Highly efficient pure-blue organic light-emitting diodes based on rationally designed heterocyclic phenophosphazinine-containing emitters

Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herei...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 6175 - 12
Main Authors Xing, Longjiang, Wang, Jianghui, Chen, Wen-Cheng, Liu, Bo, Chen, Guowei, Wang, Xiaofeng, Tan, Ji-Hua, Chen, Season Si, Chen, Jia-Xiong, Ji, Shaomin, Zhao, Zujin, Tang, Man-Chung, Huo, Yanping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5 H -phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes. The inefficient spin-flip process of multi-resonance emitters could compromise the device performance of light-emitting diodes. Here, the authors incorporate conformationally flexible donor to enhance the density of excited states, achieving 20-fold increase in reverse intersystem crossing rate.
AbstractList Abstract Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5H-phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.
Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5 H -phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.
Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5 H -phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes. The inefficient spin-flip process of multi-resonance emitters could compromise the device performance of light-emitting diodes. Here, the authors incorporate conformationally flexible donor to enhance the density of excited states, achieving 20-fold increase in reverse intersystem crossing rate.
Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5H-phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.
Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5H-phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5H-phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.
Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color purity. However, these compounds encounter challenges associated with the inefficient spin-flip process, compromising device performance. Herein, we report two pure-blue emitters based on an organoboron multi-resonance core, incorporating a conformationally flexible donor, 10-phenyl-5H-phenophosphazinine 10-oxide (or sulfide). This design concept selectively modifies the orbital type of high-lying excited states to a charge transfer configuration while simultaneously providing the necessary conformational freedom to enhance the density of excited states without sacrificing color purity. We show that the different embedded phosphorus motifs (phosphine oxide/sulfide) of the donor can finely tune the electronic structure and conformational freedom, resulting in an accelerated spin-flip process through intense spin-vibronic coupling, achieving over a 20-fold increase in the reverse intersystem crossing rate compared to the parent multi-resonance emitter. Utilizing these emitters, we achieve high-performance pure-blue organic light-emitting diodes, showcasing a top-tier external quantum efficiency of 37.6% with reduced efficiency roll-offs. This proposed strategy not only challenges the conventional notion that flexible electron-donors are undesirable for constructing narrowband emitters but also offer a pathway for designing efficient narrow-spectrum blue organic light-emitting diodes.The inefficient spin-flip process of multi-resonance emitters could compromise the device performance of light-emitting diodes. Here, the authors incorporate conformationally flexible donor to enhance the density of excited states, achieving 20-fold increase in reverse intersystem crossing rate.
ArticleNumber 6175
Author Zhao, Zujin
Chen, Season Si
Chen, Guowei
Wang, Jianghui
Chen, Wen-Cheng
Liu, Bo
Huo, Yanping
Xing, Longjiang
Chen, Jia-Xiong
Ji, Shaomin
Tang, Man-Chung
Wang, Xiaofeng
Tan, Ji-Hua
Author_xml – sequence: 1
  givenname: Longjiang
  surname: Xing
  fullname: Xing, Longjiang
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou
– sequence: 2
  givenname: Jianghui
  surname: Wang
  fullname: Wang, Jianghui
  organization: State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology
– sequence: 3
  givenname: Wen-Cheng
  orcidid: 0000-0003-3788-3516
  surname: Chen
  fullname: Chen, Wen-Cheng
  email: wencchen@gdut.edu.cn
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center
– sequence: 4
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou
– sequence: 5
  givenname: Guowei
  surname: Chen
  fullname: Chen, Guowei
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou
– sequence: 6
  givenname: Xiaofeng
  surname: Wang
  fullname: Wang, Xiaofeng
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou
– sequence: 7
  givenname: Ji-Hua
  surname: Tan
  fullname: Tan, Ji-Hua
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou
– sequence: 8
  givenname: Season Si
  orcidid: 0000-0002-0323-7447
  surname: Chen
  fullname: Chen, Season Si
  organization: Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 9
  givenname: Jia-Xiong
  surname: Chen
  fullname: Chen, Jia-Xiong
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center
– sequence: 10
  givenname: Shaomin
  surname: Ji
  fullname: Ji, Shaomin
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center
– sequence: 11
  givenname: Zujin
  orcidid: 0000-0002-0618-6024
  surname: Zhao
  fullname: Zhao, Zujin
  email: mszjzhao@scut.edu.cn
  organization: State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology
– sequence: 12
  givenname: Man-Chung
  orcidid: 0000-0001-9334-9348
  surname: Tang
  fullname: Tang, Man-Chung
  email: kobetang2021@sz.tsinghua.edu.cn
  organization: Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University
– sequence: 13
  givenname: Yanping
  orcidid: 0000-0003-4124-6026
  surname: Huo
  fullname: Huo, Yanping
  email: yphuo@gdut.edu.cn
  organization: School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou, Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Analytical & Testing Center, Guangdong University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39039042$$D View this record in MEDLINE/PubMed
BookMark eNp9ksFu1DAQhiNUREvpC3BAkbhwCdixYzsnhCqglSpxgbPlOOPEK6-92A7S8ga8Nd5NKW0P9cWjyff_mRnPy-rEBw9V9Rqj9xgR8SFRTBlvUEubDhGOmu5ZddYiihvMW3JyLz6tLlLaoHJIjwWlL6pT0pcY0fas-nNlp9ntazDGags-17slQjO4BeoQJ-Wtrl1BcgNbm7P1Uz3aMEKqB5VgrIOvo8o2eOWKS8nbyZf0DBli0Hvtin43gw-7OaTdrH5bbz00OvisDuFUH30hplfVc6Ncgovb-7z68eXz98ur5ubb1-vLTzeN7ijODact7hgxGo2HhtCABmLaQWgljOF4RIJp3aMyo2HghmtDW9FRowoq8GgEOa-uV98xqI3cRbtVcS-DsvKYKE1LFbPVDiRiSBDVY84RUMJEr9jAxMio6qhWiBavj6vXbhm2MOoyv6jcA9OHX7yd5RR-SYxbRjp2cHh36xDDzwVSllubNDinPIQlSVIqYBx3qC_o20foJiyxDH6lCOpbjgr15n5Jd7X8e_ICtCugY0gpgrlDMJKH1ZLrasmyWvK4WrIrIvFIpG0-vntpy7qnpWSVpvIfP0H8X_YTqr8mQ-TF
CitedBy_id crossref_primary_10_1002_ange_202420489
crossref_primary_10_1002_asia_202400925
crossref_primary_10_1002_asia_202400827
crossref_primary_10_3788_AOSOL240464
crossref_primary_10_1039_D4SC08708A
crossref_primary_10_1002_adma_202412761
crossref_primary_10_1002_anie_202420489
crossref_primary_10_1016_j_dyepig_2025_112770
crossref_primary_10_1016_j_cclet_2025_111071
crossref_primary_10_1039_D4TC04875J
crossref_primary_10_1002_anie_202420253
crossref_primary_10_1016_j_molstruc_2025_142094
crossref_primary_10_1021_acs_jpclett_4c02702
crossref_primary_10_1002_ange_202420253
crossref_primary_10_1002_adma_202416224
crossref_primary_10_1016_j_cej_2025_160269
crossref_primary_10_1126_sciadv_adt7899
crossref_primary_10_1016_j_cej_2025_160102
crossref_primary_10_1002_adom_202402479
crossref_primary_10_1002_adom_202401754
crossref_primary_10_1007_s11426_024_2478_x
Cites_doi 10.1002/anie.202215522
10.1002/anie.202401120
10.1038/s41467-023-40481-w
10.1002/advs.202101137
10.1002/anie.202205684
10.1002/anie.202313084
10.1021/acs.jctc.2c00141
10.1038/s41566-023-01164-6
10.1002/anie.202210210
10.1002/anie.202201886
10.1002/anie.202301930
10.1039/D3QM00131H
10.1038/s41427-021-00318-8
10.1021/jacs.3c01267
10.1038/s41566-021-00763-5
10.1002/anie.202310943
10.1002/adom.201801536
10.1126/science.abc8530
10.1002/adfm.202103273
10.1002/adfm.202304006
10.1038/s41467-022-32607-3
10.1002/anie.202206916
10.1039/D3TC02409A
10.1002/adfm.202211893
10.1016/j.dyepig.2023.111421
10.1002/chem.202000264
10.1016/j.cej.2023.143557
10.1002/anie.202201588
10.1038/s41566-022-01083-y
10.1038/s41566-021-00870-3
10.1016/j.mattod.2023.09.002
10.1021/ct200308m
10.1002/adfm.202306394
10.1002/adma.201505491
10.1038/s41566-019-0476-5
10.31635/ccschem.021.202101033
10.1039/D3CC05460H
10.1002/adom.201902142
10.1039/C6SC04863C
10.1016/j.orgel.2018.04.038
10.1002/adma.202202464
10.1021/acs.jpclett.1c00094
10.1002/adma.202110547
10.1002/chem.202104624
10.1002/anie.201806323
10.1002/adma.202212237
10.1039/C8CC02365D
10.1038/s42004-022-00766-5
10.1063/1.1733610
10.1002/adma.202205166
10.1002/adom.202101789
10.1038/ncomms13680
10.1002/cphc.201600662
10.1039/D2CC06802H
10.1002/9783527650002
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-50370-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_06083a91770e43689a6b68d64a54ca04
PMC11263564
39039042
10_1038_s41467_024_50370_5
Genre Journal Article
GrantInformation_xml – fundername: Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
  grantid: 2023B1515040003; 2022B1515020041
  funderid: https://doi.org/10.13039/501100007162
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U2001222; U23A20594; U22A20399; U23A20594; 22375066; 22275114
  funderid: https://doi.org/10.13039/501100001809
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: WDZC20220817160017003
  funderid: https://doi.org/10.13039/501100010877
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U22A20399
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: WDZC20220817160017003
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U23A20594
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22375066
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U2001222
– fundername: Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
  grantid: 2022B1515020041
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22275114
– fundername: Guangdong Science and Technology Department (Science and Technology Department, Guangdong Province)
  grantid: 2023B1515040003
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c541t-7421563fc0d00390b0b3f2b8ca8ff71d086cc90103bb7f7cf42854fa39081df83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:34 EDT 2025
Thu Aug 21 18:32:50 EDT 2025
Fri Jul 11 08:04:54 EDT 2025
Wed Aug 13 08:43:14 EDT 2025
Mon Jul 21 05:33:27 EDT 2025
Tue Jul 01 02:37:23 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Fri Feb 21 02:37:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-7421563fc0d00390b0b3f2b8ca8ff71d086cc90103bb7f7cf42854fa39081df83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3788-3516
0000-0002-0323-7447
0000-0002-0618-6024
0000-0001-9334-9348
0000-0003-4124-6026
OpenAccessLink https://www.nature.com/articles/s41467-024-50370-5
PMID 39039042
PQID 3083309270
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_06083a91770e43689a6b68d64a54ca04
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11263564
proquest_miscellaneous_3083671509
proquest_journals_3083309270
pubmed_primary_39039042
crossref_primary_10_1038_s41467_024_50370_5
crossref_citationtrail_10_1038_s41467_024_50370_5
springer_journals_10_1038_s41467_024_50370_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-22
PublicationDateYYYYMMDD 2024-07-22
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kondo (CR6) 2019; 13
Xu (CR35) 2020; 8
Le Bahers, Adamo, Ciofini (CR41) 2011; 7
Jin (CR20) 2024; 63
Xu (CR16) 2021; 4
Wu (CR12) 2021; 15
Wang (CR15) 2023; 33
Wang, Xu, Yang, Xue, Wang (CR19) 2023; 35
Jeon (CR54) 2021; 15
Joo (CR2) 2020; 370
Hall (CR30) 2022; 18
Pei (CR37) 2021; 12
Luo (CR25) 2023; 62
He (CR23) 2023; 33
Song (CR21) 2023; 467
Chen (CR11) 2023; 33
Naveen, Yang, Kwon (CR56) 2022; 5
CR4
He (CR18) 2023; 7
El-Sayed (CR13) 1963; 38
Gibson, Monkman, Penfold (CR29) 2016; 17
Fan, Zhang, Zhang, Duan (CR36) 2022; 28
Qu (CR51) 2022; 61
Lv (CR57) 2022; 61
CR46
Park, Min, Yasuda (CR49) 2022; 61
Fan (CR22) 2021; 10
Kang (CR34) 2023; 69
Machida, Iwasa, Taketsugu, Sada, Kokado (CR38) 2020; 26
Madayanad Suresh (CR10) 2023; 62
Etherington, Gibson, Higginbotham, Penfold, Monkman (CR28) 2016; 7
Luo, Xiao, Zheng (CR14) 2024; 60
Zhang (CR52) 2023; 62
Ha, Hur, Pathak, Jeong, Woo (CR45) 2021; 13
Liu (CR3) 2022; 13
Mischok, Hillebrandt, Kwon, Gather (CR1) 2023; 17
Naveen, Palanisamy, Chae, Kwon (CR42) 2023; 59
Liang (CR50) 2018; 57
Wang (CR9) 2022; 61
Takeda (CR39) 2018; 54
Northey, Penfold (CR31) 2018; 59
Zhao, Zhou, Tan, Li (CR47) 2018; 11
Wu (CR26) 2023; 217
Liu, Fu, Chen, Tang, Zhao (CR55) 2023; 35
Huang (CR17) 2023; 145
Okazaki (CR40) 2017; 8
Bian (CR48) 2022; 34
Liu, Chen, Fu, Zhao, Tang (CR53) 2021; 31
Huang (CR27) 2023; 11
Liu (CR24) 2022; 61
Lee (CR43) 2023; 14
Wang (CR8) 2023; 62
Hu (CR7) 2022; 16
Hatakeyama (CR5) 2016; 28
Patil (CR32) 2021; 8
Yuan (CR44) 2019; 7
Lee (CR33) 2022; 34
VV Patil (50370_CR32) 2021; 8
S Madayanad Suresh (50370_CR10) 2023; 62
Y-H He (50370_CR18) 2023; 7
X Lv (50370_CR57) 2022; 61
D Hall (50370_CR30) 2022; 18
Z-C Zhao (50370_CR47) 2018; 11
X Fan (50370_CR22) 2021; 10
Q Wu (50370_CR26) 2023; 217
X Wu (50370_CR12) 2021; 15
KR Naveen (50370_CR56) 2022; 5
W-J Joo (50370_CR2) 2020; 370
Y Liu (50370_CR24) 2022; 61
IS Park (50370_CR49) 2022; 61
T Fan (50370_CR36) 2022; 28
K Zhang (50370_CR52) 2023; 62
T Hatakeyama (50370_CR5) 2016; 28
X Liang (50370_CR50) 2018; 57
A Mischok (50370_CR1) 2023; 17
Z Huang (50370_CR17) 2023; 145
H Liu (50370_CR53) 2021; 31
M Okazaki (50370_CR40) 2017; 8
J Kang (50370_CR34) 2023; 69
JM Ha (50370_CR45) 2021; 13
H Liu (50370_CR55) 2023; 35
MA El-Sayed (50370_CR13) 1963; 38
Y Kondo (50370_CR6) 2019; 13
Y-H He (50370_CR23) 2023; 33
HL Lee (50370_CR43) 2023; 14
50370_CR46
G Chen (50370_CR11) 2023; 33
Q Wang (50370_CR19) 2023; 35
X-F Luo (50370_CR14) 2024; 60
KR Naveen (50370_CR42) 2023; 59
Z Pei (50370_CR37) 2021; 12
H Wang (50370_CR15) 2023; 33
MK Etherington (50370_CR28) 2016; 7
50370_CR4
SO Jeon (50370_CR54) 2021; 15
HL Lee (50370_CR33) 2022; 34
J-M Jin (50370_CR20) 2024; 63
J Liu (50370_CR3) 2022; 13
X Song (50370_CR21) 2023; 467
Y-K Qu (50370_CR51) 2022; 61
J Gibson (50370_CR29) 2016; 17
X Wang (50370_CR9) 2022; 61
Y Xu (50370_CR35) 2020; 8
T Machida (50370_CR38) 2020; 26
Y Takeda (50370_CR39) 2018; 54
YX Hu (50370_CR7) 2022; 16
S Luo (50370_CR25) 2023; 62
Y Xu (50370_CR16) 2021; 4
J Bian (50370_CR48) 2022; 34
Q Wang (50370_CR8) 2023; 62
X Huang (50370_CR27) 2023; 11
Y Yuan (50370_CR44) 2019; 7
T Northey (50370_CR31) 2018; 59
T Le Bahers (50370_CR41) 2011; 7
References_xml – volume: 62
  start-page: e202215522
  year: 2023
  ident: CR10
  article-title: A deep-blue-emitting heteroatom-doped MR-TADF nonacene for high-performance organic light-emitting diodes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202215522
– volume: 63
  start-page: e202401120
  year: 2024
  ident: CR20
  article-title: Synergetic modulation of steric hindrance and excited state for anti-quenching and fast spin-flip multi-resonance thermally activated delayed fluorophore
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202401120
– volume: 11
  start-page: 1999
  year: 2018
  end-page: 2003
  ident: CR47
  article-title: Research progress about the effect and prevention of blue light on eyes
  publication-title: Int. J. Ophthalmol.
– volume: 14
  year: 2023
  ident: CR43
  article-title: Hybridization of short-range and long-range charge transfer excited states in multiple resonance emitter
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40481-w
– ident: CR4
– volume: 8
  start-page: 2101137
  year: 2021
  ident: CR32
  article-title: Purely spin‐vibronic coupling assisted triplet to singlet up‐conversion for real deep blue organic light‐emitting diodes with over 20% efficiency and color coordinate of 0.05
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101137
– volume: 61
  start-page: e202205684
  year: 2022
  ident: CR49
  article-title: Ultrafast triplet–singlet exciton interconversion in narrowband blue organoboron emitters doped with heavy chalcogens
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205684
– volume: 62
  start-page: e202313084
  year: 2023
  ident: CR52
  article-title: Carbazole-decorated organoboron emitters with low-lying HOMO levels for solution-processed narrowband blue hyperfluorescence OLED devices
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202313084
– volume: 18
  start-page: 4903
  year: 2022
  end-page: 4918
  ident: CR30
  article-title: Modeling of multiresonant thermally activated delayed fluorescence emitters─properly accounting for electron correlation is key!
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00141
– volume: 17
  start-page: 393
  year: 2023
  end-page: 400
  ident: CR1
  article-title: Highly efficient polaritonic light-emitting diodes with angle-independent narrowband emission
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01164-6
– volume: 61
  start-page: e202210210
  year: 2022
  ident: CR24
  article-title: Space-confined donor–acceptor strategy enables fast spin–flip of multiple resonance emitters for suppressing efficiency roll-off
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210210
– volume: 61
  start-page: e202201886
  year: 2022
  ident: CR51
  article-title: Steric modulation of spiro structure for highly efficient multiple resonance emitters
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202201886
– volume: 62
  start-page: e202301930
  year: 2023
  ident: CR8
  article-title: Precise regulation of emission maxima and construction of highly efficient electroluminescent materials with high color purity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202301930
– volume: 7
  start-page: 2454
  year: 2023
  end-page: 2463
  ident: CR18
  article-title: Red-shift emission and rapid up-conversion of B,N-containing electroluminescent materials tuning intramolecular charge transfer
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00131H
– ident: CR46
– volume: 13
  year: 2021
  ident: CR45
  article-title: Recent advances in organic luminescent materials with narrowband emission
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-021-00318-8
– volume: 145
  start-page: 12550
  year: 2023
  end-page: 12560
  ident: CR17
  article-title: Charge transfer excited state promoted multiple resonance delayed fluorescence emitter for high-performance narrowband electroluminescence
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01267
– volume: 15
  start-page: 208
  year: 2021
  end-page: 215
  ident: CR54
  article-title: High-efficiency, long-lifetime deep-blue organic light-emitting diodes
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00763-5
– volume: 62
  start-page: e202310943
  year: 2023
  ident: CR25
  article-title: Regulation of multiple resonance delayed fluorescence via through-space charge transfer excited state towards high-efficiency and stable narrowband electroluminescence
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310943
– volume: 7
  start-page: 1801536
  year: 2019
  ident: CR44
  article-title: The design of fused amine/carbonyl system for efficient thermally activated delayed fluorescence: novel multiple resonance core and electron acceptor
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801536
– volume: 370
  start-page: 459
  year: 2020
  end-page: 463
  ident: CR2
  article-title: Metasurface-driven OLED displays beyond 10,000 pixels per inch
  publication-title: Science
  doi: 10.1126/science.abc8530
– volume: 31
  start-page: 2103273
  year: 2021
  ident: CR53
  article-title: Achieving high electroluminescence efficiency and high color rendering index for all-fluorescent white OLEDs based on an out-of-phase sensitizing system
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103273
– volume: 33
  start-page: 2304006
  year: 2023
  ident: CR23
  article-title: Acceptor–donor–acceptor-cond delayed fluorescence emitters for efficient orange-red and white devices with low roll-off
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304006
– volume: 13
  year: 2022
  ident: CR3
  article-title: Toward a BT.2020 green emitter through a combined multiple resonance effect and multi-lock strategy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32607-3
– volume: 61
  start-page: e202206916
  year: 2022
  ident: CR9
  article-title: Mesityl-functionalized multi-resonance organoboron delayed fluorescent frameworks with wide-range color tunability for narrowband OLEDs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206916
– volume: 11
  start-page: 11885
  year: 2023
  end-page: 11894
  ident: CR27
  article-title: Donor-modified multiple resonance emitters with accelerated reverse intersystem crossing towards high-efficiency and narrowband deep-blue OLEDs
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D3TC02409A
– volume: 33
  start-page: 2211893
  year: 2023
  ident: CR11
  article-title: Triphenylamine-functionalized multiple-resonance TADF emitters with accelerated reverse intersystem crossing and aggregation-induced emission enhancement for narrowband OLEDs
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211893
– volume: 217
  start-page: 111421
  year: 2023
  ident: CR26
  article-title: Dual emission from donor-modified MR-TADF emitter: evidence for coexistence of TICT and MR excited states
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2023.111421
– volume: 26
  start-page: 8028
  year: 2020
  end-page: 8034
  ident: CR38
  article-title: Photoinduced pyramidal inversion behavior of phosphanes involved with aggregation-induced emission behavior
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202000264
– volume: 467
  start-page: 143557
  year: 2023
  ident: CR21
  article-title: Efficient narrowband organic light-emitting devices based on multi-resonance TADF emitters with secondary donor
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143557
– volume: 61
  start-page: e202201588
  year: 2022
  ident: CR57
  article-title: Extending the π-skeleton of multi-resonance TADF materials towards high-efficiency narrowband deep-blue emission
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202201588
– volume: 16
  start-page: 803
  year: 2022
  end-page: 810
  ident: CR7
  article-title: Efficient selenium-integrated TADF OLEDs with reduced roll-off
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-022-01083-y
– volume: 15
  start-page: 780
  year: 2021
  end-page: 786
  ident: CR12
  article-title: The role of host–guest interactions in organic emitters employing MR-TADF
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-021-00870-3
– volume: 69
  start-page: 88
  year: 2023
  end-page: 96
  ident: CR34
  article-title: Expanded multiple-resonance structure for highly efficient narrowband deep-blue organic light-emitting diodes
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.09.002
– volume: 7
  start-page: 2498
  year: 2011
  end-page: 2506
  ident: CR41
  article-title: A qualitative index of spatial extent in charge-transfer excitations
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200308m
– volume: 33
  start-page: 2306394
  year: 2023
  ident: CR15
  article-title: A multiple resonance emitter integrating -B-π-B′/ -N-π-N pattern via an unembedded organoboron decoration for both high-efficiency solution- and vacuum-processed OLEDs
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306394
– volume: 28
  start-page: 2777
  year: 2016
  end-page: 2781
  ident: CR5
  article-title: Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505491
– volume: 13
  start-page: 678
  year: 2019
  end-page: 682
  ident: CR6
  article-title: Narrowband deep-blue organic light-emitting diode featuring an organoboron-based emitter
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0476-5
– volume: 4
  start-page: 2065
  year: 2021
  end-page: 2079
  ident: CR16
  article-title: Highly efficient electroluminescent materials with high color purity based on strong acceptor attachment onto B–N-containing multiple resonance frameworks
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202101033
– volume: 60
  start-page: 1089
  year: 2024
  end-page: 1099
  ident: CR14
  article-title: Recent progress in multi-resonance thermally activated delayed fluorescence emitters with an efficient reverse intersystem crossing process
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC05460H
– volume: 8
  start-page: 1902142
  year: 2020
  ident: CR35
  article-title: Molecular-structure and device-configuration optimizations toward highly efficient green electroluminescence with narrowband emission and high color purity
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201902142
– volume: 8
  start-page: 2677
  year: 2017
  end-page: 2686
  ident: CR40
  article-title: Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04863C
– volume: 59
  start-page: 45
  year: 2018
  end-page: 48
  ident: CR31
  article-title: The intersystem crossing mechanism of an ultrapure blue organoboron emitter
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.04.038
– volume: 34
  start-page: 2202464
  year: 2022
  ident: CR33
  article-title: Multiple-resonance extension and spin-vibronic-coupling-based narrowband blue organic fluorescence emitters with over 30% quantum efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202464
– volume: 12
  start-page: 2712
  year: 2021
  end-page: 2720
  ident: CR37
  article-title: Elucidating the electronic structure of a delayed fluorescence emitter via orbital interactions, excitation energy components, charge-transfer numbers, and vibrational reorganization energies
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00094
– volume: 34
  start-page: 2110547
  year: 2022
  ident: CR48
  article-title: Ambipolar self-host functionalization accelerates blue multi-resonance thermally activated delayed fluorescence with internal quantum efficiency of 100
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110547
– volume: 28
  start-page: e202104624
  year: 2022
  ident: CR36
  article-title: Decoration strategy in para boron position: an effective way to achieve ideal multi‐resonance emitters
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202104624
– volume: 57
  start-page: 11316
  year: 2018
  end-page: 11320
  ident: CR50
  article-title: Peripheral amplification of multi-resonance induced thermally activated delayed fluorescence for highly efficient OLEDs
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806323
– volume: 35
  start-page: 2212237
  year: 2023
  ident: CR55
  article-title: Energy-efficient stable hyperfluorescence organic light-emitting diodes with improved color purities and ultrahigh power efficiencies based on low-polar sensitizing systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202212237
– volume: 54
  start-page: 6847
  year: 2018
  end-page: 6850
  ident: CR39
  article-title: Conformationally-flexible and moderately electron-donating units-installed D–A–D triad enabling multicolor-changing mechanochromic luminescence, TADF and room-temperature phosphorescence
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02365D
– volume: 5
  start-page: 149
  year: 2022
  ident: CR56
  article-title: Double boron-embedded multiresonant thermally activated delayed fluorescent materials for organic light-emitting diodes
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-022-00766-5
– volume: 38
  start-page: 2834
  year: 1963
  end-page: 2838
  ident: CR13
  article-title: Spin–orbit coupling and the radiationless processes in nitrogen heterocyclics
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1733610
– volume: 35
  start-page: 2205166
  year: 2023
  ident: CR19
  article-title: Precise functionalization of a multiple‐resonance framework: constructing narrowband organic electroluminescent materials with external quantum efficiency over 40%
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205166
– volume: 10
  start-page: 2101789
  year: 2021
  ident: CR22
  article-title: Managing intersegmental charge‐transfer and multiple resonance alignments of D ‐A typed TADF emitters for red OLEDs with improved efficiency and color purity
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202101789
– volume: 7
  year: 2016
  ident: CR28
  article-title: Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13680
– volume: 17
  start-page: 2956
  year: 2016
  end-page: 2961
  ident: CR29
  article-title: The importance of vibronic coupling for efficient reverse intersystem crossing in thermally activated delayed fluorescence molecules
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201600662
– volume: 59
  start-page: 3685
  year: 2023
  end-page: 3702
  ident: CR42
  article-title: Multiresonant TADF materials: triggering the reverse intersystem crossing to alleviate the efficiency roll-off in OLEDs
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06802H
– volume: 17
  start-page: 393
  year: 2023
  ident: 50370_CR1
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-023-01164-6
– ident: 50370_CR46
– volume: 33
  start-page: 2211893
  year: 2023
  ident: 50370_CR11
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202211893
– volume: 61
  start-page: e202201588
  year: 2022
  ident: 50370_CR57
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202201588
– volume: 60
  start-page: 1089
  year: 2024
  ident: 50370_CR14
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC05460H
– volume: 35
  start-page: 2205166
  year: 2023
  ident: 50370_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202205166
– volume: 62
  start-page: e202301930
  year: 2023
  ident: 50370_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202301930
– volume: 217
  start-page: 111421
  year: 2023
  ident: 50370_CR26
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2023.111421
– volume: 13
  year: 2021
  ident: 50370_CR45
  publication-title: NPG Asia Mater.
  doi: 10.1038/s41427-021-00318-8
– volume: 17
  start-page: 2956
  year: 2016
  ident: 50370_CR29
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201600662
– volume: 8
  start-page: 1902142
  year: 2020
  ident: 50370_CR35
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201902142
– volume: 7
  start-page: 2454
  year: 2023
  ident: 50370_CR18
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00131H
– volume: 4
  start-page: 2065
  year: 2021
  ident: 50370_CR16
  publication-title: CCS Chem.
  doi: 10.31635/ccschem.021.202101033
– volume: 7
  start-page: 2498
  year: 2011
  ident: 50370_CR41
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct200308m
– volume: 61
  start-page: e202205684
  year: 2022
  ident: 50370_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202205684
– volume: 34
  start-page: 2202464
  year: 2022
  ident: 50370_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202464
– volume: 59
  start-page: 3685
  year: 2023
  ident: 50370_CR42
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06802H
– volume: 8
  start-page: 2677
  year: 2017
  ident: 50370_CR40
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC04863C
– volume: 5
  start-page: 149
  year: 2022
  ident: 50370_CR56
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-022-00766-5
– volume: 38
  start-page: 2834
  year: 1963
  ident: 50370_CR13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1733610
– volume: 13
  year: 2022
  ident: 50370_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-32607-3
– volume: 11
  start-page: 1999
  year: 2018
  ident: 50370_CR47
  publication-title: Int. J. Ophthalmol.
– volume: 10
  start-page: 2101789
  year: 2021
  ident: 50370_CR22
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202101789
– volume: 28
  start-page: 2777
  year: 2016
  ident: 50370_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505491
– volume: 61
  start-page: e202201886
  year: 2022
  ident: 50370_CR51
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202201886
– volume: 62
  start-page: e202313084
  year: 2023
  ident: 50370_CR52
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202313084
– volume: 12
  start-page: 2712
  year: 2021
  ident: 50370_CR37
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00094
– volume: 59
  start-page: 45
  year: 2018
  ident: 50370_CR31
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2018.04.038
– volume: 370
  start-page: 459
  year: 2020
  ident: 50370_CR2
  publication-title: Science
  doi: 10.1126/science.abc8530
– volume: 54
  start-page: 6847
  year: 2018
  ident: 50370_CR39
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC02365D
– volume: 26
  start-page: 8028
  year: 2020
  ident: 50370_CR38
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202000264
– volume: 63
  start-page: e202401120
  year: 2024
  ident: 50370_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202401120
– volume: 31
  start-page: 2103273
  year: 2021
  ident: 50370_CR53
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202103273
– volume: 62
  start-page: e202310943
  year: 2023
  ident: 50370_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202310943
– volume: 8
  start-page: 2101137
  year: 2021
  ident: 50370_CR32
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101137
– volume: 467
  start-page: 143557
  year: 2023
  ident: 50370_CR21
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.143557
– volume: 11
  start-page: 11885
  year: 2023
  ident: 50370_CR27
  publication-title: J. Mater. Chem. C.
  doi: 10.1039/D3TC02409A
– volume: 57
  start-page: 11316
  year: 2018
  ident: 50370_CR50
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201806323
– volume: 7
  year: 2016
  ident: 50370_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13680
– volume: 145
  start-page: 12550
  year: 2023
  ident: 50370_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c01267
– volume: 69
  start-page: 88
  year: 2023
  ident: 50370_CR34
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2023.09.002
– volume: 33
  start-page: 2306394
  year: 2023
  ident: 50370_CR15
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306394
– volume: 34
  start-page: 2110547
  year: 2022
  ident: 50370_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110547
– volume: 13
  start-page: 678
  year: 2019
  ident: 50370_CR6
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0476-5
– volume: 7
  start-page: 1801536
  year: 2019
  ident: 50370_CR44
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801536
– volume: 61
  start-page: e202210210
  year: 2022
  ident: 50370_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210210
– volume: 16
  start-page: 803
  year: 2022
  ident: 50370_CR7
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-022-01083-y
– volume: 28
  start-page: e202104624
  year: 2022
  ident: 50370_CR36
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.202104624
– ident: 50370_CR4
  doi: 10.1002/9783527650002
– volume: 62
  start-page: e202215522
  year: 2023
  ident: 50370_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202215522
– volume: 18
  start-page: 4903
  year: 2022
  ident: 50370_CR30
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.2c00141
– volume: 14
  year: 2023
  ident: 50370_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40481-w
– volume: 33
  start-page: 2304006
  year: 2023
  ident: 50370_CR23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304006
– volume: 15
  start-page: 208
  year: 2021
  ident: 50370_CR54
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-021-00763-5
– volume: 61
  start-page: e202206916
  year: 2022
  ident: 50370_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202206916
– volume: 35
  start-page: 2212237
  year: 2023
  ident: 50370_CR55
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202212237
– volume: 15
  start-page: 780
  year: 2021
  ident: 50370_CR12
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-021-00870-3
SSID ssj0000391844
Score 2.5846257
Snippet Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional color...
Abstract Multi-resonance thermally activated delayed fluorophores have been actively studied for high-resolution photonic applications due to their exceptional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6175
SubjectTerms 639/301/1019/1020/1091
639/624/1020/1091
639/638/298/398
Charge transfer
Chemical compounds
Color
Configuration management
Density
Donors (electronic)
Electron spin
Electronic structure
Emitters
Emitters (electron)
Excitation
Fluorophores
Humanities and Social Sciences
Light emitting diodes
multidisciplinary
Narrowband
Organic light emitting diodes
Phosphine
Phosphine oxide
Purity
Quantum efficiency
Resonance
Science
Science (multidisciplinary)
Sulfides
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivu11lQjeNGymk-50H1VcFkFPLuwtJOkKM9B2D_M4zE_wX1tJesYdnxehT0klhEpVqqpT-QrgldQleQmq5had4ypIz1vrkfSqDSRhtsQE1_Tpc315pT5eV9c3Sn3FnLAMD5wZdy5qchIsBRVaYERLb23t6qarla2UtxkJlGzejWAqncGypdBFTa9khGzO1yqdCWSSeCWkFrw6skQJsP93XuavyZI_3ZgmQ3RxD-5OHiR7m1d-H27h8ABu55qSu4fwLWZu9DuGCRuCZmPL7Qq567fIcgknz_qEHoJfFynpmXWLscM1iwatY-PAVtMPQpqlSwke1DyPaTOj3_mexse8sHE5H9fLeUSnJkeVx5T3XGyCpXnJq3wEVxcfvry_5FO9Be4rNdtwipIpmpPBiy4yUDjhZChd420Tgp51FP14H9M5pHM6aB9UfH4ZLJGS1xsa-RhOhnHAp8AsYjuTNNCjVbpCFzSdDMpqSxEZkRcw2_Pe-AmMPNbE6E26FJeNyftlaL9M2i9TFfD6MGaZoTj-Sv0ubumBMsJopwZitZmEy_xLuAo42wuEmXR7bSSNkaIttSjg5aGbtDJetdgBx22mqTU5220BT7L8HFZC7KJPlQU0R5J1tNTjnmExT8jf8b2XJNUq4M1eCH-s68-8OP0fvHgGd8qoPULzsjyDk81qi8_JIdu4F0n3vgN7_zF8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJvGi7bpE37JCoeh6BPHuxbSNKEXahtb7v7sH-C_7UzabbH-nHQp3YS0vlIZpLJbwh5K1QOXoIsmfHWMhmEY7VxHuyqDqBhJvcRrunb9_LiUn5dFsu04TamtMrDnBgn6qZ3uEd-JsBXELzOFf8wXDGsGoWnq6mExm1yB6HLMKVLLdW8x4Lo55WU6a4MF9XZKOPMAAsTK7hQnBVH61GE7f-Xr_l3yuQf56ZxOTp_QO4nP5J-nAT_kNzy3SNyd6osuX9MfmH-RrunPiJEQG902G08s-3O06mQk6NtxBDxP9cx9Zk2677xI8VlraF9RzdpmxB6aWKaB7xeYfJM7_auhfaYHdYPq34cVohRDe4qw8T3qeQEjf2Cb_mEXJ5_-fH5gqWqC8wVcrFlECtDTCeC4w0ykFtuRcht5UwVglo0EAM5h0kdwloVlAsSL2EGA6Tg-4ZKPCUnXd_554Qa7-uFgIbOG6kKb4OC-UEaZSAuA_KMLA681y5BkmNljFbHo3FR6UleGuSlo7x0kZF3c5thAuS4kfoTinSmRDDt-AJYrZNtal6CbhmIWxX3CMhfm9KWVVNKU0hnuMzI6UEhdLLwUV_rY0bezJ_BNvHAxXS-3000pQKXu87Is0l_5pEAu-CReUaqI806Gurxl269ivjfeOtLgIFl5P1BCa_H9X9evLj5N16SeznaBVcsz0_JyXaz86_A4dra19GqfgMCWCpV
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRF802C2SZv2URePQ9AnD-4tJGnCLtR2ud192D_B_9qZ9ENWT0HoUzsT0mSmmWl--Q3AG6lzjBJUyW1wjqsoPa-tD-hXdUQLs3lIdE1fvpYXl-rzVXF1Avl0FiaB9hOlZfpMT-iw91uVXBpXFF4IqQUvbsFtom4nq16Wy_m_CjGeV0qN52OErG5QPVqDElX_TfHlnzDJ3_ZK0xJ0fh_ujbEj-zD09gGchO4h3BmqSR4ewQ_CbLQHFhIrBLbGNviC3LX7wIbiTZ61iTckfF8nuDNr1n0TtoyWsob1Hbsefw1iK02CduDtFQFmen_wLeoTIqzfrPrtZkW81BiicgK7D2UmWGoX48nHcHn-6dvygo-VFrgv1GLHMT_GPE5GLxoaQOGEkzF3lbdVjHrRYN7jPQE5pHM6ah8VHbyMFkUx3o2VfAKnXd-FZ8BsCPVCoqIPVukiuKjxm6CstpiLoXgGi2nsjR9pyKkaRmvSdriszDBfBufLpPkyRQZvZ53NQMLxT-mPNKWzJBFopxs41GY0KCNKjD0t5qpaBCLhr23pyqoplS2Ut0JlcDYZhBm9emsk6khR51pk8Hp-jP5Imyy2C_1-kCk1htl1Bk8H-5l7gsOFl8ozqI4s66irx0-69SpxftNJL4lOlcG7yQh_9evvY_H8_8RfwN2c_ERonudncLq73oeXGHTt3KvkZT8BRMUoIw
  priority: 102
  providerName: Springer Nature
Title Highly efficient pure-blue organic light-emitting diodes based on rationally designed heterocyclic phenophosphazinine-containing emitters
URI https://link.springer.com/article/10.1038/s41467-024-50370-5
https://www.ncbi.nlm.nih.gov/pubmed/39039042
https://www.proquest.com/docview/3083309270
https://www.proquest.com/docview/3083671509
https://pubmed.ncbi.nlm.nih.gov/PMC11263564
https://doaj.org/article/06083a91770e43689a6b68d64a54ca04
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8dvquUTwTaPZJm3aB5G95dZj4Q5RF-6tJGnCLtR23Q9w_wT_aydpd2V1FYTSQjoJYTLTmWkmvwF4yWWMXoJIqbJaU-G4obkyFvUqdyhhKrYBrunqOr2ciPFNcnME23JHHQOXB0M7X09qsqjefP-2eY8K_649Mp69XYqg7mhtaMK4ZDQ5hlO0TNIr6lXn7ocvM88xoPEbzTETfYq2m3fnaA4Ps2erAqT_IT_0z3TK3_ZUg6ka3YU7nY9JBq1Q3IMjW9-HW23Vyc0D-OFzO6oNsQE9Akcj8_XCUl2tLWmLPBlSBXwR-3UW0qJJOWtKuyTe5JWkqcmi-4WIo5QhBQSbpz6xpjEbU2F_nznWzKfNcj71-NXoylKfFN-WoyBhXPQ7H8JkdPFleEm7igzUJKK_ohhHY7zHnWGlZybTTHMX68yozDnZLzE-MsYnfHCtpZPGCX9A0ykkRb_YZfwRnNRNbZ8AUdbmfY4djVVCJlY7id8OoaTCmA3JI-hveV-YDq7cV82oirBtzrOiXa8C16sI61UkEbza9Zm3YB3_pD73S7qj9EDboQFZXXR6W7AUfVSFMa1k1oP15yrVaVamQiXCKCYiONsKRLEV3oJjH87yWLIIXuxeo976zRhV22bd0qQS3fE8gset_OxmguzCS8QRZHuStTfV_Tf1bBqwwf2JMI7KF8HrrRD-mtffefH0vzj3DG7HXk2YpHF8Bierxdo-R99spXtwLG8k3rPRhx6cDgbjz2N8nl9cf_yErcN02At_PXpBMX8C-a856A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUIbgg1hIoYCQ4gVVP7MTJASG2akqXUyv1ZmzH1ow0JMMsQvMJ_AzfyLOTTDUsvVXKKXm2HL_dfgvASy5TtBJETrUzhgrPLS21dchXpUcK06mL5ZqOT_Lhmfhynp1vwa8-FyaEVfYyMQrqqrHhjHyPo63AWZlK9m76nYauUeF2tW-h0ZLFoVv9QJdt_vbgE-L3VZrufz79OKRdVwFqMzFYUPQF0Wfh3rIqJKYywwz3qSmsLryXgwptfGtD0AI3RnppvQhJhl4jKNp2vuA47zW4joqXBY6S53J9phOqrRdCdLk5jBd7cxElESpCmjEuGc029F9sE_Av2_bvEM0_7mmj-tu_A7c7u5W8bwntLmy5-h7caDtZru7DzxAvMlkRFytS4Gxkupw5aiZLR9rGUZZMYs0S920cQ61JNW4qNydBjVakqcmsO5bEWaoYVoKvRyFYp7ErO8HxIRqtmY6a-XQUamKjeUxDoH3b4oLEedGWfQBnV4KPh7BdN7V7BEQ7Vw44DrROC5k54yXKI6GlRj8QwRMY9HuvbFcCPXTimKh4Fc8L1eJLIb5UxJfKEni9HjNtC4BcCv0hoHQNGYp3xxe41aqTBYrlSMsa_WTJXGgAUOrc5EWVC50Jq5lIYLcnCNVJlLm6oP8EXqw_oywIFzy6ds2yhcklmvhlAjst_axXgtuFj0gTKDYoa2Opm1_q8SjWGw9ZZhwZOoE3PRFerOv_e_H48t94DjeHp8dH6ujg5PAJ3EoDjzBJ03QXthezpXuKxt7CPIscRuDrVbP0b2DvZng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNZ6YydODggBZdVSqDhQqTdjO7Z2pSVZ9iG0P4G_xK9jxkm2Wh69VcopGVuO5-Fv7PEMIc-ESgElyJwZby2TQThWGudBr8oAEmZSH9M1fTrOD07kh9PsdIf86u_CYFhlbxOjoa4ah3vkAwFYQfAyVXwQurCIz_uj17PvDCtI4UlrX06jFZEjv_4B7tvi1eE-8Pp5mo7ef3l3wLoKA8xlcrhk4BeC_yKC4xVeUuWWWxFSWzhThKCGFeB95zCAQVirgnJB4oXDYIAUcF4oBPR7iVxWIhuijqlTtdnfwczrhZTdPR0uisFCRqsEiyLLuFCcZVtrYSwZ8C-c-3e45h9ntnEpHN0g1zsMS9-0QneT7Pj6FrnSVrVc3yY_MXZkuqY-ZqeA3uhsNffMTleetkWkHJ3G_CX-2ySGXdNq0lR-QXFJrWhT03m3RQm9VDHEBF6PMXCncWs3hfYYmdbMxs1iNsb82ACVGQbdt-UuaOwXcO0dcnIh_LhLduum9vcJNd6XQwENnTdSZd4GBbZJGmXAJwTyhAz7udeuS4eOVTmmOh7Li0K3_NLALx35pbOEvNi0mbXJQM6lfoss3VBiIu_4AqZad3ZB8xzk2oDPrLjHYgClyW1eVLk0mXSGy4Ts9QKhO-uy0Ge6kJCnm89gF_Cwx9S-WbU0uQK4XybkXis_m5HAdMEj04QUW5K1NdTtL_VkHHOP440zAcqdkJe9EJ6N6_9z8eD833hCroIy64-Hx0cPybUUVYQrlqZ7ZHc5X_lHgPuW9nFUMEq-XrRG_wYjhmqu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+efficient+pure-blue+organic+light-emitting+diodes+based+on+rationally+designed+heterocyclic+phenophosphazinine-containing+emitters&rft.jtitle=Nature+communications&rft.au=Xing%2C+Longjiang&rft.au=Wang%2C+Jianghui&rft.au=Chen%2C+Wen-Cheng&rft.au=Liu%2C+Bo&rft.date=2024-07-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-50370-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_50370_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon