi-strain SIR model for emerging viral strains
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0243408
– volume: 167
  start-page: 808
  issue: 6
  year: 2006
  end-page: 825
  ident: CR24
  article-title: Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo
  publication-title: Am. Nat.
  doi: 10.1086/503444
– ident: CR4
– ident: CR14
– ident: CR2
– volume: 6
  start-page: 91
  year: 2020
  ident: CR18
  article-title: Law of mass action and saturation in SIR model with application to coronavirus modelling
  publication-title: Infect. Dis. Model
– ident: CR30
– ident: CR10
– volume: 323
  start-page: 1767
  issue: 18
  year: 2020
  end-page: 1768
  ident: CR11
  article-title: The COVID-19 pandemic in the US: A clinical update
  publication-title: JAMA
– volume: 8
  start-page: 1181
  issue: 12
  year: 2020
  end-page: 1191
  ident: CR22
  article-title: COVID-19 among people experiencing homelessness in England: A modelling study
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30396-9
– ident: CR29
– volume: 35
  start-page: 57
  year: 2020
  end-page: 60
  ident: CR8
  article-title: Role of modelling in COVID-19 policy development
  publication-title: Paediatr. Respir. Rev.
– volume: 27
  start-page: 94
  year: 2020
  ident: CR19
  article-title: Modeling COVID-19 scenarios for the United States
  publication-title: Nat. Med.
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  end-page: 506
  ident: CR1
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 395
  start-page: 1321
  issue: 10233
  year: 2020
  end-page: 1322
  ident: CR6
  article-title: Beware of the second wave of COVID-19
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30845-X
– volume: 323
  start-page: 2515
  issue: 24
  year: 2020
  end-page: 2516
  ident: CR32
  article-title: Modeling Epidemics with compartmental models
  publication-title: JAMA
  doi: 10.1001/jama.2020.8420
– volume: 382
  start-page: 1199
  year: 2020
  ident: CR25
  article-title: Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001316
– volume: 368
  start-page: m236
  year: 2020
  ident: CR3
  article-title: China coronavirus: Cases surge as official admits human to human transmission
  publication-title: BMJ
  doi: 10.1136/bmj.m236
– ident: CR15
– volume: 10
  start-page: 15514
  issue: 1
  year: 2020
  ident: CR7
  article-title: Second wave COVID-19 pandemics in Europe: A temporal playbook
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72611-5
– volume: 20
  start-page: 553
  issue: 5
  year: 2020
  end-page: 558
  ident: CR23
  article-title: Early dynamics of transmission and control of COVID-19: A mathematical modelling study
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30144-4
– volume: 40
  start-page: 857
  issue: 8
  year: 2020
  end-page: 868
  ident: CR12
  article-title: COVID-19 clinical diagnostics and testing technology
  publication-title: Pharmacother. J. Hum. Pharmacol. Drug Therapy
  doi: 10.1002/phar.2439
– volume: 3
  start-page: 19
  year: 2003
  ident: CR9
  article-title: A double epidemic model for the SARS propagation
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-3-19
– volume: 323
  start-page: 1893
  issue: 19
  year: 2020
  end-page: 1894
  ident: CR13
  article-title: Predictive mathematical models of the COVID-19 pandemic: Underlying principles and value of projections
  publication-title: JAMA
  doi: 10.1001/jama.2020.6585
– volume: 2020
  start-page: 8857346
  year: 2020
  ident: CR16
  article-title: Measuring and preventing COVID-19 Using the SIR model and machine learning in smart health care
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/8857346
– ident: CR5
– volume: 20
  start-page: 363
  issue: 6
  year: 2020
  end-page: 374
  ident: CR20
  article-title: The trinity of COVID-19: Immunity, inflammation and intervention
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0311-8
– volume: 5
  start-page: e289
  year: 2020
  ident: CR33
  article-title: Effect of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China: A modelling study
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(20)30089-X
– volume: 119
  start-page: 103345
  year: 2020
  ident: CR31
  article-title: Ultra-rapid delivery of specialty field hospitals to combat COVID-19: Lessons learned from the Leishenshan Hospital project in Wuhan
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103345
– volume: 53
  start-page: 248
  issue: 2
  year: 2020
  end-page: 263
  ident: CR21
  article-title: Lessons for COVID-19 Immunity from other coronavirus infections
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.07.005
– ident: CR28
– ident: CR26
– ident: 36386_CR4
– ident: 36386_CR14
– volume: 25
  start-page: 2000044
  issue: 3
  year: 2020
  ident: 36386_CR27
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.3.2000044
– volume: 382
  start-page: 1199
  year: 2020
  ident: 36386_CR25
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001316
– ident: 36386_CR5
  doi: 10.1101/2020.07.01.20144394
– volume: 323
  start-page: 2515
  issue: 24
  year: 2020
  ident: 36386_CR32
  publication-title: JAMA
  doi: 10.1001/jama.2020.8420
– volume: 6
  start-page: 91
  year: 2020
  ident: 36386_CR18
  publication-title: Infect. Dis. Model
– ident: 36386_CR26
– volume: 323
  start-page: 1893
  issue: 19
  year: 2020
  ident: 36386_CR13
  publication-title: JAMA
  doi: 10.1001/jama.2020.6585
– volume: 40
  start-page: 857
  issue: 8
  year: 2020
  ident: 36386_CR12
  publication-title: Pharmacother. J. Hum. Pharmacol. Drug Therapy
  doi: 10.1002/phar.2439
– volume: 5
  start-page: e289
  year: 2020
  ident: 36386_CR33
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(20)30089-X
– volume: 15
  start-page: e0243408
  issue: 12
  year: 2020
  ident: 36386_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0243408
– volume: 3
  start-page: 19
  year: 2003
  ident: 36386_CR9
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-3-19
– volume: 368
  start-page: m236
  year: 2020
  ident: 36386_CR3
  publication-title: BMJ
  doi: 10.1136/bmj.m236
– ident: 36386_CR28
– volume: 395
  start-page: 497
  issue: 10223
  year: 2020
  ident: 36386_CR1
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 2020
  start-page: 8857346
  year: 2020
  ident: 36386_CR16
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2020/8857346
– ident: 36386_CR15
– volume: 27
  start-page: 94
  year: 2020
  ident: 36386_CR19
  publication-title: Nat. Med.
– volume: 35
  start-page: 57
  year: 2020
  ident: 36386_CR8
  publication-title: Paediatr. Respir. Rev.
– volume: 10
  start-page: 15514
  issue: 1
  year: 2020
  ident: 36386_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72611-5
– ident: 36386_CR10
  doi: 10.3201/eid1006.031023
– volume: 8
  start-page: 1181
  issue: 12
  year: 2020
  ident: 36386_CR22
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(20)30396-9
– volume: 167
  start-page: 808
  issue: 6
  year: 2006
  ident: 36386_CR24
  publication-title: Am. Nat.
  doi: 10.1086/503444
– volume: 20
  start-page: 363
  issue: 6
  year: 2020
  ident: 36386_CR20
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0311-8
– volume: 119
  start-page: 103345
  year: 2020
  ident: 36386_CR31
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103345
– volume: 395
  start-page: 1321
  issue: 10233
  year: 2020
  ident: 36386_CR6
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30845-X
– ident: 36386_CR30
– volume: 323
  start-page: 1767
  issue: 18
  year: 2020
  ident: 36386_CR11
  publication-title: JAMA
– ident: 36386_CR2
– ident: 36386_CR29
– volume: 20
  start-page: 553
  issue: 5
  year: 2020
  ident: 36386_CR23
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30144-4
– volume: 53
  start-page: 248
  issue: 2
  year: 2020
  ident: 36386_CR21
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.07.005
SSID ssj0000529419
Score 2.4188204
Snippet Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally, the...
Abstract Performance of Susceptible-Infected-Recovered (SIR) model in the early stage of a novel epidemic may be hindered by data availability. Additionally,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9164
SubjectTerms 692/699/255
692/700/1538
692/700/478
692/700/478/174
COVID-19
COVID-19 - epidemiology
Disease transmission
Epidemic models
Epidemics
Humanities and Social Sciences
Humans
Infectious diseases
Markov Chains
Mathematical models
multidisciplinary
Public Health
SARS-CoV-2
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG9SSmUkbmA1fiY-FtSqcOAAVPRm2bEDlaosoruH_ntm7OzS5XnhEimxI1njz5nP8cw3AM-z0lEGbbgNbeKIkMhDypabJMc2D3HoU4m2eGdPTvXbM3N2rdQXxYRVeeBquIPgVAq2j87IQQ_SOpNGF6IKRumE8KOvL_q8a5upquotnRZuzpJpVX9wiZ6Kssmk4goxZ7nb8kRFsP93LPPXYMmfTkyLIzq-A7dnBskO68jvwo083YObtabk1X34dMiQB17wIoXKKACUIZjOa-kkthgZMj56ssp0k0nfmCND_JzZhzfvWSmMQxnqbLlgVQKb1VTJB3B6fPTx9QmfqyfwwWixRNdjle6Ci1l3MsnOolvS2gSXRRtMF4XBltDmbNxg-1GknIQd0J_FXg5IGtRD2JkWU34MTIwkwq6jzXhFghPUiPsg5E5OIltwXQNibUk_zNLiVOHiwpcjbtX7an2P1vfF-t418GLzztcqrPHX3q9ogjY9SRS7PECo-Bkq_l9QaWBvPb1-XqmXnsJoe8KKaODZphnXGB2chCkvVqUPqfgg823gUUXDZiSK6nvhHq6BfgsnW0PdbpnOvxQdb0H8CC3YwMs1pH6M68-22P0ftngCtyStBfqfZPdgZ_ltlZ8ivVrG_bKSvgMOKh2L
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCAkJISivQEFG4gZWE78Sn1BBVIUDB6Bib5ZfaStVSenuHvj3zNjZVMujl5U2diTHM_Z89sx8Q8jrJKTnTiqmXR0ZaIhnLibNVOR9nYIPXczRFl_00bH8vFCL6cJtOYVVbvbEvFHHMeAd-T6GO3ZGwvHi3cVPhlWj0Ls6ldC4SW4hdRlqdbto5zsW9GLBG1OuTC26_SXYK8wp44IJ0DzNzJY9yrT9_8Kaf4dM_uE3zebo8D65N-FIelAE_4DcSMMuuV0qS_7aJXfLdRwtWUYPyY8DCujwnGWCVIphoRRU7KwUVKJjTwEH4pN1wj8JWY8Z4MaTRL99-kpzuRzMW6erkRZibFoSKB-R48OP3z8csammAgtKNiswSFrI1hmfZMsjbzUYKymVM6mpnWp9o6DF1SkpE3TXNzHFRgewcr7jAaCEeEx2hnFITwlteqRml14n-AXY40QPpyNAVIYDhjBtRZrNzNowEY5j3Ytzmx3forNFGhakYbM0rKnIm_mdi0K3cW3v9yiwuSdSZecH4-WJnVaedUZEpztvFA8ycG1U7I3zwikhI-xfFdnbiNtO63dpr7StIq_mZlh56E5xQxrXuQ9y-wAersiToh3zSARW_YKTXUW6Lb3ZGup2y3B2mtm9G0RNMIMVebtRsatx_X8unl3_Gc_JHY5aj_dHeo_srC7X6QXAqZV_mdfMb6IcGeg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcEN8NFGQkbmARfyY-Loiq7IEDpaI3y06cUqlKULt76L_vjJMNWihIXCIltiVr8ux5iWfeALxJSkcZtOE2lC1HhEQe2mS5aWVXpiY2dZujLb7YoxO9PDWnOyA3uTA5aD9LWuZtehMd9v4KHQ0lg0nFFULGcncH9kiqHbG9t1gsj5fznxU6u9LCTRkypapvGbzlhbJY_20M889Ayd9OS7MTOnwA9yf2yBbjfB_CTuofwd2xnuT1Y_i-YMgBL3iWQWUU_MkQSOdj2SQ2dAzZHj1ZJ7pJpG3MkR2eJXb8-SvLRXEoO52tBjbKX7MxTfIJnBx--vbxiE-VE3hjtFih27FKV8HFpCvZysqiS9LaBJdEGUwVhcGWUKZkXGPrTrSpFbZBXxZr2SBhUE9htx_6tA9MdCTArqNNeEVyE1SH30DIm5xEpuCqAsTGkr6ZZMWpusWFz8fbqvaj9T1a32fre1fA23nMz1FU45-9P9ALmnuSIHZ-MFye-QkgPjjVBltHZ2SjG2mdaTsXogpG6RZ3qQIONq_XT6v0ylMIbU1YEQW8nptxfdGhSejTsM59SMEHWW8Bz0Y0zDNRVNsLv98KqLdwsjXV7Zb-_EfW8BbEjdCCBbzbQOrXvP5ui-f_1_0F3JOEevprZA9gd3W5Ti-RRK3iq2nV3ADlgBQs
  priority: 102
  providerName: Springer Nature
Title A real-world data validation of the value of early-stage SIR modelling to public health
URI https://link.springer.com/article/10.1038/s41598-023-36386-9
https://www.ncbi.nlm.nih.gov/pubmed/37280428
https://www.proquest.com/docview/2822894191
https://www.proquest.com/docview/2823494566
https://pubmed.ncbi.nlm.nih.gov/PMC10242229
https://doaj.org/article/a93da68b952c4c2695df9ab3a534d048
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL3ah5B4QXyTMSoj8QaGxl-JHxDqqk2jEhPaqOhb5CTOmFQlrGsl9u-510mKCgWJl1a1ncq6Oc49ju1zAF55qXLhlObGDUuOCMm5K73huhTV0Bd5kZZht8WZOZ2qyUzPdqC3O-oCeLN1akd-UtPF_O2P69sPOODft0fG03c3mITooJiQXCKcDLe7sI-ZKSFHg08d3W-1voVVweuDRNg5kgnRnaPZ_jcbuSpI-m_joX9up_xtTTWkqpP7cK_jmGzUguIB7Pj6IdxpXSdvH8HXEUOmOOdBLJXRFlGGcLtqzZVYUzHkhFSy8vTDkwIyRw556dnFx3MWrHPoDDtbNqwVyWbtYcrHMD05_jI-5Z2_Ai-0ipeYnIxUibO5V4koRWIwcSmlnfXx0OkkjzXWuKH32hYmreLSl7EpMOPlqSiQVsgnsFc3tX8GLK5Ipl3lxuMnUiAnK5wpIbuyAvmETSKI-0hmRSc-Th4Y8ywsgss0a6OfYfSzEP3MRvB6fc33Vnrjn62P6AatW5JsdihoFpdZNwozZ2XpTJpbLQpVCGN1WVmXS6elKvFZFsFhf3uzHooZbbRNCTdxBC_X1TgKaWnF1b5ZhTak84PcOIKnLRrWPZHkAIazvAjSDZxsdHWzpr76FpS-Y2JQGMEI3vSQ-tWvv8fi4L8i9xzuCgI9vVoyh7C3XKz8C2Ray3wAu8ksGcD-aDS5mOD30fHZ53MsHZvxILy9GIQB9hPZoSOw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQSQlBegQJGghNYTWzHiQ8IlUe1S0sP0Iq9uU7ilEpVUrq7Qv1T_EZmnGSr5dFbLytt7F05noe_8bwAXnipCuFUyrWLK44cUnBXec3TStSxL4syr0K0xa4e7atPk3SyAr-GXBgKqxx0YlDUVVvSHfkGhTvmRqF58fbkB6euUeRdHVpodGyx7c9-osk2fTP-gPR9KcTWx733I953FeBlqpIZqmQtVeZM4VUmKpFpVNdKpc74JHZpViQpjrjY-9SUOq-TyleJLlHPF7ko8TCV-L9X4CoevDEZe9kkW9zpkNcMV9jn5sQy35ji-Ug5bEJyiZyuuVk6_0KbgH9h279DNP_w04bjb-s23OpxK9vsGO0OrPhmDa51nSzP1uBmd_3Huqymu_BtkyEaPeahICujMFSGLH3UNXBibc0Qd9KTuacvnqosc8Sph559HX9hoT0P5cmzWcu6QtysS9i8B_uXstv3YbVpG_8QWFJTKXhVaI-fCLOcrNEaQwRnBGIWk0WQDDtry77AOfXZOLbB0S5z21HDIjVsoIY1Ebxa_OakK-9x4ex3RLDFTCrNHR60p4e2l3TrjKyczguTilKVQpu0qo0rpEulqlBfRrA-kNv2-mJqz7k7gueLYZR0ct-4xrfzMIdqCSH-juBBxx2LlUjqMoaWZAT5Et8sLXV5pDn6HqqJJ4TScAcjeD2w2Pm6_r8Xjy5-jWdwfbT3ecfujHe3H8MNQRJAd1d6HVZnp3P_BKHcrHga5IfBwWUL7G-631Vp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNBFD7UFEUQ0XpbrTqCPumQ7Nx250GktQ2NlVCqxb5NZ3dna6Fka5Mg_Wv-Os_ZS0q89K0vgexMwuycy3xnzg3gdZAqE15pbvyg4MghGfdFMFwXohyEPMvToo62GJudA_XpUB-uwK8uF4bCKjudWCvqosrpjrxP4Y6pVWhe9Ms2LGJva_jh7AenDlLkae3aaTQsshsufqL5Nn0_2kJavxFiuP314w5vOwzwXKt4hurZSJV4mwWViEIkBlW3UtrbEA-8TrJY44gfhKBtbtIyLkIRmxx1fpaKHA9Wif97A1YTsop6sLq5Pd7bX9zwkA8N19tm6gxk2p_iaUkZbUJyiXxvuF06DeumAf9Cun8HbP7hta0Pw-E9uNuiWLbRsN19WAmTNbjZ9LW8WIM7zWUga3KcHsC3DYbY9JTX5VkZBaUyZPCTpp0Tq0qGKJSezAN9CVRzmSNqPQ7sy2if1c16KGuezSrWlOVmTfrmQzi4lv1-BL1JNQlPgMUlFYZXmQn4iaDLyxJtM8RzViCCsUkEcbezLm_LnVPXjVNXu91l6hpqOKSGq6nhbARvF785a4p9XDl7kwi2mEmFuusH1fmxa-XeeSsLb9LMapGrXBiri9L6THotVYHaM4L1jtyu1R5Td8nrEbxaDKPckzPHT0I1r-dQZSFE4xE8brhjsRJJPcfQrowgXeKbpaUuj0xOvte1xWPCbLiDEbzrWOxyXf_fi6dXv8ZLuIXC6j6PxrvP4LYgAaCLLLMOvdn5PDxHXDfLXrQCxODoumX2N988WwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-world+data+validation+of+the+value+of+early-stage+SIR+modelling+to+public+health&rft.jtitle=Scientific+reports&rft.au=Liu%2C+Taoran&rft.au=Huang%2C+Jian&rft.au=He%2C+Zonglin&rft.au=Zhang%2C+Yin&rft.date=2023-06-06&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-023-36386-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_023_36386_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon