Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity
The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory respon...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 4584 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.07.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered
via
liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy.
Agonists of the cytosolic DNA-sensing STING pathway potently remodel the tumour immune microenvironment to support anti-tumour adaptive immunity, but at the expense of adverse systemic inflammation. Here authors exchange the STING agonist MSA-2 with its prodrugs that are suitable for nano-liposomal delivery and thus achieve increased efficiency and decreased toxicity. |
---|---|
AbstractList | The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy.The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy. The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy. The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy. Agonists of the cytosolic DNA-sensing STING pathway potently remodel the tumour immune microenvironment to support anti-tumour adaptive immunity, but at the expense of adverse systemic inflammation. Here authors exchange the STING agonist MSA-2 with its prodrugs that are suitable for nano-liposomal delivery and thus achieve increased efficiency and decreased toxicity. The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy. The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy.Agonists of the cytosolic DNA-sensing STING pathway potently remodel the tumour immune microenvironment to support anti-tumour adaptive immunity, but at the expense of adverse systemic inflammation. Here authors exchange the STING agonist MSA-2 with its prodrugs that are suitable for nano-liposomal delivery and thus achieve increased efficiency and decreased toxicity. Abstract The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation of the STING pathway does create an immunologically hot TME, however, systemic delivery might lead to undesired off-target inflammatory responses. Here, we generate a small panel of esterase-activatable pro-drugs based on the structure of the non-nucleotide STING agonist MSA-2 that are subsequently stably incorporated into a liposomal vesicle for intravenous administration. The pharmacokinetic properties and immune stimulatory capacity of pro-drugs delivered via liposomes (SAProsomes) are enhanced compared to the free drug form. By performing efficacy screening among the SAProsomes incorporating different pro-drugs in syngeneic mouse tumor models, we find that superior therapeutic performance relies on improved delivery to the desired tumor and lymphoid compartments. The best candidate, SAProsome-3, highly stimulates secretion of inflammatory cytokines and creates a tumoricidal immune landscape. Notably, upon application to breast cancer or melanoma mouse models, SAProsome-3 elicits durable remission of established tumors and postsurgical tumor-free survival while decreasing metastatic burden without significant systemic toxicity. In summary, our work establishes the proof of principle for a better targeted and more efficient and safe STING agonist therapy. |
ArticleNumber | 4584 |
Author | Li, Tongyu Meng, Fanchao Xu, Yiting Wang, Hangxiang Chen, Xiaolong Chen, Xiaona |
Author_xml | – sequence: 1 givenname: Xiaona surname: Chen fullname: Chen, Xiaona organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 2 givenname: Fanchao surname: Meng fullname: Meng, Fanchao organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 3 givenname: Yiting surname: Xu fullname: Xu, Yiting organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 4 givenname: Tongyu surname: Li fullname: Li, Tongyu organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 5 givenname: Xiaolong surname: Chen fullname: Chen, Xiaolong organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine – sequence: 6 givenname: Hangxiang orcidid: 0000-0001-6370-9728 surname: Wang fullname: Wang, Hangxiang email: wanghx@zju.edu.cn organization: The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Jinan Microecological Biomedicine Shandong Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37524727$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOKxIVLwJ9xfEJoVdqVKjhQLlysF8dJvUrsxU5Wyr_HadrS9lBfbD3PjMdv3tvsyHlnsuw9Rp8xotWXyDArRYEILRiimBTzq-yEIIYLLAg9enQ-zs5i3KG0qMQVY2-yYyo4YYKIk-zP5sYMVkPfz_k--C7AMJgm_3W9_XFRgB7tAUbrutyB80Vv9z76Afr8YKLVvYm5HRLrYHJwY1Jx2oRUGiZnx_ld9rqFPpqzu_00-_39_HpzWVz9vNhuvl0VmjM8FkJrDQyQrhkiCOqKEE0FAy4bVFPcQgmoTc4bzhkXRhMmuSlryTg0LapaepptV93Gw07tgx0gzMqDVbcFHzoFYVzsKi64JkgjgUrMDDO1MSWVpGbAuJa1TFpfV639VKc-aOPGAP0T0ac3zt6ozh9UykQiXlZJ4dOdQvB_JxNHNdioTd-DM36KiqQESiFLyRL04zPozk_BpV4tKCrLSvDF0ofHlh683GeYAGQF6OBjDKZ9gGC0-KrUOisqzYq6nRU1J1L1jKTtmKL2y7ds_zKVrtSY3nGdCf9tv8D6B8fe1H8 |
CitedBy_id | crossref_primary_10_1002_adma_202413603 crossref_primary_10_1016_j_biomaterials_2024_122696 crossref_primary_10_1002_advs_202403592 crossref_primary_10_1021_acsnano_4c08613 crossref_primary_10_1002_adma_202418894 crossref_primary_10_1038_s41392_023_01718_8 crossref_primary_10_1039_D4BM01532K crossref_primary_10_1002_adma_202407525 crossref_primary_10_1016_j_biomaterials_2024_122645 crossref_primary_10_1002_advs_202405729 crossref_primary_10_1016_j_jconrel_2024_05_042 crossref_primary_10_1016_j_preme_2024_100004 crossref_primary_10_1080_13543776_2024_2365409 crossref_primary_10_1016_j_biopha_2024_117543 crossref_primary_10_1021_acscentsci_3c01310 crossref_primary_10_1186_s12916_024_03314_1 crossref_primary_10_1016_j_mattod_2024_11_001 crossref_primary_10_1093_toxres_tfae172 crossref_primary_10_1016_j_ijpharm_2024_124759 crossref_primary_10_1016_j_nantod_2025_102716 crossref_primary_10_1021_acsnano_4c00063 crossref_primary_10_1186_s12951_025_03322_0 crossref_primary_10_1007_s00262_024_03861_9 crossref_primary_10_3389_fimmu_2023_1200245 crossref_primary_10_1016_j_jddst_2025_106847 crossref_primary_10_1016_j_mtbio_2025_101446 crossref_primary_10_1021_acsnano_4c12237 crossref_primary_10_1021_acsami_4c00513 crossref_primary_10_1158_0008_5472_CAN_23_3511 crossref_primary_10_1002_adma_202412654 crossref_primary_10_1038_s41467_025_57718_5 crossref_primary_10_1016_j_jcis_2025_02_012 crossref_primary_10_1016_j_eurpolymj_2024_113333 crossref_primary_10_3390_cancers16213657 crossref_primary_10_1016_j_actbio_2024_12_059 crossref_primary_10_1002_adma_202410998 crossref_primary_10_1038_s41467_025_58075_z crossref_primary_10_1016_j_actbio_2024_01_008 crossref_primary_10_1016_j_biomaterials_2024_122628 crossref_primary_10_1021_acsnano_3c08425 crossref_primary_10_1021_jacs_4c15534 crossref_primary_10_1186_s12964_024_01860_y crossref_primary_10_1016_j_biomaterials_2024_122745 crossref_primary_10_1002_bmm2_12083 crossref_primary_10_1021_acsnano_4c10146 crossref_primary_10_1016_j_xcrm_2024_101432 crossref_primary_10_1002_cmdc_202400416 crossref_primary_10_2147_IJN_S491573 crossref_primary_10_1021_acsnano_4c08044 crossref_primary_10_1016_j_nantod_2024_102598 crossref_primary_10_1007_s00210_025_03835_3 crossref_primary_10_1002_cbic_202400255 crossref_primary_10_1038_s41467_024_55751_4 crossref_primary_10_1039_D4TB01343C crossref_primary_10_1016_j_biomaterials_2025_123170 crossref_primary_10_1016_j_intimp_2025_114013 crossref_primary_10_1002_advs_202405083 crossref_primary_10_1002_smll_202408769 crossref_primary_10_1016_j_talanta_2024_127258 crossref_primary_10_34133_bmr_0048 crossref_primary_10_1002_bmm2_12077 crossref_primary_10_1021_acsami_4c09825 crossref_primary_10_1021_acs_molpharmaceut_4c00867 crossref_primary_10_1002_advs_202402208 crossref_primary_10_1002_advs_202309026 crossref_primary_10_1016_j_bbcan_2023_188983 |
Cites_doi | 10.1038/nature21349 10.1016/j.ccell.2018.03.008 10.1126/scitranslmed.aay3575 10.1038/nrd.2017.264 10.7150/thno.55250 10.1016/j.celrep.2015.04.031 10.1038/s41586-022-04422-9 10.1016/j.tips.2022.08.006 10.1038/s41591-020-1073-3 10.1126/science.aba6098 10.1172/JCI86892 10.1126/sciimmunol.abq6509 10.1016/j.bioactmat.2022.06.013 10.1038/s41467-023-37328-9 10.1002/adma.202109354 10.1126/science.1232458 10.1111/imr.12765 10.1038/s41577-019-0210-z 10.1186/s13045-020-00916-z 10.1038/s41563-022-01251-z 10.1158/0008-5472.CAN-17-0984 10.1182/blood.2019000847 10.1016/j.biomaterials.2021.120705 10.1016/j.addr.2021.114020 10.1021/acsnano.1c08008 10.1172/jci.insight.120638 10.1038/s41551-018-0279-x 10.1158/1538-7445.AM2016-1445 10.1038/s41388-020-01575-7 10.1038/s41565-018-0342-5 10.1016/j.addr.2021.113851 10.1126/science.aaa8172 10.1016/j.cell.2020.11.025 10.1126/scitranslmed.aaz6606 10.7150/thno.37574 10.1016/j.ijpharm.2021.120399 10.1016/j.ccr.2014.05.016 10.1016/j.tranon.2019.12.010 10.7150/thno.47137 10.1038/s41565-021-00950-z 10.1016/j.immuni.2021.02.020 10.1016/j.jconrel.2020.05.025 10.1016/j.tcb.2022.06.010 10.1016/j.jconrel.2016.01.039 10.1016/S1470-2045(20)30234-5 10.1021/acs.jmedchem.6b01300 10.1038/86297 10.1016/j.addr.2021.113962 10.1016/j.cell.2012.02.034 10.1172/JCI79915 10.1016/j.jconrel.2020.11.017 10.1038/nm.4200 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40312-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_575c20c070614e4ebee6392b4a45c9b9 PMC10390568 37524727 10_1038_s41467_023_40312_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82273490; 82073296; 81773193 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82273490 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82073296 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81773193 – fundername: ; grantid: 82273490; 82073296; 81773193 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-7ccca4a0cb4020ab822c374a59d0b31fa6a0f391d55457ec2495e6b945adf08f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:34 EDT 2025 Thu Aug 21 18:42:10 EDT 2025 Fri Jul 11 01:51:20 EDT 2025 Wed Aug 13 04:19:12 EDT 2025 Thu Apr 03 07:00:47 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Tue Jul 01 02:10:29 EDT 2025 Fri Feb 21 02:39:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-7ccca4a0cb4020ab822c374a59d0b31fa6a0f391d55457ec2495e6b945adf08f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6370-9728 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40312-y |
PMID | 37524727 |
PQID | 2843968759 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_575c20c070614e4ebee6392b4a45c9b9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10390568 proquest_miscellaneous_2844679694 proquest_journals_2843968759 pubmed_primary_37524727 crossref_primary_10_1038_s41467_023_40312_y crossref_citationtrail_10_1038_s41467_023_40312_y springer_journals_10_1038_s41467_023_40312_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-31 |
PublicationDateYYYYMMDD | 2023-07-31 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Smyth, Godfrey, Trapani (CR4) 2001; 2 Ren (CR43) 2022; 16 Golder (CR29) 2018; 2 Lu (CR35) 2020; 12 Large, Abdelmessih, Fink, Auguste (CR52) 2021; 176 Reschke, Gajewski (CR33) 2022; 7 Fang (CR26) 2021; 599 Van Herck, Feng, Tang (CR22) 2021; 179 Dai (CR38) 2020; 10 Han, Zhang, Liu, Moore, Fu (CR16) 2021; 40 Guo, Huang (CR47) 2022; 43 Corrales, McWhirter, Dubensky, Gajewski (CR21) 2016; 126 Karki (CR32) 2021; 184 Weiner, Murray, Shuptrine (CR11) 2012; 148 Wang (CR25) 2017; 77 Lioux (CR17) 2016; 59 Wang (CR42) 2021; 16 McIntosh (CR51) 2022; 603 Chen, Mellman (CR2) 2017; 541 Su (CR46) 2019; 9 Pan (CR24) 2020; 369 Ying (CR39) 2023; 20 Dane (CR50) 2022; 21 CR9 Cerezo-Wallis (CR40) 2020; 26 Glickman (CR15) 2016; 76 Francis (CR5) 2020; 12 Wculek (CR34) 2020; 20 Chen (CR41) 2021; 11 Hanson (CR18) 2015; 125 Cheng (CR37) 2018; 3 Corrales (CR13) 2015; 11 Ferreira, Choe (CR8) 2021; 178 Jiang (CR23) 2020; 13 Wang (CR10) 2022; 34 Shi (CR27) 2020; 324 Ries (CR36) 2014; 25 Patil, Amitay, Ohana, Shmeeda, Gabizon (CR30) 2016; 225 Tello-Lafoz (CR7) 2021; 54 Sun, Wu, Du, Chen, Chen (CR12) 2013; 339 Wang (CR28) 2021; 270 Shae (CR19) 2019; 14 de Olza, Rodrigo, Zimmermann, Coukos (CR3) 2020; 21 Chin, Sulpizio, Lairson (CR31) 2022; 33 Vonderheide (CR45) 2018; 33 Flood, Higgs, Li, Luke, Gajewski (CR14) 2019; 290 Kline, Godfrey, Ansell (CR6) 2020; 135 Barrueto (CR44) 2020; 13 Zhang (CR48) 2023; 14 Sharma, Allison (CR1) 2015; 348 Wehbe (CR49) 2021; 330 Mullard (CR20) 2018; 17 40312_CR9 MC Hanson (40312_CR18) 2015; 125 R Reschke (40312_CR33) 2022; 7 L Barrueto (40312_CR44) 2020; 13 MN Ferreira (40312_CR8) 2021; 178 K Ying (40312_CR39) 2023; 20 MO de Olza (40312_CR3) 2020; 21 YC Wang (40312_CR28) 2021; 270 D Cerezo-Wallis (40312_CR40) 2020; 26 ML Jiang (40312_CR23) 2020; 13 XG Lu (40312_CR35) 2020; 12 DE Large (40312_CR52) 2021; 176 EN Chin (40312_CR31) 2022; 33 LL Shi (40312_CR27) 2020; 324 T Su (40312_CR46) 2019; 9 L Corrales (40312_CR13) 2015; 11 LM Weiner (40312_CR11) 2012; 148 HX Wang (40312_CR25) 2017; 77 Y Patil (40312_CR30) 2016; 225 M Wehbe (40312_CR49) 2021; 330 MR Golder (40312_CR29) 2018; 2 LJ Sun (40312_CR12) 2013; 339 SK Wculek (40312_CR34) 2020; 20 P Sharma (40312_CR1) 2015; 348 RH Vonderheide (40312_CR45) 2018; 33 P Zhang (40312_CR48) 2023; 14 M Tello-Lafoz (40312_CR7) 2021; 54 LH Glickman (40312_CR15) 2016; 76 L Corrales (40312_CR21) 2016; 126 ZR Wang (40312_CR42) 2021; 16 BS Pan (40312_CR24) 2020; 369 S Van Herck (40312_CR22) 2021; 179 BA Flood (40312_CR14) 2019; 290 R Karki (40312_CR32) 2021; 184 L Ren (40312_CR43) 2022; 16 JA McIntosh (40312_CR51) 2022; 603 T Fang (40312_CR26) 2021; 599 N Cheng (40312_CR37) 2018; 3 CH Ries (40312_CR36) 2014; 25 A Mullard (40312_CR20) 2018; 17 W Wang (40312_CR10) 2022; 34 DS Chen (40312_CR2) 2017; 541 XM Dai (40312_CR38) 2020; 10 D Shae (40312_CR19) 2019; 14 XN Chen (40312_CR41) 2021; 11 CH Han (40312_CR16) 2021; 40 J Kline (40312_CR6) 2020; 135 MJ Smyth (40312_CR4) 2001; 2 J Guo (40312_CR47) 2022; 43 EL Dane (40312_CR50) 2022; 21 DM Francis (40312_CR5) 2020; 12 T Lioux (40312_CR17) 2016; 59 |
References_xml | – volume: 541 start-page: 321 year: 2017 end-page: 330 ident: CR2 article-title: Elements of cancer immunity and the cancer-immune set point publication-title: Nature doi: 10.1038/nature21349 – volume: 33 start-page: 563 year: 2018 end-page: 569 ident: CR45 article-title: The immune revolution: a case for priming, not checkpoint publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.008 – volume: 12 start-page: eaay3575 year: 2020 ident: CR5 article-title: Blockade of immune checkpoints in lymph nodes through locoregional delivery augments cancer immunotherapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay3575 – volume: 17 start-page: 3 year: 2018 end-page: 5 ident: CR20 article-title: Can innate immune system targets turn up the heat on ‘cold’ tumours? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.264 – volume: 11 start-page: 5713 year: 2021 end-page: 5727 ident: CR41 article-title: Quantitative self-assembly of pure drug cocktails as injectable nanomedicines for synergistic drug delivery and cancer therapy publication-title: Theranostics doi: 10.7150/thno.55250 – volume: 11 start-page: 1018 year: 2015 end-page: 1030 ident: CR13 article-title: Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.031 – volume: 603 start-page: 439 year: 2022 end-page: 444 ident: CR51 article-title: A kinase-cGAS cascade to synthesize a therapeutic STING activator publication-title: Nature doi: 10.1038/s41586-022-04422-9 – volume: 43 start-page: 957 year: 2022 end-page: 972 ident: CR47 article-title: Nanodelivery of cGAS-STING activators for tumor immunotherapy publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2022.08.006 – volume: 26 start-page: 1865 year: 2020 end-page: 1877 ident: CR40 article-title: Midkine rewires the melanoma microenvironment toward a tolerogenic and immune-resistant state publication-title: Nat. Med. doi: 10.1038/s41591-020-1073-3 – volume: 369 start-page: eaba6098 year: 2020 ident: CR24 article-title: An orally available non-nucleotide STING agonist with antitumor activity publication-title: Science doi: 10.1126/science.aba6098 – volume: 126 start-page: 2404 year: 2016 end-page: 2411 ident: CR21 article-title: The host STING pathway at the interface of cancer and immunity publication-title: J. Clin. Investig. doi: 10.1172/JCI86892 – volume: 7 start-page: eabq6509 year: 2022 ident: CR33 article-title: CXCL9 and CXCL10 bring the heat to tumors publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abq6509 – volume: 20 start-page: 449 year: 2023 end-page: 462 ident: CR39 article-title: Macrophage membrane-biomimetic adhesive polycaprolactone nanocamptothecin for improving cancer-targeting efficiency and impairing metastasis publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2022.06.013 – volume: 14 year: 2023 ident: CR48 article-title: STING agonist-loaded, CD47/PD-L1-targeting nanoparticles potentiate antitumor immunity and radiotherapy for glioblastoma publication-title: Nat. Commun. doi: 10.1038/s41467-023-37328-9 – volume: 34 start-page: e2109354 year: 2022 ident: CR10 article-title: The development of chiral nanoparticles to target NK cells and CD8(+) T cells for cancer immunotherapy publication-title: Adv. Mater. doi: 10.1002/adma.202109354 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR12 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 290 start-page: 24 year: 2019 end-page: 38 ident: CR14 article-title: STING pathway agonism as a cancer therapeutic publication-title: Immunol. Rev. doi: 10.1111/imr.12765 – volume: 20 start-page: 7 year: 2020 end-page: 24 ident: CR34 article-title: Dendritic cells in cancer immunology and immunotherapy publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0210-z – ident: CR9 – volume: 13 start-page: 81 year: 2020 ident: CR23 article-title: cGAS-STING, an important pathway in cancer immunotherapy publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-020-00916-z – volume: 21 start-page: 710 year: 2022 end-page: 720 ident: CR50 article-title: STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity publication-title: Nat. Mater. doi: 10.1038/s41563-022-01251-z – volume: 77 start-page: 6963 year: 2017 end-page: 6974 ident: CR25 article-title: New generation nanomedicines constructed from self-assembling small-molecule pro-drugs alleviate cancer drug toxicity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0984 – volume: 135 start-page: 523 year: 2020 end-page: 533 ident: CR6 article-title: The immune landscape and response to immune checkpoint blockade therapy in lymphoma publication-title: Blood doi: 10.1182/blood.2019000847 – volume: 270 start-page: 120705 year: 2021 ident: CR28 article-title: Tuning the efficacy of esterase-activatable pro-drug nanoparticles for the treatment of colorectal malignancies publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120705 – volume: 179 start-page: 114020 year: 2021 ident: CR22 article-title: Delivery of STING agonists for adjuvanting subunit vaccines publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.114020 – volume: 16 start-page: 10242 year: 2022 end-page: 10259 ident: CR43 article-title: Targeting the mitochondria with pseudo-stealthy nanotaxanes to impair mitochondrial biogenesis for effective cancer treatment publication-title: ACS Nano doi: 10.1021/acsnano.1c08008 – volume: 3 start-page: e120638 year: 2018 ident: CR37 article-title: A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer publication-title: JCI Insight doi: 10.1172/jci.insight.120638 – volume: 2 start-page: 822 year: 2018 end-page: 830 ident: CR29 article-title: Reduction of liver fibrosis by rationally designed macromolecular telmisartan pro-drugs publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0279-x – volume: 76 start-page: 1445 year: 2016 ident: CR15 article-title: STING activation in the tumor microenvironment with a synthetic human STING-activating cyclic dinucleotide leads to potent anti-tumor immunity publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2016-1445 – volume: 40 start-page: 885 year: 2021 end-page: 898 ident: CR16 article-title: Small molecular drugs reshape tumor microenvironment to synergize with immunotherapy publication-title: Oncogene doi: 10.1038/s41388-020-01575-7 – volume: 14 start-page: 269 year: 2019 end-page: 278 ident: CR19 article-title: Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0342-5 – volume: 176 start-page: 113851 year: 2021 ident: CR52 article-title: Liposome composition in drug delivery design, synthesis, characterization, and clinical application publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113851 – volume: 348 start-page: 56 year: 2015 end-page: 61 ident: CR1 article-title: The future of immune checkpoint therapy publication-title: Science doi: 10.1126/science.aaa8172 – volume: 184 start-page: 149.e7 year: 2021 end-page: 168.e7 ident: CR32 article-title: Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes publication-title: Cell doi: 10.1016/j.cell.2020.11.025 – volume: 12 start-page: eaaz6606 year: 2020 ident: CR35 article-title: Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaz6606 – volume: 9 start-page: 7759 year: 2019 end-page: 7771 ident: CR46 article-title: STING activation in cancer immunotherapy publication-title: Theranostics doi: 10.7150/thno.37574 – volume: 599 start-page: 120399 year: 2021 ident: CR26 article-title: Repurposing of camptothecin: an esterase-activatable pro-drug delivered by a self-emulsifying formulation that improves efficacy in colorectal cancer publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120399 – volume: 25 start-page: 846 year: 2014 end-page: 859 ident: CR36 article-title: Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.05.016 – volume: 13 start-page: 100738 year: 2020 ident: CR44 article-title: Resistance to checkpoint inhibition in cancer immunotherapy publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2019.12.010 – volume: 10 start-page: 9332 year: 2020 end-page: 9347 ident: CR38 article-title: USP7 targeting modulates anti-tumor immune response by reprogramming tumor-associated macrophages in lung cancer publication-title: Theranostics doi: 10.7150/thno.47137 – volume: 16 start-page: 1130 year: 2021 end-page: 1140 ident: CR42 article-title: Immunogenic camptothesome nanovesicles comprising sphingomyelin-derived camptothecin bilayers for safe and synergistic cancer immunochemotherapy publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00950-z – volume: 54 start-page: 1037 year: 2021 end-page: 1054 ident: CR7 article-title: Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer publication-title: Immunity doi: 10.1016/j.immuni.2021.02.020 – volume: 324 start-page: 289 year: 2020 end-page: 302 ident: CR27 article-title: Transforming a toxic drug into an efficacious nanomedicine using a lipopro-drug strategy for the treatment of patient-derived melanoma xenografts publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.05.025 – volume: 33 start-page: 189 year: 2022 end-page: 203 ident: CR31 article-title: Targeting STING to promote antitumor immunity publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2022.06.010 – volume: 225 start-page: 87 year: 2016 end-page: 95 ident: CR30 article-title: Targeting of pegylated liposomal mitomycin-C pro-drug to the folate receptor of cancer cells: intracellular activation and enhanced cytotoxicity publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.039 – volume: 21 start-page: E419 year: 2020 end-page: E430 ident: CR3 article-title: Turning up the heat on non-immunoreactive tumours: opportunities for clinical development publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(20)30234-5 – volume: 59 start-page: 10253 year: 2016 end-page: 10267 ident: CR17 article-title: Design, synthesis, and biological evaluation of novel cyclic adenosine-inosine monophosphate (cAIMP) analogs that activate stimulator of interferon genes (STING) publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01300 – volume: 2 start-page: 293 year: 2001 end-page: 299 ident: CR4 article-title: A fresh look at tumor immunosurveillance and immunotherapy publication-title: Nat. Immunol. doi: 10.1038/86297 – volume: 178 start-page: 113962 year: 2021 ident: CR8 article-title: Guiding immunotherapy combinations: who gets what? publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113962 – volume: 148 start-page: 1081 year: 2012 end-page: 1084 ident: CR11 article-title: Antibody-based immunotherapy of cancer publication-title: Cell doi: 10.1016/j.cell.2012.02.034 – volume: 125 start-page: 2532 year: 2015 end-page: 2546 ident: CR18 article-title: Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants publication-title: J. Clin. Investig. doi: 10.1172/JCI79915 – volume: 330 start-page: 1118 year: 2021 end-page: 1129 ident: CR49 article-title: Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.11.017 – volume: 25 start-page: 846 year: 2014 ident: 40312_CR36 publication-title: Cancer Cell doi: 10.1016/j.ccr.2014.05.016 – volume: 12 start-page: eaay3575 year: 2020 ident: 40312_CR5 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay3575 – volume: 11 start-page: 5713 year: 2021 ident: 40312_CR41 publication-title: Theranostics doi: 10.7150/thno.55250 – volume: 290 start-page: 24 year: 2019 ident: 40312_CR14 publication-title: Immunol. Rev. doi: 10.1111/imr.12765 – volume: 16 start-page: 1130 year: 2021 ident: 40312_CR42 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00950-z – volume: 14 year: 2023 ident: 40312_CR48 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37328-9 – volume: 270 start-page: 120705 year: 2021 ident: 40312_CR28 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2021.120705 – volume: 33 start-page: 189 year: 2022 ident: 40312_CR31 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2022.06.010 – volume: 13 start-page: 100738 year: 2020 ident: 40312_CR44 publication-title: Transl. Oncol. doi: 10.1016/j.tranon.2019.12.010 – volume: 59 start-page: 10253 year: 2016 ident: 40312_CR17 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01300 – volume: 10 start-page: 9332 year: 2020 ident: 40312_CR38 publication-title: Theranostics doi: 10.7150/thno.47137 – volume: 20 start-page: 7 year: 2020 ident: 40312_CR34 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-019-0210-z – volume: 21 start-page: E419 year: 2020 ident: 40312_CR3 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(20)30234-5 – volume: 184 start-page: 149.e7 year: 2021 ident: 40312_CR32 publication-title: Cell doi: 10.1016/j.cell.2020.11.025 – volume: 179 start-page: 114020 year: 2021 ident: 40312_CR22 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.114020 – volume: 9 start-page: 7759 year: 2019 ident: 40312_CR46 publication-title: Theranostics doi: 10.7150/thno.37574 – volume: 178 start-page: 113962 year: 2021 ident: 40312_CR8 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113962 – volume: 3 start-page: e120638 year: 2018 ident: 40312_CR37 publication-title: JCI Insight doi: 10.1172/jci.insight.120638 – volume: 13 start-page: 81 year: 2020 ident: 40312_CR23 publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-020-00916-z – volume: 125 start-page: 2532 year: 2015 ident: 40312_CR18 publication-title: J. Clin. Investig. doi: 10.1172/JCI79915 – volume: 225 start-page: 87 year: 2016 ident: 40312_CR30 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2016.01.039 – volume: 348 start-page: 56 year: 2015 ident: 40312_CR1 publication-title: Science doi: 10.1126/science.aaa8172 – volume: 603 start-page: 439 year: 2022 ident: 40312_CR51 publication-title: Nature doi: 10.1038/s41586-022-04422-9 – volume: 17 start-page: 3 year: 2018 ident: 40312_CR20 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.264 – ident: 40312_CR9 doi: 10.1038/nm.4200 – volume: 135 start-page: 523 year: 2020 ident: 40312_CR6 publication-title: Blood doi: 10.1182/blood.2019000847 – volume: 324 start-page: 289 year: 2020 ident: 40312_CR27 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.05.025 – volume: 330 start-page: 1118 year: 2021 ident: 40312_CR49 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.11.017 – volume: 54 start-page: 1037 year: 2021 ident: 40312_CR7 publication-title: Immunity doi: 10.1016/j.immuni.2021.02.020 – volume: 599 start-page: 120399 year: 2021 ident: 40312_CR26 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120399 – volume: 20 start-page: 449 year: 2023 ident: 40312_CR39 publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2022.06.013 – volume: 2 start-page: 822 year: 2018 ident: 40312_CR29 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0279-x – volume: 26 start-page: 1865 year: 2020 ident: 40312_CR40 publication-title: Nat. Med. doi: 10.1038/s41591-020-1073-3 – volume: 21 start-page: 710 year: 2022 ident: 40312_CR50 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01251-z – volume: 12 start-page: eaaz6606 year: 2020 ident: 40312_CR35 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaz6606 – volume: 14 start-page: 269 year: 2019 ident: 40312_CR19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0342-5 – volume: 34 start-page: e2109354 year: 2022 ident: 40312_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202109354 – volume: 176 start-page: 113851 year: 2021 ident: 40312_CR52 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.113851 – volume: 126 start-page: 2404 year: 2016 ident: 40312_CR21 publication-title: J. Clin. Investig. doi: 10.1172/JCI86892 – volume: 7 start-page: eabq6509 year: 2022 ident: 40312_CR33 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abq6509 – volume: 43 start-page: 957 year: 2022 ident: 40312_CR47 publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2022.08.006 – volume: 369 start-page: eaba6098 year: 2020 ident: 40312_CR24 publication-title: Science doi: 10.1126/science.aba6098 – volume: 541 start-page: 321 year: 2017 ident: 40312_CR2 publication-title: Nature doi: 10.1038/nature21349 – volume: 2 start-page: 293 year: 2001 ident: 40312_CR4 publication-title: Nat. Immunol. doi: 10.1038/86297 – volume: 16 start-page: 10242 year: 2022 ident: 40312_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.1c08008 – volume: 339 start-page: 786 year: 2013 ident: 40312_CR12 publication-title: Science doi: 10.1126/science.1232458 – volume: 76 start-page: 1445 year: 2016 ident: 40312_CR15 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2016-1445 – volume: 77 start-page: 6963 year: 2017 ident: 40312_CR25 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0984 – volume: 33 start-page: 563 year: 2018 ident: 40312_CR45 publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.03.008 – volume: 148 start-page: 1081 year: 2012 ident: 40312_CR11 publication-title: Cell doi: 10.1016/j.cell.2012.02.034 – volume: 11 start-page: 1018 year: 2015 ident: 40312_CR13 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.04.031 – volume: 40 start-page: 885 year: 2021 ident: 40312_CR16 publication-title: Oncogene doi: 10.1038/s41388-020-01575-7 |
SSID | ssj0000391844 |
Score | 2.640865 |
Snippet | The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological activation... Abstract The often immune-suppressive tumor microenvironment (TME) may hinder immune evasion and response to checkpoint blockade therapies. Pharmacological... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4584 |
SubjectTerms | 13 13/1 13/21 13/31 13/51 631/250/580/1884 631/67/327 631/92/152 64/60 64/86 692/308/153 Adaptive immunity Agonists Animal models Animals Breast cancer Cancer therapies Cell Line, Tumor Cytokines Drugs Humanities and Social Sciences Immune checkpoint inhibitors Immunosuppressive agents Immunotherapy Infectious diseases Inflammation Intravenous administration Kinases Liposomes Medical diagnosis Melanoma Melanoma - drug therapy Metastases Metastasis Mice multidisciplinary Nucleotides Pharmacokinetics Prodrugs Remission Remission (Medicine) Science Science (multidisciplinary) Toxicity Tumor Microenvironment Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LbtQwcIQqIXGpeLUNFBQkbq1FEo8T5wiIpSDRC61UcbFsx25XWpKqu0XK3zN2sstuKe2Fa-w4k3l4XvYMwFvMvSG2zZhGmTGURjBj85JpUieywdKXMZT97bg8OsWvZ-JsrdVXOBM2lAceEEcOu7BFZokzSZE4pG86UqqFQY3C1iZe3SOdt-ZMxT2Y1-S64HhLJuPy3RzjnkAqilwmnhes39BEsWD_bVbm34clb2RMoyKaPIbt0YJM3w-QP4EHrn0KD4eekv0z-LEsATDr0_HwFS2bfj_5cvyZhVsMIQbbnqetbjs2m1528-4nLffLzeMBuXQaowwuJYyHHdK6K3oU7pAs-udwOvl08vGIjQ0UmBWYL1hliT6oM2uCl6gNGQOWV6hF3WSG516XOvOEqYZsClE5G_pQu9LUKHTjM-n5Dmy1Xev2IPWuqdF6H9wzzBsjc0eOpKyKUkrnsE4gXyJT2bG6eGhyMVMxy82lGgigiAAqEkD1CRys3rkcamvcOftDoNFqZqiLHR8Qt6iRW9R93JLA_pLCahTWuSINzWv6F0HDb1bDJGYhd6Jb113HORhCbjUmsDswxAoSXokCyQ5MQG6wygaomyPt9CKW8g6JeDJBZQKHS676A9e_cfHif-DiJTwqgjjEQPU-bC2urt0rsrAW5nUUpt_z-iFu priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDI9gCIkXxDcdAxWJN4jWD7dNnxAgxkBiL2zSiZcoSZNx0tHerjek_vfYadrp-Nhrkkap7Ti_2I7N2CtInUaxTbgCkXAQuuDapCVXeJyIBkpXelP215Py-Ay-LIpFMLj1Iaxy0oleUTedIRv5IarRvC4RXddv1xecqkaRdzWU0LjJblHqMgrpqhbVbGOh7OcCILyVSXJx2IPXDHhQ4cUpTzM-7JxHPm3_v7Dm3yGTf_hN_XF0dI_dDTgyfjcy_j67YdsH7PZYWXJ4yL5PiQBWQxxCsHDa-Nvp55NPnN4ykCW2PY9b1XZ8tVx3ffcTp_tlex8mFy-9rcHGSHfSk8ZusIlekmyHR-zs6OPph2MeyihwU0C65ZVBLoFKjKa7otIICUxegSrqJtF56lSpEoeUahBZFJU1VI3alrqGQjUuES5_zPbarrVPWexsU4Nxji5pkDZapBavk6LKSiGshTpi6URMaUKOcSp1sZLe150LOTJAIgOkZ4AcIvZ6_mY9Zti4dvR74tE8krJj-4Zucy7DZpMIQU2WGNRmCD4soJxaBGKZBgWFqTUu82DisAxbtpdXAhaxl3M3bjbyoKjWdpd-DJDhrYaIPRkFYl5JXhUZIBqMmNgRlZ2l7va0yx8-oTe54xGIioi9maTqal3_p8X-9b_xjN3JSNC9IfqA7W03l_Y5IqitfuG3yW9q7xlj priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLaOvHapUVfKvB_ZjsZh_1aG0L9sUWii8hySbtwblb7q7C_vdOsh_ltAq-5ovJzCTzyyQzAXiPqdOktglTKBKGQnOmTVowReZE1Fi4Iriyv54Vxxd4eskvtyAbY2HCo_2Q0jJs0-PrsI8rDEuaLAydePI0Y90D2PGp271Wz4rZ5FfxGc8F4hAfk-Tinq4bNiik6r8PX_75TPK3u9Jggo6ewOMBO8afemqfwpZtduFh_5tktwffx-D_RRcPz65o2Pjb-cnZF-bjF7z3tbmKG9W0bDG_aVftDxrup12Fycfz4F-wMfHa743GLqnIR4-su2dwcXR4Pjtmw9cJzHBM16w0JBlUidH-fKg0wQCTl6h4VSc6T50qVOKIUzWhCV5a43-gtoWukKvaJcLlz2G7aRv7EmJn6wqNc_5ghmmtRWqJ66LMCiGsxSqCdGSmNENecf-9xUKG--1cyF4AkgQggwBkF8HB1Oemz6rxz9afvYymlj4jdihol1dy0BBJsNNkiaEdjACHRdJNS-Ar06iQm0oTmfujhOWwTFeSbHNe0Vw4Vb-bqmmB-VsT1dj2NrRB72yrMIIXvUJMlOQlz5AQYARiQ1U2SN2saebXIYm3v4In8Cki-DBq1R1df-fFq_9r_hoeZV7xgzN6H7bXy1v7hlDUWr8Ny-YXSGIXeQ priority: 102 providerName: Springer Nature |
Title | Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity |
URI | https://link.springer.com/article/10.1038/s41467-023-40312-y https://www.ncbi.nlm.nih.gov/pubmed/37524727 https://www.proquest.com/docview/2843968759 https://www.proquest.com/docview/2844679694 https://pubmed.ncbi.nlm.nih.gov/PMC10390568 https://doaj.org/article/575c20c070614e4ebee6392b4a45c9b9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dixMxEB_uA8EX8dvqWVbwTaP7MbubfRDpleudhSviXaH4EpJs9izU3bPtifvfO8nuVqpV8KWFJA1pZibzm5lkBuAlBoUitvWZRO4z5CpmSgcJk6ROeI5JkThX9vkkOZvieBbP9qArd9Ru4GqnaWfrSU2Xizc_vtXvSeDfNU_G-dsVOnEn7UPWUBSErN6HQ9JMqRXU8xbuu5M5ysigsYHm0MeAke6O2nc0u6fZ0lUupf8uHPrndcrfYqpOVY3uwp0WY3qDhinuwZ4p78Otpupk_QA-d0kCFrXXXs-iab2Lyw-TU2bfOVgvbXnllbKs2GJ-Xa2qrzTdd7NyV-i8ufNDGI9oYs9QbZbUZF-ZrOuHMB2dXA7PWFtigekYgzVLNVEQpa-VtSOlIrigoxRlnOW-ioJCJtIvaNdyQh1xarStVG0SlWEs88LnRfQIDsqqNE_AK0yeoS4Ka8BhkCseGDI1eRomnBuDWQ-CbjOFbvOP2zIYC-Hi4BEXDQEEEUA4Aoi6B682v7lusm_8c_SxpdFmpM2c7Rqq5ZVoBVEQPNWhr-mkI2BikHjYEEgLFUqMdaZomUcdhUXHjYJ0eJTRf4mp-8WmmwTRRldkaaobNwatUy7DHjxuGGKzkiiNQySk2AO-xSpbS93uKedfXLJvG6onkMp78Lrjql_r-vtePP2vnXsGt0PL985nfQQH6-WNeU5ga636sJ_OUvrko9M-HA4G44sxfR-fTD5-otZhMuw7N0bfSdpPRPgpPg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKEFwQbwIFggQnsJrHJHEOCPEqu7TdC1tpxcW1HaestCTL7haUn-IbGTvJVsujt15tx5p43jP2DMAzDEtFZBswiTxgyFXClA5TJkmd8ALTMnWh7MNROjjCT5NksgW_-rcw9lplLxOdoC5qbWPkuyRG4zwl6zp_Pf_ObNcom13tW2i0ZLFvmp_ksi1fDd8Tfp9H0d6H8bsB67oKMJ1guGKZJqBRBlpZ10kq0pA6zlAmeRGoOCxlKoMyzsOCFG2SGW2bM5tU5ZjIogx4GdO-l-AyKd7AclQ2ydYxHVttnSN2b3OCmO8u0UkiUozkqMVhxJoN_efaBPzLtv37iuYfeVqn_vZuwPXObvXftIR2E7ZMdQuutJ0sm9vwpS88MGv87soXbet_Hg9HH5l9O2Ejv9WJX8mqZrPpvF7W32i7H2bpruX5UxfbMD7h2cplbRY0ZF-urJo7cHQhB3wXtqu6MvfBL02Roy5L6xRiWCgeGnJfeRalnBuDuQdhf5hCdzXNbWuNmXC59ZiLFgGCECAcAkTjwYv1N_O2ose5q99aHK1X2mrcbqBenIiOuQWZvDoKNElPMnYMEl8YMvwihRITnSsCc6fHsOhExFKcEbQHT9fTxNw2YyMrU5-6NWgDfTl6cK8liDUkcZZESNanB3yDVDZA3Zyppl9dAXGb_ifDl3vwsqeqM7j-fxYPzv-NJ3B1MD48EAfD0f5DuBZZondB8B3YXi1OzSOy3lbqsWMZH44vmkd_A43pVo4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCazNY5I4B4SAsnQprJBopVUvxnacstKSLLtbUP4av46xk2y1PHrrNXEsx_P6ZjyeAXiCYamIbQMmkQcMuUqY0mHKJJkTXmBapi6U_XGc7h3i-0ky2YJf_V0Ym1bZ60SnqIta2xj5gNRonKeErvNB2aVFfNodvpx_Z7aDlD1p7dtptCyyb5qf5L4tX4x2idZPo2j49uDNHus6DDCdYLhimaYfQBloZd0oqcha6jhDmeRFoOKwlKkMyjgPCzK6SWa0bdRsUpVjIosy4GVM816Ai1mchFbGskm2ju_YyuscsbunE8R8sESnlchIktMWhxFrNmyhaxnwL5z7d7rmH2e2zhQOr8HVDsP6r1qmuw5bproBl9quls1NOOqLEMwav0v_omn9zwej8Ttm71HYKHB17FeyqtlsOq-X9Tea7odZuhQ9f-riHMYnmlsdrc2CHtlbLKvmFhyeywbfhu2qrsxd8EtT5KjL0jqIGBaKh4ZcWZ5FKefGYO5B2G-m0F19c9tmYybcOXvMRUsAQQQQjgCi8eDZ-pt5W93jzNGvLY3WI21lbvegXhyLTtAFwV8dBZo0KQEfgyQjhkBgpFBionNFy9zpKSw6dbEUp8ztweP1axJ0e3ojK1OfuDFog345enCnZYj1SuIsiZCQqAd8g1U2lrr5ppp-dcXEbSoAgWDuwfOeq07X9f-9uHf2bzyCyySd4sNovH8frkSW5108fAe2V4sT84CA3Eo9dBLjw5fzFtHfhDRaxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemically+programmed+STING-activating+nano-liposomal+vesicles+improve+anticancer+immunity&rft.jtitle=Nature+communications&rft.au=Chen%2C+Xiaona&rft.au=Meng%2C+Fanchao&rft.au=Xu%2C+Yiting&rft.au=Li%2C+Tongyu&rft.date=2023-07-31&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-40312-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_40312_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |