Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry
A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogon...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 4263 - 12 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.07.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and
sn
-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the
sn
-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.
The existence of large number of isomers poses challenges for lipidomic analysis. The authors integrate hydrophilic interaction liquid chromatography, trapped ion mobility, and isomer-resolved MS/MS into a single system, enabling deep profiling of phospholipidomes at fast speed and wide coverage. |
---|---|
AbstractList | Abstract A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states. A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states. A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn -positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn -position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states. The existence of large number of isomers poses challenges for lipidomic analysis. The authors integrate hydrophilic interaction liquid chromatography, trapped ion mobility, and isomer-resolved MS/MS into a single system, enabling deep profiling of phospholipidomes at fast speed and wide coverage. A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn -positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn -position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states. A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states.The existence of large number of isomers poses challenges for lipidomic analysis. The authors integrate hydrophilic interaction liquid chromatography, trapped ion mobility, and isomer-resolved MS/MS into a single system, enabling deep profiling of phospholipidomes at fast speed and wide coverage. A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although widely used for lipidomic profiling, faces challenges in differentiating lipid isomers. Herein, we address this issue by leveraging the orthogonal separation capabilities of hydrophilic interaction liquid chromatography (HILIC) and trapped ion mobility spectrometry (TIMS). We further integrate isomer-resolved MS/MS methods onto HILIC-TIMS, which enable pinpointing double bond locations in phospholipids and sn-positions in phosphatidylcholine. This system profiles phospholipids at multiple structural levels with short analysis time (<10 min per LC run), high sensitivity (nM detection limit), and wide coverage, while data analysis is streamlined using a home-developed software, LipidNovelist. Notably, compared to our previous report, the system doubles the coverage of phospholipids in bovine liver and reveals uncanonical desaturation pathways in RAW 264.7 macrophages. Relative quantitation of the double bond location isomers of phospholipids and the sn-position isomers of phosphatidylcholine enables the phenotyping of human bladder cancer tissue relative to normal control, which would be otherwise indistinguishable by traditional profiling methods. Our research offers a comprehensive solution for lipidomic profiling and highlights the critical role of isomer analysis in studying lipid metabolism in both healthy and diseased states. |
ArticleNumber | 4263 |
Author | Zhou, Feng Jin, Xue Zhang, Donghui Shi, Hengxue Yin, Hang Gong, Yanqing Xia, Tian Xia, Yu |
Author_xml | – sequence: 1 givenname: Tian surname: Xia fullname: Xia, Tian organization: MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University – sequence: 2 givenname: Feng surname: Zhou fullname: Zhou, Feng organization: Bytedance Technology Co – sequence: 3 givenname: Donghui surname: Zhang fullname: Zhang, Donghui organization: State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Department of Precision Instrument – sequence: 4 givenname: Xue orcidid: 0000-0003-4214-6238 surname: Jin fullname: Jin, Xue organization: School of Pharmaceutical Sciences, Tsinghua University – sequence: 5 givenname: Hengxue surname: Shi fullname: Shi, Hengxue organization: MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University – sequence: 6 givenname: Hang orcidid: 0000-0002-9762-4818 surname: Yin fullname: Yin, Hang organization: School of Pharmaceutical Sciences, Tsinghua University, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing Frontier Research Center for Biological Structure, Tsinghua University – sequence: 7 givenname: Yanqing surname: Gong fullname: Gong, Yanqing organization: Department of Urology, Peking University First Hospital – sequence: 8 givenname: Yu orcidid: 0000-0001-8694-9900 surname: Xia fullname: Xia, Yu email: xiayu@mail.tsinghua.edu.cn organization: MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37460558$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVARLUN_gAWKxIZNwG87K4TKq1IlNrC2nOQ645ETBzszav8eM2mh7aKWLD_uOcdHPvclOpniBAi9Jvg9wUx_yJxwqWpMWc0x5rK-fobOKOakJoqyk3v7U3Se8w6XwRqiOX-BTpniEguhz9D2M8Bczyk6H_w0VNFV8zbmMoOffR9HqA7eVsmWQxXTso1DnGyoMsw22cXHKVd26iufCzTVCXIMB-ir0eZc5Rm6JZXCkm5eoefOhgznt-sG_fr65efF9_rqx7fLi09XdSc4WWolQTUd4dpJ4aTqAYsGWs20lYS0WCsO1irn-sY6TAiRzHVMYdBS9x0FyTboctXto92ZOfnRphsTrTfHi5gGY9PiuwCm1UpwCw0Vque9dE3TNkS2lLSAKRWuaH1cteZ9O0LfwbQkGx6IPqxMfmuGeDAlIUEp00Xh3a1Cir_3kBcz-txBCHaCuM-Galaex5Q3Bfr2EXQX96n89RGlBaG4hL1Bb-5b-uflLtEC0CugSzHnBM50fjkGVRz6UKz9dafN2j-mSJpj_5jrQqWPqHfqT5LYSsoFPA2Q_tt-gvUHmyjaEg |
CitedBy_id | crossref_primary_10_1016_j_cclet_2024_110183 crossref_primary_10_1016_j_lfs_2025_123411 crossref_primary_10_1016_j_talanta_2025_127855 crossref_primary_10_1021_acs_analchem_4c05940 crossref_primary_10_1016_j_tifs_2023_104229 crossref_primary_10_1021_acs_analchem_4c00481 crossref_primary_10_1002_ange_202316793 crossref_primary_10_1016_j_scitotenv_2024_172483 crossref_primary_10_1016_j_jfca_2023_105717 crossref_primary_10_1021_acs_analchem_4c06680 crossref_primary_10_1002_anie_202316793 crossref_primary_10_1016_j_bbcan_2024_189176 crossref_primary_10_1016_j_trac_2024_117765 crossref_primary_10_1021_acs_analchem_4c02146 crossref_primary_10_1016_j_atherosclerosis_2024_118569 crossref_primary_10_1016_j_jlr_2023_100410 crossref_primary_10_1002_anse_202300097 crossref_primary_10_1039_D3AN01735D crossref_primary_10_1007_s00216_024_05376_9 crossref_primary_10_1021_jasms_3c00447 crossref_primary_10_1016_j_jlr_2024_100668 |
Cites_doi | 10.1021/acs.analchem.5b01460 10.1021/acs.analchem.9b02667 10.1002/anie.201911070 10.1002/anie.202016734 10.1038/s41467-021-27648-z 10.1038/s41467-021-24672-x 10.1038/nmeth.1564 10.1016/j.ijms.2019.116206 10.1074/jbc.M110.182915 10.1016/j.jlr.2021.100110 10.1016/j.jgg.2019.11.009 10.1021/jasms.1c00056 10.1021/acs.analchem.8b01527 10.1007/s13361-014-0999-4 10.1021/acs.analchem.9b01838 10.1002/anie.201900011 10.1016/j.bbalip.2011.06.009 10.1194/jlr.D700041-JLR200 10.1016/j.cmet.2022.09.023 10.1021/acs.analchem.8b04905 10.1021/acs.analchem.8b00322 10.1021/acs.accounts.1c00419 10.1002/mas.20023 10.1002/anie.202207098 10.1021/pr4004135 10.1021/acs.analchem.0c02520 10.1021/ac303237a 10.1016/j.trac.2014.04.017 10.1002/anie.201806635 10.1021/acs.analchem.1c01751 10.1002/chem.201001692 10.1021/jacs.9b05868 10.1016/j.celrep.2021.108738 10.1016/j.plipres.2013.12.001 10.1073/pnas.1523356113 10.1016/j.aca.2020.06.017 10.1038/nrm.2017.138 10.1038/s41586-019-0904-1 10.1038/s41467-019-08897-5 10.1002/mas.21492 10.1016/j.jlr.2022.100219 10.1021/acs.analchem.0c03502 10.1021/acs.accounts.6b00030 10.1038/s41467-021-24984-y 10.1038/s41467-019-14180-4 10.1039/C9SC03521D 10.1021/acs.analchem.5b04001 10.1021/acs.analchem.0c02896 10.1016/j.jlr.2021.100050 10.1021/jacs.7b06416 10.1021/acs.analchem.2c03505 10.1021/acs.analchem.9b05718 10.1038/s41467-023-36520-1 10.1021/acs.analchem.9b04376 10.1021/acs.analchem.8b04979 10.1038/nprot.2017.013 10.1038/s41467-021-27765-9 10.1021/acs.analchem.0c00690 10.1021/acs.analchem.1c01379 10.1039/C5AN00838G 10.1021/acs.analchem.8b02021 10.1038/s41467-018-07963-8 10.1021/acs.analchem.5b04491 10.1038/nm.4073 10.1007/s00232-015-9770-4 10.1021/acs.analchem.1c05607 10.3390/ijms18010183 10.6084/m9.figshare.22297771 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-40046-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_b8754ae9257d4d6f99b916b21be0225f PMC10352238 37460558 10_1038_s41467_023_40046_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22225404, 21825702, 22137004 funderid: https://doi.org/10.13039/501100001809 – fundername: National Key R&D Program of China: 2018YFA0800903 Beijing Outstanding Young Scientist Program: BJJWZYJH01201910003013 Beijing Advanced Innovation Center for Structural Biology Funding: 20151551402 – fundername: ; – fundername: ; grantid: 22225404, 21825702, 22137004 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT AARCD CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c541t-76e79c148f65f67de059eb838a611b0874eaa7ffd9af011163fc370e868dc2e63 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:47:36 EDT 2025 Thu Aug 21 18:36:28 EDT 2025 Fri Jul 11 00:32:50 EDT 2025 Wed Aug 13 01:50:48 EDT 2025 Sat Aug 02 01:41:20 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Tue Jul 01 00:58:57 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-76e79c148f65f67de059eb838a611b0874eaa7ffd9af011163fc370e868dc2e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9762-4818 0000-0001-8694-9900 0000-0003-4214-6238 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-40046-x |
PMID | 37460558 |
PQID | 2838512002 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b8754ae9257d4d6f99b916b21be0225f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10352238 proquest_miscellaneous_2839250249 proquest_journals_2838512002 pubmed_primary_37460558 crossref_citationtrail_10_1038_s41467_023_40046_x crossref_primary_10_1038_s41467_023_40046_x springer_journals_10_1038_s41467_023_40046_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-17 |
PublicationDateYYYYMMDD | 2023-07-17 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang, Li, Lam, Shui (CR58) 2020; 47 Zhao, Wu, Zhang, Dong, Xia (CR48) 2020; 92 Dobrzyńska, Szachowicz-Petelska, Darewicz, Figaszewski (CR61) 2015; 248 Li (CR15) 2021; 12 Jeanne Dit Fouque (CR51) 2019; 91 Zhang (CR39) 2019; 58 Martin-Perez, Urdiroz-Urricelqui, Bigas, Benitah (CR1) 2022; 34 Xia, Ren, Zhang, Xia (CR37) 2020; 1128 Marshall (CR21) 2016; 88 Cao, Ma, Li, Zhou, Ouyang (CR30) 2018; 90 Groessl, Graf, Knochenmuss (CR50) 2015; 140 Zhang (CR36) 2019; 10 Dennis (CR57) 2010; 285 Cajka, Fiehn (CR7) 2016; 88 Leaptrot, May, Dodds, McLean (CR14) 2019; 10 Cajka, Fiehn (CR6) 2014; 61 Zhang, Shang, Ouyang, Xia (CR9) 2020; 92 Campbell, Baba (CR23) 2015; 87 Clark (CR68) 2011; 8 Kuo (CR28) 2019; 91 Morioka (CR11) 2022; 13 Matyash, Liebisch, Kurzchalia, Shevchenko, Schwudke (CR67) 2008; 49 Feng, Chen, Yu, Li (CR27) 2019; 91 Tang, Cheng, Yan (CR29) 2020; 59 Zhang (CR53) 2022; 94 Wolrab (CR8) 2022; 13 May, Knochenmuss, Fjeldsted, McLean (CR66) 2020; 92 Lísa, Holčapek (CR12) 2013; 85 Han, Gross (CR47) 2005; 24 Fahy, Cotter, Sud, Subramaniam (CR54) 2011; 1811 Nakamura, Yudell, Loor (CR4) 2014; 53 Zhao (CR46) 2020; 92 Djambazova (CR65) 2020; 92 CR56 Blaženović (CR17) 2018; 90 Li, Lämmerhofer (CR10) 2021; 93 Lerner (CR18) 2023; 14 Ma (CR35) 2016; 113 Zhao (CR43) 2019; 10 Randolph, Blanksby, McLuckey (CR24) 2020; 92 Yang (CR32) 2022; 61 Höring (CR49) 2021; 62 Köfeler (CR19) 2021; 12 Xia (CR16) 2021; 93 Zhao, Fang, Xia (CR44) 2021; 62 Paglia, Astarita (CR13) 2017; 12 Bednařík, Bölsker, Soltwisch, Dreisewerd (CR41) 2018; 57 May (CR62) 2021; 32 Zhang (CR33) 2022; 94 Ryan, Reid (CR5) 2016; 49 Unsihuay (CR31) 2021; 60 Zhang, Jian, Zhao, Liu, Xia (CR20) 2022; 63 Vriens (CR45) 2019; 566 Michelmann, Silveira, Ridgeway, Park (CR55) 2015; 26 Wang, Wang, Han (CR52) 2017; 36 CR69 Marakalala (CR3) 2016; 22 Dill (CR60) 2011; 17 Ma, Zhang, Li, Xia, Ouyang (CR26) 2021; 54 Cao (CR34) 2020; 11 Su (CR38) 2019; 445 Harayama, Riezman (CR2) 2018; 19 CR63 Giles (CR64) 2019; 91 Takahashi (CR25) 2018; 90 Williams, Klein, Greer, Brodbelt (CR22) 2017; 139 Young (CR42) 2021; 34 Wäldchen, Spengler, Heiles (CR40) 2019; 141 Tripathi (CR59) 2013; 12 MJ Marakalala (40046_CR3) 2016; 22 M Wang (40046_CR52) 2017; 36 T Cajka (40046_CR6) 2014; 61 40046_CR56 JL Campbell (40046_CR23) 2015; 87 I Dobrzyńska (40046_CR61) 2015; 248 W Zhang (40046_CR20) 2022; 63 W Zhang (40046_CR39) 2019; 58 T Harayama (40046_CR2) 2018; 19 X Ma (40046_CR26) 2021; 54 I Blaženović (40046_CR17) 2018; 90 KL Leaptrot (40046_CR14) 2019; 10 W Zhang (40046_CR36) 2019; 10 R Lerner (40046_CR18) 2023; 14 G Paglia (40046_CR13) 2017; 12 S Tang (40046_CR29) 2020; 59 S Morioka (40046_CR11) 2022; 13 E Fahy (40046_CR54) 2011; 1811 K Michelmann (40046_CR55) 2015; 26 P Tripathi (40046_CR59) 2013; 12 PE Williams (40046_CR22) 2017; 139 B Zhang (40046_CR33) 2022; 94 JC May (40046_CR62) 2021; 32 CE Randolph (40046_CR24) 2020; 92 Y Feng (40046_CR27) 2019; 91 T Li (40046_CR15) 2021; 12 KV Djambazova (40046_CR65) 2020; 92 W Cao (40046_CR34) 2020; 11 Y Su (40046_CR38) 2019; 445 R Wang (40046_CR58) 2020; 47 T Cajka (40046_CR7) 2016; 88 RSE Young (40046_CR42) 2021; 34 X Ma (40046_CR35) 2016; 113 T-H Kuo (40046_CR28) 2019; 91 W Cao (40046_CR30) 2018; 90 D Wolrab (40046_CR8) 2022; 13 T Xia (40046_CR37) 2020; 1128 J Zhao (40046_CR44) 2021; 62 M Groessl (40046_CR50) 2015; 140 V Matyash (40046_CR67) 2008; 49 X Han (40046_CR47) 2005; 24 HC Köfeler (40046_CR19) 2021; 12 K Giles (40046_CR64) 2019; 91 X Zhao (40046_CR43) 2019; 10 DL Marshall (40046_CR21) 2016; 88 K Vriens (40046_CR45) 2019; 566 X Zhao (40046_CR48) 2020; 92 W Zhang (40046_CR9) 2020; 92 MT Nakamura (40046_CR4) 2014; 53 M Höring (40046_CR49) 2021; 62 AL Dill (40046_CR60) 2011; 17 D Unsihuay (40046_CR31) 2021; 60 P Li (40046_CR10) 2021; 93 H Takahashi (40046_CR25) 2018; 90 T Yang (40046_CR32) 2022; 61 K Jeanne Dit Fouque (40046_CR51) 2019; 91 40046_CR69 40046_CR63 M Martin-Perez (40046_CR1) 2022; 34 J Zhao (40046_CR46) 2020; 92 D Zhang (40046_CR53) 2022; 94 JC May (40046_CR66) 2020; 92 E Ryan (40046_CR5) 2016; 49 J Clark (40046_CR68) 2011; 8 M Lísa (40046_CR12) 2013; 85 EA Dennis (40046_CR57) 2010; 285 T Xia (40046_CR16) 2021; 93 A Bednařík (40046_CR41) 2018; 57 F Wäldchen (40046_CR40) 2019; 141 |
References_xml | – volume: 87 start-page: 5837 year: 2015 end-page: 5845 ident: CR23 article-title: Near-complete structural characterization of phosphatidylcholines using electron impact excitation of ions from organics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01460 – volume: 91 start-page: 11905 year: 2019 end-page: 11915 ident: CR28 article-title: Deep lipidomics and molecular imaging of unsaturated lipid isomers: a universal strategy initiated by mCPBA epoxidation publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02667 – volume: 59 start-page: 209 year: 2020 end-page: 214 ident: CR29 article-title: On-demand electrochemical epoxidation in nano-electrospray ionization mass spectrometry to locate carbon–carbon double bonds publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911070 – volume: 60 start-page: 7559 year: 2021 end-page: 7563 ident: CR31 article-title: Imaging and analysis of isomeric unsaturated lipids through online photochemical derivatization of carbon–carbon double bonds** publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016734 – volume: 13 year: 2022 ident: CR11 article-title: A mass spectrometric method for in-depth profiling of phosphoinositide regioisomers and their disease-associated regulation publication-title: Nat. Commun. doi: 10.1038/s41467-021-27648-z – volume: 12 year: 2021 ident: CR15 article-title: Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain publication-title: Nat. Commun. doi: 10.1038/s41467-021-24672-x – volume: 8 start-page: 267 year: 2011 end-page: 272 ident: CR68 article-title: Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry publication-title: Nat. Methods doi: 10.1038/nmeth.1564 – volume: 445 start-page: 116206 year: 2019 ident: CR38 article-title: Mapping lipid C=C location isomers in organ tissues by coupling photochemical derivatization and rapid extractive mass spectrometry publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2019.116206 – volume: 285 start-page: 39976 year: 2010 end-page: 39985 ident: CR57 article-title: A mouse macrophage lipidome *♦ publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.182915 – volume: 62 start-page: 100110 year: 2021 ident: CR44 article-title: A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2021.100110 – volume: 47 start-page: 69 year: 2020 end-page: 83 ident: CR58 article-title: Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2019.11.009 – volume: 32 start-page: 1126 year: 2021 end-page: 1137 ident: CR62 article-title: Resolving power and collision cross section measurement accuracy of a prototype high-resolution ion mobility platform incorporating structures for lossless ion manipulation publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.1c00056 – volume: 90 start-page: 10758 year: 2018 end-page: 10764 ident: CR17 article-title: Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time–ion mobility mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01527 – volume: 26 start-page: 14 year: 2015 end-page: 24 ident: CR55 article-title: Fundamentals of trapped ion mobility spectrometry publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-014-0999-4 – volume: 91 start-page: 8564 year: 2019 end-page: 8573 ident: CR64 article-title: A cyclic ion mobility-mass spectrometry system publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01838 – volume: 58 start-page: 6064 year: 2019 end-page: 6069 ident: CR39 article-title: A polymer coating transfer enrichment method for direct mass spectrometry analysis of lipids in biofluid samples publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201900011 – volume: 1811 start-page: 637 year: 2011 end-page: 647 ident: CR54 article-title: Lipid classification, structures and tools publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2011.06.009 – volume: 49 start-page: 1137 year: 2008 end-page: 1146 ident: CR67 article-title: Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics⃞ publication-title: J. Lipid Res. doi: 10.1194/jlr.D700041-JLR200 – volume: 34 start-page: 1675 year: 2022 end-page: 1699 ident: CR1 article-title: The role of lipids in cancer progression and metastasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2022.09.023 – volume: 91 start-page: 1791 year: 2019 end-page: 1795 ident: CR27 article-title: Identification of double bond position isomers in unsaturated lipids by m-CPBA epoxidation and mass spectrometry fragmentation publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04905 – volume: 90 start-page: 7230 year: 2018 end-page: 7238 ident: CR25 article-title: Structural analysis of phospholipid using hydrogen abstraction dissociation and oxygen attachment dissociation in tandem mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00322 – volume: 54 start-page: 3873 year: 2021 end-page: 3882 ident: CR26 article-title: Enabling high structural specificity to lipidomics by coupling photochemical derivatization with tandem mass spectrometry publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00419 – volume: 24 start-page: 367 year: 2005 end-page: 412 ident: CR47 article-title: Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20023 – volume: 61 start-page: e202207098 year: 2022 ident: CR32 article-title: Lipid mass tags via aziridination for probing unsaturated lipid isomers and accurate relative quantification** publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207098 – volume: 12 start-page: 3519 year: 2013 end-page: 3528 ident: CR59 article-title: HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease publication-title: J. Proteome Res. doi: 10.1021/pr4004135 – volume: 92 start-page: 13290 year: 2020 end-page: 13297 ident: CR65 article-title: Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02520 – volume: 85 start-page: 1852 year: 2013 end-page: 1859 ident: CR12 article-title: Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols publication-title: Anal. Chem. doi: 10.1021/ac303237a – volume: 61 start-page: 192 year: 2014 end-page: 206 ident: CR6 article-title: Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2014.04.017 – volume: 57 start-page: 12092 year: 2018 end-page: 12096 ident: CR41 article-title: An on-tissue paternò–büchi reaction for localization of carbon–carbon double bonds in phospholipids and glycolipids by matrix-assisted laser-desorption–ionization mass-spectrometry imaging publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806635 – volume: 93 start-page: 9583 year: 2021 end-page: 9592 ident: CR10 article-title: Isomer selective comprehensive lipidomics analysis of phosphoinositides in biological samples by liquid chromatography with data independent acquisition tandem mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01751 – volume: 17 start-page: 2897 year: 2011 end-page: 2902 ident: CR60 article-title: Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry publication-title: Chem. Eur. J. doi: 10.1002/chem.201001692 – volume: 141 start-page: 11816 year: 2019 end-page: 11820 ident: CR40 article-title: Reactive matrix-assisted laser desorption/ionization mass spectrometry imaging using an intrinsically photoreactive paternò–büchi matrix for double-bond localization in isomeric phospholipids publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05868 – volume: 34 start-page: 108738 year: 2021 ident: CR42 article-title: Apocryphal FADS2 activity promotes fatty acid diversification in cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108738 – volume: 53 start-page: 124 year: 2014 end-page: 144 ident: CR4 article-title: Regulation of energy metabolism by long-chain fatty acids publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2013.12.001 – volume: 113 start-page: 2573 year: 2016 end-page: 2578 ident: CR35 article-title: Identification and quantitation of lipid C=C location isomers: a shotgun lipidomics approach enabled by photochemical reaction publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1523356113 – volume: 1128 start-page: 107 year: 2020 end-page: 115 ident: CR37 article-title: Lipidome-wide characterization of phosphatidylinositols and phosphatidylglycerols on C=C location level publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.06.017 – volume: 19 start-page: 281 year: 2018 end-page: 296 ident: CR2 article-title: Understanding the diversity of membrane lipid composition publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.138 – volume: 566 start-page: 403 year: 2019 end-page: 406 ident: CR45 article-title: Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity publication-title: Nature doi: 10.1038/s41586-019-0904-1 – volume: 10 year: 2019 ident: CR14 article-title: Ion mobility conformational lipid atlas for high confidence lipidomics publication-title: Nat. Commun. doi: 10.1038/s41467-019-08897-5 – volume: 36 start-page: 693 year: 2017 end-page: 714 ident: CR52 article-title: Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21492 – volume: 63 start-page: 100219 year: 2022 ident: CR20 article-title: Deep-lipidotyping by mass spectrometry: recent technical advances and applications publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2022.100219 – volume: 92 start-page: 14775 year: 2020 end-page: 14782 ident: CR48 article-title: Resolving modifications on sphingoid base and N-acyl chain of sphingomyelin lipids in complex lipid extracts publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03502 – volume: 49 start-page: 1596 year: 2016 end-page: 1604 ident: CR5 article-title: Chemical derivatization and ultrahigh resolution and accurate mass spectrometry strategies for “shotgun” lipidome analysis publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00030 – volume: 12 year: 2021 ident: CR19 article-title: Quality control requirements for the correct annotation of lipidomics data publication-title: Nat. Commun. doi: 10.1038/s41467-021-24984-y – volume: 11 year: 2020 ident: CR34 article-title: Large-scale lipid analysis with C=C location and sn-position isomer resolving power publication-title: Nat. Commun. doi: 10.1038/s41467-019-14180-4 – ident: CR56 – volume: 10 start-page: 10740 year: 2019 end-page: 10748 ident: CR43 article-title: A lipidomic workflow capable of resolving sn- and C=C location isomers of phosphatidylcholines publication-title: Chem. Sci. doi: 10.1039/C9SC03521D – ident: CR63 – volume: 88 start-page: 2685 year: 2016 end-page: 2692 ident: CR21 article-title: Sequential collision- and ozone-induced dissociation enables assignment of relative acyl chain position in triacylglycerols publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04001 – ident: CR69 – volume: 92 start-page: 13470 year: 2020 end-page: 13477 ident: CR46 article-title: Next-generation paternò–büchi reagents for lipid analysis by mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02896 – volume: 62 start-page: 100050 year: 2021 ident: CR49 article-title: Accurate quantification of lipid species affected by isobaric overlap in Fourier-transform mass spectrometry publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2021.100050 – volume: 139 start-page: 15681 year: 2017 end-page: 15690 ident: CR22 article-title: Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06416 – volume: 94 start-page: 16759 year: 2022 end-page: 16767 ident: CR53 article-title: LipidOA: a machine-learning and prior-knowledge-based tool for structural annotation of glycerophospholipids publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03505 – volume: 92 start-page: 9482 year: 2020 end-page: 9492 ident: CR66 article-title: Resolution of isomeric mixtures in ion mobility using a combined demultiplexing and peak deconvolution technique publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05718 – volume: 14 year: 2023 ident: CR18 article-title: Four-dimensional trapped ion mobility spectrometry lipidomics for high throughput clinical profiling of human blood samples publication-title: Nat. Commun. doi: 10.1038/s41467-023-36520-1 – volume: 92 start-page: 1219 year: 2020 end-page: 1227 ident: CR24 article-title: Toward complete structure elucidation of glycerophospholipids in the gas phase through charge inversion ion/ion chemistry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04376 – volume: 91 start-page: 5021 year: 2019 end-page: 5027 ident: CR51 article-title: Effective liquid chromatography–trapped ion mobility spectrometry–mass spectrometry separation of isomeric lipid species publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04979 – volume: 12 start-page: 797 year: 2017 end-page: 813 ident: CR13 article-title: Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.013 – volume: 13 year: 2022 ident: CR8 article-title: Lipidomic profiling of human serum enables detection of pancreatic cancer publication-title: Nat. Commun. doi: 10.1038/s41467-021-27765-9 – volume: 92 start-page: 6719 year: 2020 end-page: 6726 ident: CR9 article-title: Enhanced phospholipid isomer analysis by online photochemical derivatization and RPLC-MS publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00690 – volume: 93 start-page: 8345 year: 2021 end-page: 8353 ident: CR16 article-title: Deep structural annotation of glycerolipids by the charge-tagging paterno–büchi reaction and supercritical fluid chromatography–ion mobility mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01379 – volume: 140 start-page: 6904 year: 2015 end-page: 6911 ident: CR50 article-title: High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids publication-title: Analyst doi: 10.1039/C5AN00838G – volume: 90 start-page: 10286 year: 2018 end-page: 10292 ident: CR30 article-title: Locating carbon–carbon double bonds in unsaturated phospholipids by epoxidation reaction and tandem mass spectrometry publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02021 – volume: 10 year: 2019 ident: CR36 article-title: Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers publication-title: Nat. Commun. doi: 10.1038/s41467-018-07963-8 – volume: 88 start-page: 524 year: 2016 end-page: 545 ident: CR7 article-title: Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04491 – volume: 22 start-page: 531 year: 2016 end-page: 538 ident: CR3 article-title: Inflammatory signaling in human tuberculosis granulomas is spatially organized publication-title: Nat. Med. doi: 10.1038/nm.4073 – volume: 248 start-page: 301 year: 2015 end-page: 307 ident: CR61 article-title: Characterization of human bladder cell membrane during cancer transformation publication-title: J. Membr. Biol. doi: 10.1007/s00232-015-9770-4 – volume: 94 start-page: 6216 year: 2022 end-page: 6224 ident: CR33 article-title: Chloramine-T-enabled mass spectrometric analysis of C═C isomers of unsaturated fatty acids and phosphatidylcholines in human thyroids publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05607 – volume: 12 year: 2021 ident: 40046_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24672-x – volume: 1811 start-page: 637 year: 2011 ident: 40046_CR54 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2011.06.009 – ident: 40046_CR63 doi: 10.3390/ijms18010183 – volume: 92 start-page: 1219 year: 2020 ident: 40046_CR24 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b04376 – volume: 90 start-page: 10758 year: 2018 ident: 40046_CR17 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b01527 – volume: 141 start-page: 11816 year: 2019 ident: 40046_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05868 – volume: 13 year: 2022 ident: 40046_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27648-z – volume: 248 start-page: 301 year: 2015 ident: 40046_CR61 publication-title: J. Membr. Biol. doi: 10.1007/s00232-015-9770-4 – volume: 49 start-page: 1596 year: 2016 ident: 40046_CR5 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00030 – volume: 139 start-page: 15681 year: 2017 ident: 40046_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06416 – volume: 54 start-page: 3873 year: 2021 ident: 40046_CR26 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00419 – volume: 11 year: 2020 ident: 40046_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14180-4 – volume: 140 start-page: 6904 year: 2015 ident: 40046_CR50 publication-title: Analyst doi: 10.1039/C5AN00838G – volume: 90 start-page: 10286 year: 2018 ident: 40046_CR30 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02021 – volume: 12 start-page: 3519 year: 2013 ident: 40046_CR59 publication-title: J. Proteome Res. doi: 10.1021/pr4004135 – volume: 8 start-page: 267 year: 2011 ident: 40046_CR68 publication-title: Nat. Methods doi: 10.1038/nmeth.1564 – volume: 19 start-page: 281 year: 2018 ident: 40046_CR2 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2017.138 – volume: 91 start-page: 5021 year: 2019 ident: 40046_CR51 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04979 – volume: 94 start-page: 16759 year: 2022 ident: 40046_CR53 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03505 – volume: 61 start-page: e202207098 year: 2022 ident: 40046_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202207098 – volume: 93 start-page: 8345 year: 2021 ident: 40046_CR16 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01379 – volume: 88 start-page: 2685 year: 2016 ident: 40046_CR21 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04001 – volume: 26 start-page: 14 year: 2015 ident: 40046_CR55 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1007/s13361-014-0999-4 – volume: 92 start-page: 13290 year: 2020 ident: 40046_CR65 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02520 – volume: 62 start-page: 100110 year: 2021 ident: 40046_CR44 publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2021.100110 – volume: 88 start-page: 524 year: 2016 ident: 40046_CR7 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04491 – volume: 13 year: 2022 ident: 40046_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27765-9 – volume: 22 start-page: 531 year: 2016 ident: 40046_CR3 publication-title: Nat. Med. doi: 10.1038/nm.4073 – volume: 92 start-page: 13470 year: 2020 ident: 40046_CR46 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c02896 – volume: 10 start-page: 10740 year: 2019 ident: 40046_CR43 publication-title: Chem. Sci. doi: 10.1039/C9SC03521D – volume: 57 start-page: 12092 year: 2018 ident: 40046_CR41 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201806635 – volume: 1128 start-page: 107 year: 2020 ident: 40046_CR37 publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2020.06.017 – volume: 34 start-page: 108738 year: 2021 ident: 40046_CR42 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108738 – volume: 12 start-page: 797 year: 2017 ident: 40046_CR13 publication-title: Nat. Protoc. doi: 10.1038/nprot.2017.013 – volume: 94 start-page: 6216 year: 2022 ident: 40046_CR33 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c05607 – volume: 93 start-page: 9583 year: 2021 ident: 40046_CR10 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c01751 – volume: 91 start-page: 8564 year: 2019 ident: 40046_CR64 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01838 – volume: 36 start-page: 693 year: 2017 ident: 40046_CR52 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.21492 – volume: 92 start-page: 6719 year: 2020 ident: 40046_CR9 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c00690 – volume: 91 start-page: 1791 year: 2019 ident: 40046_CR27 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b04905 – volume: 14 year: 2023 ident: 40046_CR18 publication-title: Nat. Commun. doi: 10.1038/s41467-023-36520-1 – volume: 63 start-page: 100219 year: 2022 ident: 40046_CR20 publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2022.100219 – volume: 53 start-page: 124 year: 2014 ident: 40046_CR4 publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2013.12.001 – volume: 34 start-page: 1675 year: 2022 ident: 40046_CR1 publication-title: Cell Metab. doi: 10.1016/j.cmet.2022.09.023 – volume: 10 year: 2019 ident: 40046_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08897-5 – volume: 62 start-page: 100050 year: 2021 ident: 40046_CR49 publication-title: J. Lipid Res. doi: 10.1016/j.jlr.2021.100050 – ident: 40046_CR56 – volume: 47 start-page: 69 year: 2020 ident: 40046_CR58 publication-title: J. Genet. Genomics doi: 10.1016/j.jgg.2019.11.009 – volume: 90 start-page: 7230 year: 2018 ident: 40046_CR25 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00322 – volume: 59 start-page: 209 year: 2020 ident: 40046_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911070 – volume: 285 start-page: 39976 year: 2010 ident: 40046_CR57 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.182915 – ident: 40046_CR69 doi: 10.6084/m9.figshare.22297771 – volume: 60 start-page: 7559 year: 2021 ident: 40046_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202016734 – volume: 24 start-page: 367 year: 2005 ident: 40046_CR47 publication-title: Mass Spectrom. Rev. doi: 10.1002/mas.20023 – volume: 85 start-page: 1852 year: 2013 ident: 40046_CR12 publication-title: Anal. Chem. doi: 10.1021/ac303237a – volume: 12 year: 2021 ident: 40046_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-021-24984-y – volume: 17 start-page: 2897 year: 2011 ident: 40046_CR60 publication-title: Chem. Eur. J. doi: 10.1002/chem.201001692 – volume: 49 start-page: 1137 year: 2008 ident: 40046_CR67 publication-title: J. Lipid Res. doi: 10.1194/jlr.D700041-JLR200 – volume: 566 start-page: 403 year: 2019 ident: 40046_CR45 publication-title: Nature doi: 10.1038/s41586-019-0904-1 – volume: 32 start-page: 1126 year: 2021 ident: 40046_CR62 publication-title: J. Am. Soc. Mass Spectrom. doi: 10.1021/jasms.1c00056 – volume: 58 start-page: 6064 year: 2019 ident: 40046_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201900011 – volume: 92 start-page: 14775 year: 2020 ident: 40046_CR48 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c03502 – volume: 92 start-page: 9482 year: 2020 ident: 40046_CR66 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05718 – volume: 61 start-page: 192 year: 2014 ident: 40046_CR6 publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2014.04.017 – volume: 91 start-page: 11905 year: 2019 ident: 40046_CR28 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b02667 – volume: 10 year: 2019 ident: 40046_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07963-8 – volume: 445 start-page: 116206 year: 2019 ident: 40046_CR38 publication-title: Int. J. Mass Spectrom. doi: 10.1016/j.ijms.2019.116206 – volume: 87 start-page: 5837 year: 2015 ident: 40046_CR23 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b01460 – volume: 113 start-page: 2573 year: 2016 ident: 40046_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1523356113 |
SSID | ssj0000391844 |
Score | 2.5299506 |
Snippet | A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS), although... Abstract A lipidome comprises thousands of lipid species, many of which are isomers and isobars. Liquid chromatography-tandem mass spectrometry (LC-MS/MS),... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4263 |
SubjectTerms | 140/58 631/45/320 639/638/11/296 Animals Bladder cancer Cattle Chromatography Chromatography, Liquid Data analysis Depth profiling Desaturation Glycerophospholipids - analysis Humanities and Social Sciences Humans Hydrophilicity Ionic mobility Ions Isobars Isomers Lecithin Lipid metabolism Lipids Lipids - analysis Liquid chromatography Liver Macrophages Mass spectrometry Mass spectroscopy Mice Mobility multidisciplinary Phenotyping Phosphatidylcholine Phosphatidylcholines Phospholipids Phospholipids - analysis RAW 264.7 Cells Science Science (multidisciplinary) Scientific imaging Software Sphingomyelins - analysis Tandem Mass Spectrometry Urinary Bladder Neoplasms |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPlIKMxA2sJrHjOMfyqCokOFGpN8uOx2ykbbLabKv233dsZ5cutPTCIQcntmXNjD3faJxvCHkPzhbGWctAmYoJ30pmRYNN5z33ZS58rHX4_Yc8PhHfTqvTG6W-wp2wRA-cBHdgEVALAw2alhNO-qaxiGhsWVhA91P5cPqiz7sRTMUzmDcYuojpL5mcq4NRxDMBXRQLZivZ5ZYnioT9t6HMvy9L_pExjY7o6Al5PCFIephW_pQ8gP4ZeZhqSl7tktkXgAVLpbhxPB08XcyGEZ95t-jccAb0ojN0abBBQ9Jm-BXAOB0hsYCjFVLTO9qN2HXJMBof5hfg6BmibBr_ywwEB6vl1XNycvT15-djNpVTYG0lihWrJdRNi-GPl5WXtQNEVmAVV0YWhc1VLcCY2nvXGB8q0EvuW17noKRybQmSvyA7_dDDK0JNZXwlUZ4GR_GSW1NzjKNs0QJOlucZKdai1e3ENR5KXsx1zHlzpZM6NKpDR3Xoy4x82IxZJKaNf_b-FDS26RlYsuMLtB092Y6-z3Yysr_Wt5627qgRbyEKDXdXMvJu8xk3XcikmB6G89gHJw1sixl5mcxjsxJeh1RzpTKitgxna6nbX_puFom9i0BOixgqIx_XNvZ7XXfLYu9_yOI1eVSGzRE5Q_fJzmp5Dm8Qb63s27i1rgHO7iiY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9wgEEZtqkq9VH3HbVpRqbcWxTYY41PV1zaq1J4aKTcEZsiutLFdexMl_74D9jraPnLwAQMWZgbmg4FvCHkDzmbGWctAmYIJX0tmRYVJ5z33eSp8jHX4_Yc8OhbfToqTacNtmI5VbufEOFG7tg575IdoBhEchCMF77tfLESNCt7VKYTGbXInQ0sTjnSpxdd5jyWwnyshprsyKVeHg4gzAxoqFpRXsssdexRp-_-FNf8-MvmH3zSao8UDcn_CkfTDKPiH5BY0j8jdMbLk1WOy_AzQsTEgN9anrafdsh3wWa-6lWvPgF6sDO0NJmhw3bSnAZLTAUYucNRFahpHVwMW7Rmuydv1BTh6hlibxtuZgeZg0189IceLLz8_HbEpqAKrC5FtWCmhrGpcBHlZeFk6QHwFFjvXyCyzqSoFGFN67yrjQxx6yX3NyxSUVK7OQfKnZK9pG9gn1BTGFxL702AtnnNrSo6rKZvVgB9L04Rk267V9cQ4HgJfrHX0fHOlR3FoFIeO4tCXCXk71-lGvo0bS38MEptLBq7s-KLtT_U09LTFJZkwUOHk5ISTvqosYmKbZxYQwBQ-IQdbeetpAA_6Wt0S8nrOxqEX_CmmgfY8lsGPBs7FhDwb1WNuCS-Dw7lQCVE7irPT1N2cZrWM9N5ZoKhFJJWQd1sdu27X__vi-c2_8YLcy4PaR07QA7K36c_hJeKpjX0VB81v24QgMg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaqVkhcEG8CBRmJG1gkseM4x-VRVSvBBSr1ZtnxuLvSNlkl24r-e8bOAy0UJA45OB5HlmfG_pyxvyHkDTibGWctA2UKJnwtmRUVFp333Oep8DHX4Zev8vRMLM-L8wOST3dh4qH9SGkZp-npdNj7XkSXxhWGBauTDHHjUaBqR9s-WiyW35bzn5XAea6EGG_IpFzd0nhvFYpk_bchzD8PSv4WLY2L0Ml9cm9Ej3Qx9PcBOYDmIbkz5JO8eURWnwC2bEjDje1p6-l21fb4bNbbtWsvgV6vDe0MFmgI2LQXAYjTHgYGcLRAahpH1z2Kdgx34u3mGhy9RIRN453MQG6w624ek7OTz98_nrIxlQKrC5HtWCmhrGrc-nhZeFk6QFQFVnFlZJbZFAcSjCm9d5XxIfu85L7mZQpKKlfnIPkTcti0DTwj1BTGFxLH02ArnnNrSo57KJvVgB9L04Rk09DqeuQZD-kuNjrGu7nSgzo0qkNHdegfCXk7t9kOLBv_lP4QNDZLBobs-KLtLvRoMdriRkwYqHBKcsJJX1UWkbDNMwsIWwqfkONJ33p0214j1kIEGs6tJOT1XI0OF6IopoH2KsrgRwPTYkKeDuYx94SXIcxcqISoPcPZ6-p-TbNeRVLvLBDTIn5KyLvJxn716-9j8fz_xF-Qu3lwg8gMekwOd90VvERUtbOvRjf6CesQH-k priority: 102 providerName: Springer Nature |
Title | Deep-profiling of phospholipidome via rapid orthogonal separations and isomer-resolved mass spectrometry |
URI | https://link.springer.com/article/10.1038/s41467-023-40046-x https://www.ncbi.nlm.nih.gov/pubmed/37460558 https://www.proquest.com/docview/2838512002 https://www.proquest.com/docview/2839250249 https://pubmed.ncbi.nlm.nih.gov/PMC10352238 https://doaj.org/article/b8754ae9257d4d6f99b916b21be0225f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NTUi8IH4vMCoj8QaGpk5s5wGhrmxMlTYhoFLfIju210pdUtJuWv97zk5aVCiIhzRKYlsn3138XS_-DuC1NTpWRmtqpUpp4gpOdZLhpXGOuV43caHW4fkFPxslw3E63oN1uaN2Ahc7QztfT2pUz97d_lh9RIf_0GwZl-8XSXB3XH2ot0hOEVMe4MokfEWD8xbuhzczyzCg8YlmFCKm2IC1-2h2D7O1VgVK_1049M_PKX_LqYal6vQB3G8xJuk3RvEQ9mz5CO42VSdXj2Hyydo5bYp1Y39SOTKfVAs8ZtP51FRXltxMFakVXhCf1qkuPVwnC9vwhKOdElUaMl1g05pivF7NbqwhV4jDSdi56SkQlvXqCYxOT74PzmhbcIEWaRIvqeBWZAUGSI6njgtjEXtZLZlUPI51V4rEKiWcM5lyvkY9Z65gomsll6boWc6ewn5ZlfYQiEqVSznOp8JerMe0EgwjLR0XFgfrdiOI11ObFy0buS-KMctDVpzJvFFHjurIgzry2wjebPrMGy6Of7Y-9hrbtPQ82uFGVV_mrVvmGsO1RNkMX1wmMdxlmUa8rHuxtghuUhfB0Vrf-do2c0RkiFP91y0RvNo8Rrf0uRZV2uo6tMFBPR9jBM8a89hIwoRPRqcyArllOFuibj8pp5NA_R17-lpEWRG8XdvYL7n-PhfP_0POF3Cv520_kIYewf6yvrYvEXAtdQfuiLHAX3n6uQMH_f7w2xDPxycXX77i3QEfdMJfGZ3gbT8BXaMuVQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4iaxI6THBACStnSx6mVejN2PO6u1CZLsi3dP8VvZOwkWy2P3nrIIYltOZ53xv6GkNdgdKyM1iHkKg25LUWoeYG3xlpmk4hbX-twb1-MDvm3o_RohfwazsK4bZWDTvSK2tSl-0e-gWYQnQO3peDD9Efoqka57OpQQqNjix2Y_8SQrX2_vYn0fZMkW18OPo_CvqpAWKY8noWZgKwoMQqwIrUiM4AOBmgcXYk41lGecVAqs9YUyrpC7ILZkmUR5CI3ZQKC4bg3yE3O0JK7k-lbXxf_dBzaes55fzYnYvlGy70mQsMYOmER4cWS_fNlAv7l2_69RfOPPK03f1v3yN3eb6UfO0a7T1agekBudZUs5w_JeBNgGnYFwLE_rS2djusWr5PJdGLqU6DnE0UbhTfUpYrqYxcC0BY67HHkfaoqQyctNm3CBlAkzsHQU_TtqT8N6mAVZs38ETm8luV-TFaruoInhKpU2VTgeirsxRKmVcYwetNxCThYFAUkHpZWlj3CuSu0cSJ9pp3lsiOHRHJITw55EZC3iz7TDt_jytafHMUWLR02t39QN8eyF3WpMQTkCgpUhoYbYYtCow-uk1gDOkypDcj6QG_ZK4xWXrJ3QF4tXqOou_yNqqA-821wUIfxGJC1jj0WM2GZS3CneUDyJcZZmurym2oy9nDisYPERc8tIO8GHruc1__X4unVn_GS3B4d7O3K3e39nWfkTuJEwOORrpPVWXMGz9GXm-kXXoAo-X7dEvsb5eJdEg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2D8dJDghRtlVLYVUhKvWW2rHdXalNlmRbun-NX8fYSbZaHr31kEPiRxzPwzMZ-xuA11rJQCgpqU5FTJkpOJUsw1tlTGRCnxmX6_DrmO8csM-H8eEa_OrPwthtlb1OdIpaVYX9Rz7EZRCNA7ulYGi6bRH7o-0Psx_UZpCykdY-nUbLInt68RPdt-b97ghp_SYMt7e-f9qhXYYBWsQsmNOE6yQr0CMwPDY8URqNDS3xTYIHgfTThGkhEmNUJoxNys4jU0SJr1OeqiLUPMJ-b8B6Yr2iAaxvbo33vy3_8Fjs9ZSx7qSOH6XDhjm9hMsktaLD6cXKauiSBvzL0v17w-YfUVu3GG7fhTudFUs-tmx3D9Z0eR9utnktFw9gMtJ6Rtt04NieVIbMJlWD18l0NlXVqSbnU0FqgTfEBo6qY-sQkEa3SOQoCUSUikwbrFrTWqOAnGtFTtHSJ-5sqAVZmNeLh3BwLRP-CAZlVeonQEQsTMxxPgW2isJIiiRCX04GhcbOfN-DoJ_avOjwzm3ajZPcxd2jNG_JkSM5ckeO_MKDt8s2sxbt48ram5Ziy5oWqds9qOrjvBP8XKJDyITOUDUqprjJMokWuQwDqdF8io0HGz298059NPkls3vwalmMgm-jOaLU1Zmrg51axEcPHrfssRxJlNhwd5x6kK4wzspQV0vK6cSBiwcWIBftOA_e9Tx2Oa7_z8XTqz_jJdxCac2_7I73nsHt0EqAAyfdgMG8PtPP0bCbyxedBBE4um6h_Q37AmKk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-profiling+of+phospholipidome+via+rapid+orthogonal+separations+and+isomer-resolved+mass+spectrometry&rft.jtitle=Nature+communications&rft.au=Xia%2C+Tian&rft.au=Zhou%2C+Feng&rft.au=Zhang%2C+Donghui&rft.au=Jin%2C+Xue&rft.date=2023-07-17&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=4263&rft_id=info:doi/10.1038%2Fs41467-023-40046-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |