Welding-induced corrosion and protective measures for clad rebars in neutral chloride environments
Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO 2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the we...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 11657 - 14 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.05.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO
2
gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material’s interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance. |
---|---|
AbstractList | Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material’s interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance. Abstract Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material’s interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance. Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO 2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material’s interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance. Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material's interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance.Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO2 gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material's interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance. Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a cross-sea bridge in Zhejiang Province. CO gas shielded welding was employed in the prefabricated steel structure, with SS304 steel as the welding wire. This study investigated the welding on the corrosion resistance of clad rebars and explored corrosion protection measures for welded joints.The results indicated that refined grains appeared in both stainless steel and carbon steel due to distinct dynamic recrystallization (DRX) during welding. The corrosion resistance, as determined by potentiodynamic polarization curve analysis of the material's interaction with the solution ranked as follows: clad rebar (polished) > clad rebar welding (CRW) > painting the clad rebar after welding (PCRW) > clad rebar (unpolished) > carbon-steel welding (CSW) > carbon-steel bar > cold spraying zinc after clad rebar welding (ZCRW). However, an accelerated corrosion test with four samples for 600 s with a corrosion current of 0.8 A revealed minimal corrosion damage on zinc-coated surfaces. Hence, welding joints for clad steel structures are considered feasible and must be subject to cold zinc spraying after polishing to enhance their corrosion resistance. |
ArticleNumber | 11657 |
Author | Zhuang, Zecheng Lu, Weiping Li, Zhen Qian, Xuehai Jiang, Wei Zeng, Lei Xiang, Yong Tan, Jianping |
Author_xml | – sequence: 1 givenname: Zecheng surname: Zhuang fullname: Zhuang, Zecheng organization: Light Alloys Research Institute, Central South University, Guangxi Normal University of Science and Technology, State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University – sequence: 2 givenname: Weiping surname: Lu fullname: Lu, Weiping organization: Light Alloys Research Institute, Central South University, State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University – sequence: 3 givenname: Lei surname: Zeng fullname: Zeng, Lei organization: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, School of Mechanical and Electrical Engineering, Central South University – sequence: 4 givenname: Jianping surname: Tan fullname: Tan, Jianping email: jptan@csu.edu.cn organization: Light Alloys Research Institute, Central South University, State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University – sequence: 5 givenname: Xuehai surname: Qian fullname: Qian, Xuehai organization: School of Mechanical and Electrical Engineering, Central South University, Technology Centre, Guangxi Liuzhou Iron and Steel Group Ltd – sequence: 6 givenname: Zhen surname: Li fullname: Li, Zhen organization: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, School of Mechanical and Electrical Engineering, Central South University – sequence: 7 givenname: Wei surname: Jiang fullname: Jiang, Wei organization: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, School of Mechanical and Electrical Engineering, Central South University – sequence: 8 givenname: Yong surname: Xiang fullname: Xiang, Yong organization: State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, School of Mechanical and Electrical Engineering, Central South University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38777822$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLaV_gAOyxIVLwJ-JfUKo4qNSJS4gjpZjT7ZeZe3FTlaivx6nKaXtoXOxNX7vzRvPvERHMUVA6DUl7ynh6kMRVGrVECYa2XKhmutn6IQRIRvGGTu6dz9GZ6VsSQ3JtKD6BTrmqus6xdgJ6n_B6EPcNCH62YHHLuWcSkgR2-jxPqcJ3BQOgHdgy5yh4CFl7EbrcYbe5oJDxBHmKdsRu6sx5eABQzyEnOIO4lReoeeDHQuc3Z6n6OeXzz_OvzWX379enH-6bJwUdGo6NVRTdBCcOKp9b4mgxLUCgCmrONe0V73rwTur-p7xlgxWS0sk7XzbSs5P0cWq65Pdmn0OO5v_mGSDuUmkvDE2T8GNYCzlyovBdZpQ0SrQg9TDkvGSDZouWh9Xrf3c72rJ2kft74How5cYrswmHQxdou0WhXe3Cjn9nqFMZheKg3G0EdJcDCdSMyk7Siv07SPoNs051r9aUIp3THNSUW_uW7rz8m-WFcBWgKsDLBmGOwglZtkZs-6MqTtjbnbGXFeSekRyYbJTnX9tK4xPU_lKLbVO3ED-b_sJ1l-VdNeS |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_158810 crossref_primary_10_1016_j_cscm_2025_e04316 |
Cites_doi | 10.1016/j.scriptamat.2021.114307 10.1038/s41563-022-01250-0 10.1080/13621718.2020.1774995 10.1038/s41598-023-35559-w 10.1016/j.matchar.2019.109803 10.1016/j.corsci.2023.111631 10.1002/maco.202112569 10.1007/s40195-018-0847-9 10.1016/j.corsci.2020.108445 10.12693/APhysPolA.135.232 10.1016/j.stam.2007.08.010 10.1108/ACMM-01-2020-2247 10.1149/1.1838615 10.1016/j.jallcom.2020.156424 10.1016/j.conbuildmat.2019.117205 10.1016/j.matchemphys.2022.127217 10.1038/s41563-022-01284-4 10.1016/j.corsci.2022.110791 10.1016/j.conbuildmat.2019.03.212 10.3390/ma15217735 10.1016/j.jmrt.2022.09.013 10.1155/2021/9228493 10.3390/ma15103737 10.1016/j.jmatprotec.2018.02.019 10.1038/s41598-023-38540-9 10.1016/j.jmatprotec.2018.11.029 10.1016/j.heliyon.2023.e19708 10.1007/s12540-020-00789-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. corrected publication 2024 2024. The Author(s). The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024. corrected publication 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-56348-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_a138d4fc7901468e9f59f8d4fd52f913 PMC11111673 38777822 10_1038_s41598_024_56348_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Guangxi Key Research and Development Program grantid: 2021AB16016 funderid: http://dx.doi.org/10.13039/501100017691 – fundername: Liuzhou Science and Technology Project grantid: 2021AA0101B001 funderid: http://dx.doi.org/10.13039/501100018528 – fundername: Specific Research Project of Guangxi for Research Bases and Talents grantid: 2022AC20024 funderid: http://dx.doi.org/10.13039/501100018571 – fundername: Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi grantid: 2020KY23018 funderid: http://dx.doi.org/10.13039/501100012434 – fundername: Specific Research Project of Guangxi for Research Bases and Talents grantid: 2022AC20024 – fundername: Liuzhou Science and Technology Project grantid: 2021AA0101B001 – fundername: Middle-aged and Young Teachers' Basic Ability Promotion Project of Guangxi grantid: 2020KY23018 – fundername: Guangxi Key Research and Development Program grantid: 2021AB16016 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-78f7771f430c19dba0410c64ee28a83391b8bcbedca8bb2360fa95a0517d66533 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:53 EDT 2025 Thu Aug 21 18:35:17 EDT 2025 Fri Jul 11 05:07:35 EDT 2025 Wed Aug 13 03:27:38 EDT 2025 Thu Apr 03 06:57:08 EDT 2025 Tue Jul 01 01:01:41 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Fri Feb 21 02:39:31 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Dynamic recrystallization (DRX) Neutral chloride environment Clad rebars welding (CRW) Electrochemical corrosion |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-78f7771f430c19dba0410c64ee28a83391b8bcbedca8bb2360fa95a0517d66533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-56348-z |
PMID | 38777822 |
PQID | 3058372930 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a138d4fc7901468e9f59f8d4fd52f913 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11111673 proquest_miscellaneous_3059255711 proquest_journals_3058372930 pubmed_primary_38777822 crossref_primary_10_1038_s41598_024_56348_z crossref_citationtrail_10_1038_s41598_024_56348_z springer_journals_10_1038_s41598_024_56348_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-22 |
PublicationDateYYYYMMDD | 2024-05-22 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Shi, Cui, Zhu, Gu, Shen (CR11) 2018; 256 Zhou, Liu, Gao (CR21) 2020; 849 Sohail (CR30) 2021; 72 Eskandari (CR23) 2022; 207 Yuan, Ou (CR2) 2021; 2021 Hou (CR5) 2014; 33 Senthilkumar, Manivannan (CR14) 2023; 9 Wang, Wang, Wang, Huang, Peng, Yu (CR7) 2019; 155 Cui, Shi, Cui (CR8) 2019; 210 Yang, Huang (CR13) 2023; 295 Shao, Yu, Shao (CR33) 2024; 226 Jegdić, Bobić, Radojković, Alić, Radovanović (CR12) 2019; 266 Han, Wang (CR3) 2023; 59 Wang, Luan, Xu (CR4) 2019; 32 Frankel (CR31) 1998; 145 Zhiguo (CR20) 2022; 209 Tiamiyu (CR25) 2022; 21 Kaiming (CR22) 2022; 20 Logé (CR24) 2022; 21 Wei, Mingfang, Liu (CR9) 2022; 10 Sohail (CR10) 2020; 232 CR6 Sun, Jiang (CR32) 2009; 1 Dong, Han, Ke (CR1) 2007; 8 Yu, Liu, Chen (CR27) 2020; 25 Bahremand, Shahrabi, Ramezanzadeh (CR28) 2023; 13 Li, Qian, Tan (CR19) 2022; 15 Pedram, Jamali, Abbasian (CR29) 2023; 13 Sriba, Vogt (CR17) 2021; 27 Gucwa, Winczek, Giza (CR16) 2019; 135 Li, Li, Liang (CR15) 2020; 166 Li, Shao, Miao (CR18) 2020; 67 Wang (CR26) 2019; 155 Z Kaiming (56348_CR22) 2022; 20 MG Sohail (56348_CR30) 2021; 72 S Cui (56348_CR8) 2019; 210 WX Yu (56348_CR27) 2020; 25 Z Yang (56348_CR13) 2023; 295 S Senthilkumar (56348_CR14) 2023; 9 X Li (56348_CR18) 2020; 67 BJ Wang (56348_CR4) 2019; 32 SH Eskandari (56348_CR23) 2022; 207 J Yuan (56348_CR2) 2021; 2021 GS Frankel (56348_CR31) 1998; 145 56348_CR6 RE Logé (56348_CR24) 2022; 21 MG Sohail (56348_CR10) 2020; 232 O Pedram (56348_CR29) 2023; 13 Z Li (56348_CR19) 2022; 15 Q Zhou (56348_CR21) 2020; 849 B Jegdić (56348_CR12) 2019; 266 AA Tiamiyu (56348_CR25) 2022; 21 H Wang (56348_CR26) 2019; 155 P Wei (56348_CR9) 2022; 10 F Bahremand (56348_CR28) 2023; 13 A Sriba (56348_CR17) 2021; 27 Y Shi (56348_CR11) 2018; 256 H Wang (56348_CR7) 2019; 155 Z Shao (56348_CR33) 2024; 226 W Zhiguo (56348_CR20) 2022; 209 J Dong (56348_CR1) 2007; 8 BR Hou (56348_CR5) 2014; 33 M Gucwa (56348_CR16) 2019; 135 DM Sun (56348_CR32) 2009; 1 EH Han (56348_CR3) 2023; 59 J Li (56348_CR15) 2020; 166 38982169 - Sci Rep. 2024 Jul 9;14(1):15814. doi: 10.1038/s41598-024-66137-3 |
References_xml | – volume: 207 start-page: 114307 year: 2022 ident: CR23 article-title: Deformation twinning-induced dynamic recrystallization during laser powder bed fusion publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114307 – volume: 33 start-page: 6 issue: 1 year: 2014 ident: CR5 article-title: Corrosion protection technology of ocean steel structure spray splash zone publication-title: Progr. Mater. China – volume: 21 start-page: 786 issue: 7 year: 2022 end-page: 794 ident: CR25 article-title: Nanotwinning-assisted dynamic recrystallization at high strains and strain rates publication-title: Nat. Mater. doi: 10.1038/s41563-022-01250-0 – volume: 25 start-page: 571 issue: 7 year: 2020 end-page: 580 ident: CR27 article-title: Microstructure and mechanical properties of stainless steel clad plate welding joints by different welding processes publication-title: Sci. Technol. Weld. Join. doi: 10.1080/13621718.2020.1774995 – volume: 13 start-page: 8549 issue: 1 year: 2023 ident: CR29 article-title: Evaluation of pitting corrosion by dynamic speckle pattern analysis publication-title: Sci. Rep. doi: 10.1038/s41598-023-35559-w – volume: 155 start-page: 109803 year: 2019 ident: CR7 article-title: Microstructure and mechanical properties of dissimilar friction stir welded type 304 austenitic stainless steel to Q235 low carbon steel publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.109803 – volume: 226 start-page: 111631 year: 2024 ident: CR33 article-title: A protective role of Cl ion in corrosion of stainless steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111631 – volume: 72 start-page: 1854 issue: 12 year: 2021 end-page: 1871 ident: CR30 article-title: Electrochemical corrosion parameters for active and passive reinforcing steel in carbonated and sound concrete publication-title: Mater. Corros. doi: 10.1002/maco.202112569 – volume: 32 start-page: 1 year: 2019 end-page: 9 ident: CR4 article-title: Research progress on the corrosion behavior of magnesium–lithium-based alloys: A review publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1007/s40195-018-0847-9 – volume: 166 start-page: 108445.1 year: 2020 end-page: 108445.14 ident: CR15 article-title: Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108445 – volume: 135 start-page: 232 issue: 2 year: 2019 end-page: 235 ident: CR16 article-title: the effect of welding methods on the corrosion resistance of 304 stainless steel joints publication-title: Acta Phys. Polon. A doi: 10.12693/APhysPolA.135.232 – volume: 8 start-page: 559 issue: 7–8 year: 2007 end-page: 565 ident: CR1 article-title: Introduction to atmospheric corrosion research in China publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2007.08.010 – volume: 67 start-page: 269 issue: 3 year: 2020 end-page: 279 ident: CR18 article-title: Galvanic corrosion behaviors of the low-carbon ferritic stainless steel ERW (electrical resistance welding) joint in the simulated seawater publication-title: Anti-Corros. Methods Mater. doi: 10.1108/ACMM-01-2020-2247 – volume: 145 start-page: 2186 issue: 6 year: 1998 ident: CR31 article-title: Pitting corrosion of metals: A review of the critical factors publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – ident: CR6 – volume: 849 start-page: 156424 year: 2020 ident: CR21 article-title: The heritage of the twin microstructure in the sigma phase formed from deformed austenite publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156424 – volume: 232 start-page: 117205 year: 2020 ident: CR10 article-title: Electrochemical behavior of mild and corrosion resistant concrete reinforcing steels publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117205 – volume: 295 start-page: 127217 year: 2023 ident: CR13 article-title: Corrosion behavior of ADC12 aluminum alloy welded joint using tungsten inert gas welding in 3.5wt.% NaCl solution publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.127217 – volume: 21 start-page: 738 issue: 7 year: 2022 end-page: 739 ident: CR24 article-title: Nanotwinning-assisted recrystallization publication-title: Nat. Mater. doi: 10.1038/s41563-022-01284-4 – volume: 209 start-page: 110791 year: 2022 ident: CR20 article-title: Effect of twin-related boundaries distribution on carbide precipitation and intergranular corrosion behavior in nuclear-grade higher carbon austenitic stainless steel publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110791 – volume: 210 start-page: 71 year: 2019 end-page: 77 ident: CR8 article-title: The influence of microstructure and chromium nitride precipitations on the mechanical and intergranular corrosion properties of K-TIG weld metals publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.212 – volume: 15 start-page: 7735 issue: 21 year: 2022 ident: CR19 article-title: Profile change law of clad rebars and the formation mechanism of composite interfaces during hot rolling publication-title: Materials doi: 10.3390/ma15217735 – volume: 20 start-page: 4419 year: 2022 end-page: 4431 ident: CR22 article-title: Dynamic recrystallization behavior and numerical simulation of S280 ultra-high strength stainless steel publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.09.013 – volume: 1 start-page: 5 year: 2009 ident: CR32 article-title: Stainless steel pitted lacing cover falls off with stable growth publication-title: J. Zhengzhou Univ. – volume: 2021 start-page: 9228493 year: 2021 ident: CR2 article-title: Research progress and engineering applications of stainless steel- reinforced concrete structures publication-title: Adv. Civil Eng. doi: 10.1155/2021/9228493 – volume: 155 start-page: 109803 year: 2019 ident: CR26 article-title: Microstructure and mechanical properties of dissimilar friction stir welded type 304 austenitic stainless steel to Q235 low carbon steel publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.109803 – volume: 10 start-page: 3737 issue: 15 year: 2022 ident: CR9 article-title: Electrochemical corrosion behavior of MIG-welded 7N01-T4 aluminum alloy by ER5356 and ER5087 welding wires publication-title: Materials doi: 10.3390/ma15103737 – volume: 256 start-page: 254 year: 2018 end-page: 261 ident: CR11 article-title: Microstructure and intergranular corrosion behavior of HAZ in DP-TIG welded DSS joints publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.02.019 – volume: 59 start-page: 513 issue: 4 year: 2023 end-page: 522 ident: CR3 article-title: Effect of surface state on corrosion and stress corrosion for nuclear materials publication-title: Acta Metall. Sin. – volume: 13 start-page: 12169 issue: 1 year: 2023 ident: CR28 article-title: Sustainable development of an effective anti-corrosion film over the St12-steel surface against seawater attacks using Ce(III) ions/tri-sodium phosphate anions publication-title: Sci. Rep. doi: 10.1038/s41598-023-38540-9 – volume: 266 start-page: 579 year: 2019 end-page: 587 ident: CR12 article-title: Corrosion resistance of welded joints of X5CrNi18-10 stainless steel publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.11.029 – volume: 9 start-page: e19708 issue: 9 year: 2023 ident: CR14 article-title: Influence of heat input on the mechanical characteristics, corrosion and microstructure of ASTM A36 steel welded by GTAW technique publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19708 – volume: 27 start-page: 5258 year: 2021 end-page: 5267 ident: CR17 article-title: Galvanic coupling effect on pitting corrosion of 316L austenitic stainless steel welded joints publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00789-4 – volume: 59 start-page: 513 issue: 4 year: 2023 ident: 56348_CR3 publication-title: Acta Metall. Sin. – volume: 232 start-page: 117205 year: 2020 ident: 56348_CR10 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.117205 – volume: 27 start-page: 5258 year: 2021 ident: 56348_CR17 publication-title: Met. Mater. Int. doi: 10.1007/s12540-020-00789-4 – volume: 15 start-page: 7735 issue: 21 year: 2022 ident: 56348_CR19 publication-title: Materials doi: 10.3390/ma15217735 – volume: 13 start-page: 8549 issue: 1 year: 2023 ident: 56348_CR29 publication-title: Sci. Rep. doi: 10.1038/s41598-023-35559-w – volume: 849 start-page: 156424 year: 2020 ident: 56348_CR21 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156424 – volume: 256 start-page: 254 year: 2018 ident: 56348_CR11 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.02.019 – volume: 67 start-page: 269 issue: 3 year: 2020 ident: 56348_CR18 publication-title: Anti-Corros. Methods Mater. doi: 10.1108/ACMM-01-2020-2247 – volume: 9 start-page: e19708 issue: 9 year: 2023 ident: 56348_CR14 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19708 – volume: 266 start-page: 579 year: 2019 ident: 56348_CR12 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2018.11.029 – volume: 2021 start-page: 9228493 year: 2021 ident: 56348_CR2 publication-title: Adv. Civil Eng. doi: 10.1155/2021/9228493 – volume: 8 start-page: 559 issue: 7–8 year: 2007 ident: 56348_CR1 publication-title: Sci. Technol. Adv. Mater. doi: 10.1016/j.stam.2007.08.010 – volume: 10 start-page: 3737 issue: 15 year: 2022 ident: 56348_CR9 publication-title: Materials doi: 10.3390/ma15103737 – volume: 226 start-page: 111631 year: 2024 ident: 56348_CR33 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2023.111631 – volume: 155 start-page: 109803 year: 2019 ident: 56348_CR26 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.109803 – volume: 25 start-page: 571 issue: 7 year: 2020 ident: 56348_CR27 publication-title: Sci. Technol. Weld. Join. doi: 10.1080/13621718.2020.1774995 – volume: 166 start-page: 108445.1 year: 2020 ident: 56348_CR15 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2020.108445 – volume: 21 start-page: 786 issue: 7 year: 2022 ident: 56348_CR25 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01250-0 – ident: 56348_CR6 – volume: 72 start-page: 1854 issue: 12 year: 2021 ident: 56348_CR30 publication-title: Mater. Corros. doi: 10.1002/maco.202112569 – volume: 145 start-page: 2186 issue: 6 year: 1998 ident: 56348_CR31 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1838615 – volume: 33 start-page: 6 issue: 1 year: 2014 ident: 56348_CR5 publication-title: Progr. Mater. China – volume: 210 start-page: 71 year: 2019 ident: 56348_CR8 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.03.212 – volume: 155 start-page: 109803 year: 2019 ident: 56348_CR7 publication-title: Mater. Charact. doi: 10.1016/j.matchar.2019.109803 – volume: 13 start-page: 12169 issue: 1 year: 2023 ident: 56348_CR28 publication-title: Sci. Rep. doi: 10.1038/s41598-023-38540-9 – volume: 32 start-page: 1 year: 2019 ident: 56348_CR4 publication-title: Acta Metall. Sin. (Engl. Lett.) doi: 10.1007/s40195-018-0847-9 – volume: 207 start-page: 114307 year: 2022 ident: 56348_CR23 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114307 – volume: 20 start-page: 4419 year: 2022 ident: 56348_CR22 publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.09.013 – volume: 209 start-page: 110791 year: 2022 ident: 56348_CR20 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2022.110791 – volume: 21 start-page: 738 issue: 7 year: 2022 ident: 56348_CR24 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01284-4 – volume: 1 start-page: 5 year: 2009 ident: 56348_CR32 publication-title: J. Zhengzhou Univ. – volume: 295 start-page: 127217 year: 2023 ident: 56348_CR13 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.127217 – volume: 135 start-page: 232 issue: 2 year: 2019 ident: 56348_CR16 publication-title: Acta Phys. Polon. A doi: 10.12693/APhysPolA.135.232 – reference: 38982169 - Sci Rep. 2024 Jul 9;14(1):15814. doi: 10.1038/s41598-024-66137-3 |
SSID | ssj0000529419 |
Score | 2.456449 |
Snippet | Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for application in a... Abstract Corrosion-resistant steel plays a vital role in marine steel structures. This study developed an SS304/HRB400 stainless-steel-clad rebar for... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11657 |
SubjectTerms | 639/166 639/301 Carbon Carbon dioxide Clad rebars welding (CRW) Corrosion Corrosion resistance Corrosion tests Dynamic recrystallization (DRX) Electrochemical corrosion Humanities and Social Sciences multidisciplinary Neutral chloride environment Science Science (multidisciplinary) Spraying Stainless steel Welding Zinc |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA-lIHgpftbVWiL0pqGbz02OKpYi6KnF3kI-aaFuS997B_vXO0n2Pd-rVi9eN1l2dj4yM5nkNwgdKOWDSUYRx5QkgkZYB42UYHh-oCZABBvK1sCXr-r4VHw-k2drrb7KmbAGD9wYd-go11HkMJR6n9LJZGlyeRIly6b2q2Xg89aSqYbqzYygZrol03N9OANPVW6TMUGk4kKT2w1PVAH7_xRl_n5Y8k7FtDqio0doZ4og8ftG-WO0lcYn6EHrKfnjKfLfUq0nEUi2QWwRQ3oJ3wf2YzdGPOEywBqHv7ftwRmGuBWHSxfxTfKQ5-KLEY9pUcjA4byc0IsJr1-Ie4ZOjz6dfDwmUyMFEqSgczLoPAwDzYL3gZroXS9oH5RIiWmnOTfUax88_KPT3jOu-uyMdAW-KyoFAeFztD1ejekFwllmyXP0MQMTTc4mpgQ5mRei90Er3iG6ZKoNE8p4aXZxaWu1m2vbBGFBELYKwt526O3qneuGsfHX2R-KrFYzCz52fQBaYyetsf_Smg7tLSVtJ6OdWVj6dKli8r5Db1bDYG6lhuLGdLWocwxkYQOlHdptirGihBdsRQi4OqQ3VGaD1M2R8eK8QnoXx0XVAHS9W2rXL7ru58XL_8GLV-ghK2bRS8LYHtqe3yzSa4i05n6_GtVPDlMlUQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIkLYidQkJG4gdU4XmKfECCqCglOVLyb5ZVWKnnlLQf665lJ_F55LL3ajjL2zNiz2N8Q8lLrEG22mvlOKyZ5gn3QKgWKF3puI1iwEUMDnz7ro2P5caZmNeC2rNcqN3viuFGnecQY-QHIpcEUk2jfnP9gWDUKs6u1hMZ1cgOhy_BKVz_rtzEWzGJJbutbmVaYgyWcV_imrJNMaSENu9g5j0bY_n_Zmn9fmfwjbzoeR4d3yO1qR9K3E-Pvkmt5uEduTpUlf94n4Wses0oMXG5gXqLgZML_gQnUD4lWdAbY6ej3KUi4pGC90njmE13kAN4uPR3okNdIBo0neE8vZfr7s7gH5Pjww5f3R6yWU2BRSb5ivSl93_MiRRu5TcG3krdRy5w7440QlgcTYoA5ehNCJ3RbvFUeQbyS1mAWPiR7w3zIjwktqihRUkgFFtGWYlPO4JkFKdsQjRYN4ZtFdbFijWPJizM35ryFcRMjHDDCjYxwFw15tf3mfELauHL0O-TVdiSiZI8N88U3V5XOeS5MkiX2mCvWJtuibMGWpLpiOZC5v-G0q6q7dJeC1pAX225QOsyk-CHP1-MYC75Yz3lDHk2CsaVEIMIimF0NMTsis0Pqbs9wejICe-PxxXUPdL3eSNclXf9fiydXT-MpudWhwLeKdd0-2Vst1vkZWFKr8HxUl19j9hzi priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JaxYxFA-1IngRd6etEsGbBifrJEf9sBRBTxZ7C1ltoc4n33Kwf70vmUU_rYLXLMybvCXv5eX9gtALpXwwySjimJJE0Ah20EgJiuc7agJ4sKEcDXz4qE5OxfszebaH2FQLUy_tV0jLaqan22Gv17DRlGIwJohUXGhydQPdLNDtRaoXajGfq5TMlaBmrI9pub5m6s4eVKH6r_Mv_7wm-VuutG5Bx3fRndF3xG8Gau-hvdTfR7eG1yS_P0D-c6qZJAJhNjAsYggs4fuw8Nj1EY-IDGDd8NfhYHCNwWPF4dJFvEoeIlx80eM-bQsZOJyXu3kx4V9L4R6i0-N3nxYnZHxCgQQp6IZ0OnddR7PgbaAmetcK2gYlUmLaac4N9doHD__otPeMqzY7I10B7opKgSv4CO33yz49QTjLLHmOPmZYRJOziSlBNOaFaH3QijeITotqw4gvXp65uLQ1z821HRhhgRG2MsJeNejlPOfbgK7xz9FvC6_mkQUZuzYsV1_sKCnWUa6jyKEr-WGlk8nS5NISJcuGAplHE6ftqK5rC0ZPl_wlbxv0fO4GRSvZE9en5baOMRB_dZQ26PEgGDMlvKAqgqvVIL0jMjuk7vb0F-cVzLtsWVR1QNerSbp-0vX3tTj4v-GH6DYrCtBKwtgR2t-stukpeFMb_6yqzw_izBtQ priority: 102 providerName: Springer Nature |
Title | Welding-induced corrosion and protective measures for clad rebars in neutral chloride environments |
URI | https://link.springer.com/article/10.1038/s41598-024-56348-z https://www.ncbi.nlm.nih.gov/pubmed/38777822 https://www.proquest.com/docview/3058372930 https://www.proquest.com/docview/3059255711 https://pubmed.ncbi.nlm.nih.gov/PMC11111673 https://doaj.org/article/a138d4fc7901468e9f59f8d4fd52f913 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEF71EBIviBtDiRaJNzB4vfcDQmnUqorUCgERebO8F60UnDaHRPvrmV07gUBAPEVar53xHDszO95vEHophLHaa5HXpeA5Iw7WQc05GJ6RRFuIYG3cGjg9EycjNhzz8Q5atTvqGDjfmtrFflKj2eTN96vr92Dw79oj4-rtHJxQPChWspwLylR-s4v2wTPJaKinXbjfYn2XmqVeHxGEPYdgouzO0Wx_zIavSpD-2-LQPz-n_K2mmlzV8V10p4sxcb9Vintoxzf30a226-T1A2S--FRxyiEdB8E6DAko_D8ICNeNwx1yA6yC-Fu7gTjHENliO6kdnnkD7MIXDW78MpKB7Xn8hs95_OuRuYdodHz0eXCSd60WcssZWeRSBSklCYwWlmhn6oKRwgrmfalqRakmRhlr4B1rZUxJRRFqzesI8OWEgJDxEdprpo1_gnDggdPgjAvARB2Cdt5D1mYYK4xVgmaIrJha2Q6HPLbDmFSpHk5V1QqiAkFUSRDVTYZere-5bFE4_jn7MMpqPTMiaKeB6exr1RlkVROqHAtWxjqyUF4HrkMccbwMmgCZBytJVyutrGBxVLHOSYsMvVhfBoOMVZa68dNlmqMhT5OEZOhxqxhrSmhEX4SQLENqQ2U2SN280lycJ9Dv6NqIkEDX65V2_aTr77x4-h90PkO3y6j1BZhEeYD2FrOlfw6h1sL00K4cyx7a7_eHn4bwe3h09uEjjA7EoJe2L3rJwn4AGQMqFw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bTxUxEG4IxOiL8e4qak30STdsr9s-GCMKOQicGAORt7K9CQnuwXOJgR_lb3S6l4PHC2-8brvZ2c4307m0Mwi9kNI6HbTMKypFzokHPaiFAMGzJdEOLFiXQgO7QznY5x8PxMES-tnfhUnHKnud2ChqP3IpRr4GuFQpxcSKt6ff89Q1KmVX-xYaLSy2w9kPcNkmb7Y-AH9fUrq5sfd-kHddBXInOJnmpYplWZLIWeGI9rYqOCmc5CFQVSnGNLHKOhu8q5S1lMkiVlpUqZaVl1KkACio_BUOA6AIVtY3hp8-z6M6KW_Gie5u5xRMrU1gh0y32CjPhWRc5ecLO2DTKOBf1u3fhzT_yNQ2G-DmLXSzs1zxuxZqt9FSqO-ga20vy7O7yH4JTR4rBycf4OIxuLXwfWA7rmqPu3oQoFvxtzYsOcFgL2N3Unk8Dhb8a3xc4zrMEhnYHaWTgT7g3y_i3UP7V7LU99FyParDQ4SjiIJFb32ERdQxah8C-IKW88I6JVmGSL-oxnXVzVOTjRPTZNmZMi0jDDDCNIww5xl6NX_ntK3tcens9cSr-cxUl7t5MBp_NZ2Ym4ow5Xl0ZcpOSxV0FDqmJ17QqAmQudpz2nTKYmIuoJ2h5_NhEPOUu6nqMJo1czR4fyUhGXrQAmNOCUs1HcHQy5BagMwCqYsj9fFRU0o8bZhElkDX6x5dF3T9fy0eXf4bz9D1wd7ujtnZGm4_RjdoAn8hckpX0fJ0PAtPwI6b2qed8GB0eNXy-guHOVrP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIhAviLsLBYwETxBtHB-xHxACyqqlUPFAxb6Z-KKVSrbsIdT-NH4dMzm2LEff-ho7ysTzzXgOe4aQJ0o5b6JRWVUomQkWQA8aKUHwXMmMBwvWY2jgw57a3hfvxnK8Rn72d2HwWGWvExtFHSYeY-RDwKXGFBPPh6k7FvFxa_Ty-HuGHaQw09q302ghshtPfoD7NnuxswW8floUo7ef3mxnXYeBzEvB5lmpU1mWLAmee2aCq3LBcq9EjIWuNOeGOe28i8FX2rmCqzxVRlZY1yooJTEYCur_UsklQxkrx-UyvoMZNMFMd08n53o4g70S77MVIpOKC52druyFTcuAf9m5fx_X_CNn22yFo-vkWmfD0lct6G6QtVjfJJfbrpYnt4j7HJuMVgbuPgAnUHBw4fsAAFrVgXaVIUDL0m9tgHJGwXKm_qgKdBodeNr0sKZ1XCAZ1B_gGcEQ6e9X8m6T_QtZ6DtkvZ7UcYPQJJPkKbiQYBFNSibECF6hEyJ3Xis-IKxfVOu7OufYbuPINvl2rm3LCAuMsA0j7OmAPFu-c9xW-Th39mvk1XImVuhuHkymX20n8LZiXAeRfIl5aqWjSdIkfBJkkQwDMjd7TttObczsGcgH5PFyGAQeszhVHSeLZo4BP7BkbEDutsBYUsKxuiOYfAOiVyCzQurqSH140BQVx62TqRLoet6j64yu_6_FvfN_4xG5AlJq3-_s7d4nVwvEfi6zotgk6_PpIj4Ag27uHjaSQ8mXixbVX8XLXZ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Welding-induced+corrosion+and+protective+measures+for+clad+rebars+in+neutral+chloride+environments&rft.jtitle=Scientific+reports&rft.au=Zhuang%2C+Zecheng&rft.au=Lu%2C+Weiping&rft.au=Zeng%2C+Lei&rft.au=Tan%2C+Jianping&rft.date=2024-05-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=11657&rft_id=info:doi/10.1038%2Fs41598-024-56348-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |