Federated learning for network attack detection using attention-based graph neural networks

Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of network devices and architectures deploying federated learning remains a challenge due to network attacks. This paper proposes an attention-b...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 19088 - 16
Main Authors Jianping, Wu, Guangqiu, Qiu, Chunming, Wu, Weiwei, Jiang, Jiahe, Jin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.08.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of network devices and architectures deploying federated learning remains a challenge due to network attacks. This paper proposes an attention-based Graph Neural Network for detecting cross-level and cross-department network attacks. This method enables collaborative model training while protecting data privacy on distributed devices. By organizing network traffic information in chronological order and constructing a graph structure based on log density, enhances the accuracy of network attack detection. The introduction of an attention mechanism and the construction of a Federated Graph Attention Network (FedGAT) model are used to evaluate the interactivity between nodes in the graph, thereby improving the precision of internal network interactions. Experimental results demonstrate that our method achieves comparable accuracy and robustness to traditional detection methods while prioritizing privacy protection and data security.
AbstractList Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of network devices and architectures deploying federated learning remains a challenge due to network attacks. This paper proposes an attention-based Graph Neural Network for detecting cross-level and cross-department network attacks. This method enables collaborative model training while protecting data privacy on distributed devices. By organizing network traffic information in chronological order and constructing a graph structure based on log density, enhances the accuracy of network attack detection. The introduction of an attention mechanism and the construction of a Federated Graph Attention Network (FedGAT) model are used to evaluate the interactivity between nodes in the graph, thereby improving the precision of internal network interactions. Experimental results demonstrate that our method achieves comparable accuracy and robustness to traditional detection methods while prioritizing privacy protection and data security.Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of network devices and architectures deploying federated learning remains a challenge due to network attacks. This paper proposes an attention-based Graph Neural Network for detecting cross-level and cross-department network attacks. This method enables collaborative model training while protecting data privacy on distributed devices. By organizing network traffic information in chronological order and constructing a graph structure based on log density, enhances the accuracy of network attack detection. The introduction of an attention mechanism and the construction of a Federated Graph Attention Network (FedGAT) model are used to evaluate the interactivity between nodes in the graph, thereby improving the precision of internal network interactions. Experimental results demonstrate that our method achieves comparable accuracy and robustness to traditional detection methods while prioritizing privacy protection and data security.
Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of network devices and architectures deploying federated learning remains a challenge due to network attacks. This paper proposes an attention-based Graph Neural Network for detecting cross-level and cross-department network attacks. This method enables collaborative model training while protecting data privacy on distributed devices. By organizing network traffic information in chronological order and constructing a graph structure based on log density, enhances the accuracy of network attack detection. The introduction of an attention mechanism and the construction of a Federated Graph Attention Network (FedGAT) model are used to evaluate the interactivity between nodes in the graph, thereby improving the precision of internal network interactions. Experimental results demonstrate that our method achieves comparable accuracy and robustness to traditional detection methods while prioritizing privacy protection and data security.
Abstract Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of network devices and architectures deploying federated learning remains a challenge due to network attacks. This paper proposes an attention-based Graph Neural Network for detecting cross-level and cross-department network attacks. This method enables collaborative model training while protecting data privacy on distributed devices. By organizing network traffic information in chronological order and constructing a graph structure based on log density, enhances the accuracy of network attack detection. The introduction of an attention mechanism and the construction of a Federated Graph Attention Network (FedGAT) model are used to evaluate the interactivity between nodes in the graph, thereby improving the precision of internal network interactions. Experimental results demonstrate that our method achieves comparable accuracy and robustness to traditional detection methods while prioritizing privacy protection and data security.
ArticleNumber 19088
Author Jianping, Wu
Guangqiu, Qiu
Weiwei, Jiang
Chunming, Wu
Jiahe, Jin
Author_xml – sequence: 1
  givenname: Wu
  surname: Jianping
  fullname: Jianping, Wu
  organization: College of Computer Science and Technology, Zhejiang University
– sequence: 2
  givenname: Qiu
  surname: Guangqiu
  fullname: Guangqiu, Qiu
  organization: Smart Government R &D Center (Laboratory) of Hangzhou Dianzi University
– sequence: 3
  givenname: Wu
  surname: Chunming
  fullname: Chunming, Wu
  email: wuchunming@zju.edu.cn
  organization: College of Computer Science and Technology, Zhejiang University
– sequence: 4
  givenname: Jiang
  surname: Weiwei
  fullname: Weiwei, Jiang
  organization: Key Laboratory of Universal Wireless Communications, Ministry of Education, Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, School of Information and Communication Engineering, Beijing University of Posts and Telecommunications
– sequence: 5
  givenname: Jin
  surname: Jiahe
  fullname: Jiahe, Jin
  organization: Key Laboratory of Key Technologies for Open Data Fusion in Zhejiang Province
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39154072$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLwJ9JfEKoolCpEhc4cbD8MU6zzdqL7RTx73E2XWh7qC8ej997fuOZl9WRDx6q6jVG7zGi_YfEMBd9gwhrOoQoaciz6oQgxhtCCTm6Fx9XZyltUFmcCIbFi-qYCswZ6shJ9fMCLESVwdYTqOhHP9QuxNpD_h3iTa1yVuamtpDB5DH4ek4LpKTBL-dGq1S4Q1S760Kao5oO3PSqeu7UlODsbj-tflx8_n7-tbn69uXy_NNVYzjDuek0J0QgwZ1m2nLTtsYywGAxs9AS3WvVEsNaTIVmfQk6AMBUda3WrmsRPa0uV10b1Ebu4rhV8Y8MapT7RIiDVDGPZgLphFPEsk6QTjGsesEBWsday7VzgvRF6-OqtZv1FqwpVZaSHog-vPHjtRzCrcSYUsQEKQrv7hRi-DVDynI7JgPTpDyEOUmKBEOs5f3y2NtH0E2Yoy9_taCo4IzvLb25b-mfl0MTC6BfASaGlCI4acaslu4Uh-MkMZLLyMh1ZGQZGbkfGblQySPqQf1JEl1JqYD9APG_7SdYfwHGs9RK
CitedBy_id crossref_primary_10_3390_su16219239
crossref_primary_10_1016_j_comnet_2025_111184
crossref_primary_10_1007_s10207_025_01000_8
crossref_primary_10_3390_s24247924
crossref_primary_10_3390_su162210035
crossref_primary_10_1016_j_jii_2025_100789
crossref_primary_10_1002_eng2_13091
crossref_primary_10_1016_j_comcom_2025_108066
Cites_doi 10.48550/arXiv.1806.02371
10.1109/EIDWT.2012.10
10.48550/arXiv.1810.10751
10.1109/OJCOMS.2020.3044323
10.1016/j.ress.2024.109950
10.1007/s11277-017-4909-5
10.1038/s41467-022-30714-9
10.1504/IJBIDM.2019.099963
10.1016/j.comnet.2019.02.019
10.1007/s11276-015-1065-2
10.1109/ACCESS.2019.2925828
10.11959/j.issn.2096-109x.2018056
10.1109/TrustCom60117.2023.00043
10.3390/axioms12020170
10.1145/3368926.3369705
10.48550/arXiv.2401.13421
10.48550/arXiv.1602.05629
10.3837/tiis.2018.10.028
10.1007/s10586-018-2385-7
10.1016/j.knosys.2024.111876
10.48550/arXiv.1710.10903
10.1155/2021/9361348
10.48550/arXiv.2207.07444
10.48550/arXiv.2405.03644
10.48550/arXiv.2202.07256
10.3390/s24113481
10.1109/ACCESS.2019.2907965
10.1007/BF02777627
10.1109/IWCMC.2019.8766592
10.1109/MSEC.2019.2939728
10.1016/j.knosys.2024.112029
10.1109/TII.2020.3023430
10.1016/j.phycom.2020.101157
10.1109/IAdCC.2014.6779523
10.1109/MSEC.2020.3037845
10.48550/arXiv.2403.02240
10.1145/3653448
10.1109/TIFS.2018.2812149
10.1016/j.comcom.2022.09.012
10.48550/arXiv.2111.02791
10.1109/TSE.1987.232894
10.1016/j.seta.2022.102987
10.1109/tdsc.2014.2312327
10.1002/spe.3039
10.1109/COMST.2019.2896380
10.1109/TNN.2008.2005605
10.1109/CSCN.2019.8931384
10.1109/ACCESS.2019.2904620
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-70032-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 16
ExternalDocumentID oai_doaj_org_article_f9fa2d47927a41a895ee6f46d5bff928
PMC11330492
39154072
10_1038_s41598_024_70032_2
Genre Journal Article
GrantInformation_xml – fundername: The Open Project of Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Anhui University, No. MMC202403; the Fundamental Research Funds for the Central Universities under Grant 2023RC16.
– fundername: The 2024 Key R &D Program of Zhejiang Province, China (No. 2024C01212)
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-7b5229095fb4bd5c66cd4e1ed14de62b8ba62c46139b48c467eee13a76bbf7603
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 00:39:15 EDT 2025
Thu Aug 21 18:34:49 EDT 2025
Fri Jul 11 15:26:46 EDT 2025
Wed Aug 13 09:50:53 EDT 2025
Mon Jul 21 05:41:08 EDT 2025
Tue Jul 01 03:22:46 EDT 2025
Thu Apr 24 22:55:09 EDT 2025
Fri Feb 21 02:39:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-7b5229095fb4bd5c66cd4e1ed14de62b8ba62c46139b48c467eee13a76bbf7603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-70032-2
PMID 39154072
PQID 3093954528
PQPubID 2041939
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_f9fa2d47927a41a895ee6f46d5bff928
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11330492
proquest_miscellaneous_3094046588
proquest_journals_3093954528
pubmed_primary_39154072
crossref_citationtrail_10_1038_s41598_024_70032_2
crossref_primary_10_1038_s41598_024_70032_2
springer_journals_10_1038_s41598_024_70032_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-17
PublicationDateYYYYMMDD 2024-08-17
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References ScarselliFThe graph neural network modelIEEE Trans. Neural Networks200920618010.1109/TNN.2008.200560519068426
Daskin, A. Federated learning with distributed fixed design quantum chips and quantum channels. arxiv:abs/2401.13421. https://doi.org/10.48550/arXiv.2401.13421(2024).
Sarhan, M. et al Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection. J. Netw. Syst. Manag. 31,1–23. https://doi.org/10.48550/arXiv.2111.02791 (2021).
Zhang, Y. et al Federated learning with quantum secure aggregation. arxiv:abs/2207.07444. https://doi.org/10.48550/arXiv.2207.07444(2023).
ManDIntelligent intrusion detection based on federated learning for edge-assisted internet of thingsSecur. Commun. Netw.20212021936134810.1155/2021/9361348
Nabavirazavi, S. et al Impact of aggregation function randomization against model poisoning in federated learning. In 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). 165–172. https://doi.org/10.1109/TrustCom60117.2023.00043(2023).
WangXFedKG: A knowledge distillation-based federated graph method for social bot detectionSensors202424348110.3390/s241134813889427611174749
Gill, S. S. et al Quantum computing: Vision and challenges. arxiv:abs/2403.02240. https://doi.org/10.48550/arXiv.2403.02240(2024).
MitchellRChenIBehavior rule specification-based intrusion detection for safety critical medical cyber physical systemsIEEE Trans. Dependable Secure Comput.201512163010.1109/tdsc.2014.2312327
Neisse, R. et al Toward a blockchain-based platform to manage cybersecurity certification of iot devices. 2019 IEEE Conference on Standards for Communications and Networking (CSCN).1–6. https://doi.org/10.1109/CSCN.2019.8931384(2019).
YanBHanGCombinatorial intrusion detection model based on deep recurrent neural network and improved smote algorithmChin. J. Netw. Inf. Secur.20184485910.11959/j.issn.2096-109x.2018056
XiaoYXingCZhangTZhaoZAn intrusion detection model based on feature reduction and convolutional neural networksIEEE Access20197422104221910.1109/ACCESS.2019.2904620
DenningDEAn intrusion-detection modelIEEE Trans. Softw. Eng.19871322223210.1109/TSE.1987.232894
Mohamed, M. B. et al. Intrusion cancellation for anomaly detection in healthcare applications. In 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC). 313-318(2019).
ZhaoRIntelligent intrusion detection based on federated learning aided long short-termmemoryPhys. Commun.20204210.1016/j.phycom.2020.101157
ZhangJSMulti-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspectiveReliab. Eng. Syst. Saf.202422410.1016/j.ress.2024.109950
MaSLiuJWReview of graph neural networksChin. J. Comput. Res. Dev.2022594780
Hernandez-Ramos, J. L., Matheu, S. N. & Skarmeta, A. The challenges of software cybersecurity certification. IEEE Secur. Priv. Mag. 19, 99-102. https://doi.org/10.1109/MSEC.2020.3037845(2021)
Checkoway, S. et al. Comprehensive experimental analyses of automotive attack surfaces. Proceedings of the 20th USENIX Conference on Security. 1–6. https://doi.org/10.1007/BF02777627 (2011).
Al-HuthaifiRFedGODE: Secure traffic flow prediction based on federated learning and graph ordinary differential equation networksKnowl.-Based Syst.202429910.1016/j.knosys.2024.112029
TianCXieYChenXLiYZhaoXPrivacy-preserving cross-domain recommendation with federated graph learningACM Trans. Inf. Syst.20244212910.1145/3653448
ChuangMfedgr: Federated graph neural network for recommendation systemsAXIOMS20231217010.3390/axioms12020170
Wang, X. et al Attack graph convolutional networks by adding fake nodes. arXiv:1810.10751. https://doi.org/10.48550/arXiv.1810.10751 (2018).
AgrawalSReview federated learning for intrusion detection system: Concepts, challenges and future directionsComput. Commun.202219534636110.1016/j.comcom.2022.09.012
WeiPLiYZhangZLiuDAn optimization method for intrusion detection classification model based on deep belief networkIEEE Access20197875938760510.1109/ACCESS.2019.2925828
Zhang, J. et al When llms meet cybersecurity: A systematic literature review. arxiv:abs/2405.03644. https://doi.org/10.48550/arXiv.2405.03644 (2024).
Mcmahan, H. B. et al Communication-efficient learning of deep networks from decentralized data. The 20th International Conference on Artificial Intelligence and Statistics (AISTATS). 54, 1273–1282. https://doi.org/10.48550/arXiv.1602.05629(2016).
Zhao, Y. et al Multi-task network anomaly detection using federated learning. In the Tenth International Symposium. 273–279. https://doi.org/10.1145/3368926.3369705(2019).
PandyaSFederated learning for smart cities: A comprehensive surveySustain. Eenergy Technol. Assessments20235510.1016/j.seta.2022.102987
Velikovi, P. et al. Graph attention networks. ArXiv. abs/1710.10903. https://doi.org/10.48550/arXiv.1710.10903(2017).
ChaabouniNNetwork intrusion detection for iot security based on learning techniquesIEEE Commun. Surv. Tutor.2019212671270110.1109/COMST.2019.2896380
WuCA federated graph neural network framework for privacy-preserving personalizationNat. Commun.20221330912022NatCo..13.3091W10.1038/s41467-022-30714-93565479291631031:CAS:528:DC%2BB38XhsVOqtrjK
KongXMitigating data imbalance and generating better prototypes in heterogeneous federated graph learningKnowl.-Based Syst.202429610.1016/j.knosys.2024.111876
GaoLIntrusion detection system using soeks and deep learning for in-vehicle securityClust. Comput.201922147211472910.1007/s10586-018-2385-7
JanSToward a lightweight intrusion detection system for the internet of thingsIEEE Access.20197424504247110.1109/ACCESS.2019.2907965
Zhou, K. et al Attacking similarity-based link prediction in social networks. In International Conference on Autonomous Agents and Multiagent Systems. 305–313(2019).
LiBDeepfed: Federated deep learning for intrusion detection in industrial cyber-physical systemsIEEE Trans. Ind. Inf.2020175615562410.1109/TII.2020.3023430
Hernandez-RamosJLToward a data-driven society: A technological perspective on the development of cybersecurity and data protection policiesIEEE Secur. Priv. Mag.202018283810.1109/MSEC.2019.2939728
NaseerSSaleemYEnhanced network intrusion detection using deep convolutional neural networksKSII Trans. Internet Inf. Syst.2018125159517810.3837/tiis.2018.10.028
ChoiWVoltageids: Low-level communication characteristics for automotive intrusion detection systemIEEE Trans. Inf. For. Secur.2018132114212910.1109/TIFS.2018.2812149
GhoshKNeogySDasPKMehtaMIntrusion detection at international borders and large military barracks with multi-sink wireless sensor networks: An energy efficient solutionWirel. Pers. Commun.20179811910.1007/s11277-017-4909-5
Sahu, S. K. et al A detail analysis on intrusion detection datasets. 2014 IEEE International Advance Computing Conference (IACC). 1348–1353. https://doi.org/10.1109/IAdCC.2014.6779523(2014).
Liu, R. et al Federated graph neural networks: Overview, techniques and challenges. ArXiv. abs/2202.07256. https://doi.org/10.48550/arXiv.2202.07256(2022).
ManickamMRamarajNChellappanCA combined pfcm and recurrent neural network-based intrusion detection system for cloud environmentInt. J. Bus. Intell. Data Min.20191450452710.1504/IJBIDM.2019.099963
HalderSGhosalAContiMEfficient physical intrusion detection in internet of things: A node deployment approachComput. Networks.2019154284610.1016/j.comnet.2019.02.019
GillSSQuantum computing: A taxonomy, systematic review and future directionsSoftw. Pract. Exp.2022526611410.1002/spe.3039
ArthurMPKannanKCross-layer based multiclass intrusion detection system for secure multicast communication of manet in military networksWirel. Netw.2016221035105910.1007/s11276-015-1065-2
Dai, H. et al. Adversarial attack on graph structured data. arXiv:1806.02371. https://doi.org/10.48550/arXiv.1806.02371 (2018).
Zargari, S. & Voorhis, D. Feature Selection in the Corrected KDD-dataset. Third International Conference on Emerging Intelligent Data & Web Technologies. 174–180. https://doi.org/10.1109/EIDWT.2012.10 (2012)
SunYEsakiHOchiaiHAdaptive intrusion detection in the networking of large-scale lans with segmented federated learningIEEE Open J. Commun. Soc.2020210211210.1109/OJCOMS.2020.3044323
70032_CR18
70032_CR16
Y Sun (70032_CR35) 2020; 2
N Chaabouni (70032_CR21) 2019; 21
70032_CR12
DE Denning (70032_CR3) 1987; 13
R Al-Huthaifi (70032_CR42) 2024; 299
M Chuang (70032_CR5) 2023; 12
S Halder (70032_CR20) 2019; 154
M Manickam (70032_CR9) 2019; 14
X Wang (70032_CR43) 2024; 24
K Ghosh (70032_CR13) 2017; 98
C Wu (70032_CR39) 2022; 13
70032_CR29
P Wei (70032_CR8) 2019; 7
70032_CR27
70032_CR26
JL Hernandez-Ramos (70032_CR30) 2020; 18
70032_CR25
70032_CR24
L Gao (70032_CR19) 2019; 22
S Jan (70032_CR22) 2019; 7
Y Xiao (70032_CR6) 2019; 7
B Li (70032_CR34) 2020; 17
SS Gill (70032_CR50) 2022; 52
MP Arthur (70032_CR14) 2016; 22
X Kong (70032_CR41) 2024; 296
JS Zhang (70032_CR4) 2024; 224
70032_CR38
70032_CR33
70032_CR32
70032_CR31
D Man (70032_CR37) 2021; 2021
R Mitchell (70032_CR15) 2015; 12
R Zhao (70032_CR36) 2020; 42
C Tian (70032_CR40) 2024; 42
W Choi (70032_CR17) 2018; 13
S Pandya (70032_CR2) 2023; 55
70032_CR49
70032_CR48
70032_CR47
S Agrawal (70032_CR28) 2022; 195
70032_CR46
70032_CR45
70032_CR44
70032_CR1
S Naseer (70032_CR7) 2018; 12
F Scarselli (70032_CR11) 2009; 20
B Yan (70032_CR10) 2018; 4
S Ma (70032_CR23) 2022; 59
References_xml – reference: WeiPLiYZhangZLiuDAn optimization method for intrusion detection classification model based on deep belief networkIEEE Access20197875938760510.1109/ACCESS.2019.2925828
– reference: KongXMitigating data imbalance and generating better prototypes in heterogeneous federated graph learningKnowl.-Based Syst.202429610.1016/j.knosys.2024.111876
– reference: Zargari, S. & Voorhis, D. Feature Selection in the Corrected KDD-dataset. Third International Conference on Emerging Intelligent Data & Web Technologies. 174–180. https://doi.org/10.1109/EIDWT.2012.10 (2012)
– reference: MitchellRChenIBehavior rule specification-based intrusion detection for safety critical medical cyber physical systemsIEEE Trans. Dependable Secure Comput.201512163010.1109/tdsc.2014.2312327
– reference: ZhaoRIntelligent intrusion detection based on federated learning aided long short-termmemoryPhys. Commun.20204210.1016/j.phycom.2020.101157
– reference: WuCA federated graph neural network framework for privacy-preserving personalizationNat. Commun.20221330912022NatCo..13.3091W10.1038/s41467-022-30714-93565479291631031:CAS:528:DC%2BB38XhsVOqtrjK
– reference: DenningDEAn intrusion-detection modelIEEE Trans. Softw. Eng.19871322223210.1109/TSE.1987.232894
– reference: Liu, R. et al Federated graph neural networks: Overview, techniques and challenges. ArXiv. abs/2202.07256. https://doi.org/10.48550/arXiv.2202.07256(2022).
– reference: ChoiWVoltageids: Low-level communication characteristics for automotive intrusion detection systemIEEE Trans. Inf. For. Secur.2018132114212910.1109/TIFS.2018.2812149
– reference: GillSSQuantum computing: A taxonomy, systematic review and future directionsSoftw. Pract. Exp.2022526611410.1002/spe.3039
– reference: ZhangJSMulti-hop graph pooling adversarial network for cross-domain remaining useful life prediction: A distributed federated learning perspectiveReliab. Eng. Syst. Saf.202422410.1016/j.ress.2024.109950
– reference: Al-HuthaifiRFedGODE: Secure traffic flow prediction based on federated learning and graph ordinary differential equation networksKnowl.-Based Syst.202429910.1016/j.knosys.2024.112029
– reference: XiaoYXingCZhangTZhaoZAn intrusion detection model based on feature reduction and convolutional neural networksIEEE Access20197422104221910.1109/ACCESS.2019.2904620
– reference: Velikovi, P. et al. Graph attention networks. ArXiv. abs/1710.10903. https://doi.org/10.48550/arXiv.1710.10903(2017).
– reference: Zhou, K. et al Attacking similarity-based link prediction in social networks. In International Conference on Autonomous Agents and Multiagent Systems. 305–313(2019).
– reference: Sahu, S. K. et al A detail analysis on intrusion detection datasets. 2014 IEEE International Advance Computing Conference (IACC). 1348–1353. https://doi.org/10.1109/IAdCC.2014.6779523(2014).
– reference: Sarhan, M. et al Cyber threat intelligence sharing scheme based on federated learning for network intrusion detection. J. Netw. Syst. Manag. 31,1–23. https://doi.org/10.48550/arXiv.2111.02791 (2021).
– reference: Daskin, A. Federated learning with distributed fixed design quantum chips and quantum channels. arxiv:abs/2401.13421. https://doi.org/10.48550/arXiv.2401.13421(2024).
– reference: ChaabouniNNetwork intrusion detection for iot security based on learning techniquesIEEE Commun. Surv. Tutor.2019212671270110.1109/COMST.2019.2896380
– reference: YanBHanGCombinatorial intrusion detection model based on deep recurrent neural network and improved smote algorithmChin. J. Netw. Inf. Secur.20184485910.11959/j.issn.2096-109x.2018056
– reference: ManDIntelligent intrusion detection based on federated learning for edge-assisted internet of thingsSecur. Commun. Netw.20212021936134810.1155/2021/9361348
– reference: Zhang, Y. et al Federated learning with quantum secure aggregation. arxiv:abs/2207.07444. https://doi.org/10.48550/arXiv.2207.07444(2023).
– reference: HalderSGhosalAContiMEfficient physical intrusion detection in internet of things: A node deployment approachComput. Networks.2019154284610.1016/j.comnet.2019.02.019
– reference: Neisse, R. et al Toward a blockchain-based platform to manage cybersecurity certification of iot devices. 2019 IEEE Conference on Standards for Communications and Networking (CSCN).1–6. https://doi.org/10.1109/CSCN.2019.8931384(2019).
– reference: PandyaSFederated learning for smart cities: A comprehensive surveySustain. Eenergy Technol. Assessments20235510.1016/j.seta.2022.102987
– reference: Checkoway, S. et al. Comprehensive experimental analyses of automotive attack surfaces. Proceedings of the 20th USENIX Conference on Security. 1–6. https://doi.org/10.1007/BF02777627 (2011).
– reference: NaseerSSaleemYEnhanced network intrusion detection using deep convolutional neural networksKSII Trans. Internet Inf. Syst.2018125159517810.3837/tiis.2018.10.028
– reference: Wang, X. et al Attack graph convolutional networks by adding fake nodes. arXiv:1810.10751. https://doi.org/10.48550/arXiv.1810.10751 (2018).
– reference: Mcmahan, H. B. et al Communication-efficient learning of deep networks from decentralized data. The 20th International Conference on Artificial Intelligence and Statistics (AISTATS). 54, 1273–1282. https://doi.org/10.48550/arXiv.1602.05629(2016).
– reference: GaoLIntrusion detection system using soeks and deep learning for in-vehicle securityClust. Comput.201922147211472910.1007/s10586-018-2385-7
– reference: Hernandez-Ramos, J. L., Matheu, S. N. & Skarmeta, A. The challenges of software cybersecurity certification. IEEE Secur. Priv. Mag. 19, 99-102. https://doi.org/10.1109/MSEC.2020.3037845(2021)
– reference: TianCXieYChenXLiYZhaoXPrivacy-preserving cross-domain recommendation with federated graph learningACM Trans. Inf. Syst.20244212910.1145/3653448
– reference: Dai, H. et al. Adversarial attack on graph structured data. arXiv:1806.02371. https://doi.org/10.48550/arXiv.1806.02371 (2018).
– reference: Hernandez-RamosJLToward a data-driven society: A technological perspective on the development of cybersecurity and data protection policiesIEEE Secur. Priv. Mag.202018283810.1109/MSEC.2019.2939728
– reference: ManickamMRamarajNChellappanCA combined pfcm and recurrent neural network-based intrusion detection system for cloud environmentInt. J. Bus. Intell. Data Min.20191450452710.1504/IJBIDM.2019.099963
– reference: Mohamed, M. B. et al. Intrusion cancellation for anomaly detection in healthcare applications. In 2019 15th International Wireless Communications and Mobile Computing Conference (IWCMC). 313-318(2019).
– reference: Nabavirazavi, S. et al Impact of aggregation function randomization against model poisoning in federated learning. In 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). 165–172. https://doi.org/10.1109/TrustCom60117.2023.00043(2023).
– reference: LiBDeepfed: Federated deep learning for intrusion detection in industrial cyber-physical systemsIEEE Trans. Ind. Inf.2020175615562410.1109/TII.2020.3023430
– reference: ScarselliFThe graph neural network modelIEEE Trans. Neural Networks200920618010.1109/TNN.2008.200560519068426
– reference: JanSToward a lightweight intrusion detection system for the internet of thingsIEEE Access.20197424504247110.1109/ACCESS.2019.2907965
– reference: Zhang, J. et al When llms meet cybersecurity: A systematic literature review. arxiv:abs/2405.03644. https://doi.org/10.48550/arXiv.2405.03644 (2024).
– reference: ChuangMfedgr: Federated graph neural network for recommendation systemsAXIOMS20231217010.3390/axioms12020170
– reference: WangXFedKG: A knowledge distillation-based federated graph method for social bot detectionSensors202424348110.3390/s241134813889427611174749
– reference: Gill, S. S. et al Quantum computing: Vision and challenges. arxiv:abs/2403.02240. https://doi.org/10.48550/arXiv.2403.02240(2024).
– reference: MaSLiuJWReview of graph neural networksChin. J. Comput. Res. Dev.2022594780
– reference: GhoshKNeogySDasPKMehtaMIntrusion detection at international borders and large military barracks with multi-sink wireless sensor networks: An energy efficient solutionWirel. Pers. Commun.20179811910.1007/s11277-017-4909-5
– reference: AgrawalSReview federated learning for intrusion detection system: Concepts, challenges and future directionsComput. Commun.202219534636110.1016/j.comcom.2022.09.012
– reference: SunYEsakiHOchiaiHAdaptive intrusion detection in the networking of large-scale lans with segmented federated learningIEEE Open J. Commun. Soc.2020210211210.1109/OJCOMS.2020.3044323
– reference: ArthurMPKannanKCross-layer based multiclass intrusion detection system for secure multicast communication of manet in military networksWirel. Netw.2016221035105910.1007/s11276-015-1065-2
– reference: Zhao, Y. et al Multi-task network anomaly detection using federated learning. In the Tenth International Symposium. 273–279. https://doi.org/10.1145/3368926.3369705(2019).
– ident: 70032_CR24
  doi: 10.48550/arXiv.1806.02371
– ident: 70032_CR44
  doi: 10.1109/EIDWT.2012.10
– ident: 70032_CR25
  doi: 10.48550/arXiv.1810.10751
– volume: 2
  start-page: 102
  year: 2020
  ident: 70032_CR35
  publication-title: IEEE Open J. Commun. Soc.
  doi: 10.1109/OJCOMS.2020.3044323
– volume: 224
  year: 2024
  ident: 70032_CR4
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2024.109950
– volume: 98
  start-page: 1
  year: 2017
  ident: 70032_CR13
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-017-4909-5
– volume: 13
  start-page: 3091
  year: 2022
  ident: 70032_CR39
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30714-9
– volume: 14
  start-page: 504
  year: 2019
  ident: 70032_CR9
  publication-title: Int. J. Bus. Intell. Data Min.
  doi: 10.1504/IJBIDM.2019.099963
– volume: 154
  start-page: 28
  year: 2019
  ident: 70032_CR20
  publication-title: Comput. Networks.
  doi: 10.1016/j.comnet.2019.02.019
– volume: 22
  start-page: 1035
  year: 2016
  ident: 70032_CR14
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-015-1065-2
– volume: 7
  start-page: 87593
  year: 2019
  ident: 70032_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925828
– volume: 4
  start-page: 48
  year: 2018
  ident: 70032_CR10
  publication-title: Chin. J. Netw. Inf. Secur.
  doi: 10.11959/j.issn.2096-109x.2018056
– ident: 70032_CR27
  doi: 10.1109/TrustCom60117.2023.00043
– volume: 12
  start-page: 170
  year: 2023
  ident: 70032_CR5
  publication-title: AXIOMS
  doi: 10.3390/axioms12020170
– ident: 70032_CR33
  doi: 10.1145/3368926.3369705
– ident: 70032_CR48
  doi: 10.48550/arXiv.2401.13421
– ident: 70032_CR1
  doi: 10.48550/arXiv.1602.05629
– volume: 12
  start-page: 5159
  year: 2018
  ident: 70032_CR7
  publication-title: KSII Trans. Internet Inf. Syst.
  doi: 10.3837/tiis.2018.10.028
– volume: 22
  start-page: 14721
  year: 2019
  ident: 70032_CR19
  publication-title: Clust. Comput.
  doi: 10.1007/s10586-018-2385-7
– volume: 59
  start-page: 47
  year: 2022
  ident: 70032_CR23
  publication-title: Chin. J. Comput. Res. Dev.
– ident: 70032_CR26
– volume: 296
  year: 2024
  ident: 70032_CR41
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.111876
– ident: 70032_CR12
  doi: 10.48550/arXiv.1710.10903
– volume: 2021
  start-page: 9361348
  year: 2021
  ident: 70032_CR37
  publication-title: Secur. Commun. Netw.
  doi: 10.1155/2021/9361348
– ident: 70032_CR49
  doi: 10.48550/arXiv.2207.07444
– ident: 70032_CR46
  doi: 10.48550/arXiv.2405.03644
– ident: 70032_CR38
  doi: 10.48550/arXiv.2202.07256
– volume: 24
  start-page: 3481
  year: 2024
  ident: 70032_CR43
  publication-title: Sensors
  doi: 10.3390/s24113481
– volume: 7
  start-page: 42450
  year: 2019
  ident: 70032_CR22
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2907965
– ident: 70032_CR18
  doi: 10.1007/BF02777627
– ident: 70032_CR16
  doi: 10.1109/IWCMC.2019.8766592
– volume: 18
  start-page: 28
  year: 2020
  ident: 70032_CR30
  publication-title: IEEE Secur. Priv. Mag.
  doi: 10.1109/MSEC.2019.2939728
– volume: 299
  year: 2024
  ident: 70032_CR42
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2024.112029
– volume: 17
  start-page: 5615
  year: 2020
  ident: 70032_CR34
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3023430
– volume: 42
  year: 2020
  ident: 70032_CR36
  publication-title: Phys. Commun.
  doi: 10.1016/j.phycom.2020.101157
– ident: 70032_CR45
  doi: 10.1109/IAdCC.2014.6779523
– ident: 70032_CR31
  doi: 10.1109/MSEC.2020.3037845
– ident: 70032_CR47
  doi: 10.48550/arXiv.2403.02240
– volume: 42
  start-page: 1
  year: 2024
  ident: 70032_CR40
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/3653448
– volume: 13
  start-page: 2114
  year: 2018
  ident: 70032_CR17
  publication-title: IEEE Trans. Inf. For. Secur.
  doi: 10.1109/TIFS.2018.2812149
– volume: 195
  start-page: 346
  year: 2022
  ident: 70032_CR28
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2022.09.012
– ident: 70032_CR29
  doi: 10.48550/arXiv.2111.02791
– volume: 13
  start-page: 222
  year: 1987
  ident: 70032_CR3
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.1987.232894
– volume: 55
  year: 2023
  ident: 70032_CR2
  publication-title: Sustain. Eenergy Technol. Assessments
  doi: 10.1016/j.seta.2022.102987
– volume: 12
  start-page: 16
  year: 2015
  ident: 70032_CR15
  publication-title: IEEE Trans. Dependable Secure Comput.
  doi: 10.1109/tdsc.2014.2312327
– volume: 52
  start-page: 66
  year: 2022
  ident: 70032_CR50
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.3039
– volume: 21
  start-page: 2671
  year: 2019
  ident: 70032_CR21
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2896380
– volume: 20
  start-page: 61
  year: 2009
  ident: 70032_CR11
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2008.2005605
– ident: 70032_CR32
  doi: 10.1109/CSCN.2019.8931384
– volume: 7
  start-page: 42210
  year: 2019
  ident: 70032_CR6
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2904620
SSID ssj0000529419
Score 2.5478504
Snippet Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the security of...
Abstract Federated Learning is an effective solution to address the issues of data isolation and privacy leakage in machine learning. However, ensuring the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19088
SubjectTerms 704/172/169/895
704/844/4081
Accuracy
Collaboration
Data integrity
Deep learning
Graphs
Humanities and Social Sciences
Information technology
Intrusion detection systems
Laboratories
Language
Large language models
Machine learning
multidisciplinary
Neural networks
Privacy
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI375aJYI3DX3Jziabo5Y-igdPFgoeQj6rKFvxbQ_9751J9j37_Lx4W5IJO8wHM7sz-Q1jLzBidMFqL1DBWkDvowidzSJgNLfBK0qSqdvinT45hbdn_dm1UV_UE9bggZvgDostXiUwVhkP0g-2z1kX0KkPpVhVr_lizLv2MdVQvZUFaedbMstuOFxjpKLbZAqEQUtWQu1EogrY_7ss89dmyZ8qpjUQre6w23MGyV83zu-yG3m8x262mZJX99mHFcFDYAaZ-DwR4pxjYsrH1u_N_TT5-JmnPNUmrJFT5_s5LbfGR0FxLfEKZM0J7RLfNZ9dP2Cnq-P3RydinqAgYg9yEib0hOdu-xIgpD5qHRNkmZOElLUKQ_BaRcCQbgMM-GByzrLzRodQjF52D9neeDHmx4xDkcsUZZ_qJ2WINhoaXlWSKWgFAAsmN9J0cYYXpykXX1wtc3eDaxpwqAFXNeDUgr3cnvnawDX-Sv2GlLSlJGDsuoDm4mZzcf8ylwU72KjYzd66dlQNtjRsHbefb7fRz6h44sd8cVlpYAmYryHNo2YRW04IZJ-A5hZs2LGVHVZ3d8ZPHyuWt5T0Q8ni0Vcbs_rB159lsf8_ZPGE3VLkDwTwaw7Y3vTtMj_FFGsKz6o3fQevoiKJ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6trZ2LHJwSIVcWBE5VW4mD5uSBQtnTTQ_99PY431fLoLbLHiuMZeyYz428IeZ01Ruu0tCwzWDLorGeu1ZG5rM21swKNZMy2-CKPT-DzqltVh9u2plXuzsRyUIeNRx_5EUbsNBbE7t-d_mZYNQqjq7WExk1yC6HLMKVLrdTsY8EoFnBd78os2v5om_UV3ikTwFSWZ8HEnj4qsP3_sjX_Tpn8I25a1NHyHrlb7Uj6fmL8fXIjDg_I7amy5MVD8m2JIBHZjgy01oVY02ye0mHK-qZ2HK3_SUMcSyrWQDH_fY3NU_ojQ-0WaIGzpoh5md9Vx24fkZPlp68fj1mto8B8B3xkynWI6q675MCFzkvpA0QeA4cQpXC9s1J4yIpdO-jzg4ox8tYq6VxSctE-JgfDZohPCYXEF8HzLpQfS-e1V1jCKgWVsiwANITvVtP4CjKOtS5-mRLsbnszccBkDpjCASMa8mYeczpBbFxL_QGZNFMiPHZp2JytTd1tJulkRQClhbLAba-7GGUCGTqXkhZ9Qw53LDZ1z27NlYQ15NXcnXcbhlDsEDfnhQYWkK22TPNkkoh5Jgi1j3BzDen3ZGVvqvs9w4_vBdGbc3Qr6Tz07U6srub1_7V4dv1nPCd3BEo6AviqQ3Iwnp3HF9mEGt3Lsk8uASL8GWQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7LLoIX8e3orkTwpsFJOo_O0R0cFg-eXFjwEPIcRelZdnoP_nur0g8ZdxW8NUkVXaQqXdWpyleEvAaP0QSrPQMFayaVjyw0NrMA3twGLzBIxmqLT_rsXH68UBcHREx3YWrRfoW0rJ_pqTrs3Q4cDV4GE5IZMETB4LN7hNDtaNUrvZrPVTBzJbkd78csm_YW1j0fVKH6b4svb5ZJ_pErrS5ofZ_cG2NH-n6Q9gE5yN1DcmfoJvnzEfmyRmAIiB0THXtBbCiEpLQbKr2p73sfv9OU-1p-1VGsed_g8FDyyNCjJVohrCniXMK7Rt7dY3K-_vB5dcbG3gksKsl7ZoJCJHerSpAhqah1TDLznLhMWYvQBq9FlODMbZAtPJicM2-80SEUo5fNE3LYbbv8jFBZ-DJFrlL9mQzRRoNtq0oyBfQv5YLwaTVdHIHFsb_FD1cT3E3rBg040ICrGnBiQd7MPJcDrMY_qU9RSTMlQmLXge3Vxo0m4ootXiRprDBect9albMuUicVSrGiXZDjScVu3Kc7h3lgi23WYfrVPA07DNMmvsvb60ojlxIiNaB5OljELAnC6yPE3IK0e7ayJ-r-TPfta0Xx5hyPkiywvp3M6rdcf1-L5_9H_oLcFWj5COJrjslhf3WdTyCM6sPLum9-AVGoFxY
  priority: 102
  providerName: Springer Nature
Title Federated learning for network attack detection using attention-based graph neural networks
URI https://link.springer.com/article/10.1038/s41598-024-70032-2
https://www.ncbi.nlm.nih.gov/pubmed/39154072
https://www.proquest.com/docview/3093954528
https://www.proquest.com/docview/3094046588
https://pubmed.ncbi.nlm.nih.gov/PMC11330492
https://doaj.org/article/f9fa2d47927a41a895ee6f46d5bff928
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_nHYIv4rer5xLBN41u0jRpHkT2lluOBQ9RFxZ8KPnqKh5d3e2B9987k7Yrq6v41JKPNmRmOr80k98Q8gw8RuaMsgwErJjMrWcuM5E58ObGWYEgGaMtztXZXM4W-eKA9OmOugnc7F3aYT6p-fri5Y_vV2_A4F-3R8aLVxtwQnhQTEimQUkFg0_yEXgmjYb6toP7Lde3MDLl-kASdgZgQnTnaPY_ZsdXJUr_fTj0z3DK3_ZUk6ua3iI3O4xJx61S3CYHsb5DrrdZJ6_ukk9TJJAAjBlolzNiSQG60rqNCKe2aaz_SkNsUphWTTE2fonFbWgkQ88XaKK6psiHCe_q-m7ukfn09OPkjHU5FpjPJW-Ydjkyvpu8ctKF3Cvlg4w8Bi5DVMIVzirhJTh942QBNzrGyDOrlXOVVqPsPjmsV3V8SKis-Ch4noe06HTeeI3praqgK9ATKQeE97NZ-o6AHPNgXJRpIzwrylYCJUigTBIoxYA83_b51tJv_LP1CQpp2xKps1PBar0sO0ssK1NZEaQ2QlvJbWHyGFUlVchdVRlRDMhxL-KyV8cS94sNpmOH6qfbarBE3F6xdVxdpjZyJAHRQZsHrUZsR4I0_EhFNyDFjq7sDHW3pv7yObF9c46_nAx0fdGr1a9x_X0uHv3HOB-TGwLVHRl-9TE5bNaX8QlgrMYNyTW90ENyNB7PPszgenJ6_u49lE7UZJj-WwyTaf0E6jcmPA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVAguiDeBAkaCE1iNvV7v-oAQhUYpLRFCrVSJg_FrAwJtSrMV6p_iN-Lx7qYKj956i3btxPHMeMae8fcBPI0eI7NKGhoFLKnIjaM2U4Ha6M2VNRyDZKy2mMrJgXh3mB-uwa_-LgyWVfZrYlqo_dzhGfkmZuwUEmKXr45-UGSNwuxqT6HRqsVuOP0Zt2yLlztvo3yfcT7e3n8zoR2rAHW5YA0tbI4Y5yqvrLA-d1I6LwILngkfJLelNZI7Ed2csqKMH4oQAstMIa2tCjnK4vdegnWRxa3MANa3tqcfPi5PdTBvJpjqbueMsnJzET0k3mLjghbRgjjlKx4wEQX8K7r9u0jzj0xtcoDj63Cti1zJ61bVbsBaqG_C5ZbL8vQWfBojLEWMXD3pmChmJAbEpG7rzIlpGuO-ER-aVPxVE6y4n-HjtuCSoj_1JAFoE0TZjL_V9V3choMLmeM7MKjndbgHRFRs5B3LfdrKWqdcgaRZlS-qqH1CDIH1s6ldB2uO7BrfdUqvZ6VuJaCjBHSSgOZDeL7sc9SCepzbeguFtGyJgNzpwfx4pjv71pWqDPeiULwwgplS5SHISkif26pSvBzCRi9i3a0SC32m00N4snwd7RuTNqYO85PURoxEjBNjm7utRixHguD-CHA3hHJFV1aGuvqm_volYYgzhgdZKnZ90avV2bj-Pxf3z_8bj-HKZP_9nt7bme4-gKsctR7hg4sNGDTHJ-FhDOAa-6izGgKfL9pQfwOPwlgr
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNauHceODwgBZdVSVHGg0kocjJ8LAmVLNxXqX-PX4XEe1fLorbcosTdez4xn4hl_H0JPkscorRKGJAELwivjiC1VIDZ5c2UNgyAZqi32xc4Bfzev5hvo13AWBsoqhzUxL9R-6WCPfAIZOwWE2PUk9mURH7ZnLw9_EGCQgkzrQKfRqcheOPmZPt9WL3a3k6yfMjZ7-_HNDukZBoirOG2JtBXgnasqWm595YRwngcaPOU-CGZrawRzPLk8ZXmdLmQIgZZGCmujFNMy_e4FdFGWFQUbk3M57u9ABo1T1Z_TmZb1ZJV8JZxnY5zIZEuMsDVfmCkD_hXn_l2u-UfONrvC2TV0tY9h8atO6a6jjdDcQJc6VsuTm-jTDAAqUgzrcc9JscApNMZNV3GOTdsa9w370OYysAZD7f0CbnellwQ8q8cZShsD3mZ6V993dQsdnMsM30abzbIJdxHmkU69o5XPH7XWKSeBPit6GZMecl4gOsymdj3AOfBsfNc50V7WupOAThLQWQKaFejZ2Oewg_c4s_VrENLYEqC5843l0UL3lq6jioZ5LhWThlNTqyoEEbnwlY1RsbpAW4OIdb9erPSpdhfo8fg4WTqkb0wTlse5DZ_yFDGmNnc6jRhHAjD_AHVXoHpNV9aGuv6k-folo4lTCltaKnV9PqjV6bj-Pxf3zv4bj9DlZJ76_e7-3n10hYHSA46w3EKb7dFxeJAiudY-zCaD0efzttHfvHda-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Federated+learning+for+network+attack+detection+using+attention-based+graph+neural+networks&rft.jtitle=Scientific+reports&rft.au=Jianping%2C+Wu&rft.au=Guangqiu%2C+Qiu&rft.au=Chunming%2C+Wu&rft.au=Weiwei%2C+Jiang&rft.date=2024-08-17&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=19088&rft_id=info:doi/10.1038%2Fs41598-024-70032-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon