Leveraging deep survival models to predict quality of care risk in diverse hospital readmissions

Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 10479
Main Authors Tran, Nhat Quang, Goel, Gautam, Pudota, Nirmala, Suesserman, Michael, Helms, John, Lasaga, Daniel, Olson, Dan, Bowen, Edward, Bhattacharya, Sanmitra
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.06.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk in hospital readmissions. This study applies various survival models to explore the risk of hospital readmissions given patient demographics and their respective hospital discharges extracted from a health care claims dataset. We explore advanced feature representation techniques such as BioBERT and Node2Vec to encode high-dimensional diagnosis code features. To our knowledge, this study is the first to apply deep-learning based survival-analysis models for predicting hospital readmission risk agnostic of specific medical conditions and a fixed window for readmission. We found that modeling the time from discharge date to readmission date as a Weibull distribution as in the SparseDeepWeiSurv model yields the best discriminative power and calibration. In addition, embedding representations of the diagnosis codes do not contribute to improvement in model performance. We find dependency of each model’s performance on the time point at which it is evaluated. This time dependency of the models’ performance on the health care claims data may necessitate a different choice of model in quality of care issue detection at different points in time. We show the effectiveness of deep-learning based survival-analysis models in estimating the quality of care risk in hospital readmissions.
AbstractList Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk in hospital readmissions. This study applies various survival models to explore the risk of hospital readmissions given patient demographics and their respective hospital discharges extracted from a health care claims dataset. We explore advanced feature representation techniques such as BioBERT and Node2Vec to encode high-dimensional diagnosis code features. To our knowledge, this study is the first to apply deep-learning based survival-analysis models for predicting hospital readmission risk agnostic of specific medical conditions and a fixed window for readmission. We found that modeling the time from discharge date to readmission date as a Weibull distribution as in the SparseDeepWeiSurv model yields the best discriminative power and calibration. In addition, embedding representations of the diagnosis codes do not contribute to improvement in model performance. We find dependency of each model’s performance on the time point at which it is evaluated. This time dependency of the models’ performance on the health care claims data may necessitate a different choice of model in quality of care issue detection at different points in time. We show the effectiveness of deep-learning based survival-analysis models in estimating the quality of care risk in hospital readmissions.
Abstract Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk in hospital readmissions. This study applies various survival models to explore the risk of hospital readmissions given patient demographics and their respective hospital discharges extracted from a health care claims dataset. We explore advanced feature representation techniques such as BioBERT and Node2Vec to encode high-dimensional diagnosis code features. To our knowledge, this study is the first to apply deep-learning based survival-analysis models for predicting hospital readmission risk agnostic of specific medical conditions and a fixed window for readmission. We found that modeling the time from discharge date to readmission date as a Weibull distribution as in the SparseDeepWeiSurv model yields the best discriminative power and calibration. In addition, embedding representations of the diagnosis codes do not contribute to improvement in model performance. We find dependency of each model’s performance on the time point at which it is evaluated. This time dependency of the models’ performance on the health care claims data may necessitate a different choice of model in quality of care issue detection at different points in time. We show the effectiveness of deep-learning based survival-analysis models in estimating the quality of care risk in hospital readmissions.
ArticleNumber 10479
Author Tran, Nhat Quang
Pudota, Nirmala
Bowen, Edward
Bhattacharya, Sanmitra
Helms, John
Suesserman, Michael
Lasaga, Daniel
Olson, Dan
Goel, Gautam
Author_xml – sequence: 1
  givenname: Nhat Quang
  surname: Tran
  fullname: Tran, Nhat Quang
  organization: AI Center of Excellence, Deloitte & Touche LLP
– sequence: 2
  givenname: Gautam
  surname: Goel
  fullname: Goel, Gautam
  organization: AI Center of Excellence, Deloitte & Touche LLP
– sequence: 3
  givenname: Nirmala
  surname: Pudota
  fullname: Pudota, Nirmala
  organization: AI Center of Excellence, Deloitte & Touche Assurance & Enterprise Risk Services India Private Limited
– sequence: 4
  givenname: Michael
  surname: Suesserman
  fullname: Suesserman, Michael
  organization: AI Center of Excellence, Deloitte & Touche LLP
– sequence: 5
  givenname: John
  surname: Helms
  fullname: Helms, John
  organization: AI Center of Excellence, Deloitte & Touche LLP
– sequence: 6
  givenname: Daniel
  surname: Lasaga
  fullname: Lasaga, Daniel
  organization: Program Integrity, Deloitte & Touche LLP
– sequence: 7
  givenname: Dan
  surname: Olson
  fullname: Olson, Dan
  organization: Program Integrity, Deloitte & Touche LLP
– sequence: 8
  givenname: Edward
  surname: Bowen
  fullname: Bowen, Edward
  organization: AI Center of Excellence, Deloitte & Touche LLP
– sequence: 9
  givenname: Sanmitra
  surname: Bhattacharya
  fullname: Bhattacharya, Sanmitra
  email: sanmbhattacharya@deloitte.com
  organization: AI Center of Excellence, Deloitte & Touche LLP
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37380704$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNURD_oH-CALHHhEvDnOj4hVAGttBIXOBvHHqdesvbWTlbqv6-3KaXlgC-2PO88Y8-8p81RTBGa5g3BHwhm3cfCiVBdiylrmeRStuxFc0IxFy1llB49OR8356VscF2CKk7Uq-aYSdZhiflJ82sNe8hmCHFADmCHypz3YW9GtE0OxoKmhHYZXLATupnNGKZblDyyJgPKofxGISIXKqIAuk5lF6aamsG4bSglpFheNy-9GQucP-xnzc-vX35cXLbr79-uLj6vWys4mVrJmaTespXqrVKdtIzLvuPO90phplYgeu-8ogaTnnu2op5iJR3G0luMrWRnzdXCdcls9C6Hrcm3Opmg7y9SHrTJU7AjaKc4BV6xjDPeWaqMAUs4F5TBSpqusj4trN3cb8FZiFM24zPo80gM13pIe10ng2UneCW8fyDkdDNDmXTth4VxNBHSXDTtGKFKCHqQvvtHuklzjrVXBxUWmGB5UNFFZXMqJYN_fA3Bh7KdXgyhqyH0vSE0q0lvn_7jMeXP-KuALYJSQ3GA_Lf2f7B3jLXCmg
CitedBy_id crossref_primary_10_1016_j_dss_2024_114264
Cites_doi 10.1001/archinte.1997.00440220103013
10.3390/ijerph17093136
10.1016/j.amjcard.2012.06.038
10.1001/jamainternmed.2013.3023
10.1186/s12874-018-0482-1
10.1002/jhm.2106
10.1016/j.jchf.2015.07.017
10.1001/jamacardio.2016.3956
10.1016/j.amjmed.2017.05.025
10.1038/s41597-019-0055-0
10.1371/journal.pone.0140271
10.1016/j.healthpol.2014.12.009
10.1038/s41598-019-39071-y
10.1161/CIRCOUTCOMES.110.957498
10.1503/cmaj.091117
10.1001/jama.2011.1515
10.1056/NEJMsa0803563
10.1016/j.hlc.2015.04.168
10.1109/JBHI.2021.3052441
10.1161/CIRCOUTCOMES.116.003039
10.1371/journal.pone.0221606
10.1371/journal.pone.0129553
10.1136/bmj.l4563
10.1016/j.cmpb.2018.06.006
10.1001/archsurg.2010.318
10.1093/ageing/afn093
10.1016/j.cardfail.2021.12.004
10.1186/s12874-019-0673-4
10.1609/aaai.v32i1.11842
10.1007/978-3-030-47426-3_53
10.1145/2783258.2788613
10.1145/2939672.2939754
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-37477-3
DatabaseName Springer Nature OA Free Journals
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Database
Biological Science Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10479
ExternalDocumentID oai_doaj_org_article_d942e490334348c29aaec144523e67a8
10_1038_s41598_023_37477_3
37380704
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Deloitte
  funderid: http://dx.doi.org/10.13039/100002462
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c541t-74372fc369bc9987c347b84dfb990396e5bfdf92a01b4f362f2097d007fc00c73
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Oct 22 15:11:35 EDT 2024
Tue Sep 17 21:29:58 EDT 2024
Tue Dec 03 23:28:13 EST 2024
Tue Oct 29 09:24:46 EDT 2024
Fri Dec 06 02:47:58 EST 2024
Wed Oct 16 00:38:07 EDT 2024
Fri Oct 11 20:49:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-74372fc369bc9987c347b84dfb990396e5bfdf92a01b4f362f2097d007fc00c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307854/
PMID 37380704
PQID 2830501074
PQPubID 2041939
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d942e490334348c29aaec144523e67a8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10307854
proquest_miscellaneous_2831295524
proquest_journals_2830501074
crossref_primary_10_1038_s41598_023_37477_3
pubmed_primary_37380704
springer_journals_10_1038_s41598_023_37477_3
PublicationCentury 2000
PublicationDate 2023-06-28
PublicationDateYYYYMMDD 2023-06-28
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kristensen, Bech, Quentin (CR12) 2015; 119
Shebeshi, Dolja-Gore, Byles (CR46) 2020; 17
CR17
CR39
CR38
Lanièce, Couturier, Dramé (CR2) 2008; 37
Boutwell, Hwu (CR9) 2009
Hao, Wang, Jin (CR28) 2015; 10
CR35
Donzé, Aujesky, Williams (CR15) 2013; 173
CR34
Bussy, Veil, Looten (CR21) 2019; 19
CR10
CR32
Sharma, Kulkarni, Mcalister (CR4) 2021; 28
CR31
CR30
Liu, Stansbury, Singh (CR23) 2020; 15
Betihavas, Frost, Newton (CR26) 2015; 24
Jencks, Williams, Coleman (CR1) 2009; 360
Van Walraven, Dhalla, Bell (CR14) 2010; 182
Artetxe, Beristain, Grana (CR16) 2018; 164
Mortazavi, Downing, Bucholz (CR18) 2016; 9
CR6
Baillie, VanZandbergen, Tait (CR7) 2013; 8
CR5
Sukul, Sinha, Ryan (CR36) 2017; 130
CR8
Krumholz, Lin, Drye (CR37) 2011; 4
Gorra (CR45) 2011; 146
Padhukasahasram, Reddy, Li (CR27) 2015; 10
Kansagara, Englander, Salanitro (CR13) 2011; 306
CR22
Wang, Porter, Maynard (CR25) 2012; 110
CR44
Krumholz, Chaudhry, Spertus (CR47) 2016; 4
Krumholz, Parent, Tu (CR3) 1997; 157
CR42
CR41
CR40
Wadhera, Maddox, Kazi (CR11) 2019; 366
Min, Yu, Wang (CR20) 2019; 9
Zhang, Yoon, Khasawneh (CR19) 2013
Nagpal, Li, Dubrawski (CR33) 2021; 25
Frizzell, Liang, Schulte (CR24) 2017; 2
Katzman, Shaham, Cloninger (CR29) 2018; 18
Zhang, Chen, Yang (CR43) 2019; 6
X Min (37477_CR20) 2019; 9
37477_CR34
37477_CR31
37477_CR5
37477_CR10
JD Frizzell (37477_CR24) 2017; 2
37477_CR32
37477_CR30
A Boutwell (37477_CR9) 2009
S Bussy (37477_CR21) 2019; 19
HM Krumholz (37477_CR3) 1997; 157
37477_CR6
37477_CR8
D Sukul (37477_CR36) 2017; 130
JL Katzman (37477_CR29) 2018; 18
C Nagpal (37477_CR33) 2021; 25
A Artetxe (37477_CR16) 2018; 164
W Liu (37477_CR23) 2020; 15
HM Krumholz (37477_CR37) 2011; 4
HM Krumholz (37477_CR47) 2016; 4
AS Gorra (37477_CR45) 2011; 146
Y Zhang (37477_CR43) 2019; 6
37477_CR22
S Hao (37477_CR28) 2015; 10
37477_CR44
37477_CR42
V Sharma (37477_CR4) 2021; 28
L Wang (37477_CR25) 2012; 110
37477_CR40
37477_CR41
J Donzé (37477_CR15) 2013; 173
BJ Mortazavi (37477_CR18) 2016; 9
B Padhukasahasram (37477_CR27) 2015; 10
C Van Walraven (37477_CR14) 2010; 182
V Betihavas (37477_CR26) 2015; 24
D Kansagara (37477_CR13) 2011; 306
SF Jencks (37477_CR1) 2009; 360
DS Shebeshi (37477_CR46) 2020; 17
RK Wadhera (37477_CR11) 2019; 366
SR Kristensen (37477_CR12) 2015; 119
37477_CR17
37477_CR39
J Zhang (37477_CR19) 2013
37477_CR38
I Lanièce (37477_CR2) 2008; 37
CA Baillie (37477_CR7) 2013; 8
37477_CR35
References_xml – ident: CR22
– volume: 157
  start-page: 99
  year: 1997
  end-page: 104
  ident: CR3
  article-title: Readmission after hospitalization for congestive heart failure among Medicare beneficiaries
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.1997.00440220103013
  contributor:
    fullname: Tu
– start-page: 1522
  year: 2013
  ident: CR19
  publication-title: Hospital Readmission Prediction Using Swarm Intelligence-Based Support Vector Machines
  contributor:
    fullname: Khasawneh
– volume: 17
  start-page: 3136
  year: 2020
  ident: CR46
  article-title: Unplanned readmission within 28 days of hospital discharge in a longitudinal population-based cohort of older Australian women
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17093136
  contributor:
    fullname: Byles
– ident: CR39
– ident: CR30
– ident: CR10
– volume: 110
  start-page: 1342
  year: 2012
  end-page: 1349
  ident: CR25
  article-title: Predicting risk of hospitalization or death among patients with heart failure in the veterans health administration
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2012.06.038
  contributor:
    fullname: Maynard
– ident: CR35
– ident: CR6
– volume: 173
  start-page: 632
  year: 2013
  end-page: 638
  ident: CR15
  article-title: Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2013.3023
  contributor:
    fullname: Williams
– ident: CR8
– ident: CR40
– volume: 18
  start-page: 1
  year: 2018
  end-page: 12
  ident: CR29
  article-title: DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0482-1
  contributor:
    fullname: Cloninger
– volume: 8
  start-page: 689
  year: 2013
  end-page: 695
  ident: CR7
  article-title: The readmission risk flag: Using the electronic health record to automatically identify patients at risk for 30-day readmission
  publication-title: J. Hosp. Med.
  doi: 10.1002/jhm.2106
  contributor:
    fullname: Tait
– volume: 4
  start-page: 12
  year: 2016
  end-page: 20
  ident: CR47
  article-title: Do non-clinical factors improve prediction of readmission risk? Results from the Tele-HF study
  publication-title: JACC Heart Fail.
  doi: 10.1016/j.jchf.2015.07.017
  contributor:
    fullname: Spertus
– volume: 2
  start-page: 204
  year: 2017
  end-page: 209
  ident: CR24
  article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2016.3956
  contributor:
    fullname: Schulte
– ident: CR42
– volume: 130
  start-page: 1220
  year: 2017
  ident: CR36
  article-title: Patterns of readmissions for three common conditions among younger US adults
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2017.05.025
  contributor:
    fullname: Ryan
– volume: 6
  start-page: 52
  year: 2019
  ident: CR43
  article-title: BioWordVec, improving biomedical word embeddings with subword information and MeSH
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0055-0
  contributor:
    fullname: Yang
– volume: 10
  start-page: e0140271
  year: 2015
  ident: CR28
  article-title: Development, validation and deployment of a real time 30 day hospital readmission risk assessment tool in the Maine healthcare information exchange
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140271
  contributor:
    fullname: Jin
– ident: CR44
– volume: 119
  start-page: 264
  year: 2015
  end-page: 273
  ident: CR12
  article-title: A roadmap for comparing readmission policies with application to Denmark, England, Germany and the United States
  publication-title: Health Policy
  doi: 10.1016/j.healthpol.2014.12.009
  contributor:
    fullname: Quentin
– volume: 9
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR20
  article-title: Predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: A case study on COPD
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39071-y
  contributor:
    fullname: Wang
– volume: 4
  start-page: 243
  year: 2011
  end-page: 252
  ident: CR37
  article-title: An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.110.957498
  contributor:
    fullname: Drye
– year: 2009
  ident: CR9
  publication-title: Effective Interventions to Reduce Rehospitalizations: A Survey of the Published Evidence
  contributor:
    fullname: Hwu
– ident: CR38
– volume: 182
  start-page: 551
  year: 2010
  end-page: 557
  ident: CR14
  article-title: Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community
  publication-title: CMAJ
  doi: 10.1503/cmaj.091117
  contributor:
    fullname: Bell
– volume: 306
  start-page: 1688
  year: 2011
  end-page: 1698
  ident: CR13
  article-title: Risk prediction models for hospital readmission: A systematic review
  publication-title: JAMA
  doi: 10.1001/jama.2011.1515
  contributor:
    fullname: Salanitro
– volume: 360
  start-page: 1418
  year: 2009
  end-page: 1428
  ident: CR1
  article-title: Rehospitalizations among patients in the Medicare fee-for-service program
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa0803563
  contributor:
    fullname: Coleman
– ident: CR17
– volume: 24
  start-page: 1068
  year: 2015
  end-page: 1073
  ident: CR26
  article-title: An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure
  publication-title: Heart Lung Circ.
  doi: 10.1016/j.hlc.2015.04.168
  contributor:
    fullname: Newton
– volume: 25
  start-page: 3163
  issue: 8
  year: 2021
  end-page: 3175
  ident: CR33
  article-title: Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3052441
  contributor:
    fullname: Dubrawski
– ident: CR31
– volume: 9
  start-page: 629
  year: 2016
  end-page: 640
  ident: CR18
  article-title: Analysis of machine learning techniques for heart failure readmissions
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003039
  contributor:
    fullname: Bucholz
– volume: 15
  start-page: e0221606
  year: 2020
  ident: CR23
  article-title: Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0221606
  contributor:
    fullname: Singh
– volume: 10
  start-page: e0129553
  year: 2015
  ident: CR27
  article-title: Joint impact of clinical and behavioral variables on the risk of unplanned readmission and death after a heart failure hospitalization
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129553
  contributor:
    fullname: Li
– ident: CR32
– volume: 366
  start-page: 4563
  year: 2019
  ident: CR11
  article-title: Hospital revisits within 30 days after discharge for medical conditions targeted by the Hospital Readmissions Reduction Program in the United States: National retrospective analysis
  publication-title: BMJ
  doi: 10.1136/bmj.l4563
  contributor:
    fullname: Kazi
– volume: 164
  start-page: 49
  year: 2018
  end-page: 64
  ident: CR16
  article-title: Predictive models for hospital readmission risk: A systematic review of methods
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.06.006
  contributor:
    fullname: Grana
– ident: CR34
– volume: 146
  start-page: 195
  year: 2011
  ident: CR45
  article-title: Using hospital outcomes to predict 30-day mortality among injured patients insured by medicare
  publication-title: Arch. Surg.
  doi: 10.1001/archsurg.2010.318
  contributor:
    fullname: Gorra
– volume: 37
  start-page: 416
  year: 2008
  end-page: 422
  ident: CR2
  article-title: Incidence and main factors associated with early unplanned hospital readmission among French medical inpatients aged 75 and over admitted through emergency units
  publication-title: Age Ageing
  doi: 10.1093/ageing/afn093
  contributor:
    fullname: Dramé
– ident: CR5
– ident: CR41
– volume: 28
  start-page: 710
  year: 2021
  ident: CR4
  article-title: Predicting 30-day readmissions in patients with heart failure using administrative data: A machine learning approach
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2021.12.004
  contributor:
    fullname: Mcalister
– volume: 19
  start-page: 1
  year: 2019
  end-page: 9
  ident: CR21
  article-title: Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0673-4
  contributor:
    fullname: Looten
– ident: 37477_CR32
  doi: 10.1609/aaai.v32i1.11842
– ident: 37477_CR30
  doi: 10.1007/978-3-030-47426-3_53
– volume: 4
  start-page: 243
  year: 2011
  ident: 37477_CR37
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.110.957498
  contributor:
    fullname: HM Krumholz
– volume-title: Effective Interventions to Reduce Rehospitalizations: A Survey of the Published Evidence
  year: 2009
  ident: 37477_CR9
  contributor:
    fullname: A Boutwell
– volume: 173
  start-page: 632
  year: 2013
  ident: 37477_CR15
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2013.3023
  contributor:
    fullname: J Donzé
– volume: 119
  start-page: 264
  year: 2015
  ident: 37477_CR12
  publication-title: Health Policy
  doi: 10.1016/j.healthpol.2014.12.009
  contributor:
    fullname: SR Kristensen
– volume: 110
  start-page: 1342
  year: 2012
  ident: 37477_CR25
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2012.06.038
  contributor:
    fullname: L Wang
– ident: 37477_CR31
– volume: 9
  start-page: 1
  year: 2019
  ident: 37477_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-39071-y
  contributor:
    fullname: X Min
– ident: 37477_CR10
– volume: 4
  start-page: 12
  year: 2016
  ident: 37477_CR47
  publication-title: JACC Heart Fail.
  doi: 10.1016/j.jchf.2015.07.017
  contributor:
    fullname: HM Krumholz
– volume: 2
  start-page: 204
  year: 2017
  ident: 37477_CR24
  publication-title: JAMA Cardiol.
  doi: 10.1001/jamacardio.2016.3956
  contributor:
    fullname: JD Frizzell
– ident: 37477_CR39
– ident: 37477_CR40
– volume: 360
  start-page: 1418
  year: 2009
  ident: 37477_CR1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMsa0803563
  contributor:
    fullname: SF Jencks
– ident: 37477_CR5
– volume: 130
  start-page: 1220
  year: 2017
  ident: 37477_CR36
  publication-title: Am. J. Med.
  doi: 10.1016/j.amjmed.2017.05.025
  contributor:
    fullname: D Sukul
– ident: 37477_CR42
– volume: 6
  start-page: 52
  year: 2019
  ident: 37477_CR43
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0055-0
  contributor:
    fullname: Y Zhang
– volume: 306
  start-page: 1688
  year: 2011
  ident: 37477_CR13
  publication-title: JAMA
  doi: 10.1001/jama.2011.1515
  contributor:
    fullname: D Kansagara
– ident: 37477_CR35
– volume: 28
  start-page: 710
  year: 2021
  ident: 37477_CR4
  publication-title: J. Card. Fail.
  doi: 10.1016/j.cardfail.2021.12.004
  contributor:
    fullname: V Sharma
– volume: 164
  start-page: 49
  year: 2018
  ident: 37477_CR16
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2018.06.006
  contributor:
    fullname: A Artetxe
– ident: 37477_CR38
  doi: 10.1145/2783258.2788613
– volume: 18
  start-page: 1
  year: 2018
  ident: 37477_CR29
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-018-0482-1
  contributor:
    fullname: JL Katzman
– volume: 37
  start-page: 416
  year: 2008
  ident: 37477_CR2
  publication-title: Age Ageing
  doi: 10.1093/ageing/afn093
  contributor:
    fullname: I Lanièce
– volume: 25
  start-page: 3163
  issue: 8
  year: 2021
  ident: 37477_CR33
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3052441
  contributor:
    fullname: C Nagpal
– ident: 37477_CR22
– volume: 8
  start-page: 689
  year: 2013
  ident: 37477_CR7
  publication-title: J. Hosp. Med.
  doi: 10.1002/jhm.2106
  contributor:
    fullname: CA Baillie
– volume: 182
  start-page: 551
  year: 2010
  ident: 37477_CR14
  publication-title: CMAJ
  doi: 10.1503/cmaj.091117
  contributor:
    fullname: C Van Walraven
– volume: 146
  start-page: 195
  year: 2011
  ident: 37477_CR45
  publication-title: Arch. Surg.
  doi: 10.1001/archsurg.2010.318
  contributor:
    fullname: AS Gorra
– ident: 37477_CR6
– volume: 9
  start-page: 629
  year: 2016
  ident: 37477_CR18
  publication-title: Circ. Cardiovasc. Qual. Outcomes
  doi: 10.1161/CIRCOUTCOMES.116.003039
  contributor:
    fullname: BJ Mortazavi
– ident: 37477_CR17
– ident: 37477_CR8
– ident: 37477_CR41
– volume: 19
  start-page: 1
  year: 2019
  ident: 37477_CR21
  publication-title: BMC Med. Res. Methodol.
  doi: 10.1186/s12874-019-0673-4
  contributor:
    fullname: S Bussy
– volume: 10
  start-page: e0140271
  year: 2015
  ident: 37477_CR28
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0140271
  contributor:
    fullname: S Hao
– volume: 24
  start-page: 1068
  year: 2015
  ident: 37477_CR26
  publication-title: Heart Lung Circ.
  doi: 10.1016/j.hlc.2015.04.168
  contributor:
    fullname: V Betihavas
– volume: 10
  start-page: e0129553
  year: 2015
  ident: 37477_CR27
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0129553
  contributor:
    fullname: B Padhukasahasram
– ident: 37477_CR34
– volume: 17
  start-page: 3136
  year: 2020
  ident: 37477_CR46
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17093136
  contributor:
    fullname: DS Shebeshi
– volume: 366
  start-page: 4563
  year: 2019
  ident: 37477_CR11
  publication-title: BMJ
  doi: 10.1136/bmj.l4563
  contributor:
    fullname: RK Wadhera
– ident: 37477_CR44
  doi: 10.1145/2939672.2939754
– volume: 15
  start-page: e0221606
  year: 2020
  ident: 37477_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0221606
  contributor:
    fullname: W Liu
– start-page: 1522
  volume-title: Hospital Readmission Prediction Using Swarm Intelligence-Based Support Vector Machines
  year: 2013
  ident: 37477_CR19
  contributor:
    fullname: J Zhang
– volume: 157
  start-page: 99
  year: 1997
  ident: 37477_CR3
  publication-title: Arch. Intern. Med.
  doi: 10.1001/archinte.1997.00440220103013
  contributor:
    fullname: HM Krumholz
SSID ssj0000529419
Score 2.457486
Snippet Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important...
Abstract Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10479
SubjectTerms 639/705/1042
639/705/117
692/700/228
Calibration
Diagnosis
Embedding
Health care
Health Facilities
Health Personnel
Humanities and Social Sciences
Humans
multidisciplinary
Patient Readmission
Quality of Health Care
Science
Science (multidisciplinary)
Survival
Survival analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNE0f26RFgd5aE60etnRMQkMIaU8N5KZKlkRy8S5r72H_fWck7zbug156tWQY5pvxzHhehHwIzMtkgqpc4qLC6SOgcypWyZkABsFp5bB3-MvX-upWXt-pu0ervrAmrIwHLow7DUbyKA0TQgqpW26ciy1EARBAxbpxpc2X8UfBVJnqzY2cm7FLhgl92oOlwm4yoEiACw2aNbFEeWD_n7zM34slf8mYZkN0-Zw8Gz1IelYoPyBPYveC7JedkptD8v0mgnTm3UM0xLik_Rq-BiBPNC-96emwoMsVpmcGWjoqN3SRKFaAUawzpw8dDblYI9L7cakIBc8ygEDgn7X-Jbm9_Pzt4qoa1yhUrZLzoWowNZdaURvfQnDVtEI2XsuQPFgiYeqofArJcMfmgBsYtMSZaQI4D6llrG3EK7LXLbr4htBoPERIQSfwmiCuDj7ppL33xoOPzhWfkY9bltplmZZhc5ZbaFsAsACAzQBYMSPnyPXdTZx0nR8A_nbE3_4L_xk53mJmR_XrLU41UwxrTWfkZHcMfMJsiOviYp3vgK-jFIc7rwvEO0pw3BN8C-FET8CfkDo96R7u83BuXNvWaAWvftrKyU-6_s6Lt_-DF0fkKUcBZ3XF9THZG1br-A58psG_z-rxA-5CEZE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFRIXxJtAqYzEDVbd-JG1T4iiVlUFFUJU6s342fayG7KbQ_89M14nVYD2GnuliWfs-cYzno-Q96F2IukgK5sYr7D7COw5GatkdQCHYJW0-Hb42-n8-EycnMvzcuHWl7LK9ZmYD-rQebwj38dGVbLG8sFPi98VskZhdrVQaNwnO2zGlZqQnYPD0-8_NrcsmMcSM11ey9Rc7ffgsfBVGUjGAUrDDtvySLlx___Q5r9Fk39lTrNDOnpMHhUkST-Pqn9C7sX2KXkwcktePyO_vkaw0sxBREOMC9qv4FQAu6KZ_KanQ0cXS0zTDHR8WXlNu0SxEoxivTm9amnIRRuRXhZyEQoIM4Bh4A1b_5ycHR3-_HJcFTqFyksxG6oGU3TJ87l2HoKsxnPROCVCcuCRuJ5H6VJImtl6BvoDx5ZYrZsAICL5uvYNf0EmbdfGV4RG7SBSCioBeoL4OrikknLOaQdYnUk2JR_WS2oWY9cMk7PdXJlRAQYUYLICDJ-SA1z1zUzseJ1_6JYXpmwgE7RgUYCgXHChPNPWRg_RIATScd5YNSW7a52Zsg17c2M0U_JuMwzrhFkR28ZulecA5pGSwZyXo4o3kmDbJzgTYURtKX9L1O2R9uoyN-lG-rZGSfj049pObuS6fS1e3_033pCHyHePtWpM7ZLJsFzFt4CKBrdXTP8PIpMLaw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKKyQuCMproUWuxA0CWT8S-4BQQa2qinJipd6MHdu0EkqWTVbq_vvOOMmihUXqNbaV0cw4803mRcgbnzsRtZeZjYxn2H0E7pwMWbTag0GwSlqsHb74VpzNxPmlvNwh47ijgYHtVtcO50nNFr_e3_xefYIL_7EvGVcfWjBCWCgGL-OAjuHS3CN7DCwjpnhdDHC_7_XNtJjqoXZm-9EN-5Ta-G_Dnv-mUP4VR03m6fQReTjgSnrcK8JjshPqfXK_nzS5ekJ-fA2gs2kiEfUhzGm7hG8EaBlNo3Ba2jV0vsCgTUf7OssVbSLFvDCK2ef0uqY-pXAEejWMGqGANz2oCf5va5-S2enJ9y9n2TBcIaukmHZZiQG7WPFCuwpcrrLionRK-OjAPnFdBOmij5rZfArSBDMXWa5LD5AiVnlelfwZ2a2bOrwgNGgHfpNXEbAUeNveRRWVc047QO5Msgl5O7LUzPseGibFvrkyvQAMCMAkARg-IZ-R6-ud2P86PWgWP81wnYzXggUBhHLBhaqYtjZU4BuCWx2K0qoJORhlZkadMtjrTOaYgTohR-tl4BPGSGwdmmXaAwhISgZ7nvciXlOCTaDgCwkrakP4G6RurtTXV6llNw5zK5WEo-9GPflD1_958fIOdL4iDxjqb15kTB2Q3W6xDIcAlDr3Omn_LbRLD2E
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4CIkL4t2lgFyJG43I-pHYR7oCIQScisTN2LEtuGRXJHvg33fGyW6VFg5c187K8jeT-SbzIuTM505E7WVmI-MZdh8BnZMhi1Z7MAhWSYu1w_cPxc2juH2ST32bHKyFGcTvubpowMBgERj8EQfmCwqxStbBBpcozZNisvyeghErMdZ9XczHjw5sT2rR_xGv_D898p8YaTI919tkq-eM9LIDeYeshHqXbHRTJN_3yPNdAHlM04aoD2FGmznoP0gQTWNuGtpO6ewNAzIt7Woo3-k0Usz5ophZTl9r6lN6RqAv_RgRClzSgwjgt7RmnzxeX_2e3GT94ISskmLcZiUG42LFC-0qcKfKiovSKeGjA9vDdRGkiz5qZvMxIAUmLLJclx7oQqzyvCr5AVmrp3X4RmjQDnwiryLwJPCkvYsqKuecdsDKmWQjcr64UjPr-mOYFNfmynQAGADAJAAMH5FfeOvLndjbOv0AkJteVYzXggUBB-WCC1UxbW2owO8DlzkUpVUjcrzAzPQK1xjsYyZzzC4dkR_LZbgnjH_YOkznaQ-wGykZ7DnsIF6eBBs8wdsPVtQA_MFRhyv160tqx42D2kol4dGfCzn5e67P7-Loa9u_k02cdI9Zakwdk7X2bR5OgA-17jQpwh891QMX
  priority: 102
  providerName: Springer Nature
Title Leveraging deep survival models to predict quality of care risk in diverse hospital readmissions
URI https://link.springer.com/article/10.1038/s41598-023-37477-3
https://www.ncbi.nlm.nih.gov/pubmed/37380704
https://www.proquest.com/docview/2830501074
https://search.proquest.com/docview/2831295524
https://pubmed.ncbi.nlm.nih.gov/PMC10307854
https://doaj.org/article/d942e490334348c29aaec144523e67a8
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RaBeEG8MJVokbuDG2Ye9e6RRqwqRqkJUys14X20kakeJc-i_Z3ZtB8LjwsWS7ZU82pnxfLPzAnhnM829siKtPGVp6D6COidc6itl0SBUUlShdnh2kZ9f8U9zMd-DfKiFiUn7Ri-O6--3x_XiJuZWLm_NeMgTG1_OpmE0ViEFH-_DPtrfX3z0rqM3VXyi-gqZjMnxGq1UqCRDahjCZ9SqQ3gQWvqgvPMdgxT79v8NbP6ZM_lb4DTao7NH8LAHkuRjR_Bj2HP1E7jfjZa8ewrfPjsU0jiCiFjnlmS9wZ8CihWJs2_WpG3IchWiNC3pCivvSONJSAQjId2cLGpiY86GIzf9bBGCANOiXIQDtvUzuDo7_To9T_tpCqkRfNKmRYjQecNypQ36WIVhvNCSW6_RIDGVO6G99YpW2QTZh3bN00wVFjGEN1lmCvYcDuqmdi-BOKXRUbLSI3hC99pqL73UWiuNUJ0KmsD7YUvLZdc0o4zBbibLjhcl8qKMvChZAidh17crQ8Pr-KBZXZc920urOHUcCWWccWmoqipn0BlEP9rlRSUTOBp4VvZauC5DczORhZTTBN5uX-M-haBIVbtmE9cg5BGC4poXHYu3lAwikoDcYf4OqbtvUGRjj-5BRBP4MMjJT7r-vRev_v9Lr-GQBgnP8pTKIzhoVxv3BgFTq0eoJfNiBPdOTi8uv-DdNJ-O4uEDXmdcjqL-_AAmxhia
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793,73745,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFYIL4k2gBSNxg1U3fuzaJ0SrVgHSCKFW6s2s1zbtZTdkN4f-e2a8TqoA7TX2ShPPjOcbz4uQ9y63ImgnsyownmH3EdA56bNQaQcGoVKywtrhk3kxPRNfz-V5enDrUlrl-k6MF7Vra3wj38dGVTLH9MFPi98ZTo3C6GoaoXGX7GDndDkiOwdH8-8_Nq8sGMcSE52qZXKu9juwWFhVBpRxgNKgYVsWKTbu_x_a_Ddp8q_IaTRIx4_Iw4Qk6eeB9Y_JHd88IfeG2ZJXT8nPmQcpjTOIqPN-QbsV3AogVzQOv-lo39LFEsM0PR0qK69oGyhmglHMN6eXDXUxacPTizRchALCdCAY-MLWPSNnx0enh9MsjVPIaikmfVZiiC7UvNC2BierrLkorRIuWLBIXBde2uCCZlU-Af6BYQss16UDEBHqPK9L_pyMmrbxLwn12oKn5FQA9AT-tbNBBWWt1RawOpNsTD6sj9Qshq4ZJka7uTIDAwwwwEQGGD4mB3jqm53Y8Tr-0C5_maRAxmnBvABCueBC1UxXla_BGwRH2hdlpcZkd80zk9SwM9dCMybvNstwThgVqRrfruIewDxSMtjzYmDxhhJs-wR3IqyoLeZvkbq90lxexCbdOL6tVBI-_biWk2u6bj6LV7f_jbfk_vT0ZGZmX-bfXpMHDMU4LzKmdsmoX678HiCk3r5JavAHxH0OUw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFYgL4k2gBSNxg1U2fuzaJ0QfUYESVYhKvZn12qa97Ibs5tB_z4zXSRWgXGOvNPHMeL7xvAh563IrgnYyqwLjGXYfAZ2TPguVdmAQKiUrrB3-Oi-Oz8Tnc3me8p-6lFa5vhPjRe3aGt_IJ9ioSuaYPjgJKS3i9HD2YfErwwlSGGlN4zRukx2wijkbkZ39o_npt82LC8a0xFSnypmcq0kH1gsrzIBKDrAatG3LOsUm_v9Cnn8nUP4RRY3GafaA3E-okn4cxOAhueWbR-TOMGfy6jH5ceJBYuM8Iuq8X9BuBTcEyBiNg3A62rd0scSQTU-HKssr2gaKWWEUc8_pZUNdTODw9CINGqGANh0ICb62dU_I2ezo-8FxlkYrZLUU0z4rMVwXal5oW4PDVdZclFYJFyxYJ64LL21wQbMqnwIvwcgFluvSAaAIdZ7XJX9KRk3b-OeEem3Ba3IqAJICX9vZoIKy1moLuJ1JNibv1kdqFkMHDRMj31yZgQEGGGAiAwwfk3089c1O7H4df2iXP01SJuO0YF4AoVxwoWqmq8rX4BmCU-2LslJjsrvmmUkq2ZlrARqTN5tlOCeMkFSNb1dxD-AfKRnseTaweEMJtoCC-xFW1Bbzt0jdXmkuL2LDbhzlVioJn75fy8k1XTefxYv__43X5C5ogDn5NP_yktxjKMV5kTG1S0b9cuX3ACz19lXSgt9x6RKA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+deep+survival+models+to+predict+quality+of+care+risk+in+diverse+hospital+readmissions&rft.jtitle=Scientific+reports&rft.au=Tran%2C+Nhat+Quang&rft.au=Goel%2C+Gautam&rft.au=Pudota%2C+Nirmala&rft.au=Suesserman%2C+Michael&rft.date=2023-06-28&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=10479&rft.epage=10479&rft_id=info:doi/10.1038%2Fs41598-023-37477-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon