Leveraging deep survival models to predict quality of care risk in diverse hospital readmissions
Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 10479 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.06.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk in hospital readmissions. This study applies various survival models to explore the risk of hospital readmissions given patient demographics and their respective hospital discharges extracted from a health care claims dataset. We explore advanced feature representation techniques such as BioBERT and Node2Vec to encode high-dimensional diagnosis code features. To our knowledge, this study is the first to apply deep-learning based survival-analysis models for predicting hospital readmission risk agnostic of specific medical conditions and a fixed window for readmission. We found that modeling the time from discharge date to readmission date as a Weibull distribution as in the SparseDeepWeiSurv model yields the best discriminative power and calibration. In addition, embedding representations of the diagnosis codes do not contribute to improvement in model performance. We find dependency of each model’s performance on the time point at which it is evaluated. This time dependency of the models’ performance on the health care claims data may necessitate a different choice of model in quality of care issue detection at different points in time. We show the effectiveness of deep-learning based survival-analysis models in estimating the quality of care risk in hospital readmissions. |
---|---|
AbstractList | Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk in hospital readmissions. This study applies various survival models to explore the risk of hospital readmissions given patient demographics and their respective hospital discharges extracted from a health care claims dataset. We explore advanced feature representation techniques such as BioBERT and Node2Vec to encode high-dimensional diagnosis code features. To our knowledge, this study is the first to apply deep-learning based survival-analysis models for predicting hospital readmission risk agnostic of specific medical conditions and a fixed window for readmission. We found that modeling the time from discharge date to readmission date as a Weibull distribution as in the SparseDeepWeiSurv model yields the best discriminative power and calibration. In addition, embedding representations of the diagnosis codes do not contribute to improvement in model performance. We find dependency of each model’s performance on the time point at which it is evaluated. This time dependency of the models’ performance on the health care claims data may necessitate a different choice of model in quality of care issue detection at different points in time. We show the effectiveness of deep-learning based survival-analysis models in estimating the quality of care risk in hospital readmissions. Abstract Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important indicator of health care providers’ quality of care. We examine the use of machine learning-based survival analysis to assess quality of care risk in hospital readmissions. This study applies various survival models to explore the risk of hospital readmissions given patient demographics and their respective hospital discharges extracted from a health care claims dataset. We explore advanced feature representation techniques such as BioBERT and Node2Vec to encode high-dimensional diagnosis code features. To our knowledge, this study is the first to apply deep-learning based survival-analysis models for predicting hospital readmission risk agnostic of specific medical conditions and a fixed window for readmission. We found that modeling the time from discharge date to readmission date as a Weibull distribution as in the SparseDeepWeiSurv model yields the best discriminative power and calibration. In addition, embedding representations of the diagnosis codes do not contribute to improvement in model performance. We find dependency of each model’s performance on the time point at which it is evaluated. This time dependency of the models’ performance on the health care claims data may necessitate a different choice of model in quality of care issue detection at different points in time. We show the effectiveness of deep-learning based survival-analysis models in estimating the quality of care risk in hospital readmissions. |
ArticleNumber | 10479 |
Author | Tran, Nhat Quang Pudota, Nirmala Bowen, Edward Bhattacharya, Sanmitra Helms, John Suesserman, Michael Lasaga, Daniel Olson, Dan Goel, Gautam |
Author_xml | – sequence: 1 givenname: Nhat Quang surname: Tran fullname: Tran, Nhat Quang organization: AI Center of Excellence, Deloitte & Touche LLP – sequence: 2 givenname: Gautam surname: Goel fullname: Goel, Gautam organization: AI Center of Excellence, Deloitte & Touche LLP – sequence: 3 givenname: Nirmala surname: Pudota fullname: Pudota, Nirmala organization: AI Center of Excellence, Deloitte & Touche Assurance & Enterprise Risk Services India Private Limited – sequence: 4 givenname: Michael surname: Suesserman fullname: Suesserman, Michael organization: AI Center of Excellence, Deloitte & Touche LLP – sequence: 5 givenname: John surname: Helms fullname: Helms, John organization: AI Center of Excellence, Deloitte & Touche LLP – sequence: 6 givenname: Daniel surname: Lasaga fullname: Lasaga, Daniel organization: Program Integrity, Deloitte & Touche LLP – sequence: 7 givenname: Dan surname: Olson fullname: Olson, Dan organization: Program Integrity, Deloitte & Touche LLP – sequence: 8 givenname: Edward surname: Bowen fullname: Bowen, Edward organization: AI Center of Excellence, Deloitte & Touche LLP – sequence: 9 givenname: Sanmitra surname: Bhattacharya fullname: Bhattacharya, Sanmitra email: sanmbhattacharya@deloitte.com organization: AI Center of Excellence, Deloitte & Touche LLP |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37380704$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNURD_oH-CALHHhEvDnOj4hVAGttBIXOBvHHqdesvbWTlbqv6-3KaXlgC-2PO88Y8-8p81RTBGa5g3BHwhm3cfCiVBdiylrmeRStuxFc0IxFy1llB49OR8356VscF2CKk7Uq-aYSdZhiflJ82sNe8hmCHFADmCHypz3YW9GtE0OxoKmhHYZXLATupnNGKZblDyyJgPKofxGISIXKqIAuk5lF6aamsG4bSglpFheNy-9GQucP-xnzc-vX35cXLbr79-uLj6vWys4mVrJmaTespXqrVKdtIzLvuPO90phplYgeu-8ogaTnnu2op5iJR3G0luMrWRnzdXCdcls9C6Hrcm3Opmg7y9SHrTJU7AjaKc4BV6xjDPeWaqMAUs4F5TBSpqusj4trN3cb8FZiFM24zPo80gM13pIe10ng2UneCW8fyDkdDNDmXTth4VxNBHSXDTtGKFKCHqQvvtHuklzjrVXBxUWmGB5UNFFZXMqJYN_fA3Bh7KdXgyhqyH0vSE0q0lvn_7jMeXP-KuALYJSQ3GA_Lf2f7B3jLXCmg |
CitedBy_id | crossref_primary_10_1016_j_dss_2024_114264 |
Cites_doi | 10.1001/archinte.1997.00440220103013 10.3390/ijerph17093136 10.1016/j.amjcard.2012.06.038 10.1001/jamainternmed.2013.3023 10.1186/s12874-018-0482-1 10.1002/jhm.2106 10.1016/j.jchf.2015.07.017 10.1001/jamacardio.2016.3956 10.1016/j.amjmed.2017.05.025 10.1038/s41597-019-0055-0 10.1371/journal.pone.0140271 10.1016/j.healthpol.2014.12.009 10.1038/s41598-019-39071-y 10.1161/CIRCOUTCOMES.110.957498 10.1503/cmaj.091117 10.1001/jama.2011.1515 10.1056/NEJMsa0803563 10.1016/j.hlc.2015.04.168 10.1109/JBHI.2021.3052441 10.1161/CIRCOUTCOMES.116.003039 10.1371/journal.pone.0221606 10.1371/journal.pone.0129553 10.1136/bmj.l4563 10.1016/j.cmpb.2018.06.006 10.1001/archsurg.2010.318 10.1093/ageing/afn093 10.1016/j.cardfail.2021.12.004 10.1186/s12874-019-0673-4 10.1609/aaai.v32i1.11842 10.1007/978-3-030-47426-3_53 10.1145/2783258.2788613 10.1145/2939672.2939754 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-37477-3 |
DatabaseName | Springer Nature OA Free Journals Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Database Biological Science Database Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10479 |
ExternalDocumentID | oai_doaj_org_article_d942e490334348c29aaec144523e67a8 10_1038_s41598_023_37477_3 37380704 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Deloitte funderid: http://dx.doi.org/10.13039/100002462 – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c541t-74372fc369bc9987c347b84dfb990396e5bfdf92a01b4f362f2097d007fc00c73 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Oct 22 15:11:35 EDT 2024 Tue Sep 17 21:29:58 EDT 2024 Tue Dec 03 23:28:13 EST 2024 Tue Oct 29 09:24:46 EDT 2024 Fri Dec 06 02:47:58 EST 2024 Wed Oct 16 00:38:07 EDT 2024 Fri Oct 11 20:49:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-74372fc369bc9987c347b84dfb990396e5bfdf92a01b4f362f2097d007fc00c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307854/ |
PMID | 37380704 |
PQID | 2830501074 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d942e490334348c29aaec144523e67a8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10307854 proquest_miscellaneous_2831295524 proquest_journals_2830501074 crossref_primary_10_1038_s41598_023_37477_3 pubmed_primary_37380704 springer_journals_10_1038_s41598_023_37477_3 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-28 |
PublicationDateYYYYMMDD | 2023-06-28 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kristensen, Bech, Quentin (CR12) 2015; 119 Shebeshi, Dolja-Gore, Byles (CR46) 2020; 17 CR17 CR39 CR38 Lanièce, Couturier, Dramé (CR2) 2008; 37 Boutwell, Hwu (CR9) 2009 Hao, Wang, Jin (CR28) 2015; 10 CR35 Donzé, Aujesky, Williams (CR15) 2013; 173 CR34 Bussy, Veil, Looten (CR21) 2019; 19 CR10 CR32 Sharma, Kulkarni, Mcalister (CR4) 2021; 28 CR31 CR30 Liu, Stansbury, Singh (CR23) 2020; 15 Betihavas, Frost, Newton (CR26) 2015; 24 Jencks, Williams, Coleman (CR1) 2009; 360 Van Walraven, Dhalla, Bell (CR14) 2010; 182 Artetxe, Beristain, Grana (CR16) 2018; 164 Mortazavi, Downing, Bucholz (CR18) 2016; 9 CR6 Baillie, VanZandbergen, Tait (CR7) 2013; 8 CR5 Sukul, Sinha, Ryan (CR36) 2017; 130 CR8 Krumholz, Lin, Drye (CR37) 2011; 4 Gorra (CR45) 2011; 146 Padhukasahasram, Reddy, Li (CR27) 2015; 10 Kansagara, Englander, Salanitro (CR13) 2011; 306 CR22 Wang, Porter, Maynard (CR25) 2012; 110 CR44 Krumholz, Chaudhry, Spertus (CR47) 2016; 4 Krumholz, Parent, Tu (CR3) 1997; 157 CR42 CR41 CR40 Wadhera, Maddox, Kazi (CR11) 2019; 366 Min, Yu, Wang (CR20) 2019; 9 Zhang, Yoon, Khasawneh (CR19) 2013 Nagpal, Li, Dubrawski (CR33) 2021; 25 Frizzell, Liang, Schulte (CR24) 2017; 2 Katzman, Shaham, Cloninger (CR29) 2018; 18 Zhang, Chen, Yang (CR43) 2019; 6 X Min (37477_CR20) 2019; 9 37477_CR34 37477_CR31 37477_CR5 37477_CR10 JD Frizzell (37477_CR24) 2017; 2 37477_CR32 37477_CR30 A Boutwell (37477_CR9) 2009 S Bussy (37477_CR21) 2019; 19 HM Krumholz (37477_CR3) 1997; 157 37477_CR6 37477_CR8 D Sukul (37477_CR36) 2017; 130 JL Katzman (37477_CR29) 2018; 18 C Nagpal (37477_CR33) 2021; 25 A Artetxe (37477_CR16) 2018; 164 W Liu (37477_CR23) 2020; 15 HM Krumholz (37477_CR37) 2011; 4 HM Krumholz (37477_CR47) 2016; 4 AS Gorra (37477_CR45) 2011; 146 Y Zhang (37477_CR43) 2019; 6 37477_CR22 S Hao (37477_CR28) 2015; 10 37477_CR44 37477_CR42 V Sharma (37477_CR4) 2021; 28 L Wang (37477_CR25) 2012; 110 37477_CR40 37477_CR41 J Donzé (37477_CR15) 2013; 173 BJ Mortazavi (37477_CR18) 2016; 9 B Padhukasahasram (37477_CR27) 2015; 10 C Van Walraven (37477_CR14) 2010; 182 V Betihavas (37477_CR26) 2015; 24 D Kansagara (37477_CR13) 2011; 306 SF Jencks (37477_CR1) 2009; 360 DS Shebeshi (37477_CR46) 2020; 17 RK Wadhera (37477_CR11) 2019; 366 SR Kristensen (37477_CR12) 2015; 119 37477_CR17 37477_CR39 J Zhang (37477_CR19) 2013 37477_CR38 I Lanièce (37477_CR2) 2008; 37 CA Baillie (37477_CR7) 2013; 8 37477_CR35 |
References_xml | – ident: CR22 – volume: 157 start-page: 99 year: 1997 end-page: 104 ident: CR3 article-title: Readmission after hospitalization for congestive heart failure among Medicare beneficiaries publication-title: Arch. Intern. Med. doi: 10.1001/archinte.1997.00440220103013 contributor: fullname: Tu – start-page: 1522 year: 2013 ident: CR19 publication-title: Hospital Readmission Prediction Using Swarm Intelligence-Based Support Vector Machines contributor: fullname: Khasawneh – volume: 17 start-page: 3136 year: 2020 ident: CR46 article-title: Unplanned readmission within 28 days of hospital discharge in a longitudinal population-based cohort of older Australian women publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17093136 contributor: fullname: Byles – ident: CR39 – ident: CR30 – ident: CR10 – volume: 110 start-page: 1342 year: 2012 end-page: 1349 ident: CR25 article-title: Predicting risk of hospitalization or death among patients with heart failure in the veterans health administration publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2012.06.038 contributor: fullname: Maynard – ident: CR35 – ident: CR6 – volume: 173 start-page: 632 year: 2013 end-page: 638 ident: CR15 article-title: Potentially avoidable 30-day hospital readmissions in medical patients: Derivation and validation of a prediction model publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2013.3023 contributor: fullname: Williams – ident: CR8 – ident: CR40 – volume: 18 start-page: 1 year: 2018 end-page: 12 ident: CR29 article-title: DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0482-1 contributor: fullname: Cloninger – volume: 8 start-page: 689 year: 2013 end-page: 695 ident: CR7 article-title: The readmission risk flag: Using the electronic health record to automatically identify patients at risk for 30-day readmission publication-title: J. Hosp. Med. doi: 10.1002/jhm.2106 contributor: fullname: Tait – volume: 4 start-page: 12 year: 2016 end-page: 20 ident: CR47 article-title: Do non-clinical factors improve prediction of readmission risk? Results from the Tele-HF study publication-title: JACC Heart Fail. doi: 10.1016/j.jchf.2015.07.017 contributor: fullname: Spertus – volume: 2 start-page: 204 year: 2017 end-page: 209 ident: CR24 article-title: Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: Comparison of machine learning and other statistical approaches publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2016.3956 contributor: fullname: Schulte – ident: CR42 – volume: 130 start-page: 1220 year: 2017 ident: CR36 article-title: Patterns of readmissions for three common conditions among younger US adults publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2017.05.025 contributor: fullname: Ryan – volume: 6 start-page: 52 year: 2019 ident: CR43 article-title: BioWordVec, improving biomedical word embeddings with subword information and MeSH publication-title: Sci. Data doi: 10.1038/s41597-019-0055-0 contributor: fullname: Yang – volume: 10 start-page: e0140271 year: 2015 ident: CR28 article-title: Development, validation and deployment of a real time 30 day hospital readmission risk assessment tool in the Maine healthcare information exchange publication-title: PLoS ONE doi: 10.1371/journal.pone.0140271 contributor: fullname: Jin – ident: CR44 – volume: 119 start-page: 264 year: 2015 end-page: 273 ident: CR12 article-title: A roadmap for comparing readmission policies with application to Denmark, England, Germany and the United States publication-title: Health Policy doi: 10.1016/j.healthpol.2014.12.009 contributor: fullname: Quentin – volume: 9 start-page: 1 year: 2019 end-page: 10 ident: CR20 article-title: Predictive modeling of the hospital readmission risk from patients’ claims data using machine learning: A case study on COPD publication-title: Sci. Rep. doi: 10.1038/s41598-019-39071-y contributor: fullname: Wang – volume: 4 start-page: 243 year: 2011 end-page: 252 ident: CR37 article-title: An administrative claims measure suitable for profiling hospital performance based on 30-day all-cause readmission rates among patients with acute myocardial infarction publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.110.957498 contributor: fullname: Drye – year: 2009 ident: CR9 publication-title: Effective Interventions to Reduce Rehospitalizations: A Survey of the Published Evidence contributor: fullname: Hwu – ident: CR38 – volume: 182 start-page: 551 year: 2010 end-page: 557 ident: CR14 article-title: Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community publication-title: CMAJ doi: 10.1503/cmaj.091117 contributor: fullname: Bell – volume: 306 start-page: 1688 year: 2011 end-page: 1698 ident: CR13 article-title: Risk prediction models for hospital readmission: A systematic review publication-title: JAMA doi: 10.1001/jama.2011.1515 contributor: fullname: Salanitro – volume: 360 start-page: 1418 year: 2009 end-page: 1428 ident: CR1 article-title: Rehospitalizations among patients in the Medicare fee-for-service program publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa0803563 contributor: fullname: Coleman – ident: CR17 – volume: 24 start-page: 1068 year: 2015 end-page: 1073 ident: CR26 article-title: An absolute risk prediction model to determine unplanned cardiovascular readmissions for adults with chronic heart failure publication-title: Heart Lung Circ. doi: 10.1016/j.hlc.2015.04.168 contributor: fullname: Newton – volume: 25 start-page: 3163 issue: 8 year: 2021 end-page: 3175 ident: CR33 article-title: Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3052441 contributor: fullname: Dubrawski – ident: CR31 – volume: 9 start-page: 629 year: 2016 end-page: 640 ident: CR18 article-title: Analysis of machine learning techniques for heart failure readmissions publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.116.003039 contributor: fullname: Bucholz – volume: 15 start-page: e0221606 year: 2020 ident: CR23 article-title: Predicting 30-day hospital readmissions using artificial neural networks with medical code embedding publication-title: PLoS ONE doi: 10.1371/journal.pone.0221606 contributor: fullname: Singh – volume: 10 start-page: e0129553 year: 2015 ident: CR27 article-title: Joint impact of clinical and behavioral variables on the risk of unplanned readmission and death after a heart failure hospitalization publication-title: PLoS ONE doi: 10.1371/journal.pone.0129553 contributor: fullname: Li – ident: CR32 – volume: 366 start-page: 4563 year: 2019 ident: CR11 article-title: Hospital revisits within 30 days after discharge for medical conditions targeted by the Hospital Readmissions Reduction Program in the United States: National retrospective analysis publication-title: BMJ doi: 10.1136/bmj.l4563 contributor: fullname: Kazi – volume: 164 start-page: 49 year: 2018 end-page: 64 ident: CR16 article-title: Predictive models for hospital readmission risk: A systematic review of methods publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2018.06.006 contributor: fullname: Grana – ident: CR34 – volume: 146 start-page: 195 year: 2011 ident: CR45 article-title: Using hospital outcomes to predict 30-day mortality among injured patients insured by medicare publication-title: Arch. Surg. doi: 10.1001/archsurg.2010.318 contributor: fullname: Gorra – volume: 37 start-page: 416 year: 2008 end-page: 422 ident: CR2 article-title: Incidence and main factors associated with early unplanned hospital readmission among French medical inpatients aged 75 and over admitted through emergency units publication-title: Age Ageing doi: 10.1093/ageing/afn093 contributor: fullname: Dramé – ident: CR5 – ident: CR41 – volume: 28 start-page: 710 year: 2021 ident: CR4 article-title: Predicting 30-day readmissions in patients with heart failure using administrative data: A machine learning approach publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2021.12.004 contributor: fullname: Mcalister – volume: 19 start-page: 1 year: 2019 end-page: 9 ident: CR21 article-title: Comparison of methods for early-readmission prediction in a high-dimensional heterogeneous covariates and time-to-event outcome framework publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-019-0673-4 contributor: fullname: Looten – ident: 37477_CR32 doi: 10.1609/aaai.v32i1.11842 – ident: 37477_CR30 doi: 10.1007/978-3-030-47426-3_53 – volume: 4 start-page: 243 year: 2011 ident: 37477_CR37 publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.110.957498 contributor: fullname: HM Krumholz – volume-title: Effective Interventions to Reduce Rehospitalizations: A Survey of the Published Evidence year: 2009 ident: 37477_CR9 contributor: fullname: A Boutwell – volume: 173 start-page: 632 year: 2013 ident: 37477_CR15 publication-title: JAMA Intern. Med. doi: 10.1001/jamainternmed.2013.3023 contributor: fullname: J Donzé – volume: 119 start-page: 264 year: 2015 ident: 37477_CR12 publication-title: Health Policy doi: 10.1016/j.healthpol.2014.12.009 contributor: fullname: SR Kristensen – volume: 110 start-page: 1342 year: 2012 ident: 37477_CR25 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2012.06.038 contributor: fullname: L Wang – ident: 37477_CR31 – volume: 9 start-page: 1 year: 2019 ident: 37477_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-019-39071-y contributor: fullname: X Min – ident: 37477_CR10 – volume: 4 start-page: 12 year: 2016 ident: 37477_CR47 publication-title: JACC Heart Fail. doi: 10.1016/j.jchf.2015.07.017 contributor: fullname: HM Krumholz – volume: 2 start-page: 204 year: 2017 ident: 37477_CR24 publication-title: JAMA Cardiol. doi: 10.1001/jamacardio.2016.3956 contributor: fullname: JD Frizzell – ident: 37477_CR39 – ident: 37477_CR40 – volume: 360 start-page: 1418 year: 2009 ident: 37477_CR1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMsa0803563 contributor: fullname: SF Jencks – ident: 37477_CR5 – volume: 130 start-page: 1220 year: 2017 ident: 37477_CR36 publication-title: Am. J. Med. doi: 10.1016/j.amjmed.2017.05.025 contributor: fullname: D Sukul – ident: 37477_CR42 – volume: 6 start-page: 52 year: 2019 ident: 37477_CR43 publication-title: Sci. Data doi: 10.1038/s41597-019-0055-0 contributor: fullname: Y Zhang – volume: 306 start-page: 1688 year: 2011 ident: 37477_CR13 publication-title: JAMA doi: 10.1001/jama.2011.1515 contributor: fullname: D Kansagara – ident: 37477_CR35 – volume: 28 start-page: 710 year: 2021 ident: 37477_CR4 publication-title: J. Card. Fail. doi: 10.1016/j.cardfail.2021.12.004 contributor: fullname: V Sharma – volume: 164 start-page: 49 year: 2018 ident: 37477_CR16 publication-title: Comput. Methods Progr. Biomed. doi: 10.1016/j.cmpb.2018.06.006 contributor: fullname: A Artetxe – ident: 37477_CR38 doi: 10.1145/2783258.2788613 – volume: 18 start-page: 1 year: 2018 ident: 37477_CR29 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-018-0482-1 contributor: fullname: JL Katzman – volume: 37 start-page: 416 year: 2008 ident: 37477_CR2 publication-title: Age Ageing doi: 10.1093/ageing/afn093 contributor: fullname: I Lanièce – volume: 25 start-page: 3163 issue: 8 year: 2021 ident: 37477_CR33 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3052441 contributor: fullname: C Nagpal – ident: 37477_CR22 – volume: 8 start-page: 689 year: 2013 ident: 37477_CR7 publication-title: J. Hosp. Med. doi: 10.1002/jhm.2106 contributor: fullname: CA Baillie – volume: 182 start-page: 551 year: 2010 ident: 37477_CR14 publication-title: CMAJ doi: 10.1503/cmaj.091117 contributor: fullname: C Van Walraven – volume: 146 start-page: 195 year: 2011 ident: 37477_CR45 publication-title: Arch. Surg. doi: 10.1001/archsurg.2010.318 contributor: fullname: AS Gorra – ident: 37477_CR6 – volume: 9 start-page: 629 year: 2016 ident: 37477_CR18 publication-title: Circ. Cardiovasc. Qual. Outcomes doi: 10.1161/CIRCOUTCOMES.116.003039 contributor: fullname: BJ Mortazavi – ident: 37477_CR17 – ident: 37477_CR8 – ident: 37477_CR41 – volume: 19 start-page: 1 year: 2019 ident: 37477_CR21 publication-title: BMC Med. Res. Methodol. doi: 10.1186/s12874-019-0673-4 contributor: fullname: S Bussy – volume: 10 start-page: e0140271 year: 2015 ident: 37477_CR28 publication-title: PLoS ONE doi: 10.1371/journal.pone.0140271 contributor: fullname: S Hao – volume: 24 start-page: 1068 year: 2015 ident: 37477_CR26 publication-title: Heart Lung Circ. doi: 10.1016/j.hlc.2015.04.168 contributor: fullname: V Betihavas – volume: 10 start-page: e0129553 year: 2015 ident: 37477_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0129553 contributor: fullname: B Padhukasahasram – ident: 37477_CR34 – volume: 17 start-page: 3136 year: 2020 ident: 37477_CR46 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17093136 contributor: fullname: DS Shebeshi – volume: 366 start-page: 4563 year: 2019 ident: 37477_CR11 publication-title: BMJ doi: 10.1136/bmj.l4563 contributor: fullname: RK Wadhera – ident: 37477_CR44 doi: 10.1145/2939672.2939754 – volume: 15 start-page: e0221606 year: 2020 ident: 37477_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0221606 contributor: fullname: W Liu – start-page: 1522 volume-title: Hospital Readmission Prediction Using Swarm Intelligence-Based Support Vector Machines year: 2013 ident: 37477_CR19 contributor: fullname: J Zhang – volume: 157 start-page: 99 year: 1997 ident: 37477_CR3 publication-title: Arch. Intern. Med. doi: 10.1001/archinte.1997.00440220103013 contributor: fullname: HM Krumholz |
SSID | ssj0000529419 |
Score | 2.457486 |
Snippet | Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an important... Abstract Hospital readmissions rate is reportedly high and has caused huge financial burden on health care systems in many countries. It is viewed as an... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 10479 |
SubjectTerms | 639/705/1042 639/705/117 692/700/228 Calibration Diagnosis Embedding Health care Health Facilities Health Personnel Humanities and Social Sciences Humans multidisciplinary Patient Readmission Quality of Health Care Science Science (multidisciplinary) Survival Survival analysis |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNE0f26RFgd5aE60etnRMQkMIaU8N5KZKlkRy8S5r72H_fWck7zbug156tWQY5pvxzHhehHwIzMtkgqpc4qLC6SOgcypWyZkABsFp5bB3-MvX-upWXt-pu0ervrAmrIwHLow7DUbyKA0TQgqpW26ciy1EARBAxbpxpc2X8UfBVJnqzY2cm7FLhgl92oOlwm4yoEiACw2aNbFEeWD_n7zM34slf8mYZkN0-Zw8Gz1IelYoPyBPYveC7JedkptD8v0mgnTm3UM0xLik_Rq-BiBPNC-96emwoMsVpmcGWjoqN3SRKFaAUawzpw8dDblYI9L7cakIBc8ygEDgn7X-Jbm9_Pzt4qoa1yhUrZLzoWowNZdaURvfQnDVtEI2XsuQPFgiYeqofArJcMfmgBsYtMSZaQI4D6llrG3EK7LXLbr4htBoPERIQSfwmiCuDj7ppL33xoOPzhWfkY9bltplmZZhc5ZbaFsAsACAzQBYMSPnyPXdTZx0nR8A_nbE3_4L_xk53mJmR_XrLU41UwxrTWfkZHcMfMJsiOviYp3vgK-jFIc7rwvEO0pw3BN8C-FET8CfkDo96R7u83BuXNvWaAWvftrKyU-6_s6Lt_-DF0fkKUcBZ3XF9THZG1br-A58psG_z-rxA-5CEZE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFRIXxJtAqYzEDVbd-JG1T4iiVlUFFUJU6s342fayG7KbQ_89M14nVYD2GnuliWfs-cYzno-Q96F2IukgK5sYr7D7COw5GatkdQCHYJW0-Hb42-n8-EycnMvzcuHWl7LK9ZmYD-rQebwj38dGVbLG8sFPi98VskZhdrVQaNwnO2zGlZqQnYPD0-8_NrcsmMcSM11ey9Rc7ffgsfBVGUjGAUrDDtvySLlx___Q5r9Fk39lTrNDOnpMHhUkST-Pqn9C7sX2KXkwcktePyO_vkaw0sxBREOMC9qv4FQAu6KZ_KanQ0cXS0zTDHR8WXlNu0SxEoxivTm9amnIRRuRXhZyEQoIM4Bh4A1b_5ycHR3-_HJcFTqFyksxG6oGU3TJ87l2HoKsxnPROCVCcuCRuJ5H6VJImtl6BvoDx5ZYrZsAICL5uvYNf0EmbdfGV4RG7SBSCioBeoL4OrikknLOaQdYnUk2JR_WS2oWY9cMk7PdXJlRAQYUYLICDJ-SA1z1zUzseJ1_6JYXpmwgE7RgUYCgXHChPNPWRg_RIATScd5YNSW7a52Zsg17c2M0U_JuMwzrhFkR28ZulecA5pGSwZyXo4o3kmDbJzgTYURtKX9L1O2R9uoyN-lG-rZGSfj049pObuS6fS1e3_033pCHyHePtWpM7ZLJsFzFt4CKBrdXTP8PIpMLaw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKKyQuCMproUWuxA0CWT8S-4BQQa2qinJipd6MHdu0EkqWTVbq_vvOOMmihUXqNbaV0cw4803mRcgbnzsRtZeZjYxn2H0E7pwMWbTag0GwSlqsHb74VpzNxPmlvNwh47ijgYHtVtcO50nNFr_e3_xefYIL_7EvGVcfWjBCWCgGL-OAjuHS3CN7DCwjpnhdDHC_7_XNtJjqoXZm-9EN-5Ta-G_Dnv-mUP4VR03m6fQReTjgSnrcK8JjshPqfXK_nzS5ekJ-fA2gs2kiEfUhzGm7hG8EaBlNo3Ba2jV0vsCgTUf7OssVbSLFvDCK2ef0uqY-pXAEejWMGqGANz2oCf5va5-S2enJ9y9n2TBcIaukmHZZiQG7WPFCuwpcrrLionRK-OjAPnFdBOmij5rZfArSBDMXWa5LD5AiVnlelfwZ2a2bOrwgNGgHfpNXEbAUeNveRRWVc047QO5Msgl5O7LUzPseGibFvrkyvQAMCMAkARg-IZ-R6-ud2P86PWgWP81wnYzXggUBhHLBhaqYtjZU4BuCWx2K0qoJORhlZkadMtjrTOaYgTohR-tl4BPGSGwdmmXaAwhISgZ7nvciXlOCTaDgCwkrakP4G6RurtTXV6llNw5zK5WEo-9GPflD1_958fIOdL4iDxjqb15kTB2Q3W6xDIcAlDr3Omn_LbRLD2E priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZ4CIkL4t2lgFyJG43I-pHYR7oCIQScisTN2LEtuGRXJHvg33fGyW6VFg5c187K8jeT-SbzIuTM505E7WVmI-MZdh8BnZMhi1Z7MAhWSYu1w_cPxc2juH2ST32bHKyFGcTvubpowMBgERj8EQfmCwqxStbBBpcozZNisvyeghErMdZ9XczHjw5sT2rR_xGv_D898p8YaTI919tkq-eM9LIDeYeshHqXbHRTJN_3yPNdAHlM04aoD2FGmznoP0gQTWNuGtpO6ewNAzIt7Woo3-k0Usz5ophZTl9r6lN6RqAv_RgRClzSgwjgt7RmnzxeX_2e3GT94ISskmLcZiUG42LFC-0qcKfKiovSKeGjA9vDdRGkiz5qZvMxIAUmLLJclx7oQqzyvCr5AVmrp3X4RmjQDnwiryLwJPCkvYsqKuecdsDKmWQjcr64UjPr-mOYFNfmynQAGADAJAAMH5FfeOvLndjbOv0AkJteVYzXggUBB-WCC1UxbW2owO8DlzkUpVUjcrzAzPQK1xjsYyZzzC4dkR_LZbgnjH_YOkznaQ-wGykZ7DnsIF6eBBs8wdsPVtQA_MFRhyv160tqx42D2kol4dGfCzn5e67P7-Loa9u_k02cdI9Zakwdk7X2bR5OgA-17jQpwh891QMX priority: 102 providerName: Springer Nature |
Title | Leveraging deep survival models to predict quality of care risk in diverse hospital readmissions |
URI | https://link.springer.com/article/10.1038/s41598-023-37477-3 https://www.ncbi.nlm.nih.gov/pubmed/37380704 https://www.proquest.com/docview/2830501074 https://search.proquest.com/docview/2831295524 https://pubmed.ncbi.nlm.nih.gov/PMC10307854 https://doaj.org/article/d942e490334348c29aaec144523e67a8 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RaBeEG8MJVokbuDG2Ye9e6RRqwqRqkJUys14X20kakeJc-i_Z3ZtB8LjwsWS7ZU82pnxfLPzAnhnM829siKtPGVp6D6COidc6itl0SBUUlShdnh2kZ9f8U9zMd-DfKiFiUn7Ri-O6--3x_XiJuZWLm_NeMgTG1_OpmE0ViEFH-_DPtrfX3z0rqM3VXyi-gqZjMnxGq1UqCRDahjCZ9SqQ3gQWvqgvPMdgxT79v8NbP6ZM_lb4DTao7NH8LAHkuRjR_Bj2HP1E7jfjZa8ewrfPjsU0jiCiFjnlmS9wZ8CihWJs2_WpG3IchWiNC3pCivvSONJSAQjId2cLGpiY86GIzf9bBGCANOiXIQDtvUzuDo7_To9T_tpCqkRfNKmRYjQecNypQ36WIVhvNCSW6_RIDGVO6G99YpW2QTZh3bN00wVFjGEN1lmCvYcDuqmdi-BOKXRUbLSI3hC99pqL73UWiuNUJ0KmsD7YUvLZdc0o4zBbibLjhcl8qKMvChZAidh17crQ8Pr-KBZXZc920urOHUcCWWccWmoqipn0BlEP9rlRSUTOBp4VvZauC5DczORhZTTBN5uX-M-haBIVbtmE9cg5BGC4poXHYu3lAwikoDcYf4OqbtvUGRjj-5BRBP4MMjJT7r-vRev_v9Lr-GQBgnP8pTKIzhoVxv3BgFTq0eoJfNiBPdOTi8uv-DdNJ-O4uEDXmdcjqL-_AAmxhia |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,21388,24318,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793,73745,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFYIL4k2gBSNxg1U3fuzaJ0SrVgHSCKFW6s2s1zbtZTdkN4f-e2a8TqoA7TX2ShPPjOcbz4uQ9y63ImgnsyownmH3EdA56bNQaQcGoVKywtrhk3kxPRNfz-V5enDrUlrl-k6MF7Vra3wj38dGVTLH9MFPi98ZTo3C6GoaoXGX7GDndDkiOwdH8-8_Nq8sGMcSE52qZXKu9juwWFhVBpRxgNKgYVsWKTbu_x_a_Ddp8q_IaTRIx4_Iw4Qk6eeB9Y_JHd88IfeG2ZJXT8nPmQcpjTOIqPN-QbsV3AogVzQOv-lo39LFEsM0PR0qK69oGyhmglHMN6eXDXUxacPTizRchALCdCAY-MLWPSNnx0enh9MsjVPIaikmfVZiiC7UvNC2BierrLkorRIuWLBIXBde2uCCZlU-Af6BYQss16UDEBHqPK9L_pyMmrbxLwn12oKn5FQA9AT-tbNBBWWt1RawOpNsTD6sj9Qshq4ZJka7uTIDAwwwwEQGGD4mB3jqm53Y8Tr-0C5_maRAxmnBvABCueBC1UxXla_BGwRH2hdlpcZkd80zk9SwM9dCMybvNstwThgVqRrfruIewDxSMtjzYmDxhhJs-wR3IqyoLeZvkbq90lxexCbdOL6tVBI-_biWk2u6bj6LV7f_jbfk_vT0ZGZmX-bfXpMHDMU4LzKmdsmoX678HiCk3r5JavAHxH0OUw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELYgFYgL4k2gBSNxg1U2fuzaJ0QfUYESVYhKvZn12qa97Ibs5tB_z4zXSRWgXGOvNPHMeL7xvAh563IrgnYyqwLjGXYfAZ2TPguVdmAQKiUrrB3-Oi-Oz8Tnc3me8p-6lFa5vhPjRe3aGt_IJ9ioSuaYPjgJKS3i9HD2YfErwwlSGGlN4zRukx2wijkbkZ39o_npt82LC8a0xFSnypmcq0kH1gsrzIBKDrAatG3LOsUm_v9Cnn8nUP4RRY3GafaA3E-okn4cxOAhueWbR-TOMGfy6jH5ceJBYuM8Iuq8X9BuBTcEyBiNg3A62rd0scSQTU-HKssr2gaKWWEUc8_pZUNdTODw9CINGqGANh0ICb62dU_I2ezo-8FxlkYrZLUU0z4rMVwXal5oW4PDVdZclFYJFyxYJ64LL21wQbMqnwIvwcgFluvSAaAIdZ7XJX9KRk3b-OeEem3Ba3IqAJICX9vZoIKy1moLuJ1JNibv1kdqFkMHDRMj31yZgQEGGGAiAwwfk3089c1O7H4df2iXP01SJuO0YF4AoVxwoWqmq8rX4BmCU-2LslJjsrvmmUkq2ZlrARqTN5tlOCeMkFSNb1dxD-AfKRnseTaweEMJtoCC-xFW1Bbzt0jdXmkuL2LDbhzlVioJn75fy8k1XTefxYv__43X5C5ogDn5NP_yktxjKMV5kTG1S0b9cuX3ACz19lXSgt9x6RKA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Leveraging+deep+survival+models+to+predict+quality+of+care+risk+in+diverse+hospital+readmissions&rft.jtitle=Scientific+reports&rft.au=Tran%2C+Nhat+Quang&rft.au=Goel%2C+Gautam&rft.au=Pudota%2C+Nirmala&rft.au=Suesserman%2C+Michael&rft.date=2023-06-28&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=10479&rft.epage=10479&rft_id=info:doi/10.1038%2Fs41598-023-37477-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |